1 /*
2  * A power allocator to manage temperature
3  *
4  * Copyright (C) 2014 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15 
16 #define pr_fmt(fmt) "Power allocator: " fmt
17 
18 #include <linux/rculist.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/thermal_power_allocator.h>
24 
25 #include "thermal_core.h"
26 
27 #define INVALID_TRIP -1
28 
29 #define FRAC_BITS 10
30 #define int_to_frac(x) ((x) << FRAC_BITS)
31 #define frac_to_int(x) ((x) >> FRAC_BITS)
32 
33 /**
34  * mul_frac() - multiply two fixed-point numbers
35  * @x:	first multiplicand
36  * @y:	second multiplicand
37  *
38  * Return: the result of multiplying two fixed-point numbers.  The
39  * result is also a fixed-point number.
40  */
mul_frac(s64 x,s64 y)41 static inline s64 mul_frac(s64 x, s64 y)
42 {
43 	return (x * y) >> FRAC_BITS;
44 }
45 
46 /**
47  * div_frac() - divide two fixed-point numbers
48  * @x:	the dividend
49  * @y:	the divisor
50  *
51  * Return: the result of dividing two fixed-point numbers.  The
52  * result is also a fixed-point number.
53  */
div_frac(s64 x,s64 y)54 static inline s64 div_frac(s64 x, s64 y)
55 {
56 	return div_s64(x << FRAC_BITS, y);
57 }
58 
59 /**
60  * struct power_allocator_params - parameters for the power allocator governor
61  * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
62  *			it needs to be freed on unbind
63  * @err_integral:	accumulated error in the PID controller.
64  * @prev_err:	error in the previous iteration of the PID controller.
65  *		Used to calculate the derivative term.
66  * @trip_switch_on:	first passive trip point of the thermal zone.  The
67  *			governor switches on when this trip point is crossed.
68  *			If the thermal zone only has one passive trip point,
69  *			@trip_switch_on should be INVALID_TRIP.
70  * @trip_max_desired_temperature:	last passive trip point of the thermal
71  *					zone.  The temperature we are
72  *					controlling for.
73  */
74 struct power_allocator_params {
75 	bool allocated_tzp;
76 	s64 err_integral;
77 	s32 prev_err;
78 	int trip_switch_on;
79 	int trip_max_desired_temperature;
80 };
81 
82 /**
83  * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
84  * @tz: thermal zone we are operating in
85  *
86  * For thermal zones that don't provide a sustainable_power in their
87  * thermal_zone_params, estimate one.  Calculate it using the minimum
88  * power of all the cooling devices as that gives a valid value that
89  * can give some degree of functionality.  For optimal performance of
90  * this governor, provide a sustainable_power in the thermal zone's
91  * thermal_zone_params.
92  */
estimate_sustainable_power(struct thermal_zone_device * tz)93 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
94 {
95 	u32 sustainable_power = 0;
96 	struct thermal_instance *instance;
97 	struct power_allocator_params *params = tz->governor_data;
98 
99 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
100 		struct thermal_cooling_device *cdev = instance->cdev;
101 		u32 min_power;
102 
103 		if (instance->trip != params->trip_max_desired_temperature)
104 			continue;
105 
106 		if (power_actor_get_min_power(cdev, tz, &min_power))
107 			continue;
108 
109 		sustainable_power += min_power;
110 	}
111 
112 	return sustainable_power;
113 }
114 
115 /**
116  * estimate_pid_constants() - Estimate the constants for the PID controller
117  * @tz:		thermal zone for which to estimate the constants
118  * @sustainable_power:	sustainable power for the thermal zone
119  * @trip_switch_on:	trip point number for the switch on temperature
120  * @control_temp:	target temperature for the power allocator governor
121  * @force:	whether to force the update of the constants
122  *
123  * This function is used to update the estimation of the PID
124  * controller constants in struct thermal_zone_parameters.
125  * Sustainable power is provided in case it was estimated.  The
126  * estimated sustainable_power should not be stored in the
127  * thermal_zone_parameters so it has to be passed explicitly to this
128  * function.
129  *
130  * If @force is not set, the values in the thermal zone's parameters
131  * are preserved if they are not zero.  If @force is set, the values
132  * in thermal zone's parameters are overwritten.
133  */
estimate_pid_constants(struct thermal_zone_device * tz,u32 sustainable_power,int trip_switch_on,int control_temp,bool force)134 static void estimate_pid_constants(struct thermal_zone_device *tz,
135 				   u32 sustainable_power, int trip_switch_on,
136 				   int control_temp, bool force)
137 {
138 	int ret;
139 	int switch_on_temp;
140 	u32 temperature_threshold;
141 
142 	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
143 	if (ret)
144 		switch_on_temp = 0;
145 
146 	temperature_threshold = control_temp - switch_on_temp;
147 	/*
148 	 * estimate_pid_constants() tries to find appropriate default
149 	 * values for thermal zones that don't provide them. If a
150 	 * system integrator has configured a thermal zone with two
151 	 * passive trip points at the same temperature, that person
152 	 * hasn't put any effort to set up the thermal zone properly
153 	 * so just give up.
154 	 */
155 	if (!temperature_threshold)
156 		return;
157 
158 	if (!tz->tzp->k_po || force)
159 		tz->tzp->k_po = int_to_frac(sustainable_power) /
160 			temperature_threshold;
161 
162 	if (!tz->tzp->k_pu || force)
163 		tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
164 			temperature_threshold;
165 
166 	if (!tz->tzp->k_i || force)
167 		tz->tzp->k_i = int_to_frac(10) / 1000;
168 	/*
169 	 * The default for k_d and integral_cutoff is 0, so we can
170 	 * leave them as they are.
171 	 */
172 }
173 
174 /**
175  * pid_controller() - PID controller
176  * @tz:	thermal zone we are operating in
177  * @control_temp:	the target temperature in millicelsius
178  * @max_allocatable_power:	maximum allocatable power for this thermal zone
179  *
180  * This PID controller increases the available power budget so that the
181  * temperature of the thermal zone gets as close as possible to
182  * @control_temp and limits the power if it exceeds it.  k_po is the
183  * proportional term when we are overshooting, k_pu is the
184  * proportional term when we are undershooting.  integral_cutoff is a
185  * threshold below which we stop accumulating the error.  The
186  * accumulated error is only valid if the requested power will make
187  * the system warmer.  If the system is mostly idle, there's no point
188  * in accumulating positive error.
189  *
190  * Return: The power budget for the next period.
191  */
pid_controller(struct thermal_zone_device * tz,int control_temp,u32 max_allocatable_power)192 static u32 pid_controller(struct thermal_zone_device *tz,
193 			  int control_temp,
194 			  u32 max_allocatable_power)
195 {
196 	s64 p, i, d, power_range;
197 	s32 err, max_power_frac;
198 	u32 sustainable_power;
199 	struct power_allocator_params *params = tz->governor_data;
200 
201 	max_power_frac = int_to_frac(max_allocatable_power);
202 
203 	if (tz->tzp->sustainable_power) {
204 		sustainable_power = tz->tzp->sustainable_power;
205 	} else {
206 		sustainable_power = estimate_sustainable_power(tz);
207 		estimate_pid_constants(tz, sustainable_power,
208 				       params->trip_switch_on, control_temp,
209 				       true);
210 	}
211 
212 	err = control_temp - tz->temperature;
213 	err = int_to_frac(err);
214 
215 	/* Calculate the proportional term */
216 	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
217 
218 	/*
219 	 * Calculate the integral term
220 	 *
221 	 * if the error is less than cut off allow integration (but
222 	 * the integral is limited to max power)
223 	 */
224 	i = mul_frac(tz->tzp->k_i, params->err_integral);
225 
226 	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
227 		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
228 
229 		if (abs(i_next) < max_power_frac) {
230 			i = i_next;
231 			params->err_integral += err;
232 		}
233 	}
234 
235 	/*
236 	 * Calculate the derivative term
237 	 *
238 	 * We do err - prev_err, so with a positive k_d, a decreasing
239 	 * error (i.e. driving closer to the line) results in less
240 	 * power being applied, slowing down the controller)
241 	 */
242 	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
243 	d = div_frac(d, tz->passive_delay);
244 	params->prev_err = err;
245 
246 	power_range = p + i + d;
247 
248 	/* feed-forward the known sustainable dissipatable power */
249 	power_range = sustainable_power + frac_to_int(power_range);
250 
251 	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
252 
253 	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
254 					  frac_to_int(params->err_integral),
255 					  frac_to_int(p), frac_to_int(i),
256 					  frac_to_int(d), power_range);
257 
258 	return power_range;
259 }
260 
261 /**
262  * divvy_up_power() - divvy the allocated power between the actors
263  * @req_power:	each actor's requested power
264  * @max_power:	each actor's maximum available power
265  * @num_actors:	size of the @req_power, @max_power and @granted_power's array
266  * @total_req_power: sum of @req_power
267  * @power_range:	total allocated power
268  * @granted_power:	output array: each actor's granted power
269  * @extra_actor_power:	an appropriately sized array to be used in the
270  *			function as temporary storage of the extra power given
271  *			to the actors
272  *
273  * This function divides the total allocated power (@power_range)
274  * fairly between the actors.  It first tries to give each actor a
275  * share of the @power_range according to how much power it requested
276  * compared to the rest of the actors.  For example, if only one actor
277  * requests power, then it receives all the @power_range.  If
278  * three actors each requests 1mW, each receives a third of the
279  * @power_range.
280  *
281  * If any actor received more than their maximum power, then that
282  * surplus is re-divvied among the actors based on how far they are
283  * from their respective maximums.
284  *
285  * Granted power for each actor is written to @granted_power, which
286  * should've been allocated by the calling function.
287  */
divvy_up_power(u32 * req_power,u32 * max_power,int num_actors,u32 total_req_power,u32 power_range,u32 * granted_power,u32 * extra_actor_power)288 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
289 			   u32 total_req_power, u32 power_range,
290 			   u32 *granted_power, u32 *extra_actor_power)
291 {
292 	u32 extra_power, capped_extra_power;
293 	int i;
294 
295 	/*
296 	 * Prevent division by 0 if none of the actors request power.
297 	 */
298 	if (!total_req_power)
299 		total_req_power = 1;
300 
301 	capped_extra_power = 0;
302 	extra_power = 0;
303 	for (i = 0; i < num_actors; i++) {
304 		u64 req_range = (u64)req_power[i] * power_range;
305 
306 		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
307 							 total_req_power);
308 
309 		if (granted_power[i] > max_power[i]) {
310 			extra_power += granted_power[i] - max_power[i];
311 			granted_power[i] = max_power[i];
312 		}
313 
314 		extra_actor_power[i] = max_power[i] - granted_power[i];
315 		capped_extra_power += extra_actor_power[i];
316 	}
317 
318 	if (!extra_power)
319 		return;
320 
321 	/*
322 	 * Re-divvy the reclaimed extra among actors based on
323 	 * how far they are from the max
324 	 */
325 	extra_power = min(extra_power, capped_extra_power);
326 	if (capped_extra_power > 0)
327 		for (i = 0; i < num_actors; i++)
328 			granted_power[i] += (extra_actor_power[i] *
329 					extra_power) / capped_extra_power;
330 }
331 
allocate_power(struct thermal_zone_device * tz,int control_temp)332 static int allocate_power(struct thermal_zone_device *tz,
333 			  int control_temp)
334 {
335 	struct thermal_instance *instance;
336 	struct power_allocator_params *params = tz->governor_data;
337 	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
338 	u32 *weighted_req_power;
339 	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
340 	u32 total_granted_power, power_range;
341 	int i, num_actors, total_weight, ret = 0;
342 	int trip_max_desired_temperature = params->trip_max_desired_temperature;
343 
344 	mutex_lock(&tz->lock);
345 
346 	num_actors = 0;
347 	total_weight = 0;
348 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
349 		if ((instance->trip == trip_max_desired_temperature) &&
350 		    cdev_is_power_actor(instance->cdev)) {
351 			num_actors++;
352 			total_weight += instance->weight;
353 		}
354 	}
355 
356 	if (!num_actors) {
357 		ret = -ENODEV;
358 		goto unlock;
359 	}
360 
361 	/*
362 	 * We need to allocate five arrays of the same size:
363 	 * req_power, max_power, granted_power, extra_actor_power and
364 	 * weighted_req_power.  They are going to be needed until this
365 	 * function returns.  Allocate them all in one go to simplify
366 	 * the allocation and deallocation logic.
367 	 */
368 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
369 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
370 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
371 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
372 	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
373 	if (!req_power) {
374 		ret = -ENOMEM;
375 		goto unlock;
376 	}
377 
378 	max_power = &req_power[num_actors];
379 	granted_power = &req_power[2 * num_actors];
380 	extra_actor_power = &req_power[3 * num_actors];
381 	weighted_req_power = &req_power[4 * num_actors];
382 
383 	i = 0;
384 	total_weighted_req_power = 0;
385 	total_req_power = 0;
386 	max_allocatable_power = 0;
387 
388 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
389 		int weight;
390 		struct thermal_cooling_device *cdev = instance->cdev;
391 
392 		if (instance->trip != trip_max_desired_temperature)
393 			continue;
394 
395 		if (!cdev_is_power_actor(cdev))
396 			continue;
397 
398 		if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
399 			continue;
400 
401 		if (!total_weight)
402 			weight = 1 << FRAC_BITS;
403 		else
404 			weight = instance->weight;
405 
406 		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
407 
408 		if (power_actor_get_max_power(cdev, tz, &max_power[i]))
409 			continue;
410 
411 		total_req_power += req_power[i];
412 		max_allocatable_power += max_power[i];
413 		total_weighted_req_power += weighted_req_power[i];
414 
415 		i++;
416 	}
417 
418 	power_range = pid_controller(tz, control_temp, max_allocatable_power);
419 
420 	divvy_up_power(weighted_req_power, max_power, num_actors,
421 		       total_weighted_req_power, power_range, granted_power,
422 		       extra_actor_power);
423 
424 	total_granted_power = 0;
425 	i = 0;
426 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
427 		if (instance->trip != trip_max_desired_temperature)
428 			continue;
429 
430 		if (!cdev_is_power_actor(instance->cdev))
431 			continue;
432 
433 		power_actor_set_power(instance->cdev, instance,
434 				      granted_power[i]);
435 		total_granted_power += granted_power[i];
436 
437 		i++;
438 	}
439 
440 	trace_thermal_power_allocator(tz, req_power, total_req_power,
441 				      granted_power, total_granted_power,
442 				      num_actors, power_range,
443 				      max_allocatable_power, tz->temperature,
444 				      control_temp - tz->temperature);
445 
446 	kfree(req_power);
447 unlock:
448 	mutex_unlock(&tz->lock);
449 
450 	return ret;
451 }
452 
453 /**
454  * get_governor_trips() - get the number of the two trip points that are key for this governor
455  * @tz:	thermal zone to operate on
456  * @params:	pointer to private data for this governor
457  *
458  * The power allocator governor works optimally with two trips points:
459  * a "switch on" trip point and a "maximum desired temperature".  These
460  * are defined as the first and last passive trip points.
461  *
462  * If there is only one trip point, then that's considered to be the
463  * "maximum desired temperature" trip point and the governor is always
464  * on.  If there are no passive or active trip points, then the
465  * governor won't do anything.  In fact, its throttle function
466  * won't be called at all.
467  */
get_governor_trips(struct thermal_zone_device * tz,struct power_allocator_params * params)468 static void get_governor_trips(struct thermal_zone_device *tz,
469 			       struct power_allocator_params *params)
470 {
471 	int i, last_active, last_passive;
472 	bool found_first_passive;
473 
474 	found_first_passive = false;
475 	last_active = INVALID_TRIP;
476 	last_passive = INVALID_TRIP;
477 
478 	for (i = 0; i < tz->trips; i++) {
479 		enum thermal_trip_type type;
480 		int ret;
481 
482 		ret = tz->ops->get_trip_type(tz, i, &type);
483 		if (ret) {
484 			dev_warn(&tz->device,
485 				 "Failed to get trip point %d type: %d\n", i,
486 				 ret);
487 			continue;
488 		}
489 
490 		if (type == THERMAL_TRIP_PASSIVE) {
491 			if (!found_first_passive) {
492 				params->trip_switch_on = i;
493 				found_first_passive = true;
494 			} else  {
495 				last_passive = i;
496 			}
497 		} else if (type == THERMAL_TRIP_ACTIVE) {
498 			last_active = i;
499 		} else {
500 			break;
501 		}
502 	}
503 
504 	if (last_passive != INVALID_TRIP) {
505 		params->trip_max_desired_temperature = last_passive;
506 	} else if (found_first_passive) {
507 		params->trip_max_desired_temperature = params->trip_switch_on;
508 		params->trip_switch_on = INVALID_TRIP;
509 	} else {
510 		params->trip_switch_on = INVALID_TRIP;
511 		params->trip_max_desired_temperature = last_active;
512 	}
513 }
514 
reset_pid_controller(struct power_allocator_params * params)515 static void reset_pid_controller(struct power_allocator_params *params)
516 {
517 	params->err_integral = 0;
518 	params->prev_err = 0;
519 }
520 
allow_maximum_power(struct thermal_zone_device * tz)521 static void allow_maximum_power(struct thermal_zone_device *tz)
522 {
523 	struct thermal_instance *instance;
524 	struct power_allocator_params *params = tz->governor_data;
525 
526 	mutex_lock(&tz->lock);
527 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
528 		if ((instance->trip != params->trip_max_desired_temperature) ||
529 		    (!cdev_is_power_actor(instance->cdev)))
530 			continue;
531 
532 		instance->target = 0;
533 		mutex_lock(&instance->cdev->lock);
534 		instance->cdev->updated = false;
535 		mutex_unlock(&instance->cdev->lock);
536 		thermal_cdev_update(instance->cdev);
537 	}
538 	mutex_unlock(&tz->lock);
539 }
540 
541 /**
542  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
543  * @tz:	thermal zone to bind it to
544  *
545  * Initialize the PID controller parameters and bind it to the thermal
546  * zone.
547  *
548  * Return: 0 on success, or -ENOMEM if we ran out of memory.
549  */
power_allocator_bind(struct thermal_zone_device * tz)550 static int power_allocator_bind(struct thermal_zone_device *tz)
551 {
552 	int ret;
553 	struct power_allocator_params *params;
554 	int control_temp;
555 
556 	params = kzalloc(sizeof(*params), GFP_KERNEL);
557 	if (!params)
558 		return -ENOMEM;
559 
560 	if (!tz->tzp) {
561 		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
562 		if (!tz->tzp) {
563 			ret = -ENOMEM;
564 			goto free_params;
565 		}
566 
567 		params->allocated_tzp = true;
568 	}
569 
570 	if (!tz->tzp->sustainable_power)
571 		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
572 
573 	get_governor_trips(tz, params);
574 
575 	if (tz->trips > 0) {
576 		ret = tz->ops->get_trip_temp(tz,
577 					params->trip_max_desired_temperature,
578 					&control_temp);
579 		if (!ret)
580 			estimate_pid_constants(tz, tz->tzp->sustainable_power,
581 					       params->trip_switch_on,
582 					       control_temp, false);
583 	}
584 
585 	reset_pid_controller(params);
586 
587 	tz->governor_data = params;
588 
589 	return 0;
590 
591 free_params:
592 	kfree(params);
593 
594 	return ret;
595 }
596 
power_allocator_unbind(struct thermal_zone_device * tz)597 static void power_allocator_unbind(struct thermal_zone_device *tz)
598 {
599 	struct power_allocator_params *params = tz->governor_data;
600 
601 	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
602 
603 	if (params->allocated_tzp) {
604 		kfree(tz->tzp);
605 		tz->tzp = NULL;
606 	}
607 
608 	kfree(tz->governor_data);
609 	tz->governor_data = NULL;
610 }
611 
power_allocator_throttle(struct thermal_zone_device * tz,int trip)612 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
613 {
614 	int ret;
615 	int switch_on_temp, control_temp;
616 	struct power_allocator_params *params = tz->governor_data;
617 
618 	/*
619 	 * We get called for every trip point but we only need to do
620 	 * our calculations once
621 	 */
622 	if (trip != params->trip_max_desired_temperature)
623 		return 0;
624 
625 	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
626 				     &switch_on_temp);
627 	if (!ret && (tz->temperature < switch_on_temp)) {
628 		tz->passive = 0;
629 		reset_pid_controller(params);
630 		allow_maximum_power(tz);
631 		return 0;
632 	}
633 
634 	tz->passive = 1;
635 
636 	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
637 				&control_temp);
638 	if (ret) {
639 		dev_warn(&tz->device,
640 			 "Failed to get the maximum desired temperature: %d\n",
641 			 ret);
642 		return ret;
643 	}
644 
645 	return allocate_power(tz, control_temp);
646 }
647 
648 static struct thermal_governor thermal_gov_power_allocator = {
649 	.name		= "power_allocator",
650 	.bind_to_tz	= power_allocator_bind,
651 	.unbind_from_tz	= power_allocator_unbind,
652 	.throttle	= power_allocator_throttle,
653 };
654 
thermal_gov_power_allocator_register(void)655 int thermal_gov_power_allocator_register(void)
656 {
657 	return thermal_register_governor(&thermal_gov_power_allocator);
658 }
659 
thermal_gov_power_allocator_unregister(void)660 void thermal_gov_power_allocator_unregister(void)
661 {
662 	thermal_unregister_governor(&thermal_gov_power_allocator);
663 }
664