1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
26 *
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
33 */
34
35 #include "ubifs.h"
36 #include <linux/list_sort.h>
37
38 /**
39 * struct replay_entry - replay list entry.
40 * @lnum: logical eraseblock number of the node
41 * @offs: node offset
42 * @len: node length
43 * @deletion: non-zero if this entry corresponds to a node deletion
44 * @sqnum: node sequence number
45 * @list: links the replay list
46 * @key: node key
47 * @nm: directory entry name
48 * @old_size: truncation old size
49 * @new_size: truncation new size
50 *
51 * The replay process first scans all buds and builds the replay list, then
52 * sorts the replay list in nodes sequence number order, and then inserts all
53 * the replay entries to the TNC.
54 */
55 struct replay_entry {
56 int lnum;
57 int offs;
58 int len;
59 unsigned int deletion:1;
60 unsigned long long sqnum;
61 struct list_head list;
62 union ubifs_key key;
63 union {
64 struct fscrypt_name nm;
65 struct {
66 loff_t old_size;
67 loff_t new_size;
68 };
69 };
70 };
71
72 /**
73 * struct bud_entry - entry in the list of buds to replay.
74 * @list: next bud in the list
75 * @bud: bud description object
76 * @sqnum: reference node sequence number
77 * @free: free bytes in the bud
78 * @dirty: dirty bytes in the bud
79 */
80 struct bud_entry {
81 struct list_head list;
82 struct ubifs_bud *bud;
83 unsigned long long sqnum;
84 int free;
85 int dirty;
86 };
87
88 /**
89 * set_bud_lprops - set free and dirty space used by a bud.
90 * @c: UBIFS file-system description object
91 * @b: bud entry which describes the bud
92 *
93 * This function makes sure the LEB properties of bud @b are set correctly
94 * after the replay. Returns zero in case of success and a negative error code
95 * in case of failure.
96 */
set_bud_lprops(struct ubifs_info * c,struct bud_entry * b)97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
98 {
99 const struct ubifs_lprops *lp;
100 int err = 0, dirty;
101
102 ubifs_get_lprops(c);
103
104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105 if (IS_ERR(lp)) {
106 err = PTR_ERR(lp);
107 goto out;
108 }
109
110 dirty = lp->dirty;
111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
112 /*
113 * The LEB was added to the journal with a starting offset of
114 * zero which means the LEB must have been empty. The LEB
115 * property values should be @lp->free == @c->leb_size and
116 * @lp->dirty == 0, but that is not the case. The reason is that
117 * the LEB had been garbage collected before it became the bud,
118 * and there was not commit inbetween. The garbage collector
119 * resets the free and dirty space without recording it
120 * anywhere except lprops, so if there was no commit then
121 * lprops does not have that information.
122 *
123 * We do not need to adjust free space because the scan has told
124 * us the exact value which is recorded in the replay entry as
125 * @b->free.
126 *
127 * However we do need to subtract from the dirty space the
128 * amount of space that the garbage collector reclaimed, which
129 * is the whole LEB minus the amount of space that was free.
130 */
131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
132 lp->free, lp->dirty);
133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
134 lp->free, lp->dirty);
135 dirty -= c->leb_size - lp->free;
136 /*
137 * If the replay order was perfect the dirty space would now be
138 * zero. The order is not perfect because the journal heads
139 * race with each other. This is not a problem but is does mean
140 * that the dirty space may temporarily exceed c->leb_size
141 * during the replay.
142 */
143 if (dirty != 0)
144 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
145 b->bud->lnum, lp->free, lp->dirty, b->free,
146 b->dirty);
147 }
148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
149 lp->flags | LPROPS_TAKEN, 0);
150 if (IS_ERR(lp)) {
151 err = PTR_ERR(lp);
152 goto out;
153 }
154
155 /* Make sure the journal head points to the latest bud */
156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157 b->bud->lnum, c->leb_size - b->free);
158
159 out:
160 ubifs_release_lprops(c);
161 return err;
162 }
163
164 /**
165 * set_buds_lprops - set free and dirty space for all replayed buds.
166 * @c: UBIFS file-system description object
167 *
168 * This function sets LEB properties for all replayed buds. Returns zero in
169 * case of success and a negative error code in case of failure.
170 */
set_buds_lprops(struct ubifs_info * c)171 static int set_buds_lprops(struct ubifs_info *c)
172 {
173 struct bud_entry *b;
174 int err;
175
176 list_for_each_entry(b, &c->replay_buds, list) {
177 err = set_bud_lprops(c, b);
178 if (err)
179 return err;
180 }
181
182 return 0;
183 }
184
185 /**
186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
187 * @c: UBIFS file-system description object
188 * @r: replay entry of truncation
189 */
trun_remove_range(struct ubifs_info * c,struct replay_entry * r)190 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
191 {
192 unsigned min_blk, max_blk;
193 union ubifs_key min_key, max_key;
194 ino_t ino;
195
196 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
197 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
198 min_blk += 1;
199
200 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
201 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
202 max_blk -= 1;
203
204 ino = key_inum(c, &r->key);
205
206 data_key_init(c, &min_key, ino, min_blk);
207 data_key_init(c, &max_key, ino, max_blk);
208
209 return ubifs_tnc_remove_range(c, &min_key, &max_key);
210 }
211
212 /**
213 * apply_replay_entry - apply a replay entry to the TNC.
214 * @c: UBIFS file-system description object
215 * @r: replay entry to apply
216 *
217 * Apply a replay entry to the TNC.
218 */
apply_replay_entry(struct ubifs_info * c,struct replay_entry * r)219 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
220 {
221 int err;
222
223 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
224 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
225
226 if (is_hash_key(c, &r->key)) {
227 if (r->deletion)
228 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
229 else
230 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
231 r->len, &r->nm);
232 } else {
233 if (r->deletion)
234 switch (key_type(c, &r->key)) {
235 case UBIFS_INO_KEY:
236 {
237 ino_t inum = key_inum(c, &r->key);
238
239 err = ubifs_tnc_remove_ino(c, inum);
240 break;
241 }
242 case UBIFS_TRUN_KEY:
243 err = trun_remove_range(c, r);
244 break;
245 default:
246 err = ubifs_tnc_remove(c, &r->key);
247 break;
248 }
249 else
250 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
251 r->len);
252 if (err)
253 return err;
254
255 if (c->need_recovery)
256 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
257 r->new_size);
258 }
259
260 return err;
261 }
262
263 /**
264 * replay_entries_cmp - compare 2 replay entries.
265 * @priv: UBIFS file-system description object
266 * @a: first replay entry
267 * @b: second replay entry
268 *
269 * This is a comparios function for 'list_sort()' which compares 2 replay
270 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
271 * greater sequence number and %-1 otherwise.
272 */
replay_entries_cmp(void * priv,struct list_head * a,struct list_head * b)273 static int replay_entries_cmp(void *priv, struct list_head *a,
274 struct list_head *b)
275 {
276 struct ubifs_info *c = priv;
277 struct replay_entry *ra, *rb;
278
279 cond_resched();
280 if (a == b)
281 return 0;
282
283 ra = list_entry(a, struct replay_entry, list);
284 rb = list_entry(b, struct replay_entry, list);
285 ubifs_assert(c, ra->sqnum != rb->sqnum);
286 if (ra->sqnum > rb->sqnum)
287 return 1;
288 return -1;
289 }
290
291 /**
292 * apply_replay_list - apply the replay list to the TNC.
293 * @c: UBIFS file-system description object
294 *
295 * Apply all entries in the replay list to the TNC. Returns zero in case of
296 * success and a negative error code in case of failure.
297 */
apply_replay_list(struct ubifs_info * c)298 static int apply_replay_list(struct ubifs_info *c)
299 {
300 struct replay_entry *r;
301 int err;
302
303 list_sort(c, &c->replay_list, &replay_entries_cmp);
304
305 list_for_each_entry(r, &c->replay_list, list) {
306 cond_resched();
307
308 err = apply_replay_entry(c, r);
309 if (err)
310 return err;
311 }
312
313 return 0;
314 }
315
316 /**
317 * destroy_replay_list - destroy the replay.
318 * @c: UBIFS file-system description object
319 *
320 * Destroy the replay list.
321 */
destroy_replay_list(struct ubifs_info * c)322 static void destroy_replay_list(struct ubifs_info *c)
323 {
324 struct replay_entry *r, *tmp;
325
326 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
327 if (is_hash_key(c, &r->key))
328 kfree(fname_name(&r->nm));
329 list_del(&r->list);
330 kfree(r);
331 }
332 }
333
334 /**
335 * insert_node - insert a node to the replay list
336 * @c: UBIFS file-system description object
337 * @lnum: node logical eraseblock number
338 * @offs: node offset
339 * @len: node length
340 * @key: node key
341 * @sqnum: sequence number
342 * @deletion: non-zero if this is a deletion
343 * @used: number of bytes in use in a LEB
344 * @old_size: truncation old size
345 * @new_size: truncation new size
346 *
347 * This function inserts a scanned non-direntry node to the replay list. The
348 * replay list contains @struct replay_entry elements, and we sort this list in
349 * sequence number order before applying it. The replay list is applied at the
350 * very end of the replay process. Since the list is sorted in sequence number
351 * order, the older modifications are applied first. This function returns zero
352 * in case of success and a negative error code in case of failure.
353 */
insert_node(struct ubifs_info * c,int lnum,int offs,int len,union ubifs_key * key,unsigned long long sqnum,int deletion,int * used,loff_t old_size,loff_t new_size)354 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
355 union ubifs_key *key, unsigned long long sqnum,
356 int deletion, int *used, loff_t old_size,
357 loff_t new_size)
358 {
359 struct replay_entry *r;
360
361 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
362
363 if (key_inum(c, key) >= c->highest_inum)
364 c->highest_inum = key_inum(c, key);
365
366 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
367 if (!r)
368 return -ENOMEM;
369
370 if (!deletion)
371 *used += ALIGN(len, 8);
372 r->lnum = lnum;
373 r->offs = offs;
374 r->len = len;
375 r->deletion = !!deletion;
376 r->sqnum = sqnum;
377 key_copy(c, key, &r->key);
378 r->old_size = old_size;
379 r->new_size = new_size;
380
381 list_add_tail(&r->list, &c->replay_list);
382 return 0;
383 }
384
385 /**
386 * insert_dent - insert a directory entry node into the replay list.
387 * @c: UBIFS file-system description object
388 * @lnum: node logical eraseblock number
389 * @offs: node offset
390 * @len: node length
391 * @key: node key
392 * @name: directory entry name
393 * @nlen: directory entry name length
394 * @sqnum: sequence number
395 * @deletion: non-zero if this is a deletion
396 * @used: number of bytes in use in a LEB
397 *
398 * This function inserts a scanned directory entry node or an extended
399 * attribute entry to the replay list. Returns zero in case of success and a
400 * negative error code in case of failure.
401 */
insert_dent(struct ubifs_info * c,int lnum,int offs,int len,union ubifs_key * key,const char * name,int nlen,unsigned long long sqnum,int deletion,int * used)402 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
403 union ubifs_key *key, const char *name, int nlen,
404 unsigned long long sqnum, int deletion, int *used)
405 {
406 struct replay_entry *r;
407 char *nbuf;
408
409 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
410 if (key_inum(c, key) >= c->highest_inum)
411 c->highest_inum = key_inum(c, key);
412
413 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
414 if (!r)
415 return -ENOMEM;
416
417 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
418 if (!nbuf) {
419 kfree(r);
420 return -ENOMEM;
421 }
422
423 if (!deletion)
424 *used += ALIGN(len, 8);
425 r->lnum = lnum;
426 r->offs = offs;
427 r->len = len;
428 r->deletion = !!deletion;
429 r->sqnum = sqnum;
430 key_copy(c, key, &r->key);
431 fname_len(&r->nm) = nlen;
432 memcpy(nbuf, name, nlen);
433 nbuf[nlen] = '\0';
434 fname_name(&r->nm) = nbuf;
435
436 list_add_tail(&r->list, &c->replay_list);
437 return 0;
438 }
439
440 /**
441 * ubifs_validate_entry - validate directory or extended attribute entry node.
442 * @c: UBIFS file-system description object
443 * @dent: the node to validate
444 *
445 * This function validates directory or extended attribute entry node @dent.
446 * Returns zero if the node is all right and a %-EINVAL if not.
447 */
ubifs_validate_entry(struct ubifs_info * c,const struct ubifs_dent_node * dent)448 int ubifs_validate_entry(struct ubifs_info *c,
449 const struct ubifs_dent_node *dent)
450 {
451 int key_type = key_type_flash(c, dent->key);
452 int nlen = le16_to_cpu(dent->nlen);
453
454 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
455 dent->type >= UBIFS_ITYPES_CNT ||
456 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
457 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
458 le64_to_cpu(dent->inum) > MAX_INUM) {
459 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
460 "directory entry" : "extended attribute entry");
461 return -EINVAL;
462 }
463
464 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
465 ubifs_err(c, "bad key type %d", key_type);
466 return -EINVAL;
467 }
468
469 return 0;
470 }
471
472 /**
473 * is_last_bud - check if the bud is the last in the journal head.
474 * @c: UBIFS file-system description object
475 * @bud: bud description object
476 *
477 * This function checks if bud @bud is the last bud in its journal head. This
478 * information is then used by 'replay_bud()' to decide whether the bud can
479 * have corruptions or not. Indeed, only last buds can be corrupted by power
480 * cuts. Returns %1 if this is the last bud, and %0 if not.
481 */
is_last_bud(struct ubifs_info * c,struct ubifs_bud * bud)482 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
483 {
484 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
485 struct ubifs_bud *next;
486 uint32_t data;
487 int err;
488
489 if (list_is_last(&bud->list, &jh->buds_list))
490 return 1;
491
492 /*
493 * The following is a quirk to make sure we work correctly with UBIFS
494 * images used with older UBIFS.
495 *
496 * Normally, the last bud will be the last in the journal head's list
497 * of bud. However, there is one exception if the UBIFS image belongs
498 * to older UBIFS. This is fairly unlikely: one would need to use old
499 * UBIFS, then have a power cut exactly at the right point, and then
500 * try to mount this image with new UBIFS.
501 *
502 * The exception is: it is possible to have 2 buds A and B, A goes
503 * before B, and B is the last, bud B is contains no data, and bud A is
504 * corrupted at the end. The reason is that in older versions when the
505 * journal code switched the next bud (from A to B), it first added a
506 * log reference node for the new bud (B), and only after this it
507 * synchronized the write-buffer of current bud (A). But later this was
508 * changed and UBIFS started to always synchronize the write-buffer of
509 * the bud (A) before writing the log reference for the new bud (B).
510 *
511 * But because older UBIFS always synchronized A's write-buffer before
512 * writing to B, we can recognize this exceptional situation but
513 * checking the contents of bud B - if it is empty, then A can be
514 * treated as the last and we can recover it.
515 *
516 * TODO: remove this piece of code in a couple of years (today it is
517 * 16.05.2011).
518 */
519 next = list_entry(bud->list.next, struct ubifs_bud, list);
520 if (!list_is_last(&next->list, &jh->buds_list))
521 return 0;
522
523 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
524 if (err)
525 return 0;
526
527 return data == 0xFFFFFFFF;
528 }
529
530 /**
531 * replay_bud - replay a bud logical eraseblock.
532 * @c: UBIFS file-system description object
533 * @b: bud entry which describes the bud
534 *
535 * This function replays bud @bud, recovers it if needed, and adds all nodes
536 * from this bud to the replay list. Returns zero in case of success and a
537 * negative error code in case of failure.
538 */
replay_bud(struct ubifs_info * c,struct bud_entry * b)539 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
540 {
541 int is_last = is_last_bud(c, b->bud);
542 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
543 struct ubifs_scan_leb *sleb;
544 struct ubifs_scan_node *snod;
545
546 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
547 lnum, b->bud->jhead, offs, is_last);
548
549 if (c->need_recovery && is_last)
550 /*
551 * Recover only last LEBs in the journal heads, because power
552 * cuts may cause corruptions only in these LEBs, because only
553 * these LEBs could possibly be written to at the power cut
554 * time.
555 */
556 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
557 else
558 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
559 if (IS_ERR(sleb))
560 return PTR_ERR(sleb);
561
562 /*
563 * The bud does not have to start from offset zero - the beginning of
564 * the 'lnum' LEB may contain previously committed data. One of the
565 * things we have to do in replay is to correctly update lprops with
566 * newer information about this LEB.
567 *
568 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
569 * bytes of free space because it only contain information about
570 * committed data.
571 *
572 * But we know that real amount of free space is 'c->leb_size -
573 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
574 * 'sleb->endpt' is used by bud data. We have to correctly calculate
575 * how much of these data are dirty and update lprops with this
576 * information.
577 *
578 * The dirt in that LEB region is comprised of padding nodes, deletion
579 * nodes, truncation nodes and nodes which are obsoleted by subsequent
580 * nodes in this LEB. So instead of calculating clean space, we
581 * calculate used space ('used' variable).
582 */
583
584 list_for_each_entry(snod, &sleb->nodes, list) {
585 int deletion = 0;
586
587 cond_resched();
588
589 if (snod->sqnum >= SQNUM_WATERMARK) {
590 ubifs_err(c, "file system's life ended");
591 goto out_dump;
592 }
593
594 if (snod->sqnum > c->max_sqnum)
595 c->max_sqnum = snod->sqnum;
596
597 switch (snod->type) {
598 case UBIFS_INO_NODE:
599 {
600 struct ubifs_ino_node *ino = snod->node;
601 loff_t new_size = le64_to_cpu(ino->size);
602
603 if (le32_to_cpu(ino->nlink) == 0)
604 deletion = 1;
605 err = insert_node(c, lnum, snod->offs, snod->len,
606 &snod->key, snod->sqnum, deletion,
607 &used, 0, new_size);
608 break;
609 }
610 case UBIFS_DATA_NODE:
611 {
612 struct ubifs_data_node *dn = snod->node;
613 loff_t new_size = le32_to_cpu(dn->size) +
614 key_block(c, &snod->key) *
615 UBIFS_BLOCK_SIZE;
616
617 err = insert_node(c, lnum, snod->offs, snod->len,
618 &snod->key, snod->sqnum, deletion,
619 &used, 0, new_size);
620 break;
621 }
622 case UBIFS_DENT_NODE:
623 case UBIFS_XENT_NODE:
624 {
625 struct ubifs_dent_node *dent = snod->node;
626
627 err = ubifs_validate_entry(c, dent);
628 if (err)
629 goto out_dump;
630
631 err = insert_dent(c, lnum, snod->offs, snod->len,
632 &snod->key, dent->name,
633 le16_to_cpu(dent->nlen), snod->sqnum,
634 !le64_to_cpu(dent->inum), &used);
635 break;
636 }
637 case UBIFS_TRUN_NODE:
638 {
639 struct ubifs_trun_node *trun = snod->node;
640 loff_t old_size = le64_to_cpu(trun->old_size);
641 loff_t new_size = le64_to_cpu(trun->new_size);
642 union ubifs_key key;
643
644 /* Validate truncation node */
645 if (old_size < 0 || old_size > c->max_inode_sz ||
646 new_size < 0 || new_size > c->max_inode_sz ||
647 old_size <= new_size) {
648 ubifs_err(c, "bad truncation node");
649 goto out_dump;
650 }
651
652 /*
653 * Create a fake truncation key just to use the same
654 * functions which expect nodes to have keys.
655 */
656 trun_key_init(c, &key, le32_to_cpu(trun->inum));
657 err = insert_node(c, lnum, snod->offs, snod->len,
658 &key, snod->sqnum, 1, &used,
659 old_size, new_size);
660 break;
661 }
662 default:
663 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
664 snod->type, lnum, snod->offs);
665 err = -EINVAL;
666 goto out_dump;
667 }
668 if (err)
669 goto out;
670 }
671
672 ubifs_assert(c, ubifs_search_bud(c, lnum));
673 ubifs_assert(c, sleb->endpt - offs >= used);
674 ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
675
676 b->dirty = sleb->endpt - offs - used;
677 b->free = c->leb_size - sleb->endpt;
678 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
679 lnum, b->dirty, b->free);
680
681 out:
682 ubifs_scan_destroy(sleb);
683 return err;
684
685 out_dump:
686 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
687 ubifs_dump_node(c, snod->node);
688 ubifs_scan_destroy(sleb);
689 return -EINVAL;
690 }
691
692 /**
693 * replay_buds - replay all buds.
694 * @c: UBIFS file-system description object
695 *
696 * This function returns zero in case of success and a negative error code in
697 * case of failure.
698 */
replay_buds(struct ubifs_info * c)699 static int replay_buds(struct ubifs_info *c)
700 {
701 struct bud_entry *b;
702 int err;
703 unsigned long long prev_sqnum = 0;
704
705 list_for_each_entry(b, &c->replay_buds, list) {
706 err = replay_bud(c, b);
707 if (err)
708 return err;
709
710 ubifs_assert(c, b->sqnum > prev_sqnum);
711 prev_sqnum = b->sqnum;
712 }
713
714 return 0;
715 }
716
717 /**
718 * destroy_bud_list - destroy the list of buds to replay.
719 * @c: UBIFS file-system description object
720 */
destroy_bud_list(struct ubifs_info * c)721 static void destroy_bud_list(struct ubifs_info *c)
722 {
723 struct bud_entry *b;
724
725 while (!list_empty(&c->replay_buds)) {
726 b = list_entry(c->replay_buds.next, struct bud_entry, list);
727 list_del(&b->list);
728 kfree(b);
729 }
730 }
731
732 /**
733 * add_replay_bud - add a bud to the list of buds to replay.
734 * @c: UBIFS file-system description object
735 * @lnum: bud logical eraseblock number to replay
736 * @offs: bud start offset
737 * @jhead: journal head to which this bud belongs
738 * @sqnum: reference node sequence number
739 *
740 * This function returns zero in case of success and a negative error code in
741 * case of failure.
742 */
add_replay_bud(struct ubifs_info * c,int lnum,int offs,int jhead,unsigned long long sqnum)743 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
744 unsigned long long sqnum)
745 {
746 struct ubifs_bud *bud;
747 struct bud_entry *b;
748
749 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
750
751 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
752 if (!bud)
753 return -ENOMEM;
754
755 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
756 if (!b) {
757 kfree(bud);
758 return -ENOMEM;
759 }
760
761 bud->lnum = lnum;
762 bud->start = offs;
763 bud->jhead = jhead;
764 ubifs_add_bud(c, bud);
765
766 b->bud = bud;
767 b->sqnum = sqnum;
768 list_add_tail(&b->list, &c->replay_buds);
769
770 return 0;
771 }
772
773 /**
774 * validate_ref - validate a reference node.
775 * @c: UBIFS file-system description object
776 * @ref: the reference node to validate
777 * @ref_lnum: LEB number of the reference node
778 * @ref_offs: reference node offset
779 *
780 * This function returns %1 if a bud reference already exists for the LEB. %0 is
781 * returned if the reference node is new, otherwise %-EINVAL is returned if
782 * validation failed.
783 */
validate_ref(struct ubifs_info * c,const struct ubifs_ref_node * ref)784 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
785 {
786 struct ubifs_bud *bud;
787 int lnum = le32_to_cpu(ref->lnum);
788 unsigned int offs = le32_to_cpu(ref->offs);
789 unsigned int jhead = le32_to_cpu(ref->jhead);
790
791 /*
792 * ref->offs may point to the end of LEB when the journal head points
793 * to the end of LEB and we write reference node for it during commit.
794 * So this is why we require 'offs > c->leb_size'.
795 */
796 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
797 lnum < c->main_first || offs > c->leb_size ||
798 offs & (c->min_io_size - 1))
799 return -EINVAL;
800
801 /* Make sure we have not already looked at this bud */
802 bud = ubifs_search_bud(c, lnum);
803 if (bud) {
804 if (bud->jhead == jhead && bud->start <= offs)
805 return 1;
806 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
807 return -EINVAL;
808 }
809
810 return 0;
811 }
812
813 /**
814 * replay_log_leb - replay a log logical eraseblock.
815 * @c: UBIFS file-system description object
816 * @lnum: log logical eraseblock to replay
817 * @offs: offset to start replaying from
818 * @sbuf: scan buffer
819 *
820 * This function replays a log LEB and returns zero in case of success, %1 if
821 * this is the last LEB in the log, and a negative error code in case of
822 * failure.
823 */
replay_log_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf)824 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
825 {
826 int err;
827 struct ubifs_scan_leb *sleb;
828 struct ubifs_scan_node *snod;
829 const struct ubifs_cs_node *node;
830
831 dbg_mnt("replay log LEB %d:%d", lnum, offs);
832 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
833 if (IS_ERR(sleb)) {
834 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
835 return PTR_ERR(sleb);
836 /*
837 * Note, the below function will recover this log LEB only if
838 * it is the last, because unclean reboots can possibly corrupt
839 * only the tail of the log.
840 */
841 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
842 if (IS_ERR(sleb))
843 return PTR_ERR(sleb);
844 }
845
846 if (sleb->nodes_cnt == 0) {
847 err = 1;
848 goto out;
849 }
850
851 node = sleb->buf;
852 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
853 if (c->cs_sqnum == 0) {
854 /*
855 * This is the first log LEB we are looking at, make sure that
856 * the first node is a commit start node. Also record its
857 * sequence number so that UBIFS can determine where the log
858 * ends, because all nodes which were have higher sequence
859 * numbers.
860 */
861 if (snod->type != UBIFS_CS_NODE) {
862 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
863 lnum, offs);
864 goto out_dump;
865 }
866 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
867 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
868 lnum, offs,
869 (unsigned long long)le64_to_cpu(node->cmt_no),
870 c->cmt_no);
871 goto out_dump;
872 }
873
874 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
875 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
876 }
877
878 if (snod->sqnum < c->cs_sqnum) {
879 /*
880 * This means that we reached end of log and now
881 * look to the older log data, which was already
882 * committed but the eraseblock was not erased (UBIFS
883 * only un-maps it). So this basically means we have to
884 * exit with "end of log" code.
885 */
886 err = 1;
887 goto out;
888 }
889
890 /* Make sure the first node sits at offset zero of the LEB */
891 if (snod->offs != 0) {
892 ubifs_err(c, "first node is not at zero offset");
893 goto out_dump;
894 }
895
896 list_for_each_entry(snod, &sleb->nodes, list) {
897 cond_resched();
898
899 if (snod->sqnum >= SQNUM_WATERMARK) {
900 ubifs_err(c, "file system's life ended");
901 goto out_dump;
902 }
903
904 if (snod->sqnum < c->cs_sqnum) {
905 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
906 snod->sqnum, c->cs_sqnum);
907 goto out_dump;
908 }
909
910 if (snod->sqnum > c->max_sqnum)
911 c->max_sqnum = snod->sqnum;
912
913 switch (snod->type) {
914 case UBIFS_REF_NODE: {
915 const struct ubifs_ref_node *ref = snod->node;
916
917 err = validate_ref(c, ref);
918 if (err == 1)
919 break; /* Already have this bud */
920 if (err)
921 goto out_dump;
922
923 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
924 le32_to_cpu(ref->offs),
925 le32_to_cpu(ref->jhead),
926 snod->sqnum);
927 if (err)
928 goto out;
929
930 break;
931 }
932 case UBIFS_CS_NODE:
933 /* Make sure it sits at the beginning of LEB */
934 if (snod->offs != 0) {
935 ubifs_err(c, "unexpected node in log");
936 goto out_dump;
937 }
938 break;
939 default:
940 ubifs_err(c, "unexpected node in log");
941 goto out_dump;
942 }
943 }
944
945 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
946 c->lhead_lnum = lnum;
947 c->lhead_offs = sleb->endpt;
948 }
949
950 err = !sleb->endpt;
951 out:
952 ubifs_scan_destroy(sleb);
953 return err;
954
955 out_dump:
956 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
957 lnum, offs + snod->offs);
958 ubifs_dump_node(c, snod->node);
959 ubifs_scan_destroy(sleb);
960 return -EINVAL;
961 }
962
963 /**
964 * take_ihead - update the status of the index head in lprops to 'taken'.
965 * @c: UBIFS file-system description object
966 *
967 * This function returns the amount of free space in the index head LEB or a
968 * negative error code.
969 */
take_ihead(struct ubifs_info * c)970 static int take_ihead(struct ubifs_info *c)
971 {
972 const struct ubifs_lprops *lp;
973 int err, free;
974
975 ubifs_get_lprops(c);
976
977 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
978 if (IS_ERR(lp)) {
979 err = PTR_ERR(lp);
980 goto out;
981 }
982
983 free = lp->free;
984
985 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
986 lp->flags | LPROPS_TAKEN, 0);
987 if (IS_ERR(lp)) {
988 err = PTR_ERR(lp);
989 goto out;
990 }
991
992 err = free;
993 out:
994 ubifs_release_lprops(c);
995 return err;
996 }
997
998 /**
999 * ubifs_replay_journal - replay journal.
1000 * @c: UBIFS file-system description object
1001 *
1002 * This function scans the journal, replays and cleans it up. It makes sure all
1003 * memory data structures related to uncommitted journal are built (dirty TNC
1004 * tree, tree of buds, modified lprops, etc).
1005 */
ubifs_replay_journal(struct ubifs_info * c)1006 int ubifs_replay_journal(struct ubifs_info *c)
1007 {
1008 int err, lnum, free;
1009
1010 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1011
1012 /* Update the status of the index head in lprops to 'taken' */
1013 free = take_ihead(c);
1014 if (free < 0)
1015 return free; /* Error code */
1016
1017 if (c->ihead_offs != c->leb_size - free) {
1018 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1019 c->ihead_offs);
1020 return -EINVAL;
1021 }
1022
1023 dbg_mnt("start replaying the journal");
1024 c->replaying = 1;
1025 lnum = c->ltail_lnum = c->lhead_lnum;
1026
1027 do {
1028 err = replay_log_leb(c, lnum, 0, c->sbuf);
1029 if (err == 1) {
1030 if (lnum != c->lhead_lnum)
1031 /* We hit the end of the log */
1032 break;
1033
1034 /*
1035 * The head of the log must always start with the
1036 * "commit start" node on a properly formatted UBIFS.
1037 * But we found no nodes at all, which means that
1038 * something went wrong and we cannot proceed mounting
1039 * the file-system.
1040 */
1041 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1042 lnum, 0);
1043 err = -EINVAL;
1044 }
1045 if (err)
1046 goto out;
1047 lnum = ubifs_next_log_lnum(c, lnum);
1048 } while (lnum != c->ltail_lnum);
1049
1050 err = replay_buds(c);
1051 if (err)
1052 goto out;
1053
1054 err = apply_replay_list(c);
1055 if (err)
1056 goto out;
1057
1058 err = set_buds_lprops(c);
1059 if (err)
1060 goto out;
1061
1062 /*
1063 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1064 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1065 * depend on it. This means we have to initialize it to make sure
1066 * budgeting works properly.
1067 */
1068 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1069 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1070
1071 ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1072 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1073 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1074 (unsigned long)c->highest_inum);
1075 out:
1076 destroy_replay_list(c);
1077 destroy_bud_list(c);
1078 c->replaying = 0;
1079 return err;
1080 }
1081