1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_BG_GC		0x00000001
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
80 #define F2FS_MOUNT_DISCARD		0x00000004
81 #define F2FS_MOUNT_NOHEAP		0x00000008
82 #define F2FS_MOUNT_XATTR_USER		0x00000010
83 #define F2FS_MOUNT_POSIX_ACL		0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
86 #define F2FS_MOUNT_INLINE_DATA		0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
89 #define F2FS_MOUNT_NOBARRIER		0x00000800
90 #define F2FS_MOUNT_FASTBOOT		0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
92 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
93 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
95 #define F2FS_MOUNT_ADAPTIVE		0x00020000
96 #define F2FS_MOUNT_LFS			0x00040000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 
154 #define F2FS_HAS_FEATURE(sb, mask)					\
155 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_SET_FEATURE(sb, mask)					\
157 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
158 #define F2FS_CLEAR_FEATURE(sb, mask)					\
159 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
160 
161 /*
162  * Default values for user and/or group using reserved blocks
163  */
164 #define	F2FS_DEF_RESUID		0
165 #define	F2FS_DEF_RESGID		0
166 
167 /*
168  * For checkpoint manager
169  */
170 enum {
171 	NAT_BITMAP,
172 	SIT_BITMAP
173 };
174 
175 #define	CP_UMOUNT	0x00000001
176 #define	CP_FASTBOOT	0x00000002
177 #define	CP_SYNC		0x00000004
178 #define	CP_RECOVERY	0x00000008
179 #define	CP_DISCARD	0x00000010
180 #define CP_TRIMMED	0x00000020
181 
182 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
183 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
184 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
185 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
186 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
187 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
188 #define DEF_CP_INTERVAL			60	/* 60 secs */
189 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
190 
191 struct cp_control {
192 	int reason;
193 	__u64 trim_start;
194 	__u64 trim_end;
195 	__u64 trim_minlen;
196 };
197 
198 /*
199  * indicate meta/data type
200  */
201 enum {
202 	META_CP,
203 	META_NAT,
204 	META_SIT,
205 	META_SSA,
206 	META_POR,
207 	DATA_GENERIC,
208 	META_GENERIC,
209 };
210 
211 /* for the list of ino */
212 enum {
213 	ORPHAN_INO,		/* for orphan ino list */
214 	APPEND_INO,		/* for append ino list */
215 	UPDATE_INO,		/* for update ino list */
216 	TRANS_DIR_INO,		/* for trasactions dir ino list */
217 	FLUSH_INO,		/* for multiple device flushing */
218 	MAX_INO_ENTRY,		/* max. list */
219 };
220 
221 struct ino_entry {
222 	struct list_head list;		/* list head */
223 	nid_t ino;			/* inode number */
224 	unsigned int dirty_device;	/* dirty device bitmap */
225 };
226 
227 /* for the list of inodes to be GCed */
228 struct inode_entry {
229 	struct list_head list;	/* list head */
230 	struct inode *inode;	/* vfs inode pointer */
231 };
232 
233 struct fsync_node_entry {
234 	struct list_head list;	/* list head */
235 	struct page *page;	/* warm node page pointer */
236 	unsigned int seq_id;	/* sequence id */
237 };
238 
239 /* for the bitmap indicate blocks to be discarded */
240 struct discard_entry {
241 	struct list_head list;	/* list head */
242 	block_t start_blkaddr;	/* start blockaddr of current segment */
243 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
244 };
245 
246 /* default discard granularity of inner discard thread, unit: block count */
247 #define DEFAULT_DISCARD_GRANULARITY		16
248 
249 /* max discard pend list number */
250 #define MAX_PLIST_NUM		512
251 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
252 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
253 
254 enum {
255 	D_PREP,			/* initial */
256 	D_PARTIAL,		/* partially submitted */
257 	D_SUBMIT,		/* all submitted */
258 	D_DONE,			/* finished */
259 };
260 
261 struct discard_info {
262 	block_t lstart;			/* logical start address */
263 	block_t len;			/* length */
264 	block_t start;			/* actual start address in dev */
265 };
266 
267 struct discard_cmd {
268 	struct rb_node rb_node;		/* rb node located in rb-tree */
269 	union {
270 		struct {
271 			block_t lstart;	/* logical start address */
272 			block_t len;	/* length */
273 			block_t start;	/* actual start address in dev */
274 		};
275 		struct discard_info di;	/* discard info */
276 
277 	};
278 	struct list_head list;		/* command list */
279 	struct completion wait;		/* compleation */
280 	struct block_device *bdev;	/* bdev */
281 	unsigned short ref;		/* reference count */
282 	unsigned char state;		/* state */
283 	unsigned char issuing;		/* issuing discard */
284 	int error;			/* bio error */
285 	spinlock_t lock;		/* for state/bio_ref updating */
286 	unsigned short bio_ref;		/* bio reference count */
287 };
288 
289 enum {
290 	DPOLICY_BG,
291 	DPOLICY_FORCE,
292 	DPOLICY_FSTRIM,
293 	DPOLICY_UMOUNT,
294 	MAX_DPOLICY,
295 };
296 
297 struct discard_policy {
298 	int type;			/* type of discard */
299 	unsigned int min_interval;	/* used for candidates exist */
300 	unsigned int mid_interval;	/* used for device busy */
301 	unsigned int max_interval;	/* used for candidates not exist */
302 	unsigned int max_requests;	/* # of discards issued per round */
303 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
304 	bool io_aware;			/* issue discard in idle time */
305 	bool sync;			/* submit discard with REQ_SYNC flag */
306 	bool ordered;			/* issue discard by lba order */
307 	unsigned int granularity;	/* discard granularity */
308 };
309 
310 struct discard_cmd_control {
311 	struct task_struct *f2fs_issue_discard;	/* discard thread */
312 	struct list_head entry_list;		/* 4KB discard entry list */
313 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
314 	struct list_head wait_list;		/* store on-flushing entries */
315 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
316 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
317 	unsigned int discard_wake;		/* to wake up discard thread */
318 	struct mutex cmd_lock;
319 	unsigned int nr_discards;		/* # of discards in the list */
320 	unsigned int max_discards;		/* max. discards to be issued */
321 	unsigned int discard_granularity;	/* discard granularity */
322 	unsigned int undiscard_blks;		/* # of undiscard blocks */
323 	unsigned int next_pos;			/* next discard position */
324 	atomic_t issued_discard;		/* # of issued discard */
325 	atomic_t issing_discard;		/* # of issing discard */
326 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
327 	struct rb_root root;			/* root of discard rb-tree */
328 	bool rbtree_check;			/* config for consistence check */
329 };
330 
331 /* for the list of fsync inodes, used only during recovery */
332 struct fsync_inode_entry {
333 	struct list_head list;	/* list head */
334 	struct inode *inode;	/* vfs inode pointer */
335 	block_t blkaddr;	/* block address locating the last fsync */
336 	block_t last_dentry;	/* block address locating the last dentry */
337 };
338 
339 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
340 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
341 
342 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
343 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
344 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
345 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
346 
347 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
348 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
349 
update_nats_in_cursum(struct f2fs_journal * journal,int i)350 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
351 {
352 	int before = nats_in_cursum(journal);
353 
354 	journal->n_nats = cpu_to_le16(before + i);
355 	return before;
356 }
357 
update_sits_in_cursum(struct f2fs_journal * journal,int i)358 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
359 {
360 	int before = sits_in_cursum(journal);
361 
362 	journal->n_sits = cpu_to_le16(before + i);
363 	return before;
364 }
365 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)366 static inline bool __has_cursum_space(struct f2fs_journal *journal,
367 							int size, int type)
368 {
369 	if (type == NAT_JOURNAL)
370 		return size <= MAX_NAT_JENTRIES(journal);
371 	return size <= MAX_SIT_JENTRIES(journal);
372 }
373 
374 /*
375  * ioctl commands
376  */
377 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
378 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
379 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
380 
381 #define F2FS_IOCTL_MAGIC		0xf5
382 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
383 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
384 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
385 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
386 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
387 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
388 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
389 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
390 						struct f2fs_defragment)
391 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
392 						struct f2fs_move_range)
393 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
394 						struct f2fs_flush_device)
395 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
396 						struct f2fs_gc_range)
397 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
398 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
399 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
400 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
401 
402 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
403 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
404 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
405 
406 /*
407  * should be same as XFS_IOC_GOINGDOWN.
408  * Flags for going down operation used by FS_IOC_GOINGDOWN
409  */
410 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
411 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
412 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
413 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
414 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
415 
416 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
417 /*
418  * ioctl commands in 32 bit emulation
419  */
420 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
421 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
422 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
423 #endif
424 
425 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
426 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
427 
428 struct f2fs_gc_range {
429 	u32 sync;
430 	u64 start;
431 	u64 len;
432 };
433 
434 struct f2fs_defragment {
435 	u64 start;
436 	u64 len;
437 };
438 
439 struct f2fs_move_range {
440 	u32 dst_fd;		/* destination fd */
441 	u64 pos_in;		/* start position in src_fd */
442 	u64 pos_out;		/* start position in dst_fd */
443 	u64 len;		/* size to move */
444 };
445 
446 struct f2fs_flush_device {
447 	u32 dev_num;		/* device number to flush */
448 	u32 segments;		/* # of segments to flush */
449 };
450 
451 /* for inline stuff */
452 #define DEF_INLINE_RESERVED_SIZE	1
453 #define DEF_MIN_INLINE_SIZE		1
454 static inline int get_extra_isize(struct inode *inode);
455 static inline int get_inline_xattr_addrs(struct inode *inode);
456 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
457 				(CUR_ADDRS_PER_INODE(inode) -		\
458 				get_inline_xattr_addrs(inode) -	\
459 				DEF_INLINE_RESERVED_SIZE))
460 
461 /* for inline dir */
462 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
463 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
464 				BITS_PER_BYTE + 1))
465 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
466 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
467 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
468 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
469 				NR_INLINE_DENTRY(inode) + \
470 				INLINE_DENTRY_BITMAP_SIZE(inode)))
471 
472 /*
473  * For INODE and NODE manager
474  */
475 /* for directory operations */
476 struct f2fs_dentry_ptr {
477 	struct inode *inode;
478 	void *bitmap;
479 	struct f2fs_dir_entry *dentry;
480 	__u8 (*filename)[F2FS_SLOT_LEN];
481 	int max;
482 	int nr_bitmap;
483 };
484 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)485 static inline void make_dentry_ptr_block(struct inode *inode,
486 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
487 {
488 	d->inode = inode;
489 	d->max = NR_DENTRY_IN_BLOCK;
490 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
491 	d->bitmap = t->dentry_bitmap;
492 	d->dentry = t->dentry;
493 	d->filename = t->filename;
494 }
495 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)496 static inline void make_dentry_ptr_inline(struct inode *inode,
497 					struct f2fs_dentry_ptr *d, void *t)
498 {
499 	int entry_cnt = NR_INLINE_DENTRY(inode);
500 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
501 	int reserved_size = INLINE_RESERVED_SIZE(inode);
502 
503 	d->inode = inode;
504 	d->max = entry_cnt;
505 	d->nr_bitmap = bitmap_size;
506 	d->bitmap = t;
507 	d->dentry = t + bitmap_size + reserved_size;
508 	d->filename = t + bitmap_size + reserved_size +
509 					SIZE_OF_DIR_ENTRY * entry_cnt;
510 }
511 
512 /*
513  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
514  * as its node offset to distinguish from index node blocks.
515  * But some bits are used to mark the node block.
516  */
517 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
518 				>> OFFSET_BIT_SHIFT)
519 enum {
520 	ALLOC_NODE,			/* allocate a new node page if needed */
521 	LOOKUP_NODE,			/* look up a node without readahead */
522 	LOOKUP_NODE_RA,			/*
523 					 * look up a node with readahead called
524 					 * by get_data_block.
525 					 */
526 };
527 
528 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
529 
530 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
531 
532 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
533 
534 /* for in-memory extent cache entry */
535 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
536 
537 /* number of extent info in extent cache we try to shrink */
538 #define EXTENT_CACHE_SHRINK_NUMBER	128
539 
540 struct rb_entry {
541 	struct rb_node rb_node;		/* rb node located in rb-tree */
542 	unsigned int ofs;		/* start offset of the entry */
543 	unsigned int len;		/* length of the entry */
544 };
545 
546 struct extent_info {
547 	unsigned int fofs;		/* start offset in a file */
548 	unsigned int len;		/* length of the extent */
549 	u32 blk;			/* start block address of the extent */
550 };
551 
552 struct extent_node {
553 	struct rb_node rb_node;
554 	union {
555 		struct {
556 			unsigned int fofs;
557 			unsigned int len;
558 			u32 blk;
559 		};
560 		struct extent_info ei;	/* extent info */
561 
562 	};
563 	struct list_head list;		/* node in global extent list of sbi */
564 	struct extent_tree *et;		/* extent tree pointer */
565 };
566 
567 struct extent_tree {
568 	nid_t ino;			/* inode number */
569 	struct rb_root root;		/* root of extent info rb-tree */
570 	struct extent_node *cached_en;	/* recently accessed extent node */
571 	struct extent_info largest;	/* largested extent info */
572 	struct list_head list;		/* to be used by sbi->zombie_list */
573 	rwlock_t lock;			/* protect extent info rb-tree */
574 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
575 };
576 
577 /*
578  * This structure is taken from ext4_map_blocks.
579  *
580  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
581  */
582 #define F2FS_MAP_NEW		(1 << BH_New)
583 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
584 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
585 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
586 				F2FS_MAP_UNWRITTEN)
587 
588 struct f2fs_map_blocks {
589 	block_t m_pblk;
590 	block_t m_lblk;
591 	unsigned int m_len;
592 	unsigned int m_flags;
593 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
594 	pgoff_t *m_next_extent;		/* point to next possible extent */
595 	int m_seg_type;
596 };
597 
598 /* for flag in get_data_block */
599 enum {
600 	F2FS_GET_BLOCK_DEFAULT,
601 	F2FS_GET_BLOCK_FIEMAP,
602 	F2FS_GET_BLOCK_BMAP,
603 	F2FS_GET_BLOCK_PRE_DIO,
604 	F2FS_GET_BLOCK_PRE_AIO,
605 	F2FS_GET_BLOCK_PRECACHE,
606 };
607 
608 /*
609  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
610  */
611 #define FADVISE_COLD_BIT	0x01
612 #define FADVISE_LOST_PINO_BIT	0x02
613 #define FADVISE_ENCRYPT_BIT	0x04
614 #define FADVISE_ENC_NAME_BIT	0x08
615 #define FADVISE_KEEP_SIZE_BIT	0x10
616 #define FADVISE_HOT_BIT		0x20
617 #define FADVISE_VERITY_BIT	0x40	/* reserved */
618 
619 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
620 
621 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
622 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
623 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
624 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
625 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
626 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
627 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
628 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
629 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
630 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
631 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
632 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
633 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
634 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
635 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
636 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
637 
638 #define DEF_DIR_LEVEL		0
639 
640 enum {
641 	GC_FAILURE_PIN,
642 	GC_FAILURE_ATOMIC,
643 	MAX_GC_FAILURE
644 };
645 
646 struct f2fs_inode_info {
647 	struct inode vfs_inode;		/* serve a vfs inode */
648 	unsigned long i_flags;		/* keep an inode flags for ioctl */
649 	unsigned char i_advise;		/* use to give file attribute hints */
650 	unsigned char i_dir_level;	/* use for dentry level for large dir */
651 	unsigned int i_current_depth;	/* only for directory depth */
652 	/* for gc failure statistic */
653 	unsigned int i_gc_failures[MAX_GC_FAILURE];
654 	unsigned int i_pino;		/* parent inode number */
655 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
656 
657 	/* Use below internally in f2fs*/
658 	unsigned long flags;		/* use to pass per-file flags */
659 	struct rw_semaphore i_sem;	/* protect fi info */
660 	atomic_t dirty_pages;		/* # of dirty pages */
661 	f2fs_hash_t chash;		/* hash value of given file name */
662 	unsigned int clevel;		/* maximum level of given file name */
663 	struct task_struct *task;	/* lookup and create consistency */
664 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
665 	nid_t i_xattr_nid;		/* node id that contains xattrs */
666 	loff_t	last_disk_size;		/* lastly written file size */
667 
668 #ifdef CONFIG_QUOTA
669 	struct dquot *i_dquot[MAXQUOTAS];
670 
671 	/* quota space reservation, managed internally by quota code */
672 	qsize_t i_reserved_quota;
673 #endif
674 	struct list_head dirty_list;	/* dirty list for dirs and files */
675 	struct list_head gdirty_list;	/* linked in global dirty list */
676 	struct list_head inmem_ilist;	/* list for inmem inodes */
677 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
678 	struct task_struct *inmem_task;	/* store inmemory task */
679 	struct mutex inmem_lock;	/* lock for inmemory pages */
680 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
681 
682 	/* avoid racing between foreground op and gc */
683 	struct rw_semaphore i_gc_rwsem[2];
684 	struct rw_semaphore i_mmap_sem;
685 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
686 
687 	int i_extra_isize;		/* size of extra space located in i_addr */
688 	kprojid_t i_projid;		/* id for project quota */
689 	int i_inline_xattr_size;	/* inline xattr size */
690 	struct timespec64 i_crtime;	/* inode creation time */
691 	struct timespec64 i_disk_time[4];/* inode disk times */
692 };
693 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)694 static inline void get_extent_info(struct extent_info *ext,
695 					struct f2fs_extent *i_ext)
696 {
697 	ext->fofs = le32_to_cpu(i_ext->fofs);
698 	ext->blk = le32_to_cpu(i_ext->blk);
699 	ext->len = le32_to_cpu(i_ext->len);
700 }
701 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)702 static inline void set_raw_extent(struct extent_info *ext,
703 					struct f2fs_extent *i_ext)
704 {
705 	i_ext->fofs = cpu_to_le32(ext->fofs);
706 	i_ext->blk = cpu_to_le32(ext->blk);
707 	i_ext->len = cpu_to_le32(ext->len);
708 }
709 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)710 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
711 						u32 blk, unsigned int len)
712 {
713 	ei->fofs = fofs;
714 	ei->blk = blk;
715 	ei->len = len;
716 }
717 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)718 static inline bool __is_discard_mergeable(struct discard_info *back,
719 			struct discard_info *front, unsigned int max_len)
720 {
721 	return (back->lstart + back->len == front->lstart) &&
722 		(back->len + front->len <= max_len);
723 }
724 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)725 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
726 			struct discard_info *back, unsigned int max_len)
727 {
728 	return __is_discard_mergeable(back, cur, max_len);
729 }
730 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)731 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
732 			struct discard_info *front, unsigned int max_len)
733 {
734 	return __is_discard_mergeable(cur, front, max_len);
735 }
736 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)737 static inline bool __is_extent_mergeable(struct extent_info *back,
738 						struct extent_info *front)
739 {
740 	return (back->fofs + back->len == front->fofs &&
741 			back->blk + back->len == front->blk);
742 }
743 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)744 static inline bool __is_back_mergeable(struct extent_info *cur,
745 						struct extent_info *back)
746 {
747 	return __is_extent_mergeable(back, cur);
748 }
749 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)750 static inline bool __is_front_mergeable(struct extent_info *cur,
751 						struct extent_info *front)
752 {
753 	return __is_extent_mergeable(cur, front);
754 }
755 
756 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct inode * inode,struct extent_tree * et,struct extent_node * en)757 static inline void __try_update_largest_extent(struct inode *inode,
758 			struct extent_tree *et, struct extent_node *en)
759 {
760 	if (en->ei.len > et->largest.len) {
761 		et->largest = en->ei;
762 		f2fs_mark_inode_dirty_sync(inode, true);
763 	}
764 }
765 
766 /*
767  * For free nid management
768  */
769 enum nid_state {
770 	FREE_NID,		/* newly added to free nid list */
771 	PREALLOC_NID,		/* it is preallocated */
772 	MAX_NID_STATE,
773 };
774 
775 struct f2fs_nm_info {
776 	block_t nat_blkaddr;		/* base disk address of NAT */
777 	nid_t max_nid;			/* maximum possible node ids */
778 	nid_t available_nids;		/* # of available node ids */
779 	nid_t next_scan_nid;		/* the next nid to be scanned */
780 	unsigned int ram_thresh;	/* control the memory footprint */
781 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
782 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
783 
784 	/* NAT cache management */
785 	struct radix_tree_root nat_root;/* root of the nat entry cache */
786 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
787 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
788 	struct list_head nat_entries;	/* cached nat entry list (clean) */
789 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
790 	unsigned int nat_cnt;		/* the # of cached nat entries */
791 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
792 	unsigned int nat_blocks;	/* # of nat blocks */
793 
794 	/* free node ids management */
795 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
796 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
797 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
798 	spinlock_t nid_list_lock;	/* protect nid lists ops */
799 	struct mutex build_lock;	/* lock for build free nids */
800 	unsigned char **free_nid_bitmap;
801 	unsigned char *nat_block_bitmap;
802 	unsigned short *free_nid_count;	/* free nid count of NAT block */
803 
804 	/* for checkpoint */
805 	char *nat_bitmap;		/* NAT bitmap pointer */
806 
807 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
808 	unsigned char *nat_bits;	/* NAT bits blocks */
809 	unsigned char *full_nat_bits;	/* full NAT pages */
810 	unsigned char *empty_nat_bits;	/* empty NAT pages */
811 #ifdef CONFIG_F2FS_CHECK_FS
812 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
813 #endif
814 	int bitmap_size;		/* bitmap size */
815 };
816 
817 /*
818  * this structure is used as one of function parameters.
819  * all the information are dedicated to a given direct node block determined
820  * by the data offset in a file.
821  */
822 struct dnode_of_data {
823 	struct inode *inode;		/* vfs inode pointer */
824 	struct page *inode_page;	/* its inode page, NULL is possible */
825 	struct page *node_page;		/* cached direct node page */
826 	nid_t nid;			/* node id of the direct node block */
827 	unsigned int ofs_in_node;	/* data offset in the node page */
828 	bool inode_page_locked;		/* inode page is locked or not */
829 	bool node_changed;		/* is node block changed */
830 	char cur_level;			/* level of hole node page */
831 	char max_level;			/* level of current page located */
832 	block_t	data_blkaddr;		/* block address of the node block */
833 };
834 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)835 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
836 		struct page *ipage, struct page *npage, nid_t nid)
837 {
838 	memset(dn, 0, sizeof(*dn));
839 	dn->inode = inode;
840 	dn->inode_page = ipage;
841 	dn->node_page = npage;
842 	dn->nid = nid;
843 }
844 
845 /*
846  * For SIT manager
847  *
848  * By default, there are 6 active log areas across the whole main area.
849  * When considering hot and cold data separation to reduce cleaning overhead,
850  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
851  * respectively.
852  * In the current design, you should not change the numbers intentionally.
853  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
854  * logs individually according to the underlying devices. (default: 6)
855  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
856  * data and 8 for node logs.
857  */
858 #define	NR_CURSEG_DATA_TYPE	(3)
859 #define NR_CURSEG_NODE_TYPE	(3)
860 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
861 
862 enum {
863 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
864 	CURSEG_WARM_DATA,	/* data blocks */
865 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
866 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
867 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
868 	CURSEG_COLD_NODE,	/* indirect node blocks */
869 	NO_CHECK_TYPE,
870 };
871 
872 struct flush_cmd {
873 	struct completion wait;
874 	struct llist_node llnode;
875 	nid_t ino;
876 	int ret;
877 };
878 
879 struct flush_cmd_control {
880 	struct task_struct *f2fs_issue_flush;	/* flush thread */
881 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
882 	atomic_t issued_flush;			/* # of issued flushes */
883 	atomic_t issing_flush;			/* # of issing flushes */
884 	struct llist_head issue_list;		/* list for command issue */
885 	struct llist_node *dispatch_list;	/* list for command dispatch */
886 };
887 
888 struct f2fs_sm_info {
889 	struct sit_info *sit_info;		/* whole segment information */
890 	struct free_segmap_info *free_info;	/* free segment information */
891 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
892 	struct curseg_info *curseg_array;	/* active segment information */
893 
894 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
895 
896 	block_t seg0_blkaddr;		/* block address of 0'th segment */
897 	block_t main_blkaddr;		/* start block address of main area */
898 	block_t ssa_blkaddr;		/* start block address of SSA area */
899 
900 	unsigned int segment_count;	/* total # of segments */
901 	unsigned int main_segments;	/* # of segments in main area */
902 	unsigned int reserved_segments;	/* # of reserved segments */
903 	unsigned int ovp_segments;	/* # of overprovision segments */
904 
905 	/* a threshold to reclaim prefree segments */
906 	unsigned int rec_prefree_segments;
907 
908 	/* for batched trimming */
909 	unsigned int trim_sections;		/* # of sections to trim */
910 
911 	struct list_head sit_entry_set;	/* sit entry set list */
912 
913 	unsigned int ipu_policy;	/* in-place-update policy */
914 	unsigned int min_ipu_util;	/* in-place-update threshold */
915 	unsigned int min_fsync_blocks;	/* threshold for fsync */
916 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
917 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
918 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
919 
920 	/* for flush command control */
921 	struct flush_cmd_control *fcc_info;
922 
923 	/* for discard command control */
924 	struct discard_cmd_control *dcc_info;
925 };
926 
927 /*
928  * For superblock
929  */
930 /*
931  * COUNT_TYPE for monitoring
932  *
933  * f2fs monitors the number of several block types such as on-writeback,
934  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
935  */
936 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
937 enum count_type {
938 	F2FS_DIRTY_DENTS,
939 	F2FS_DIRTY_DATA,
940 	F2FS_DIRTY_QDATA,
941 	F2FS_DIRTY_NODES,
942 	F2FS_DIRTY_META,
943 	F2FS_INMEM_PAGES,
944 	F2FS_DIRTY_IMETA,
945 	F2FS_WB_CP_DATA,
946 	F2FS_WB_DATA,
947 	NR_COUNT_TYPE,
948 };
949 
950 /*
951  * The below are the page types of bios used in submit_bio().
952  * The available types are:
953  * DATA			User data pages. It operates as async mode.
954  * NODE			Node pages. It operates as async mode.
955  * META			FS metadata pages such as SIT, NAT, CP.
956  * NR_PAGE_TYPE		The number of page types.
957  * META_FLUSH		Make sure the previous pages are written
958  *			with waiting the bio's completion
959  * ...			Only can be used with META.
960  */
961 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
962 enum page_type {
963 	DATA,
964 	NODE,
965 	META,
966 	NR_PAGE_TYPE,
967 	META_FLUSH,
968 	INMEM,		/* the below types are used by tracepoints only. */
969 	INMEM_DROP,
970 	INMEM_INVALIDATE,
971 	INMEM_REVOKE,
972 	IPU,
973 	OPU,
974 };
975 
976 enum temp_type {
977 	HOT = 0,	/* must be zero for meta bio */
978 	WARM,
979 	COLD,
980 	NR_TEMP_TYPE,
981 };
982 
983 enum need_lock_type {
984 	LOCK_REQ = 0,
985 	LOCK_DONE,
986 	LOCK_RETRY,
987 };
988 
989 enum cp_reason_type {
990 	CP_NO_NEEDED,
991 	CP_NON_REGULAR,
992 	CP_HARDLINK,
993 	CP_SB_NEED_CP,
994 	CP_WRONG_PINO,
995 	CP_NO_SPC_ROLL,
996 	CP_NODE_NEED_CP,
997 	CP_FASTBOOT_MODE,
998 	CP_SPEC_LOG_NUM,
999 	CP_RECOVER_DIR,
1000 };
1001 
1002 enum iostat_type {
1003 	APP_DIRECT_IO,			/* app direct IOs */
1004 	APP_BUFFERED_IO,		/* app buffered IOs */
1005 	APP_WRITE_IO,			/* app write IOs */
1006 	APP_MAPPED_IO,			/* app mapped IOs */
1007 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1008 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1009 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1010 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1011 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1012 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1013 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1014 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1015 	FS_DISCARD,			/* discard */
1016 	NR_IO_TYPE,
1017 };
1018 
1019 struct f2fs_io_info {
1020 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1021 	nid_t ino;		/* inode number */
1022 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1023 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1024 	int op;			/* contains REQ_OP_ */
1025 	int op_flags;		/* req_flag_bits */
1026 	block_t new_blkaddr;	/* new block address to be written */
1027 	block_t old_blkaddr;	/* old block address before Cow */
1028 	struct page *page;	/* page to be written */
1029 	struct page *encrypted_page;	/* encrypted page */
1030 	struct list_head list;		/* serialize IOs */
1031 	bool submitted;		/* indicate IO submission */
1032 	int need_lock;		/* indicate we need to lock cp_rwsem */
1033 	bool in_list;		/* indicate fio is in io_list */
1034 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1035 	bool retry;		/* need to reallocate block address */
1036 	enum iostat_type io_type;	/* io type */
1037 	struct writeback_control *io_wbc; /* writeback control */
1038 	unsigned char version;		/* version of the node */
1039 };
1040 
1041 #define is_read_io(rw) ((rw) == READ)
1042 struct f2fs_bio_info {
1043 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1044 	struct bio *bio;		/* bios to merge */
1045 	sector_t last_block_in_bio;	/* last block number */
1046 	struct f2fs_io_info fio;	/* store buffered io info. */
1047 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1048 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1049 	struct list_head io_list;	/* track fios */
1050 };
1051 
1052 #define FDEV(i)				(sbi->devs[i])
1053 #define RDEV(i)				(raw_super->devs[i])
1054 struct f2fs_dev_info {
1055 	struct block_device *bdev;
1056 	char path[MAX_PATH_LEN];
1057 	unsigned int total_segments;
1058 	block_t start_blk;
1059 	block_t end_blk;
1060 #ifdef CONFIG_BLK_DEV_ZONED
1061 	unsigned int nr_blkz;			/* Total number of zones */
1062 	u8 *blkz_type;				/* Array of zones type */
1063 #endif
1064 };
1065 
1066 enum inode_type {
1067 	DIR_INODE,			/* for dirty dir inode */
1068 	FILE_INODE,			/* for dirty regular/symlink inode */
1069 	DIRTY_META,			/* for all dirtied inode metadata */
1070 	ATOMIC_FILE,			/* for all atomic files */
1071 	NR_INODE_TYPE,
1072 };
1073 
1074 /* for inner inode cache management */
1075 struct inode_management {
1076 	struct radix_tree_root ino_root;	/* ino entry array */
1077 	spinlock_t ino_lock;			/* for ino entry lock */
1078 	struct list_head ino_list;		/* inode list head */
1079 	unsigned long ino_num;			/* number of entries */
1080 };
1081 
1082 /* For s_flag in struct f2fs_sb_info */
1083 enum {
1084 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1085 	SBI_IS_CLOSE,				/* specify unmounting */
1086 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1087 	SBI_POR_DOING,				/* recovery is doing or not */
1088 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1089 	SBI_NEED_CP,				/* need to checkpoint */
1090 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1091 };
1092 
1093 enum {
1094 	CP_TIME,
1095 	REQ_TIME,
1096 	MAX_TIME,
1097 };
1098 
1099 enum {
1100 	GC_NORMAL,
1101 	GC_IDLE_CB,
1102 	GC_IDLE_GREEDY,
1103 	GC_URGENT,
1104 };
1105 
1106 enum {
1107 	WHINT_MODE_OFF,		/* not pass down write hints */
1108 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1109 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1110 };
1111 
1112 enum {
1113 	ALLOC_MODE_DEFAULT,	/* stay default */
1114 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1115 };
1116 
1117 enum fsync_mode {
1118 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1119 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1120 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1121 };
1122 
1123 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1124 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1125 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1126 #else
1127 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1128 #endif
1129 
1130 struct f2fs_sb_info {
1131 	struct super_block *sb;			/* pointer to VFS super block */
1132 	struct proc_dir_entry *s_proc;		/* proc entry */
1133 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1134 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1135 	int valid_super_block;			/* valid super block no */
1136 	unsigned long s_flag;				/* flags for sbi */
1137 	struct mutex writepages;		/* mutex for writepages() */
1138 
1139 #ifdef CONFIG_BLK_DEV_ZONED
1140 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1141 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1142 #endif
1143 
1144 	/* for node-related operations */
1145 	struct f2fs_nm_info *nm_info;		/* node manager */
1146 	struct inode *node_inode;		/* cache node blocks */
1147 
1148 	/* for segment-related operations */
1149 	struct f2fs_sm_info *sm_info;		/* segment manager */
1150 
1151 	/* for bio operations */
1152 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1153 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1154 						/* bio ordering for NODE/DATA */
1155 	/* keep migration IO order for LFS mode */
1156 	struct rw_semaphore io_order_lock;
1157 	mempool_t *write_io_dummy;		/* Dummy pages */
1158 
1159 	/* for checkpoint */
1160 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1161 	int cur_cp_pack;			/* remain current cp pack */
1162 	spinlock_t cp_lock;			/* for flag in ckpt */
1163 	struct inode *meta_inode;		/* cache meta blocks */
1164 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1165 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1166 	struct rw_semaphore node_write;		/* locking node writes */
1167 	struct rw_semaphore node_change;	/* locking node change */
1168 	wait_queue_head_t cp_wait;
1169 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1170 	long interval_time[MAX_TIME];		/* to store thresholds */
1171 
1172 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1173 
1174 	spinlock_t fsync_node_lock;		/* for node entry lock */
1175 	struct list_head fsync_node_list;	/* node list head */
1176 	unsigned int fsync_seg_id;		/* sequence id */
1177 	unsigned int fsync_node_num;		/* number of node entries */
1178 
1179 	/* for orphan inode, use 0'th array */
1180 	unsigned int max_orphans;		/* max orphan inodes */
1181 
1182 	/* for inode management */
1183 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1184 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1185 
1186 	/* for extent tree cache */
1187 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1188 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1189 	struct list_head extent_list;		/* lru list for shrinker */
1190 	spinlock_t extent_lock;			/* locking extent lru list */
1191 	atomic_t total_ext_tree;		/* extent tree count */
1192 	struct list_head zombie_list;		/* extent zombie tree list */
1193 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1194 	atomic_t total_ext_node;		/* extent info count */
1195 
1196 	/* basic filesystem units */
1197 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1198 	unsigned int log_blocksize;		/* log2 block size */
1199 	unsigned int blocksize;			/* block size */
1200 	unsigned int root_ino_num;		/* root inode number*/
1201 	unsigned int node_ino_num;		/* node inode number*/
1202 	unsigned int meta_ino_num;		/* meta inode number*/
1203 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1204 	unsigned int blocks_per_seg;		/* blocks per segment */
1205 	unsigned int segs_per_sec;		/* segments per section */
1206 	unsigned int secs_per_zone;		/* sections per zone */
1207 	unsigned int total_sections;		/* total section count */
1208 	unsigned int total_node_count;		/* total node block count */
1209 	unsigned int total_valid_node_count;	/* valid node block count */
1210 	loff_t max_file_blocks;			/* max block index of file */
1211 	int dir_level;				/* directory level */
1212 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1213 	int readdir_ra;				/* readahead inode in readdir */
1214 
1215 	block_t user_block_count;		/* # of user blocks */
1216 	block_t total_valid_block_count;	/* # of valid blocks */
1217 	block_t discard_blks;			/* discard command candidats */
1218 	block_t last_valid_block_count;		/* for recovery */
1219 	block_t reserved_blocks;		/* configurable reserved blocks */
1220 	block_t current_reserved_blocks;	/* current reserved blocks */
1221 
1222 	unsigned int nquota_files;		/* # of quota sysfile */
1223 
1224 	u32 s_next_generation;			/* for NFS support */
1225 
1226 	/* # of pages, see count_type */
1227 	atomic_t nr_pages[NR_COUNT_TYPE];
1228 	/* # of allocated blocks */
1229 	struct percpu_counter alloc_valid_block_count;
1230 
1231 	/* writeback control */
1232 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1233 
1234 	/* valid inode count */
1235 	struct percpu_counter total_valid_inode_count;
1236 
1237 	struct f2fs_mount_info mount_opt;	/* mount options */
1238 
1239 	/* for cleaning operations */
1240 	struct mutex gc_mutex;			/* mutex for GC */
1241 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1242 	unsigned int cur_victim_sec;		/* current victim section num */
1243 	unsigned int gc_mode;			/* current GC state */
1244 	/* for skip statistic */
1245 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1246 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1247 
1248 	/* threshold for gc trials on pinned files */
1249 	u64 gc_pin_file_threshold;
1250 
1251 	/* maximum # of trials to find a victim segment for SSR and GC */
1252 	unsigned int max_victim_search;
1253 
1254 	/*
1255 	 * for stat information.
1256 	 * one is for the LFS mode, and the other is for the SSR mode.
1257 	 */
1258 #ifdef CONFIG_F2FS_STAT_FS
1259 	struct f2fs_stat_info *stat_info;	/* FS status information */
1260 	unsigned int segment_count[2];		/* # of allocated segments */
1261 	unsigned int block_count[2];		/* # of allocated blocks */
1262 	atomic_t inplace_count;		/* # of inplace update */
1263 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1264 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1265 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1266 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1267 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1268 	atomic_t inline_inode;			/* # of inline_data inodes */
1269 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1270 	atomic_t aw_cnt;			/* # of atomic writes */
1271 	atomic_t vw_cnt;			/* # of volatile writes */
1272 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1273 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1274 	int bg_gc;				/* background gc calls */
1275 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1276 #endif
1277 	spinlock_t stat_lock;			/* lock for stat operations */
1278 
1279 	/* For app/fs IO statistics */
1280 	spinlock_t iostat_lock;
1281 	unsigned long long write_iostat[NR_IO_TYPE];
1282 	bool iostat_enable;
1283 
1284 	/* For sysfs suppport */
1285 	struct kobject s_kobj;
1286 	struct completion s_kobj_unregister;
1287 
1288 	/* For shrinker support */
1289 	struct list_head s_list;
1290 	int s_ndevs;				/* number of devices */
1291 	struct f2fs_dev_info *devs;		/* for device list */
1292 	unsigned int dirty_device;		/* for checkpoint data flush */
1293 	spinlock_t dev_lock;			/* protect dirty_device */
1294 	struct mutex umount_mutex;
1295 	unsigned int shrinker_run_no;
1296 
1297 	/* For write statistics */
1298 	u64 sectors_written_start;
1299 	u64 kbytes_written;
1300 
1301 	/* Reference to checksum algorithm driver via cryptoapi */
1302 	struct crypto_shash *s_chksum_driver;
1303 
1304 	/* Precomputed FS UUID checksum for seeding other checksums */
1305 	__u32 s_chksum_seed;
1306 };
1307 
1308 #ifdef CONFIG_F2FS_FAULT_INJECTION
1309 #define f2fs_show_injection_info(type)				\
1310 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1311 		KERN_INFO, f2fs_fault_name[type],		\
1312 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1313 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1314 {
1315 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1316 
1317 	if (!ffi->inject_rate)
1318 		return false;
1319 
1320 	if (!IS_FAULT_SET(ffi, type))
1321 		return false;
1322 
1323 	atomic_inc(&ffi->inject_ops);
1324 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1325 		atomic_set(&ffi->inject_ops, 0);
1326 		return true;
1327 	}
1328 	return false;
1329 }
1330 #else
1331 #define f2fs_show_injection_info(type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1332 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1333 {
1334 	return false;
1335 }
1336 #endif
1337 
1338 /* For write statistics. Suppose sector size is 512 bytes,
1339  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1340  */
1341 #define BD_PART_WRITTEN(s)						 \
1342 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1343 		(s)->sectors_written_start) >> 1)
1344 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1345 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1346 {
1347 	sbi->last_time[type] = jiffies;
1348 }
1349 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1350 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1351 {
1352 	unsigned long interval = sbi->interval_time[type] * HZ;
1353 
1354 	return time_after(jiffies, sbi->last_time[type] + interval);
1355 }
1356 
is_idle(struct f2fs_sb_info * sbi)1357 static inline bool is_idle(struct f2fs_sb_info *sbi)
1358 {
1359 	struct block_device *bdev = sbi->sb->s_bdev;
1360 	struct request_queue *q = bdev_get_queue(bdev);
1361 	struct request_list *rl = &q->root_rl;
1362 
1363 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1364 		return false;
1365 
1366 	return f2fs_time_over(sbi, REQ_TIME);
1367 }
1368 
1369 /*
1370  * Inline functions
1371  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1372 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1373 			      const void *address, unsigned int length)
1374 {
1375 	struct {
1376 		struct shash_desc shash;
1377 		char ctx[4];
1378 	} desc;
1379 	int err;
1380 
1381 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1382 
1383 	desc.shash.tfm = sbi->s_chksum_driver;
1384 	desc.shash.flags = 0;
1385 	*(u32 *)desc.ctx = crc;
1386 
1387 	err = crypto_shash_update(&desc.shash, address, length);
1388 	BUG_ON(err);
1389 
1390 	return *(u32 *)desc.ctx;
1391 }
1392 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1393 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1394 			   unsigned int length)
1395 {
1396 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1397 }
1398 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1399 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1400 				  void *buf, size_t buf_size)
1401 {
1402 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1403 }
1404 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1405 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1406 			      const void *address, unsigned int length)
1407 {
1408 	return __f2fs_crc32(sbi, crc, address, length);
1409 }
1410 
F2FS_I(struct inode * inode)1411 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1412 {
1413 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1414 }
1415 
F2FS_SB(struct super_block * sb)1416 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1417 {
1418 	return sb->s_fs_info;
1419 }
1420 
F2FS_I_SB(struct inode * inode)1421 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1422 {
1423 	return F2FS_SB(inode->i_sb);
1424 }
1425 
F2FS_M_SB(struct address_space * mapping)1426 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1427 {
1428 	return F2FS_I_SB(mapping->host);
1429 }
1430 
F2FS_P_SB(struct page * page)1431 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1432 {
1433 	return F2FS_M_SB(page->mapping);
1434 }
1435 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1436 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1437 {
1438 	return (struct f2fs_super_block *)(sbi->raw_super);
1439 }
1440 
F2FS_CKPT(struct f2fs_sb_info * sbi)1441 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1442 {
1443 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1444 }
1445 
F2FS_NODE(struct page * page)1446 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1447 {
1448 	return (struct f2fs_node *)page_address(page);
1449 }
1450 
F2FS_INODE(struct page * page)1451 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1452 {
1453 	return &((struct f2fs_node *)page_address(page))->i;
1454 }
1455 
NM_I(struct f2fs_sb_info * sbi)1456 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1457 {
1458 	return (struct f2fs_nm_info *)(sbi->nm_info);
1459 }
1460 
SM_I(struct f2fs_sb_info * sbi)1461 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1462 {
1463 	return (struct f2fs_sm_info *)(sbi->sm_info);
1464 }
1465 
SIT_I(struct f2fs_sb_info * sbi)1466 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1467 {
1468 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1469 }
1470 
FREE_I(struct f2fs_sb_info * sbi)1471 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1472 {
1473 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1474 }
1475 
DIRTY_I(struct f2fs_sb_info * sbi)1476 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1477 {
1478 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1479 }
1480 
META_MAPPING(struct f2fs_sb_info * sbi)1481 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1482 {
1483 	return sbi->meta_inode->i_mapping;
1484 }
1485 
NODE_MAPPING(struct f2fs_sb_info * sbi)1486 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1487 {
1488 	return sbi->node_inode->i_mapping;
1489 }
1490 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1491 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1492 {
1493 	return test_bit(type, &sbi->s_flag);
1494 }
1495 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1496 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1497 {
1498 	set_bit(type, &sbi->s_flag);
1499 }
1500 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1501 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1502 {
1503 	clear_bit(type, &sbi->s_flag);
1504 }
1505 
cur_cp_version(struct f2fs_checkpoint * cp)1506 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1507 {
1508 	return le64_to_cpu(cp->checkpoint_ver);
1509 }
1510 
f2fs_qf_ino(struct super_block * sb,int type)1511 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1512 {
1513 	if (type < F2FS_MAX_QUOTAS)
1514 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1515 	return 0;
1516 }
1517 
cur_cp_crc(struct f2fs_checkpoint * cp)1518 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1519 {
1520 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1521 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1522 }
1523 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1524 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1525 {
1526 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1527 
1528 	return ckpt_flags & f;
1529 }
1530 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1531 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1532 {
1533 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1534 }
1535 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1536 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1537 {
1538 	unsigned int ckpt_flags;
1539 
1540 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1541 	ckpt_flags |= f;
1542 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1543 }
1544 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1545 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1546 {
1547 	unsigned long flags;
1548 
1549 	spin_lock_irqsave(&sbi->cp_lock, flags);
1550 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1551 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1552 }
1553 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1554 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1555 {
1556 	unsigned int ckpt_flags;
1557 
1558 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1559 	ckpt_flags &= (~f);
1560 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1561 }
1562 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1563 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1564 {
1565 	unsigned long flags;
1566 
1567 	spin_lock_irqsave(&sbi->cp_lock, flags);
1568 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1569 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1570 }
1571 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1572 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1573 {
1574 	unsigned long flags;
1575 
1576 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1577 
1578 	if (lock)
1579 		spin_lock_irqsave(&sbi->cp_lock, flags);
1580 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1581 	kfree(NM_I(sbi)->nat_bits);
1582 	NM_I(sbi)->nat_bits = NULL;
1583 	if (lock)
1584 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1585 }
1586 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1587 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1588 					struct cp_control *cpc)
1589 {
1590 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1591 
1592 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1593 }
1594 
f2fs_lock_op(struct f2fs_sb_info * sbi)1595 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1596 {
1597 	down_read(&sbi->cp_rwsem);
1598 }
1599 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1600 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1601 {
1602 	return down_read_trylock(&sbi->cp_rwsem);
1603 }
1604 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1605 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1606 {
1607 	up_read(&sbi->cp_rwsem);
1608 }
1609 
f2fs_lock_all(struct f2fs_sb_info * sbi)1610 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1611 {
1612 	down_write(&sbi->cp_rwsem);
1613 }
1614 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1615 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1616 {
1617 	up_write(&sbi->cp_rwsem);
1618 }
1619 
__get_cp_reason(struct f2fs_sb_info * sbi)1620 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1621 {
1622 	int reason = CP_SYNC;
1623 
1624 	if (test_opt(sbi, FASTBOOT))
1625 		reason = CP_FASTBOOT;
1626 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1627 		reason = CP_UMOUNT;
1628 	return reason;
1629 }
1630 
__remain_node_summaries(int reason)1631 static inline bool __remain_node_summaries(int reason)
1632 {
1633 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1634 }
1635 
__exist_node_summaries(struct f2fs_sb_info * sbi)1636 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1637 {
1638 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1639 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1640 }
1641 
1642 /*
1643  * Check whether the inode has blocks or not
1644  */
F2FS_HAS_BLOCKS(struct inode * inode)1645 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1646 {
1647 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1648 
1649 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1650 }
1651 
f2fs_has_xattr_block(unsigned int ofs)1652 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1653 {
1654 	return ofs == XATTR_NODE_OFFSET;
1655 }
1656 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1657 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1658 					struct inode *inode, bool cap)
1659 {
1660 	if (!inode)
1661 		return true;
1662 	if (!test_opt(sbi, RESERVE_ROOT))
1663 		return false;
1664 	if (IS_NOQUOTA(inode))
1665 		return true;
1666 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1667 		return true;
1668 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1669 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1670 		return true;
1671 	if (cap && capable(CAP_SYS_RESOURCE))
1672 		return true;
1673 	return false;
1674 }
1675 
1676 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1677 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1678 				 struct inode *inode, blkcnt_t *count)
1679 {
1680 	blkcnt_t diff = 0, release = 0;
1681 	block_t avail_user_block_count;
1682 	int ret;
1683 
1684 	ret = dquot_reserve_block(inode, *count);
1685 	if (ret)
1686 		return ret;
1687 
1688 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1689 		f2fs_show_injection_info(FAULT_BLOCK);
1690 		release = *count;
1691 		goto enospc;
1692 	}
1693 
1694 	/*
1695 	 * let's increase this in prior to actual block count change in order
1696 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1697 	 */
1698 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1699 
1700 	spin_lock(&sbi->stat_lock);
1701 	sbi->total_valid_block_count += (block_t)(*count);
1702 	avail_user_block_count = sbi->user_block_count -
1703 					sbi->current_reserved_blocks;
1704 
1705 	if (!__allow_reserved_blocks(sbi, inode, true))
1706 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1707 
1708 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1709 		diff = sbi->total_valid_block_count - avail_user_block_count;
1710 		if (diff > *count)
1711 			diff = *count;
1712 		*count -= diff;
1713 		release = diff;
1714 		sbi->total_valid_block_count -= diff;
1715 		if (!*count) {
1716 			spin_unlock(&sbi->stat_lock);
1717 			goto enospc;
1718 		}
1719 	}
1720 	spin_unlock(&sbi->stat_lock);
1721 
1722 	if (unlikely(release)) {
1723 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1724 		dquot_release_reservation_block(inode, release);
1725 	}
1726 	f2fs_i_blocks_write(inode, *count, true, true);
1727 	return 0;
1728 
1729 enospc:
1730 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1731 	dquot_release_reservation_block(inode, release);
1732 	return -ENOSPC;
1733 }
1734 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1735 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1736 						struct inode *inode,
1737 						block_t count)
1738 {
1739 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1740 
1741 	spin_lock(&sbi->stat_lock);
1742 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1743 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1744 	sbi->total_valid_block_count -= (block_t)count;
1745 	if (sbi->reserved_blocks &&
1746 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1747 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1748 					sbi->current_reserved_blocks + count);
1749 	spin_unlock(&sbi->stat_lock);
1750 	f2fs_i_blocks_write(inode, count, false, true);
1751 }
1752 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1753 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1754 {
1755 	atomic_inc(&sbi->nr_pages[count_type]);
1756 
1757 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1758 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1759 		return;
1760 
1761 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1762 }
1763 
inode_inc_dirty_pages(struct inode * inode)1764 static inline void inode_inc_dirty_pages(struct inode *inode)
1765 {
1766 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1767 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1768 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1769 	if (IS_NOQUOTA(inode))
1770 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1771 }
1772 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1773 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1774 {
1775 	atomic_dec(&sbi->nr_pages[count_type]);
1776 }
1777 
inode_dec_dirty_pages(struct inode * inode)1778 static inline void inode_dec_dirty_pages(struct inode *inode)
1779 {
1780 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1781 			!S_ISLNK(inode->i_mode))
1782 		return;
1783 
1784 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1785 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1786 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1787 	if (IS_NOQUOTA(inode))
1788 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1789 }
1790 
get_pages(struct f2fs_sb_info * sbi,int count_type)1791 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1792 {
1793 	return atomic_read(&sbi->nr_pages[count_type]);
1794 }
1795 
get_dirty_pages(struct inode * inode)1796 static inline int get_dirty_pages(struct inode *inode)
1797 {
1798 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1799 }
1800 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1801 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1802 {
1803 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1804 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1805 						sbi->log_blocks_per_seg;
1806 
1807 	return segs / sbi->segs_per_sec;
1808 }
1809 
valid_user_blocks(struct f2fs_sb_info * sbi)1810 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1811 {
1812 	return sbi->total_valid_block_count;
1813 }
1814 
discard_blocks(struct f2fs_sb_info * sbi)1815 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1816 {
1817 	return sbi->discard_blks;
1818 }
1819 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1820 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1821 {
1822 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1823 
1824 	/* return NAT or SIT bitmap */
1825 	if (flag == NAT_BITMAP)
1826 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1827 	else if (flag == SIT_BITMAP)
1828 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1829 
1830 	return 0;
1831 }
1832 
__cp_payload(struct f2fs_sb_info * sbi)1833 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1834 {
1835 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1836 }
1837 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1838 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1839 {
1840 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1841 	int offset;
1842 
1843 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1844 		offset = (flag == SIT_BITMAP) ?
1845 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1846 		return &ckpt->sit_nat_version_bitmap + offset;
1847 	}
1848 
1849 	if (__cp_payload(sbi) > 0) {
1850 		if (flag == NAT_BITMAP)
1851 			return &ckpt->sit_nat_version_bitmap;
1852 		else
1853 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1854 	} else {
1855 		offset = (flag == NAT_BITMAP) ?
1856 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1857 		return &ckpt->sit_nat_version_bitmap + offset;
1858 	}
1859 }
1860 
__start_cp_addr(struct f2fs_sb_info * sbi)1861 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1862 {
1863 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1864 
1865 	if (sbi->cur_cp_pack == 2)
1866 		start_addr += sbi->blocks_per_seg;
1867 	return start_addr;
1868 }
1869 
__start_cp_next_addr(struct f2fs_sb_info * sbi)1870 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1871 {
1872 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1873 
1874 	if (sbi->cur_cp_pack == 1)
1875 		start_addr += sbi->blocks_per_seg;
1876 	return start_addr;
1877 }
1878 
__set_cp_next_pack(struct f2fs_sb_info * sbi)1879 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1880 {
1881 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1882 }
1883 
__start_sum_addr(struct f2fs_sb_info * sbi)1884 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1885 {
1886 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1887 }
1888 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1889 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1890 					struct inode *inode, bool is_inode)
1891 {
1892 	block_t	valid_block_count;
1893 	unsigned int valid_node_count;
1894 	bool quota = inode && !is_inode;
1895 
1896 	if (quota) {
1897 		int ret = dquot_reserve_block(inode, 1);
1898 		if (ret)
1899 			return ret;
1900 	}
1901 
1902 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1903 		f2fs_show_injection_info(FAULT_BLOCK);
1904 		goto enospc;
1905 	}
1906 
1907 	spin_lock(&sbi->stat_lock);
1908 
1909 	valid_block_count = sbi->total_valid_block_count +
1910 					sbi->current_reserved_blocks + 1;
1911 
1912 	if (!__allow_reserved_blocks(sbi, inode, false))
1913 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1914 
1915 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1916 		spin_unlock(&sbi->stat_lock);
1917 		goto enospc;
1918 	}
1919 
1920 	valid_node_count = sbi->total_valid_node_count + 1;
1921 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1922 		spin_unlock(&sbi->stat_lock);
1923 		goto enospc;
1924 	}
1925 
1926 	sbi->total_valid_node_count++;
1927 	sbi->total_valid_block_count++;
1928 	spin_unlock(&sbi->stat_lock);
1929 
1930 	if (inode) {
1931 		if (is_inode)
1932 			f2fs_mark_inode_dirty_sync(inode, true);
1933 		else
1934 			f2fs_i_blocks_write(inode, 1, true, true);
1935 	}
1936 
1937 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1938 	return 0;
1939 
1940 enospc:
1941 	if (quota)
1942 		dquot_release_reservation_block(inode, 1);
1943 	return -ENOSPC;
1944 }
1945 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1946 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1947 					struct inode *inode, bool is_inode)
1948 {
1949 	spin_lock(&sbi->stat_lock);
1950 
1951 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1952 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1953 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1954 
1955 	sbi->total_valid_node_count--;
1956 	sbi->total_valid_block_count--;
1957 	if (sbi->reserved_blocks &&
1958 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1959 		sbi->current_reserved_blocks++;
1960 
1961 	spin_unlock(&sbi->stat_lock);
1962 
1963 	if (!is_inode)
1964 		f2fs_i_blocks_write(inode, 1, false, true);
1965 }
1966 
valid_node_count(struct f2fs_sb_info * sbi)1967 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1968 {
1969 	return sbi->total_valid_node_count;
1970 }
1971 
inc_valid_inode_count(struct f2fs_sb_info * sbi)1972 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1973 {
1974 	percpu_counter_inc(&sbi->total_valid_inode_count);
1975 }
1976 
dec_valid_inode_count(struct f2fs_sb_info * sbi)1977 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1978 {
1979 	percpu_counter_dec(&sbi->total_valid_inode_count);
1980 }
1981 
valid_inode_count(struct f2fs_sb_info * sbi)1982 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1983 {
1984 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1985 }
1986 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)1987 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1988 						pgoff_t index, bool for_write)
1989 {
1990 	struct page *page;
1991 
1992 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
1993 		if (!for_write)
1994 			page = find_get_page_flags(mapping, index,
1995 							FGP_LOCK | FGP_ACCESSED);
1996 		else
1997 			page = find_lock_page(mapping, index);
1998 		if (page)
1999 			return page;
2000 
2001 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2002 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2003 			return NULL;
2004 		}
2005 	}
2006 
2007 	if (!for_write)
2008 		return grab_cache_page(mapping, index);
2009 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2010 }
2011 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2012 static inline struct page *f2fs_pagecache_get_page(
2013 				struct address_space *mapping, pgoff_t index,
2014 				int fgp_flags, gfp_t gfp_mask)
2015 {
2016 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2017 		f2fs_show_injection_info(FAULT_PAGE_GET);
2018 		return NULL;
2019 	}
2020 
2021 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2022 }
2023 
f2fs_copy_page(struct page * src,struct page * dst)2024 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2025 {
2026 	char *src_kaddr = kmap(src);
2027 	char *dst_kaddr = kmap(dst);
2028 
2029 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2030 	kunmap(dst);
2031 	kunmap(src);
2032 }
2033 
f2fs_put_page(struct page * page,int unlock)2034 static inline void f2fs_put_page(struct page *page, int unlock)
2035 {
2036 	if (!page)
2037 		return;
2038 
2039 	if (unlock) {
2040 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2041 		unlock_page(page);
2042 	}
2043 	put_page(page);
2044 }
2045 
f2fs_put_dnode(struct dnode_of_data * dn)2046 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2047 {
2048 	if (dn->node_page)
2049 		f2fs_put_page(dn->node_page, 1);
2050 	if (dn->inode_page && dn->node_page != dn->inode_page)
2051 		f2fs_put_page(dn->inode_page, 0);
2052 	dn->node_page = NULL;
2053 	dn->inode_page = NULL;
2054 }
2055 
f2fs_kmem_cache_create(const char * name,size_t size)2056 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2057 					size_t size)
2058 {
2059 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2060 }
2061 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2062 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2063 						gfp_t flags)
2064 {
2065 	void *entry;
2066 
2067 	entry = kmem_cache_alloc(cachep, flags);
2068 	if (!entry)
2069 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2070 	return entry;
2071 }
2072 
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2073 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2074 						int npages, bool no_fail)
2075 {
2076 	struct bio *bio;
2077 
2078 	if (no_fail) {
2079 		/* No failure on bio allocation */
2080 		bio = bio_alloc(GFP_NOIO, npages);
2081 		if (!bio)
2082 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2083 		return bio;
2084 	}
2085 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2086 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2087 		return NULL;
2088 	}
2089 
2090 	return bio_alloc(GFP_KERNEL, npages);
2091 }
2092 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2093 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2094 				unsigned long index, void *item)
2095 {
2096 	while (radix_tree_insert(root, index, item))
2097 		cond_resched();
2098 }
2099 
2100 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2101 
IS_INODE(struct page * page)2102 static inline bool IS_INODE(struct page *page)
2103 {
2104 	struct f2fs_node *p = F2FS_NODE(page);
2105 
2106 	return RAW_IS_INODE(p);
2107 }
2108 
offset_in_addr(struct f2fs_inode * i)2109 static inline int offset_in_addr(struct f2fs_inode *i)
2110 {
2111 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2112 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2113 }
2114 
blkaddr_in_node(struct f2fs_node * node)2115 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2116 {
2117 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2118 }
2119 
2120 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2121 static inline block_t datablock_addr(struct inode *inode,
2122 			struct page *node_page, unsigned int offset)
2123 {
2124 	struct f2fs_node *raw_node;
2125 	__le32 *addr_array;
2126 	int base = 0;
2127 	bool is_inode = IS_INODE(node_page);
2128 
2129 	raw_node = F2FS_NODE(node_page);
2130 
2131 	/* from GC path only */
2132 	if (is_inode) {
2133 		if (!inode)
2134 			base = offset_in_addr(&raw_node->i);
2135 		else if (f2fs_has_extra_attr(inode))
2136 			base = get_extra_isize(inode);
2137 	}
2138 
2139 	addr_array = blkaddr_in_node(raw_node);
2140 	return le32_to_cpu(addr_array[base + offset]);
2141 }
2142 
f2fs_test_bit(unsigned int nr,char * addr)2143 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2144 {
2145 	int mask;
2146 
2147 	addr += (nr >> 3);
2148 	mask = 1 << (7 - (nr & 0x07));
2149 	return mask & *addr;
2150 }
2151 
f2fs_set_bit(unsigned int nr,char * addr)2152 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2153 {
2154 	int mask;
2155 
2156 	addr += (nr >> 3);
2157 	mask = 1 << (7 - (nr & 0x07));
2158 	*addr |= mask;
2159 }
2160 
f2fs_clear_bit(unsigned int nr,char * addr)2161 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2162 {
2163 	int mask;
2164 
2165 	addr += (nr >> 3);
2166 	mask = 1 << (7 - (nr & 0x07));
2167 	*addr &= ~mask;
2168 }
2169 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2170 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2171 {
2172 	int mask;
2173 	int ret;
2174 
2175 	addr += (nr >> 3);
2176 	mask = 1 << (7 - (nr & 0x07));
2177 	ret = mask & *addr;
2178 	*addr |= mask;
2179 	return ret;
2180 }
2181 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2182 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2183 {
2184 	int mask;
2185 	int ret;
2186 
2187 	addr += (nr >> 3);
2188 	mask = 1 << (7 - (nr & 0x07));
2189 	ret = mask & *addr;
2190 	*addr &= ~mask;
2191 	return ret;
2192 }
2193 
f2fs_change_bit(unsigned int nr,char * addr)2194 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2195 {
2196 	int mask;
2197 
2198 	addr += (nr >> 3);
2199 	mask = 1 << (7 - (nr & 0x07));
2200 	*addr ^= mask;
2201 }
2202 
2203 /*
2204  * Inode flags
2205  */
2206 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2207 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2208 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2209 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2210 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2211 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2212 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2213 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2214 /* Reserved for compression usage... */
2215 #define F2FS_DIRTY_FL			0x00000100
2216 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2217 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2218 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2219 /* End compression flags --- maybe not all used */
2220 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2221 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2222 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2223 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2224 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2225 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2226 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2227 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2228 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2229 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2230 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2231 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2232 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2233 
2234 #define F2FS_FL_USER_VISIBLE		0x304BDFFF /* User visible flags */
2235 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2236 
2237 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2238 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2239 					 F2FS_IMMUTABLE_FL | \
2240 					 F2FS_APPEND_FL | \
2241 					 F2FS_NODUMP_FL | \
2242 					 F2FS_NOATIME_FL | \
2243 					 F2FS_PROJINHERIT_FL)
2244 
2245 /* Flags that should be inherited by new inodes from their parent. */
2246 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2247 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2248 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2249 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2250 			   F2FS_PROJINHERIT_FL)
2251 
2252 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2253 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2254 
2255 /* Flags that are appropriate for non-directories/regular files. */
2256 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2257 
f2fs_mask_flags(umode_t mode,__u32 flags)2258 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2259 {
2260 	if (S_ISDIR(mode))
2261 		return flags;
2262 	else if (S_ISREG(mode))
2263 		return flags & F2FS_REG_FLMASK;
2264 	else
2265 		return flags & F2FS_OTHER_FLMASK;
2266 }
2267 
2268 /* used for f2fs_inode_info->flags */
2269 enum {
2270 	FI_NEW_INODE,		/* indicate newly allocated inode */
2271 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2272 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2273 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2274 	FI_INC_LINK,		/* need to increment i_nlink */
2275 	FI_ACL_MODE,		/* indicate acl mode */
2276 	FI_NO_ALLOC,		/* should not allocate any blocks */
2277 	FI_FREE_NID,		/* free allocated nide */
2278 	FI_NO_EXTENT,		/* not to use the extent cache */
2279 	FI_INLINE_XATTR,	/* used for inline xattr */
2280 	FI_INLINE_DATA,		/* used for inline data*/
2281 	FI_INLINE_DENTRY,	/* used for inline dentry */
2282 	FI_APPEND_WRITE,	/* inode has appended data */
2283 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2284 	FI_NEED_IPU,		/* used for ipu per file */
2285 	FI_ATOMIC_FILE,		/* indicate atomic file */
2286 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2287 	FI_VOLATILE_FILE,	/* indicate volatile file */
2288 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2289 	FI_DROP_CACHE,		/* drop dirty page cache */
2290 	FI_DATA_EXIST,		/* indicate data exists */
2291 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2292 	FI_DO_DEFRAG,		/* indicate defragment is running */
2293 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2294 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2295 	FI_HOT_DATA,		/* indicate file is hot */
2296 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2297 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2298 	FI_PIN_FILE,		/* indicate file should not be gced */
2299 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2300 };
2301 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2302 static inline void __mark_inode_dirty_flag(struct inode *inode,
2303 						int flag, bool set)
2304 {
2305 	switch (flag) {
2306 	case FI_INLINE_XATTR:
2307 	case FI_INLINE_DATA:
2308 	case FI_INLINE_DENTRY:
2309 	case FI_NEW_INODE:
2310 		if (set)
2311 			return;
2312 	case FI_DATA_EXIST:
2313 	case FI_INLINE_DOTS:
2314 	case FI_PIN_FILE:
2315 		f2fs_mark_inode_dirty_sync(inode, true);
2316 	}
2317 }
2318 
set_inode_flag(struct inode * inode,int flag)2319 static inline void set_inode_flag(struct inode *inode, int flag)
2320 {
2321 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2322 		set_bit(flag, &F2FS_I(inode)->flags);
2323 	__mark_inode_dirty_flag(inode, flag, true);
2324 }
2325 
is_inode_flag_set(struct inode * inode,int flag)2326 static inline int is_inode_flag_set(struct inode *inode, int flag)
2327 {
2328 	return test_bit(flag, &F2FS_I(inode)->flags);
2329 }
2330 
clear_inode_flag(struct inode * inode,int flag)2331 static inline void clear_inode_flag(struct inode *inode, int flag)
2332 {
2333 	if (test_bit(flag, &F2FS_I(inode)->flags))
2334 		clear_bit(flag, &F2FS_I(inode)->flags);
2335 	__mark_inode_dirty_flag(inode, flag, false);
2336 }
2337 
set_acl_inode(struct inode * inode,umode_t mode)2338 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2339 {
2340 	F2FS_I(inode)->i_acl_mode = mode;
2341 	set_inode_flag(inode, FI_ACL_MODE);
2342 	f2fs_mark_inode_dirty_sync(inode, false);
2343 }
2344 
f2fs_i_links_write(struct inode * inode,bool inc)2345 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2346 {
2347 	if (inc)
2348 		inc_nlink(inode);
2349 	else
2350 		drop_nlink(inode);
2351 	f2fs_mark_inode_dirty_sync(inode, true);
2352 }
2353 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2354 static inline void f2fs_i_blocks_write(struct inode *inode,
2355 					block_t diff, bool add, bool claim)
2356 {
2357 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2358 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2359 
2360 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2361 	if (add) {
2362 		if (claim)
2363 			dquot_claim_block(inode, diff);
2364 		else
2365 			dquot_alloc_block_nofail(inode, diff);
2366 	} else {
2367 		dquot_free_block(inode, diff);
2368 	}
2369 
2370 	f2fs_mark_inode_dirty_sync(inode, true);
2371 	if (clean || recover)
2372 		set_inode_flag(inode, FI_AUTO_RECOVER);
2373 }
2374 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2375 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2376 {
2377 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2378 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2379 
2380 	if (i_size_read(inode) == i_size)
2381 		return;
2382 
2383 	i_size_write(inode, i_size);
2384 	f2fs_mark_inode_dirty_sync(inode, true);
2385 	if (clean || recover)
2386 		set_inode_flag(inode, FI_AUTO_RECOVER);
2387 }
2388 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2389 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2390 {
2391 	F2FS_I(inode)->i_current_depth = depth;
2392 	f2fs_mark_inode_dirty_sync(inode, true);
2393 }
2394 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2395 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2396 					unsigned int count)
2397 {
2398 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2399 	f2fs_mark_inode_dirty_sync(inode, true);
2400 }
2401 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2402 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2403 {
2404 	F2FS_I(inode)->i_xattr_nid = xnid;
2405 	f2fs_mark_inode_dirty_sync(inode, true);
2406 }
2407 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2408 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2409 {
2410 	F2FS_I(inode)->i_pino = pino;
2411 	f2fs_mark_inode_dirty_sync(inode, true);
2412 }
2413 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2414 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2415 {
2416 	struct f2fs_inode_info *fi = F2FS_I(inode);
2417 
2418 	if (ri->i_inline & F2FS_INLINE_XATTR)
2419 		set_bit(FI_INLINE_XATTR, &fi->flags);
2420 	if (ri->i_inline & F2FS_INLINE_DATA)
2421 		set_bit(FI_INLINE_DATA, &fi->flags);
2422 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2423 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2424 	if (ri->i_inline & F2FS_DATA_EXIST)
2425 		set_bit(FI_DATA_EXIST, &fi->flags);
2426 	if (ri->i_inline & F2FS_INLINE_DOTS)
2427 		set_bit(FI_INLINE_DOTS, &fi->flags);
2428 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2429 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2430 	if (ri->i_inline & F2FS_PIN_FILE)
2431 		set_bit(FI_PIN_FILE, &fi->flags);
2432 }
2433 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2434 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2435 {
2436 	ri->i_inline = 0;
2437 
2438 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2439 		ri->i_inline |= F2FS_INLINE_XATTR;
2440 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2441 		ri->i_inline |= F2FS_INLINE_DATA;
2442 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2443 		ri->i_inline |= F2FS_INLINE_DENTRY;
2444 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2445 		ri->i_inline |= F2FS_DATA_EXIST;
2446 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2447 		ri->i_inline |= F2FS_INLINE_DOTS;
2448 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2449 		ri->i_inline |= F2FS_EXTRA_ATTR;
2450 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2451 		ri->i_inline |= F2FS_PIN_FILE;
2452 }
2453 
f2fs_has_extra_attr(struct inode * inode)2454 static inline int f2fs_has_extra_attr(struct inode *inode)
2455 {
2456 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2457 }
2458 
f2fs_has_inline_xattr(struct inode * inode)2459 static inline int f2fs_has_inline_xattr(struct inode *inode)
2460 {
2461 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2462 }
2463 
addrs_per_inode(struct inode * inode)2464 static inline unsigned int addrs_per_inode(struct inode *inode)
2465 {
2466 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2467 }
2468 
inline_xattr_addr(struct inode * inode,struct page * page)2469 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2470 {
2471 	struct f2fs_inode *ri = F2FS_INODE(page);
2472 
2473 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2474 					get_inline_xattr_addrs(inode)]);
2475 }
2476 
inline_xattr_size(struct inode * inode)2477 static inline int inline_xattr_size(struct inode *inode)
2478 {
2479 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2480 }
2481 
f2fs_has_inline_data(struct inode * inode)2482 static inline int f2fs_has_inline_data(struct inode *inode)
2483 {
2484 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2485 }
2486 
f2fs_exist_data(struct inode * inode)2487 static inline int f2fs_exist_data(struct inode *inode)
2488 {
2489 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2490 }
2491 
f2fs_has_inline_dots(struct inode * inode)2492 static inline int f2fs_has_inline_dots(struct inode *inode)
2493 {
2494 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2495 }
2496 
f2fs_is_pinned_file(struct inode * inode)2497 static inline bool f2fs_is_pinned_file(struct inode *inode)
2498 {
2499 	return is_inode_flag_set(inode, FI_PIN_FILE);
2500 }
2501 
f2fs_is_atomic_file(struct inode * inode)2502 static inline bool f2fs_is_atomic_file(struct inode *inode)
2503 {
2504 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2505 }
2506 
f2fs_is_commit_atomic_write(struct inode * inode)2507 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2508 {
2509 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2510 }
2511 
f2fs_is_volatile_file(struct inode * inode)2512 static inline bool f2fs_is_volatile_file(struct inode *inode)
2513 {
2514 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2515 }
2516 
f2fs_is_first_block_written(struct inode * inode)2517 static inline bool f2fs_is_first_block_written(struct inode *inode)
2518 {
2519 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2520 }
2521 
f2fs_is_drop_cache(struct inode * inode)2522 static inline bool f2fs_is_drop_cache(struct inode *inode)
2523 {
2524 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2525 }
2526 
inline_data_addr(struct inode * inode,struct page * page)2527 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2528 {
2529 	struct f2fs_inode *ri = F2FS_INODE(page);
2530 	int extra_size = get_extra_isize(inode);
2531 
2532 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2533 }
2534 
f2fs_has_inline_dentry(struct inode * inode)2535 static inline int f2fs_has_inline_dentry(struct inode *inode)
2536 {
2537 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2538 }
2539 
is_file(struct inode * inode,int type)2540 static inline int is_file(struct inode *inode, int type)
2541 {
2542 	return F2FS_I(inode)->i_advise & type;
2543 }
2544 
set_file(struct inode * inode,int type)2545 static inline void set_file(struct inode *inode, int type)
2546 {
2547 	F2FS_I(inode)->i_advise |= type;
2548 	f2fs_mark_inode_dirty_sync(inode, true);
2549 }
2550 
clear_file(struct inode * inode,int type)2551 static inline void clear_file(struct inode *inode, int type)
2552 {
2553 	F2FS_I(inode)->i_advise &= ~type;
2554 	f2fs_mark_inode_dirty_sync(inode, true);
2555 }
2556 
f2fs_skip_inode_update(struct inode * inode,int dsync)2557 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2558 {
2559 	bool ret;
2560 
2561 	if (dsync) {
2562 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2563 
2564 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2565 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2566 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2567 		return ret;
2568 	}
2569 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2570 			file_keep_isize(inode) ||
2571 			i_size_read(inode) & ~PAGE_MASK)
2572 		return false;
2573 
2574 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2575 		return false;
2576 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2577 		return false;
2578 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2579 		return false;
2580 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2581 						&F2FS_I(inode)->i_crtime))
2582 		return false;
2583 
2584 	down_read(&F2FS_I(inode)->i_sem);
2585 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2586 	up_read(&F2FS_I(inode)->i_sem);
2587 
2588 	return ret;
2589 }
2590 
f2fs_readonly(struct super_block * sb)2591 static inline bool f2fs_readonly(struct super_block *sb)
2592 {
2593 	return sb_rdonly(sb);
2594 }
2595 
f2fs_cp_error(struct f2fs_sb_info * sbi)2596 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2597 {
2598 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2599 }
2600 
is_dot_dotdot(const struct qstr * str)2601 static inline bool is_dot_dotdot(const struct qstr *str)
2602 {
2603 	if (str->len == 1 && str->name[0] == '.')
2604 		return true;
2605 
2606 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2607 		return true;
2608 
2609 	return false;
2610 }
2611 
f2fs_may_extent_tree(struct inode * inode)2612 static inline bool f2fs_may_extent_tree(struct inode *inode)
2613 {
2614 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2615 			is_inode_flag_set(inode, FI_NO_EXTENT))
2616 		return false;
2617 
2618 	return S_ISREG(inode->i_mode);
2619 }
2620 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2621 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2622 					size_t size, gfp_t flags)
2623 {
2624 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2625 		f2fs_show_injection_info(FAULT_KMALLOC);
2626 		return NULL;
2627 	}
2628 
2629 	return kmalloc(size, flags);
2630 }
2631 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2632 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2633 					size_t size, gfp_t flags)
2634 {
2635 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2636 }
2637 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2638 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2639 					size_t size, gfp_t flags)
2640 {
2641 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2642 		f2fs_show_injection_info(FAULT_KVMALLOC);
2643 		return NULL;
2644 	}
2645 
2646 	return kvmalloc(size, flags);
2647 }
2648 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2649 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2650 					size_t size, gfp_t flags)
2651 {
2652 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2653 }
2654 
get_extra_isize(struct inode * inode)2655 static inline int get_extra_isize(struct inode *inode)
2656 {
2657 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2658 }
2659 
get_inline_xattr_addrs(struct inode * inode)2660 static inline int get_inline_xattr_addrs(struct inode *inode)
2661 {
2662 	return F2FS_I(inode)->i_inline_xattr_size;
2663 }
2664 
2665 #define f2fs_get_inode_mode(i) \
2666 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2667 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2668 
2669 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2670 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2671 	offsetof(struct f2fs_inode, i_extra_isize))	\
2672 
2673 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2674 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2675 		((offsetof(typeof(*f2fs_inode), field) +	\
2676 		sizeof((f2fs_inode)->field))			\
2677 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2678 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2679 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2680 {
2681 	int i;
2682 
2683 	spin_lock(&sbi->iostat_lock);
2684 	for (i = 0; i < NR_IO_TYPE; i++)
2685 		sbi->write_iostat[i] = 0;
2686 	spin_unlock(&sbi->iostat_lock);
2687 }
2688 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2689 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2690 			enum iostat_type type, unsigned long long io_bytes)
2691 {
2692 	if (!sbi->iostat_enable)
2693 		return;
2694 	spin_lock(&sbi->iostat_lock);
2695 	sbi->write_iostat[type] += io_bytes;
2696 
2697 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2698 		sbi->write_iostat[APP_BUFFERED_IO] =
2699 			sbi->write_iostat[APP_WRITE_IO] -
2700 			sbi->write_iostat[APP_DIRECT_IO];
2701 	spin_unlock(&sbi->iostat_lock);
2702 }
2703 
2704 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META &&	\
2705 				(!is_read_io(fio->op) || fio->is_meta))
2706 
2707 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2708 					block_t blkaddr, int type);
2709 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2710 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2711 					block_t blkaddr, int type)
2712 {
2713 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2714 		f2fs_msg(sbi->sb, KERN_ERR,
2715 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2716 			blkaddr, type);
2717 		f2fs_bug_on(sbi, 1);
2718 	}
2719 }
2720 
__is_valid_data_blkaddr(block_t blkaddr)2721 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2722 {
2723 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2724 		return false;
2725 	return true;
2726 }
2727 
is_valid_data_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)2728 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2729 						block_t blkaddr)
2730 {
2731 	if (!__is_valid_data_blkaddr(blkaddr))
2732 		return false;
2733 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2734 	return true;
2735 }
2736 
2737 /*
2738  * file.c
2739  */
2740 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2741 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2742 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2743 int f2fs_truncate(struct inode *inode);
2744 int f2fs_getattr(const struct path *path, struct kstat *stat,
2745 			u32 request_mask, unsigned int flags);
2746 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2747 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2748 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2749 int f2fs_precache_extents(struct inode *inode);
2750 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2751 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2752 int f2fs_pin_file_control(struct inode *inode, bool inc);
2753 
2754 /*
2755  * inode.c
2756  */
2757 void f2fs_set_inode_flags(struct inode *inode);
2758 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2759 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2760 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2761 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2762 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2763 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2764 void f2fs_update_inode_page(struct inode *inode);
2765 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2766 void f2fs_evict_inode(struct inode *inode);
2767 void f2fs_handle_failed_inode(struct inode *inode);
2768 
2769 /*
2770  * namei.c
2771  */
2772 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2773 							bool hot, bool set);
2774 struct dentry *f2fs_get_parent(struct dentry *child);
2775 
2776 /*
2777  * dir.c
2778  */
2779 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2780 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2781 			f2fs_hash_t namehash, int *max_slots,
2782 			struct f2fs_dentry_ptr *d);
2783 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2784 			unsigned int start_pos, struct fscrypt_str *fstr);
2785 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2786 			struct f2fs_dentry_ptr *d);
2787 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2788 			const struct qstr *new_name,
2789 			const struct qstr *orig_name, struct page *dpage);
2790 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2791 			unsigned int current_depth);
2792 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2793 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2794 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2795 			struct fscrypt_name *fname, struct page **res_page);
2796 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2797 			const struct qstr *child, struct page **res_page);
2798 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2799 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2800 			struct page **page);
2801 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2802 			struct page *page, struct inode *inode);
2803 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2804 			const struct qstr *name, f2fs_hash_t name_hash,
2805 			unsigned int bit_pos);
2806 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2807 			const struct qstr *orig_name,
2808 			struct inode *inode, nid_t ino, umode_t mode);
2809 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2810 			struct inode *inode, nid_t ino, umode_t mode);
2811 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2812 			struct inode *inode, nid_t ino, umode_t mode);
2813 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2814 			struct inode *dir, struct inode *inode);
2815 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2816 bool f2fs_empty_dir(struct inode *dir);
2817 
f2fs_add_link(struct dentry * dentry,struct inode * inode)2818 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2819 {
2820 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2821 				inode, inode->i_ino, inode->i_mode);
2822 }
2823 
2824 /*
2825  * super.c
2826  */
2827 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2828 void f2fs_inode_synced(struct inode *inode);
2829 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2830 void f2fs_quota_off_umount(struct super_block *sb);
2831 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2832 int f2fs_sync_fs(struct super_block *sb, int sync);
2833 extern __printf(3, 4)
2834 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2835 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2836 
2837 /*
2838  * hash.c
2839  */
2840 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2841 				struct fscrypt_name *fname);
2842 
2843 /*
2844  * node.c
2845  */
2846 struct dnode_of_data;
2847 struct node_info;
2848 
2849 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2850 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2851 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2852 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2853 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2854 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2855 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2856 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2857 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2858 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2859 						struct node_info *ni);
2860 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2861 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2862 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2863 int f2fs_truncate_xattr_node(struct inode *inode);
2864 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2865 					unsigned int seq_id);
2866 int f2fs_remove_inode_page(struct inode *inode);
2867 struct page *f2fs_new_inode_page(struct inode *inode);
2868 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2869 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2870 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2871 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2872 void f2fs_move_node_page(struct page *node_page, int gc_type);
2873 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2874 			struct writeback_control *wbc, bool atomic,
2875 			unsigned int *seq_id);
2876 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2877 			struct writeback_control *wbc,
2878 			bool do_balance, enum iostat_type io_type);
2879 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2880 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2881 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2882 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2883 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2884 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2885 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2886 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2887 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2888 			unsigned int segno, struct f2fs_summary_block *sum);
2889 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2890 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2891 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2892 int __init f2fs_create_node_manager_caches(void);
2893 void f2fs_destroy_node_manager_caches(void);
2894 
2895 /*
2896  * segment.c
2897  */
2898 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2899 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2900 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2901 void f2fs_drop_inmem_pages(struct inode *inode);
2902 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2903 int f2fs_commit_inmem_pages(struct inode *inode);
2904 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2905 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2906 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2907 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2908 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2909 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2910 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2911 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2912 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2913 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2914 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2915 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2916 					struct cp_control *cpc);
2917 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2918 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2919 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2920 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2921 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2922 					struct cp_control *cpc);
2923 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2924 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2925 					block_t blk_addr);
2926 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2927 						enum iostat_type io_type);
2928 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2929 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2930 			struct f2fs_io_info *fio);
2931 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2932 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2933 			block_t old_blkaddr, block_t new_blkaddr,
2934 			bool recover_curseg, bool recover_newaddr);
2935 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2936 			block_t old_addr, block_t new_addr,
2937 			unsigned char version, bool recover_curseg,
2938 			bool recover_newaddr);
2939 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2940 			block_t old_blkaddr, block_t *new_blkaddr,
2941 			struct f2fs_summary *sum, int type,
2942 			struct f2fs_io_info *fio, bool add_list);
2943 void f2fs_wait_on_page_writeback(struct page *page,
2944 			enum page_type type, bool ordered);
2945 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2946 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2947 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2948 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2949 			unsigned int val, int alloc);
2950 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2951 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
2952 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
2953 int __init f2fs_create_segment_manager_caches(void);
2954 void f2fs_destroy_segment_manager_caches(void);
2955 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
2956 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2957 			enum page_type type, enum temp_type temp);
2958 
2959 /*
2960  * checkpoint.c
2961  */
2962 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2963 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2964 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2965 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
2966 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2967 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2968 					block_t blkaddr, int type);
2969 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2970 			int type, bool sync);
2971 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2972 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2973 			long nr_to_write, enum iostat_type io_type);
2974 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2975 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2976 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2977 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2978 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2979 					unsigned int devidx, int type);
2980 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2981 					unsigned int devidx, int type);
2982 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2983 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
2984 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
2985 void f2fs_add_orphan_inode(struct inode *inode);
2986 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2987 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
2988 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
2989 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
2990 void f2fs_remove_dirty_inode(struct inode *inode);
2991 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2992 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
2993 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2994 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
2995 int __init f2fs_create_checkpoint_caches(void);
2996 void f2fs_destroy_checkpoint_caches(void);
2997 
2998 /*
2999  * data.c
3000  */
3001 int f2fs_init_post_read_processing(void);
3002 void f2fs_destroy_post_read_processing(void);
3003 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3004 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3005 				struct inode *inode, nid_t ino, pgoff_t idx,
3006 				enum page_type type);
3007 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3008 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3009 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3010 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3011 			block_t blk_addr, struct bio *bio);
3012 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3013 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3014 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3015 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3016 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3017 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3018 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3019 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3020 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3021 			int op_flags, bool for_write);
3022 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3023 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3024 			bool for_write);
3025 struct page *f2fs_get_new_data_page(struct inode *inode,
3026 			struct page *ipage, pgoff_t index, bool new_i_size);
3027 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3028 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3029 			int create, int flag);
3030 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3031 			u64 start, u64 len);
3032 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3033 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3034 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3035 			unsigned int length);
3036 int f2fs_release_page(struct page *page, gfp_t wait);
3037 #ifdef CONFIG_MIGRATION
3038 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3039 			struct page *page, enum migrate_mode mode);
3040 #endif
3041 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3042 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3043 
3044 /*
3045  * gc.c
3046  */
3047 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3048 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3049 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3050 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3051 			unsigned int segno);
3052 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3053 
3054 /*
3055  * recovery.c
3056  */
3057 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3058 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3059 
3060 /*
3061  * debug.c
3062  */
3063 #ifdef CONFIG_F2FS_STAT_FS
3064 struct f2fs_stat_info {
3065 	struct list_head stat_list;
3066 	struct f2fs_sb_info *sbi;
3067 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3068 	int main_area_segs, main_area_sections, main_area_zones;
3069 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3070 	unsigned long long hit_total, total_ext;
3071 	int ext_tree, zombie_tree, ext_node;
3072 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3073 	int ndirty_data, ndirty_qdata;
3074 	int inmem_pages;
3075 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3076 	int nats, dirty_nats, sits, dirty_sits;
3077 	int free_nids, avail_nids, alloc_nids;
3078 	int total_count, utilization;
3079 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3080 	int nr_flushing, nr_flushed, flush_list_empty;
3081 	int nr_discarding, nr_discarded;
3082 	int nr_discard_cmd;
3083 	unsigned int undiscard_blks;
3084 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3085 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3086 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3087 	unsigned int bimodal, avg_vblocks;
3088 	int util_free, util_valid, util_invalid;
3089 	int rsvd_segs, overp_segs;
3090 	int dirty_count, node_pages, meta_pages;
3091 	int prefree_count, call_count, cp_count, bg_cp_count;
3092 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3093 	int bg_node_segs, bg_data_segs;
3094 	int tot_blks, data_blks, node_blks;
3095 	int bg_data_blks, bg_node_blks;
3096 	unsigned long long skipped_atomic_files[2];
3097 	int curseg[NR_CURSEG_TYPE];
3098 	int cursec[NR_CURSEG_TYPE];
3099 	int curzone[NR_CURSEG_TYPE];
3100 
3101 	unsigned int segment_count[2];
3102 	unsigned int block_count[2];
3103 	unsigned int inplace_count;
3104 	unsigned long long base_mem, cache_mem, page_mem;
3105 };
3106 
F2FS_STAT(struct f2fs_sb_info * sbi)3107 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3108 {
3109 	return (struct f2fs_stat_info *)sbi->stat_info;
3110 }
3111 
3112 #define stat_inc_cp_count(si)		((si)->cp_count++)
3113 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3114 #define stat_inc_call_count(si)		((si)->call_count++)
3115 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3116 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3117 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3118 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3119 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3120 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3121 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3122 #define stat_inc_inline_xattr(inode)					\
3123 	do {								\
3124 		if (f2fs_has_inline_xattr(inode))			\
3125 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3126 	} while (0)
3127 #define stat_dec_inline_xattr(inode)					\
3128 	do {								\
3129 		if (f2fs_has_inline_xattr(inode))			\
3130 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3131 	} while (0)
3132 #define stat_inc_inline_inode(inode)					\
3133 	do {								\
3134 		if (f2fs_has_inline_data(inode))			\
3135 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3136 	} while (0)
3137 #define stat_dec_inline_inode(inode)					\
3138 	do {								\
3139 		if (f2fs_has_inline_data(inode))			\
3140 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3141 	} while (0)
3142 #define stat_inc_inline_dir(inode)					\
3143 	do {								\
3144 		if (f2fs_has_inline_dentry(inode))			\
3145 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3146 	} while (0)
3147 #define stat_dec_inline_dir(inode)					\
3148 	do {								\
3149 		if (f2fs_has_inline_dentry(inode))			\
3150 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3151 	} while (0)
3152 #define stat_inc_seg_type(sbi, curseg)					\
3153 		((sbi)->segment_count[(curseg)->alloc_type]++)
3154 #define stat_inc_block_count(sbi, curseg)				\
3155 		((sbi)->block_count[(curseg)->alloc_type]++)
3156 #define stat_inc_inplace_blocks(sbi)					\
3157 		(atomic_inc(&(sbi)->inplace_count))
3158 #define stat_inc_atomic_write(inode)					\
3159 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3160 #define stat_dec_atomic_write(inode)					\
3161 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3162 #define stat_update_max_atomic_write(inode)				\
3163 	do {								\
3164 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3165 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3166 		if (cur > max)						\
3167 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3168 	} while (0)
3169 #define stat_inc_volatile_write(inode)					\
3170 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3171 #define stat_dec_volatile_write(inode)					\
3172 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3173 #define stat_update_max_volatile_write(inode)				\
3174 	do {								\
3175 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3176 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3177 		if (cur > max)						\
3178 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3179 	} while (0)
3180 #define stat_inc_seg_count(sbi, type, gc_type)				\
3181 	do {								\
3182 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3183 		si->tot_segs++;						\
3184 		if ((type) == SUM_TYPE_DATA) {				\
3185 			si->data_segs++;				\
3186 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3187 		} else {						\
3188 			si->node_segs++;				\
3189 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3190 		}							\
3191 	} while (0)
3192 
3193 #define stat_inc_tot_blk_count(si, blks)				\
3194 	((si)->tot_blks += (blks))
3195 
3196 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3197 	do {								\
3198 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3199 		stat_inc_tot_blk_count(si, blks);			\
3200 		si->data_blks += (blks);				\
3201 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3202 	} while (0)
3203 
3204 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3205 	do {								\
3206 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3207 		stat_inc_tot_blk_count(si, blks);			\
3208 		si->node_blks += (blks);				\
3209 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3210 	} while (0)
3211 
3212 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3213 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3214 int __init f2fs_create_root_stats(void);
3215 void f2fs_destroy_root_stats(void);
3216 #else
3217 #define stat_inc_cp_count(si)				do { } while (0)
3218 #define stat_inc_bg_cp_count(si)			do { } while (0)
3219 #define stat_inc_call_count(si)				do { } while (0)
3220 #define stat_inc_bggc_count(si)				do { } while (0)
3221 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3222 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3223 #define stat_inc_total_hit(sb)				do { } while (0)
3224 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3225 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3226 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3227 #define stat_inc_inline_xattr(inode)			do { } while (0)
3228 #define stat_dec_inline_xattr(inode)			do { } while (0)
3229 #define stat_inc_inline_inode(inode)			do { } while (0)
3230 #define stat_dec_inline_inode(inode)			do { } while (0)
3231 #define stat_inc_inline_dir(inode)			do { } while (0)
3232 #define stat_dec_inline_dir(inode)			do { } while (0)
3233 #define stat_inc_atomic_write(inode)			do { } while (0)
3234 #define stat_dec_atomic_write(inode)			do { } while (0)
3235 #define stat_update_max_atomic_write(inode)		do { } while (0)
3236 #define stat_inc_volatile_write(inode)			do { } while (0)
3237 #define stat_dec_volatile_write(inode)			do { } while (0)
3238 #define stat_update_max_volatile_write(inode)		do { } while (0)
3239 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3240 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3241 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3242 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3243 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3244 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3245 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3246 
f2fs_build_stats(struct f2fs_sb_info * sbi)3247 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3248 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3249 static inline int __init f2fs_create_root_stats(void) { return 0; }
f2fs_destroy_root_stats(void)3250 static inline void f2fs_destroy_root_stats(void) { }
3251 #endif
3252 
3253 extern const struct file_operations f2fs_dir_operations;
3254 extern const struct file_operations f2fs_file_operations;
3255 extern const struct inode_operations f2fs_file_inode_operations;
3256 extern const struct address_space_operations f2fs_dblock_aops;
3257 extern const struct address_space_operations f2fs_node_aops;
3258 extern const struct address_space_operations f2fs_meta_aops;
3259 extern const struct inode_operations f2fs_dir_inode_operations;
3260 extern const struct inode_operations f2fs_symlink_inode_operations;
3261 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3262 extern const struct inode_operations f2fs_special_inode_operations;
3263 extern struct kmem_cache *f2fs_inode_entry_slab;
3264 
3265 /*
3266  * inline.c
3267  */
3268 bool f2fs_may_inline_data(struct inode *inode);
3269 bool f2fs_may_inline_dentry(struct inode *inode);
3270 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3271 void f2fs_truncate_inline_inode(struct inode *inode,
3272 						struct page *ipage, u64 from);
3273 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3274 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3275 int f2fs_convert_inline_inode(struct inode *inode);
3276 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3277 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3278 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3279 			struct fscrypt_name *fname, struct page **res_page);
3280 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3281 			struct page *ipage);
3282 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3283 			const struct qstr *orig_name,
3284 			struct inode *inode, nid_t ino, umode_t mode);
3285 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3286 				struct page *page, struct inode *dir,
3287 				struct inode *inode);
3288 bool f2fs_empty_inline_dir(struct inode *dir);
3289 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3290 			struct fscrypt_str *fstr);
3291 int f2fs_inline_data_fiemap(struct inode *inode,
3292 			struct fiemap_extent_info *fieinfo,
3293 			__u64 start, __u64 len);
3294 
3295 /*
3296  * shrinker.c
3297  */
3298 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3299 			struct shrink_control *sc);
3300 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3301 			struct shrink_control *sc);
3302 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3303 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3304 
3305 /*
3306  * extent_cache.c
3307  */
3308 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
3309 				struct rb_entry *cached_re, unsigned int ofs);
3310 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3311 				struct rb_root *root, struct rb_node **parent,
3312 				unsigned int ofs);
3313 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
3314 		struct rb_entry *cached_re, unsigned int ofs,
3315 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3316 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3317 		bool force);
3318 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3319 						struct rb_root *root);
3320 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3321 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3322 void f2fs_drop_extent_tree(struct inode *inode);
3323 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3324 void f2fs_destroy_extent_tree(struct inode *inode);
3325 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3326 			struct extent_info *ei);
3327 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3328 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3329 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3330 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3331 int __init f2fs_create_extent_cache(void);
3332 void f2fs_destroy_extent_cache(void);
3333 
3334 /*
3335  * sysfs.c
3336  */
3337 int __init f2fs_init_sysfs(void);
3338 void f2fs_exit_sysfs(void);
3339 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3340 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3341 
3342 /*
3343  * crypto support
3344  */
f2fs_encrypted_inode(struct inode * inode)3345 static inline bool f2fs_encrypted_inode(struct inode *inode)
3346 {
3347 	return file_is_encrypt(inode);
3348 }
3349 
f2fs_encrypted_file(struct inode * inode)3350 static inline bool f2fs_encrypted_file(struct inode *inode)
3351 {
3352 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3353 }
3354 
f2fs_set_encrypted_inode(struct inode * inode)3355 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3356 {
3357 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3358 	file_set_encrypt(inode);
3359 	inode->i_flags |= S_ENCRYPTED;
3360 #endif
3361 }
3362 
3363 /*
3364  * Returns true if the reads of the inode's data need to undergo some
3365  * postprocessing step, like decryption or authenticity verification.
3366  */
f2fs_post_read_required(struct inode * inode)3367 static inline bool f2fs_post_read_required(struct inode *inode)
3368 {
3369 	return f2fs_encrypted_file(inode);
3370 }
3371 
3372 #define F2FS_FEATURE_FUNCS(name, flagname) \
3373 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3374 { \
3375 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3376 }
3377 
3378 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3379 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3380 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3381 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3382 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3383 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3384 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3385 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3386 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3387 
3388 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3389 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3390 			struct block_device *bdev, block_t blkaddr)
3391 {
3392 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3393 	int i;
3394 
3395 	for (i = 0; i < sbi->s_ndevs; i++)
3396 		if (FDEV(i).bdev == bdev)
3397 			return FDEV(i).blkz_type[zno];
3398 	return -EINVAL;
3399 }
3400 #endif
3401 
f2fs_discard_en(struct f2fs_sb_info * sbi)3402 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3403 {
3404 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3405 
3406 	return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3407 }
3408 
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3409 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3410 {
3411 	clear_opt(sbi, ADAPTIVE);
3412 	clear_opt(sbi, LFS);
3413 
3414 	switch (mt) {
3415 	case F2FS_MOUNT_ADAPTIVE:
3416 		set_opt(sbi, ADAPTIVE);
3417 		break;
3418 	case F2FS_MOUNT_LFS:
3419 		set_opt(sbi, LFS);
3420 		break;
3421 	}
3422 }
3423 
f2fs_may_encrypt(struct inode * inode)3424 static inline bool f2fs_may_encrypt(struct inode *inode)
3425 {
3426 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3427 	umode_t mode = inode->i_mode;
3428 
3429 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3430 #else
3431 	return false;
3432 #endif
3433 }
3434 
f2fs_force_buffered_io(struct inode * inode,int rw)3435 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3436 {
3437 	return (f2fs_post_read_required(inode) ||
3438 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3439 			F2FS_I_SB(inode)->s_ndevs);
3440 }
3441 
3442 #ifdef CONFIG_F2FS_FAULT_INJECTION
3443 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3444 							unsigned int type);
3445 #else
3446 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3447 #endif
3448 
3449 #endif
3450