1 /*
2 * RapidIO interconnect services
3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
4 *
5 * Copyright 2005 MontaVista Software, Inc.
6 * Matt Porter <mporter@kernel.crashing.org>
7 *
8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9 * Alex Bounine <alexandre.bounine@idt.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 */
16
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30
31 #include "rio.h"
32
33 /*
34 * struct rio_pwrite - RIO portwrite event
35 * @node: Node in list of doorbell events
36 * @pwcback: Doorbell event callback
37 * @context: Handler specific context to pass on event
38 */
39 struct rio_pwrite {
40 struct list_head node;
41
42 int (*pwcback)(struct rio_mport *mport, void *context,
43 union rio_pw_msg *msg, int step);
44 void *context;
45 };
46
47 MODULE_DESCRIPTION("RapidIO Subsystem Core");
48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
50 MODULE_LICENSE("GPL");
51
52 static int hdid[RIO_MAX_MPORTS];
53 static int ids_num;
54 module_param_array(hdid, int, &ids_num, 0);
55 MODULE_PARM_DESC(hdid,
56 "Destination ID assignment to local RapidIO controllers");
57
58 static LIST_HEAD(rio_devices);
59 static LIST_HEAD(rio_nets);
60 static DEFINE_SPINLOCK(rio_global_list_lock);
61
62 static LIST_HEAD(rio_mports);
63 static LIST_HEAD(rio_scans);
64 static DEFINE_MUTEX(rio_mport_list_lock);
65 static unsigned char next_portid;
66 static DEFINE_SPINLOCK(rio_mmap_lock);
67
68 /**
69 * rio_local_get_device_id - Get the base/extended device id for a port
70 * @port: RIO master port from which to get the deviceid
71 *
72 * Reads the base/extended device id from the local device
73 * implementing the master port. Returns the 8/16-bit device
74 * id.
75 */
rio_local_get_device_id(struct rio_mport * port)76 u16 rio_local_get_device_id(struct rio_mport *port)
77 {
78 u32 result;
79
80 rio_local_read_config_32(port, RIO_DID_CSR, &result);
81
82 return (RIO_GET_DID(port->sys_size, result));
83 }
84 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
85
86 /**
87 * rio_query_mport - Query mport device attributes
88 * @port: mport device to query
89 * @mport_attr: mport attributes data structure
90 *
91 * Returns attributes of specified mport through the
92 * pointer to attributes data structure.
93 */
rio_query_mport(struct rio_mport * port,struct rio_mport_attr * mport_attr)94 int rio_query_mport(struct rio_mport *port,
95 struct rio_mport_attr *mport_attr)
96 {
97 if (!port->ops->query_mport)
98 return -ENODATA;
99 return port->ops->query_mport(port, mport_attr);
100 }
101 EXPORT_SYMBOL(rio_query_mport);
102
103 /**
104 * rio_alloc_net- Allocate and initialize a new RIO network data structure
105 * @mport: Master port associated with the RIO network
106 *
107 * Allocates a RIO network structure, initializes per-network
108 * list heads, and adds the associated master port to the
109 * network list of associated master ports. Returns a
110 * RIO network pointer on success or %NULL on failure.
111 */
rio_alloc_net(struct rio_mport * mport)112 struct rio_net *rio_alloc_net(struct rio_mport *mport)
113 {
114 struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
115
116 if (net) {
117 INIT_LIST_HEAD(&net->node);
118 INIT_LIST_HEAD(&net->devices);
119 INIT_LIST_HEAD(&net->switches);
120 INIT_LIST_HEAD(&net->mports);
121 mport->net = net;
122 }
123 return net;
124 }
125 EXPORT_SYMBOL_GPL(rio_alloc_net);
126
rio_add_net(struct rio_net * net)127 int rio_add_net(struct rio_net *net)
128 {
129 int err;
130
131 err = device_register(&net->dev);
132 if (err)
133 return err;
134 spin_lock(&rio_global_list_lock);
135 list_add_tail(&net->node, &rio_nets);
136 spin_unlock(&rio_global_list_lock);
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(rio_add_net);
141
rio_free_net(struct rio_net * net)142 void rio_free_net(struct rio_net *net)
143 {
144 spin_lock(&rio_global_list_lock);
145 if (!list_empty(&net->node))
146 list_del(&net->node);
147 spin_unlock(&rio_global_list_lock);
148 if (net->release)
149 net->release(net);
150 device_unregister(&net->dev);
151 }
152 EXPORT_SYMBOL_GPL(rio_free_net);
153
154 /**
155 * rio_local_set_device_id - Set the base/extended device id for a port
156 * @port: RIO master port
157 * @did: Device ID value to be written
158 *
159 * Writes the base/extended device id from a device.
160 */
rio_local_set_device_id(struct rio_mport * port,u16 did)161 void rio_local_set_device_id(struct rio_mport *port, u16 did)
162 {
163 rio_local_write_config_32(port, RIO_DID_CSR,
164 RIO_SET_DID(port->sys_size, did));
165 }
166 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
167
168 /**
169 * rio_add_device- Adds a RIO device to the device model
170 * @rdev: RIO device
171 *
172 * Adds the RIO device to the global device list and adds the RIO
173 * device to the RIO device list. Creates the generic sysfs nodes
174 * for an RIO device.
175 */
rio_add_device(struct rio_dev * rdev)176 int rio_add_device(struct rio_dev *rdev)
177 {
178 int err;
179
180 atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
181 err = device_register(&rdev->dev);
182 if (err)
183 return err;
184
185 spin_lock(&rio_global_list_lock);
186 list_add_tail(&rdev->global_list, &rio_devices);
187 if (rdev->net) {
188 list_add_tail(&rdev->net_list, &rdev->net->devices);
189 if (rdev->pef & RIO_PEF_SWITCH)
190 list_add_tail(&rdev->rswitch->node,
191 &rdev->net->switches);
192 }
193 spin_unlock(&rio_global_list_lock);
194
195 return 0;
196 }
197 EXPORT_SYMBOL_GPL(rio_add_device);
198
199 /*
200 * rio_del_device - removes a RIO device from the device model
201 * @rdev: RIO device
202 * @state: device state to set during removal process
203 *
204 * Removes the RIO device to the kernel device list and subsystem's device list.
205 * Clears sysfs entries for the removed device.
206 */
rio_del_device(struct rio_dev * rdev,enum rio_device_state state)207 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
208 {
209 pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
210 atomic_set(&rdev->state, state);
211 spin_lock(&rio_global_list_lock);
212 list_del(&rdev->global_list);
213 if (rdev->net) {
214 list_del(&rdev->net_list);
215 if (rdev->pef & RIO_PEF_SWITCH) {
216 list_del(&rdev->rswitch->node);
217 kfree(rdev->rswitch->route_table);
218 }
219 }
220 spin_unlock(&rio_global_list_lock);
221 device_unregister(&rdev->dev);
222 }
223 EXPORT_SYMBOL_GPL(rio_del_device);
224
225 /**
226 * rio_request_inb_mbox - request inbound mailbox service
227 * @mport: RIO master port from which to allocate the mailbox resource
228 * @dev_id: Device specific pointer to pass on event
229 * @mbox: Mailbox number to claim
230 * @entries: Number of entries in inbound mailbox queue
231 * @minb: Callback to execute when inbound message is received
232 *
233 * Requests ownership of an inbound mailbox resource and binds
234 * a callback function to the resource. Returns %0 on success.
235 */
rio_request_inb_mbox(struct rio_mport * mport,void * dev_id,int mbox,int entries,void (* minb)(struct rio_mport * mport,void * dev_id,int mbox,int slot))236 int rio_request_inb_mbox(struct rio_mport *mport,
237 void *dev_id,
238 int mbox,
239 int entries,
240 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
241 int slot))
242 {
243 int rc = -ENOSYS;
244 struct resource *res;
245
246 if (!mport->ops->open_inb_mbox)
247 goto out;
248
249 res = kzalloc(sizeof(*res), GFP_KERNEL);
250 if (res) {
251 rio_init_mbox_res(res, mbox, mbox);
252
253 /* Make sure this mailbox isn't in use */
254 rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
255 res);
256 if (rc < 0) {
257 kfree(res);
258 goto out;
259 }
260
261 mport->inb_msg[mbox].res = res;
262
263 /* Hook the inbound message callback */
264 mport->inb_msg[mbox].mcback = minb;
265
266 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
267 if (rc) {
268 mport->inb_msg[mbox].mcback = NULL;
269 mport->inb_msg[mbox].res = NULL;
270 release_resource(res);
271 kfree(res);
272 }
273 } else
274 rc = -ENOMEM;
275
276 out:
277 return rc;
278 }
279 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
280
281 /**
282 * rio_release_inb_mbox - release inbound mailbox message service
283 * @mport: RIO master port from which to release the mailbox resource
284 * @mbox: Mailbox number to release
285 *
286 * Releases ownership of an inbound mailbox resource. Returns 0
287 * if the request has been satisfied.
288 */
rio_release_inb_mbox(struct rio_mport * mport,int mbox)289 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
290 {
291 int rc;
292
293 if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
294 return -EINVAL;
295
296 mport->ops->close_inb_mbox(mport, mbox);
297 mport->inb_msg[mbox].mcback = NULL;
298
299 rc = release_resource(mport->inb_msg[mbox].res);
300 if (rc)
301 return rc;
302
303 kfree(mport->inb_msg[mbox].res);
304 mport->inb_msg[mbox].res = NULL;
305
306 return 0;
307 }
308 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
309
310 /**
311 * rio_request_outb_mbox - request outbound mailbox service
312 * @mport: RIO master port from which to allocate the mailbox resource
313 * @dev_id: Device specific pointer to pass on event
314 * @mbox: Mailbox number to claim
315 * @entries: Number of entries in outbound mailbox queue
316 * @moutb: Callback to execute when outbound message is sent
317 *
318 * Requests ownership of an outbound mailbox resource and binds
319 * a callback function to the resource. Returns 0 on success.
320 */
rio_request_outb_mbox(struct rio_mport * mport,void * dev_id,int mbox,int entries,void (* moutb)(struct rio_mport * mport,void * dev_id,int mbox,int slot))321 int rio_request_outb_mbox(struct rio_mport *mport,
322 void *dev_id,
323 int mbox,
324 int entries,
325 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
326 {
327 int rc = -ENOSYS;
328 struct resource *res;
329
330 if (!mport->ops->open_outb_mbox)
331 goto out;
332
333 res = kzalloc(sizeof(*res), GFP_KERNEL);
334 if (res) {
335 rio_init_mbox_res(res, mbox, mbox);
336
337 /* Make sure this outbound mailbox isn't in use */
338 rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
339 res);
340 if (rc < 0) {
341 kfree(res);
342 goto out;
343 }
344
345 mport->outb_msg[mbox].res = res;
346
347 /* Hook the inbound message callback */
348 mport->outb_msg[mbox].mcback = moutb;
349
350 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
351 if (rc) {
352 mport->outb_msg[mbox].mcback = NULL;
353 mport->outb_msg[mbox].res = NULL;
354 release_resource(res);
355 kfree(res);
356 }
357 } else
358 rc = -ENOMEM;
359
360 out:
361 return rc;
362 }
363 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
364
365 /**
366 * rio_release_outb_mbox - release outbound mailbox message service
367 * @mport: RIO master port from which to release the mailbox resource
368 * @mbox: Mailbox number to release
369 *
370 * Releases ownership of an inbound mailbox resource. Returns 0
371 * if the request has been satisfied.
372 */
rio_release_outb_mbox(struct rio_mport * mport,int mbox)373 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
374 {
375 int rc;
376
377 if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
378 return -EINVAL;
379
380 mport->ops->close_outb_mbox(mport, mbox);
381 mport->outb_msg[mbox].mcback = NULL;
382
383 rc = release_resource(mport->outb_msg[mbox].res);
384 if (rc)
385 return rc;
386
387 kfree(mport->outb_msg[mbox].res);
388 mport->outb_msg[mbox].res = NULL;
389
390 return 0;
391 }
392 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
393
394 /**
395 * rio_setup_inb_dbell - bind inbound doorbell callback
396 * @mport: RIO master port to bind the doorbell callback
397 * @dev_id: Device specific pointer to pass on event
398 * @res: Doorbell message resource
399 * @dinb: Callback to execute when doorbell is received
400 *
401 * Adds a doorbell resource/callback pair into a port's
402 * doorbell event list. Returns 0 if the request has been
403 * satisfied.
404 */
405 static int
rio_setup_inb_dbell(struct rio_mport * mport,void * dev_id,struct resource * res,void (* dinb)(struct rio_mport * mport,void * dev_id,u16 src,u16 dst,u16 info))406 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
407 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
408 u16 info))
409 {
410 struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
411
412 if (!dbell)
413 return -ENOMEM;
414
415 dbell->res = res;
416 dbell->dinb = dinb;
417 dbell->dev_id = dev_id;
418
419 mutex_lock(&mport->lock);
420 list_add_tail(&dbell->node, &mport->dbells);
421 mutex_unlock(&mport->lock);
422 return 0;
423 }
424
425 /**
426 * rio_request_inb_dbell - request inbound doorbell message service
427 * @mport: RIO master port from which to allocate the doorbell resource
428 * @dev_id: Device specific pointer to pass on event
429 * @start: Doorbell info range start
430 * @end: Doorbell info range end
431 * @dinb: Callback to execute when doorbell is received
432 *
433 * Requests ownership of an inbound doorbell resource and binds
434 * a callback function to the resource. Returns 0 if the request
435 * has been satisfied.
436 */
rio_request_inb_dbell(struct rio_mport * mport,void * dev_id,u16 start,u16 end,void (* dinb)(struct rio_mport * mport,void * dev_id,u16 src,u16 dst,u16 info))437 int rio_request_inb_dbell(struct rio_mport *mport,
438 void *dev_id,
439 u16 start,
440 u16 end,
441 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
442 u16 dst, u16 info))
443 {
444 int rc;
445 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
446
447 if (res) {
448 rio_init_dbell_res(res, start, end);
449
450 /* Make sure these doorbells aren't in use */
451 rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
452 res);
453 if (rc < 0) {
454 kfree(res);
455 goto out;
456 }
457
458 /* Hook the doorbell callback */
459 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
460 } else
461 rc = -ENOMEM;
462
463 out:
464 return rc;
465 }
466 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
467
468 /**
469 * rio_release_inb_dbell - release inbound doorbell message service
470 * @mport: RIO master port from which to release the doorbell resource
471 * @start: Doorbell info range start
472 * @end: Doorbell info range end
473 *
474 * Releases ownership of an inbound doorbell resource and removes
475 * callback from the doorbell event list. Returns 0 if the request
476 * has been satisfied.
477 */
rio_release_inb_dbell(struct rio_mport * mport,u16 start,u16 end)478 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
479 {
480 int rc = 0, found = 0;
481 struct rio_dbell *dbell;
482
483 mutex_lock(&mport->lock);
484 list_for_each_entry(dbell, &mport->dbells, node) {
485 if ((dbell->res->start == start) && (dbell->res->end == end)) {
486 list_del(&dbell->node);
487 found = 1;
488 break;
489 }
490 }
491 mutex_unlock(&mport->lock);
492
493 /* If we can't find an exact match, fail */
494 if (!found) {
495 rc = -EINVAL;
496 goto out;
497 }
498
499 /* Release the doorbell resource */
500 rc = release_resource(dbell->res);
501
502 /* Free the doorbell event */
503 kfree(dbell);
504
505 out:
506 return rc;
507 }
508 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
509
510 /**
511 * rio_request_outb_dbell - request outbound doorbell message range
512 * @rdev: RIO device from which to allocate the doorbell resource
513 * @start: Doorbell message range start
514 * @end: Doorbell message range end
515 *
516 * Requests ownership of a doorbell message range. Returns a resource
517 * if the request has been satisfied or %NULL on failure.
518 */
rio_request_outb_dbell(struct rio_dev * rdev,u16 start,u16 end)519 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
520 u16 end)
521 {
522 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
523
524 if (res) {
525 rio_init_dbell_res(res, start, end);
526
527 /* Make sure these doorbells aren't in use */
528 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
529 < 0) {
530 kfree(res);
531 res = NULL;
532 }
533 }
534
535 return res;
536 }
537 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
538
539 /**
540 * rio_release_outb_dbell - release outbound doorbell message range
541 * @rdev: RIO device from which to release the doorbell resource
542 * @res: Doorbell resource to be freed
543 *
544 * Releases ownership of a doorbell message range. Returns 0 if the
545 * request has been satisfied.
546 */
rio_release_outb_dbell(struct rio_dev * rdev,struct resource * res)547 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
548 {
549 int rc = release_resource(res);
550
551 kfree(res);
552
553 return rc;
554 }
555 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
556
557 /**
558 * rio_add_mport_pw_handler - add port-write message handler into the list
559 * of mport specific pw handlers
560 * @mport: RIO master port to bind the portwrite callback
561 * @context: Handler specific context to pass on event
562 * @pwcback: Callback to execute when portwrite is received
563 *
564 * Returns 0 if the request has been satisfied.
565 */
rio_add_mport_pw_handler(struct rio_mport * mport,void * context,int (* pwcback)(struct rio_mport * mport,void * context,union rio_pw_msg * msg,int step))566 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
567 int (*pwcback)(struct rio_mport *mport,
568 void *context, union rio_pw_msg *msg, int step))
569 {
570 struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
571
572 if (!pwrite)
573 return -ENOMEM;
574
575 pwrite->pwcback = pwcback;
576 pwrite->context = context;
577 mutex_lock(&mport->lock);
578 list_add_tail(&pwrite->node, &mport->pwrites);
579 mutex_unlock(&mport->lock);
580 return 0;
581 }
582 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
583
584 /**
585 * rio_del_mport_pw_handler - remove port-write message handler from the list
586 * of mport specific pw handlers
587 * @mport: RIO master port to bind the portwrite callback
588 * @context: Registered handler specific context to pass on event
589 * @pwcback: Registered callback function
590 *
591 * Returns 0 if the request has been satisfied.
592 */
rio_del_mport_pw_handler(struct rio_mport * mport,void * context,int (* pwcback)(struct rio_mport * mport,void * context,union rio_pw_msg * msg,int step))593 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
594 int (*pwcback)(struct rio_mport *mport,
595 void *context, union rio_pw_msg *msg, int step))
596 {
597 int rc = -EINVAL;
598 struct rio_pwrite *pwrite;
599
600 mutex_lock(&mport->lock);
601 list_for_each_entry(pwrite, &mport->pwrites, node) {
602 if (pwrite->pwcback == pwcback && pwrite->context == context) {
603 list_del(&pwrite->node);
604 kfree(pwrite);
605 rc = 0;
606 break;
607 }
608 }
609 mutex_unlock(&mport->lock);
610
611 return rc;
612 }
613 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
614
615 /**
616 * rio_request_inb_pwrite - request inbound port-write message service for
617 * specific RapidIO device
618 * @rdev: RIO device to which register inbound port-write callback routine
619 * @pwcback: Callback routine to execute when port-write is received
620 *
621 * Binds a port-write callback function to the RapidIO device.
622 * Returns 0 if the request has been satisfied.
623 */
rio_request_inb_pwrite(struct rio_dev * rdev,int (* pwcback)(struct rio_dev * rdev,union rio_pw_msg * msg,int step))624 int rio_request_inb_pwrite(struct rio_dev *rdev,
625 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
626 {
627 int rc = 0;
628
629 spin_lock(&rio_global_list_lock);
630 if (rdev->pwcback)
631 rc = -ENOMEM;
632 else
633 rdev->pwcback = pwcback;
634
635 spin_unlock(&rio_global_list_lock);
636 return rc;
637 }
638 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
639
640 /**
641 * rio_release_inb_pwrite - release inbound port-write message service
642 * associated with specific RapidIO device
643 * @rdev: RIO device which registered for inbound port-write callback
644 *
645 * Removes callback from the rio_dev structure. Returns 0 if the request
646 * has been satisfied.
647 */
rio_release_inb_pwrite(struct rio_dev * rdev)648 int rio_release_inb_pwrite(struct rio_dev *rdev)
649 {
650 int rc = -ENOMEM;
651
652 spin_lock(&rio_global_list_lock);
653 if (rdev->pwcback) {
654 rdev->pwcback = NULL;
655 rc = 0;
656 }
657
658 spin_unlock(&rio_global_list_lock);
659 return rc;
660 }
661 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
662
663 /**
664 * rio_pw_enable - Enables/disables port-write handling by a master port
665 * @mport: Master port associated with port-write handling
666 * @enable: 1=enable, 0=disable
667 */
rio_pw_enable(struct rio_mport * mport,int enable)668 void rio_pw_enable(struct rio_mport *mport, int enable)
669 {
670 if (mport->ops->pwenable) {
671 mutex_lock(&mport->lock);
672
673 if ((enable && ++mport->pwe_refcnt == 1) ||
674 (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
675 mport->ops->pwenable(mport, enable);
676 mutex_unlock(&mport->lock);
677 }
678 }
679 EXPORT_SYMBOL_GPL(rio_pw_enable);
680
681 /**
682 * rio_map_inb_region -- Map inbound memory region.
683 * @mport: Master port.
684 * @local: physical address of memory region to be mapped
685 * @rbase: RIO base address assigned to this window
686 * @size: Size of the memory region
687 * @rflags: Flags for mapping.
688 *
689 * Return: 0 -- Success.
690 *
691 * This function will create the mapping from RIO space to local memory.
692 */
rio_map_inb_region(struct rio_mport * mport,dma_addr_t local,u64 rbase,u32 size,u32 rflags)693 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
694 u64 rbase, u32 size, u32 rflags)
695 {
696 int rc;
697 unsigned long flags;
698
699 if (!mport->ops->map_inb)
700 return -1;
701 spin_lock_irqsave(&rio_mmap_lock, flags);
702 rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
703 spin_unlock_irqrestore(&rio_mmap_lock, flags);
704 return rc;
705 }
706 EXPORT_SYMBOL_GPL(rio_map_inb_region);
707
708 /**
709 * rio_unmap_inb_region -- Unmap the inbound memory region
710 * @mport: Master port
711 * @lstart: physical address of memory region to be unmapped
712 */
rio_unmap_inb_region(struct rio_mport * mport,dma_addr_t lstart)713 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
714 {
715 unsigned long flags;
716 if (!mport->ops->unmap_inb)
717 return;
718 spin_lock_irqsave(&rio_mmap_lock, flags);
719 mport->ops->unmap_inb(mport, lstart);
720 spin_unlock_irqrestore(&rio_mmap_lock, flags);
721 }
722 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
723
724 /**
725 * rio_map_outb_region -- Map outbound memory region.
726 * @mport: Master port.
727 * @destid: destination id window points to
728 * @rbase: RIO base address window translates to
729 * @size: Size of the memory region
730 * @rflags: Flags for mapping.
731 * @local: physical address of memory region mapped
732 *
733 * Return: 0 -- Success.
734 *
735 * This function will create the mapping from RIO space to local memory.
736 */
rio_map_outb_region(struct rio_mport * mport,u16 destid,u64 rbase,u32 size,u32 rflags,dma_addr_t * local)737 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
738 u32 size, u32 rflags, dma_addr_t *local)
739 {
740 int rc;
741 unsigned long flags;
742
743 if (!mport->ops->map_outb)
744 return -ENODEV;
745
746 spin_lock_irqsave(&rio_mmap_lock, flags);
747 rc = mport->ops->map_outb(mport, destid, rbase, size,
748 rflags, local);
749 spin_unlock_irqrestore(&rio_mmap_lock, flags);
750
751 return rc;
752 }
753 EXPORT_SYMBOL_GPL(rio_map_outb_region);
754
755 /**
756 * rio_unmap_inb_region -- Unmap the inbound memory region
757 * @mport: Master port
758 * @destid: destination id mapping points to
759 * @rstart: RIO base address window translates to
760 */
rio_unmap_outb_region(struct rio_mport * mport,u16 destid,u64 rstart)761 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
762 {
763 unsigned long flags;
764
765 if (!mport->ops->unmap_outb)
766 return;
767
768 spin_lock_irqsave(&rio_mmap_lock, flags);
769 mport->ops->unmap_outb(mport, destid, rstart);
770 spin_unlock_irqrestore(&rio_mmap_lock, flags);
771 }
772 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
773
774 /**
775 * rio_mport_get_physefb - Helper function that returns register offset
776 * for Physical Layer Extended Features Block.
777 * @port: Master port to issue transaction
778 * @local: Indicate a local master port or remote device access
779 * @destid: Destination ID of the device
780 * @hopcount: Number of switch hops to the device
781 * @rmap: pointer to location to store register map type info
782 */
783 u32
rio_mport_get_physefb(struct rio_mport * port,int local,u16 destid,u8 hopcount,u32 * rmap)784 rio_mport_get_physefb(struct rio_mport *port, int local,
785 u16 destid, u8 hopcount, u32 *rmap)
786 {
787 u32 ext_ftr_ptr;
788 u32 ftr_header;
789
790 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
791
792 while (ext_ftr_ptr) {
793 if (local)
794 rio_local_read_config_32(port, ext_ftr_ptr,
795 &ftr_header);
796 else
797 rio_mport_read_config_32(port, destid, hopcount,
798 ext_ftr_ptr, &ftr_header);
799
800 ftr_header = RIO_GET_BLOCK_ID(ftr_header);
801 switch (ftr_header) {
802
803 case RIO_EFB_SER_EP_ID:
804 case RIO_EFB_SER_EP_REC_ID:
805 case RIO_EFB_SER_EP_FREE_ID:
806 case RIO_EFB_SER_EP_M1_ID:
807 case RIO_EFB_SER_EP_SW_M1_ID:
808 case RIO_EFB_SER_EPF_M1_ID:
809 case RIO_EFB_SER_EPF_SW_M1_ID:
810 *rmap = 1;
811 return ext_ftr_ptr;
812
813 case RIO_EFB_SER_EP_M2_ID:
814 case RIO_EFB_SER_EP_SW_M2_ID:
815 case RIO_EFB_SER_EPF_M2_ID:
816 case RIO_EFB_SER_EPF_SW_M2_ID:
817 *rmap = 2;
818 return ext_ftr_ptr;
819
820 default:
821 break;
822 }
823
824 ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
825 hopcount, ext_ftr_ptr);
826 }
827
828 return ext_ftr_ptr;
829 }
830 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
831
832 /**
833 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
834 * @comp_tag: RIO component tag to match
835 * @from: Previous RIO device found in search, or %NULL for new search
836 *
837 * Iterates through the list of known RIO devices. If a RIO device is
838 * found with a matching @comp_tag, a pointer to its device
839 * structure is returned. Otherwise, %NULL is returned. A new search
840 * is initiated by passing %NULL to the @from argument. Otherwise, if
841 * @from is not %NULL, searches continue from next device on the global
842 * list.
843 */
rio_get_comptag(u32 comp_tag,struct rio_dev * from)844 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
845 {
846 struct list_head *n;
847 struct rio_dev *rdev;
848
849 spin_lock(&rio_global_list_lock);
850 n = from ? from->global_list.next : rio_devices.next;
851
852 while (n && (n != &rio_devices)) {
853 rdev = rio_dev_g(n);
854 if (rdev->comp_tag == comp_tag)
855 goto exit;
856 n = n->next;
857 }
858 rdev = NULL;
859 exit:
860 spin_unlock(&rio_global_list_lock);
861 return rdev;
862 }
863 EXPORT_SYMBOL_GPL(rio_get_comptag);
864
865 /**
866 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
867 * @rdev: Pointer to RIO device control structure
868 * @pnum: Switch port number to set LOCKOUT bit
869 * @lock: Operation : set (=1) or clear (=0)
870 */
rio_set_port_lockout(struct rio_dev * rdev,u32 pnum,int lock)871 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
872 {
873 u32 regval;
874
875 rio_read_config_32(rdev,
876 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
877 ®val);
878 if (lock)
879 regval |= RIO_PORT_N_CTL_LOCKOUT;
880 else
881 regval &= ~RIO_PORT_N_CTL_LOCKOUT;
882
883 rio_write_config_32(rdev,
884 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
885 regval);
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
889
890 /**
891 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
892 * given port
893 * @port: Master port associated with the RIO network
894 * @local: local=1 select local port otherwise a far device is reached
895 * @destid: Destination ID of the device to check host bit
896 * @hopcount: Number of hops to reach the target
897 * @port_num: Port (-number on switch) to enable on a far end device
898 *
899 * Returns 0 or 1 from on General Control Command and Status Register
900 * (EXT_PTR+0x3C)
901 */
rio_enable_rx_tx_port(struct rio_mport * port,int local,u16 destid,u8 hopcount,u8 port_num)902 int rio_enable_rx_tx_port(struct rio_mport *port,
903 int local, u16 destid,
904 u8 hopcount, u8 port_num)
905 {
906 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
907 u32 regval;
908 u32 ext_ftr_ptr;
909 u32 rmap;
910
911 /*
912 * enable rx input tx output port
913 */
914 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
915 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
916
917 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
918 hopcount, &rmap);
919
920 if (local) {
921 rio_local_read_config_32(port,
922 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
923 ®val);
924 } else {
925 if (rio_mport_read_config_32(port, destid, hopcount,
926 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
927 ®val) < 0)
928 return -EIO;
929 }
930
931 regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
932
933 if (local) {
934 rio_local_write_config_32(port,
935 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
936 } else {
937 if (rio_mport_write_config_32(port, destid, hopcount,
938 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
939 regval) < 0)
940 return -EIO;
941 }
942 #endif
943 return 0;
944 }
945 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
946
947
948 /**
949 * rio_chk_dev_route - Validate route to the specified device.
950 * @rdev: RIO device failed to respond
951 * @nrdev: Last active device on the route to rdev
952 * @npnum: nrdev's port number on the route to rdev
953 *
954 * Follows a route to the specified RIO device to determine the last available
955 * device (and corresponding RIO port) on the route.
956 */
957 static int
rio_chk_dev_route(struct rio_dev * rdev,struct rio_dev ** nrdev,int * npnum)958 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
959 {
960 u32 result;
961 int p_port, rc = -EIO;
962 struct rio_dev *prev = NULL;
963
964 /* Find switch with failed RIO link */
965 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
966 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
967 prev = rdev->prev;
968 break;
969 }
970 rdev = rdev->prev;
971 }
972
973 if (!prev)
974 goto err_out;
975
976 p_port = prev->rswitch->route_table[rdev->destid];
977
978 if (p_port != RIO_INVALID_ROUTE) {
979 pr_debug("RIO: link failed on [%s]-P%d\n",
980 rio_name(prev), p_port);
981 *nrdev = prev;
982 *npnum = p_port;
983 rc = 0;
984 } else
985 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
986 err_out:
987 return rc;
988 }
989
990 /**
991 * rio_mport_chk_dev_access - Validate access to the specified device.
992 * @mport: Master port to send transactions
993 * @destid: Device destination ID in network
994 * @hopcount: Number of hops into the network
995 */
996 int
rio_mport_chk_dev_access(struct rio_mport * mport,u16 destid,u8 hopcount)997 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
998 {
999 int i = 0;
1000 u32 tmp;
1001
1002 while (rio_mport_read_config_32(mport, destid, hopcount,
1003 RIO_DEV_ID_CAR, &tmp)) {
1004 i++;
1005 if (i == RIO_MAX_CHK_RETRY)
1006 return -EIO;
1007 mdelay(1);
1008 }
1009
1010 return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1013
1014 /**
1015 * rio_chk_dev_access - Validate access to the specified device.
1016 * @rdev: Pointer to RIO device control structure
1017 */
rio_chk_dev_access(struct rio_dev * rdev)1018 static int rio_chk_dev_access(struct rio_dev *rdev)
1019 {
1020 return rio_mport_chk_dev_access(rdev->net->hport,
1021 rdev->destid, rdev->hopcount);
1022 }
1023
1024 /**
1025 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1026 * returns link-response (if requested).
1027 * @rdev: RIO devive to issue Input-status command
1028 * @pnum: Device port number to issue the command
1029 * @lnkresp: Response from a link partner
1030 */
1031 static int
rio_get_input_status(struct rio_dev * rdev,int pnum,u32 * lnkresp)1032 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1033 {
1034 u32 regval;
1035 int checkcount;
1036
1037 if (lnkresp) {
1038 /* Read from link maintenance response register
1039 * to clear valid bit */
1040 rio_read_config_32(rdev,
1041 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1042 ®val);
1043 udelay(50);
1044 }
1045
1046 /* Issue Input-status command */
1047 rio_write_config_32(rdev,
1048 RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1049 RIO_MNT_REQ_CMD_IS);
1050
1051 /* Exit if the response is not expected */
1052 if (!lnkresp)
1053 return 0;
1054
1055 checkcount = 3;
1056 while (checkcount--) {
1057 udelay(50);
1058 rio_read_config_32(rdev,
1059 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1060 ®val);
1061 if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1062 *lnkresp = regval;
1063 return 0;
1064 }
1065 }
1066
1067 return -EIO;
1068 }
1069
1070 /**
1071 * rio_clr_err_stopped - Clears port Error-stopped states.
1072 * @rdev: Pointer to RIO device control structure
1073 * @pnum: Switch port number to clear errors
1074 * @err_status: port error status (if 0 reads register from device)
1075 *
1076 * TODO: Currently this routine is not compatible with recovery process
1077 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1078 * to implement universal recovery process that is compatible full range
1079 * off available devices.
1080 * IDT gen3 switch driver now implements HW-specific error handler that
1081 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1082 */
rio_clr_err_stopped(struct rio_dev * rdev,u32 pnum,u32 err_status)1083 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1084 {
1085 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1086 u32 regval;
1087 u32 far_ackid, far_linkstat, near_ackid;
1088
1089 if (err_status == 0)
1090 rio_read_config_32(rdev,
1091 RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1092 &err_status);
1093
1094 if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1095 pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1096 /*
1097 * Send a Link-Request/Input-Status control symbol
1098 */
1099 if (rio_get_input_status(rdev, pnum, ®val)) {
1100 pr_debug("RIO_EM: Input-status response timeout\n");
1101 goto rd_err;
1102 }
1103
1104 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1105 pnum, regval);
1106 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1107 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1108 rio_read_config_32(rdev,
1109 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1110 ®val);
1111 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1112 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1113 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1114 " near_ackID=0x%02x\n",
1115 pnum, far_ackid, far_linkstat, near_ackid);
1116
1117 /*
1118 * If required, synchronize ackIDs of near and
1119 * far sides.
1120 */
1121 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1122 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1123 /* Align near outstanding/outbound ackIDs with
1124 * far inbound.
1125 */
1126 rio_write_config_32(rdev,
1127 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1128 (near_ackid << 24) |
1129 (far_ackid << 8) | far_ackid);
1130 /* Align far outstanding/outbound ackIDs with
1131 * near inbound.
1132 */
1133 far_ackid++;
1134 if (!nextdev) {
1135 pr_debug("RIO_EM: nextdev pointer == NULL\n");
1136 goto rd_err;
1137 }
1138
1139 rio_write_config_32(nextdev,
1140 RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1141 RIO_GET_PORT_NUM(nextdev->swpinfo)),
1142 (far_ackid << 24) |
1143 (near_ackid << 8) | near_ackid);
1144 }
1145 rd_err:
1146 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1147 &err_status);
1148 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1149 }
1150
1151 if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1152 pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1153 rio_get_input_status(nextdev,
1154 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1155 udelay(50);
1156
1157 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1158 &err_status);
1159 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1160 }
1161
1162 return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1163 RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1164 }
1165
1166 /**
1167 * rio_inb_pwrite_handler - inbound port-write message handler
1168 * @mport: mport device associated with port-write
1169 * @pw_msg: pointer to inbound port-write message
1170 *
1171 * Processes an inbound port-write message. Returns 0 if the request
1172 * has been satisfied.
1173 */
rio_inb_pwrite_handler(struct rio_mport * mport,union rio_pw_msg * pw_msg)1174 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1175 {
1176 struct rio_dev *rdev;
1177 u32 err_status, em_perrdet, em_ltlerrdet;
1178 int rc, portnum;
1179 struct rio_pwrite *pwrite;
1180
1181 #ifdef DEBUG_PW
1182 {
1183 u32 i;
1184
1185 pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1186 for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1187 pr_debug("0x%02x: %08x %08x %08x %08x\n",
1188 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1189 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1190 }
1191 }
1192 #endif
1193
1194 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1195 if (rdev) {
1196 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1197 } else {
1198 pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1199 __func__, pw_msg->em.comptag);
1200 }
1201
1202 /* Call a device-specific handler (if it is registered for the device).
1203 * This may be the service for endpoints that send device-specific
1204 * port-write messages. End-point messages expected to be handled
1205 * completely by EP specific device driver.
1206 * For switches rc==0 signals that no standard processing required.
1207 */
1208 if (rdev && rdev->pwcback) {
1209 rc = rdev->pwcback(rdev, pw_msg, 0);
1210 if (rc == 0)
1211 return 0;
1212 }
1213
1214 mutex_lock(&mport->lock);
1215 list_for_each_entry(pwrite, &mport->pwrites, node)
1216 pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1217 mutex_unlock(&mport->lock);
1218
1219 if (!rdev)
1220 return 0;
1221
1222 /*
1223 * FIXME: The code below stays as it was before for now until we decide
1224 * how to do default PW handling in combination with per-mport callbacks
1225 */
1226
1227 portnum = pw_msg->em.is_port & 0xFF;
1228
1229 /* Check if device and route to it are functional:
1230 * Sometimes devices may send PW message(s) just before being
1231 * powered down (or link being lost).
1232 */
1233 if (rio_chk_dev_access(rdev)) {
1234 pr_debug("RIO: device access failed - get link partner\n");
1235 /* Scan route to the device and identify failed link.
1236 * This will replace device and port reported in PW message.
1237 * PW message should not be used after this point.
1238 */
1239 if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1240 pr_err("RIO: Route trace for %s failed\n",
1241 rio_name(rdev));
1242 return -EIO;
1243 }
1244 pw_msg = NULL;
1245 }
1246
1247 /* For End-point devices processing stops here */
1248 if (!(rdev->pef & RIO_PEF_SWITCH))
1249 return 0;
1250
1251 if (rdev->phys_efptr == 0) {
1252 pr_err("RIO_PW: Bad switch initialization for %s\n",
1253 rio_name(rdev));
1254 return 0;
1255 }
1256
1257 /*
1258 * Process the port-write notification from switch
1259 */
1260 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1261 rdev->rswitch->ops->em_handle(rdev, portnum);
1262
1263 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1264 &err_status);
1265 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1266
1267 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1268
1269 if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1270 rdev->rswitch->port_ok |= (1 << portnum);
1271 rio_set_port_lockout(rdev, portnum, 0);
1272 /* Schedule Insertion Service */
1273 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1274 rio_name(rdev), portnum);
1275 }
1276
1277 /* Clear error-stopped states (if reported).
1278 * Depending on the link partner state, two attempts
1279 * may be needed for successful recovery.
1280 */
1281 if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1282 RIO_PORT_N_ERR_STS_INP_ES)) {
1283 if (rio_clr_err_stopped(rdev, portnum, err_status))
1284 rio_clr_err_stopped(rdev, portnum, 0);
1285 }
1286 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1287
1288 if (rdev->rswitch->port_ok & (1 << portnum)) {
1289 rdev->rswitch->port_ok &= ~(1 << portnum);
1290 rio_set_port_lockout(rdev, portnum, 1);
1291
1292 if (rdev->phys_rmap == 1) {
1293 rio_write_config_32(rdev,
1294 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1295 RIO_PORT_N_ACK_CLEAR);
1296 } else {
1297 rio_write_config_32(rdev,
1298 RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1299 RIO_PORT_N_OB_ACK_CLEAR);
1300 rio_write_config_32(rdev,
1301 RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1302 0);
1303 }
1304
1305 /* Schedule Extraction Service */
1306 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1307 rio_name(rdev), portnum);
1308 }
1309 }
1310
1311 rio_read_config_32(rdev,
1312 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1313 if (em_perrdet) {
1314 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1315 portnum, em_perrdet);
1316 /* Clear EM Port N Error Detect CSR */
1317 rio_write_config_32(rdev,
1318 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1319 }
1320
1321 rio_read_config_32(rdev,
1322 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1323 if (em_ltlerrdet) {
1324 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1325 em_ltlerrdet);
1326 /* Clear EM L/T Layer Error Detect CSR */
1327 rio_write_config_32(rdev,
1328 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1329 }
1330
1331 /* Clear remaining error bits and Port-Write Pending bit */
1332 rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1333 err_status);
1334
1335 return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1338
1339 /**
1340 * rio_mport_get_efb - get pointer to next extended features block
1341 * @port: Master port to issue transaction
1342 * @local: Indicate a local master port or remote device access
1343 * @destid: Destination ID of the device
1344 * @hopcount: Number of switch hops to the device
1345 * @from: Offset of current Extended Feature block header (if 0 starts
1346 * from ExtFeaturePtr)
1347 */
1348 u32
rio_mport_get_efb(struct rio_mport * port,int local,u16 destid,u8 hopcount,u32 from)1349 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1350 u8 hopcount, u32 from)
1351 {
1352 u32 reg_val;
1353
1354 if (from == 0) {
1355 if (local)
1356 rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1357 ®_val);
1358 else
1359 rio_mport_read_config_32(port, destid, hopcount,
1360 RIO_ASM_INFO_CAR, ®_val);
1361 return reg_val & RIO_EXT_FTR_PTR_MASK;
1362 } else {
1363 if (local)
1364 rio_local_read_config_32(port, from, ®_val);
1365 else
1366 rio_mport_read_config_32(port, destid, hopcount,
1367 from, ®_val);
1368 return RIO_GET_BLOCK_ID(reg_val);
1369 }
1370 }
1371 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1372
1373 /**
1374 * rio_mport_get_feature - query for devices' extended features
1375 * @port: Master port to issue transaction
1376 * @local: Indicate a local master port or remote device access
1377 * @destid: Destination ID of the device
1378 * @hopcount: Number of switch hops to the device
1379 * @ftr: Extended feature code
1380 *
1381 * Tell if a device supports a given RapidIO capability.
1382 * Returns the offset of the requested extended feature
1383 * block within the device's RIO configuration space or
1384 * 0 in case the device does not support it.
1385 */
1386 u32
rio_mport_get_feature(struct rio_mport * port,int local,u16 destid,u8 hopcount,int ftr)1387 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1388 u8 hopcount, int ftr)
1389 {
1390 u32 asm_info, ext_ftr_ptr, ftr_header;
1391
1392 if (local)
1393 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1394 else
1395 rio_mport_read_config_32(port, destid, hopcount,
1396 RIO_ASM_INFO_CAR, &asm_info);
1397
1398 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1399
1400 while (ext_ftr_ptr) {
1401 if (local)
1402 rio_local_read_config_32(port, ext_ftr_ptr,
1403 &ftr_header);
1404 else
1405 rio_mport_read_config_32(port, destid, hopcount,
1406 ext_ftr_ptr, &ftr_header);
1407 if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1408 return ext_ftr_ptr;
1409
1410 ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1411 if (!ext_ftr_ptr)
1412 break;
1413 }
1414
1415 return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1418
1419 /**
1420 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1421 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1422 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1423 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1424 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1425 * @from: Previous RIO device found in search, or %NULL for new search
1426 *
1427 * Iterates through the list of known RIO devices. If a RIO device is
1428 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1429 * count to the device is incrememted and a pointer to its device
1430 * structure is returned. Otherwise, %NULL is returned. A new search
1431 * is initiated by passing %NULL to the @from argument. Otherwise, if
1432 * @from is not %NULL, searches continue from next device on the global
1433 * list. The reference count for @from is always decremented if it is
1434 * not %NULL.
1435 */
rio_get_asm(u16 vid,u16 did,u16 asm_vid,u16 asm_did,struct rio_dev * from)1436 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1437 u16 asm_vid, u16 asm_did, struct rio_dev *from)
1438 {
1439 struct list_head *n;
1440 struct rio_dev *rdev;
1441
1442 WARN_ON(in_interrupt());
1443 spin_lock(&rio_global_list_lock);
1444 n = from ? from->global_list.next : rio_devices.next;
1445
1446 while (n && (n != &rio_devices)) {
1447 rdev = rio_dev_g(n);
1448 if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1449 (did == RIO_ANY_ID || rdev->did == did) &&
1450 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1451 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1452 goto exit;
1453 n = n->next;
1454 }
1455 rdev = NULL;
1456 exit:
1457 rio_dev_put(from);
1458 rdev = rio_dev_get(rdev);
1459 spin_unlock(&rio_global_list_lock);
1460 return rdev;
1461 }
1462 EXPORT_SYMBOL_GPL(rio_get_asm);
1463
1464 /**
1465 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1466 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1467 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1468 * @from: Previous RIO device found in search, or %NULL for new search
1469 *
1470 * Iterates through the list of known RIO devices. If a RIO device is
1471 * found with a matching @vid and @did, the reference count to the
1472 * device is incrememted and a pointer to its device structure is returned.
1473 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1474 * to the @from argument. Otherwise, if @from is not %NULL, searches
1475 * continue from next device on the global list. The reference count for
1476 * @from is always decremented if it is not %NULL.
1477 */
rio_get_device(u16 vid,u16 did,struct rio_dev * from)1478 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1479 {
1480 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1481 }
1482 EXPORT_SYMBOL_GPL(rio_get_device);
1483
1484 /**
1485 * rio_std_route_add_entry - Add switch route table entry using standard
1486 * registers defined in RIO specification rev.1.3
1487 * @mport: Master port to issue transaction
1488 * @destid: Destination ID of the device
1489 * @hopcount: Number of switch hops to the device
1490 * @table: routing table ID (global or port-specific)
1491 * @route_destid: destID entry in the RT
1492 * @route_port: destination port for specified destID
1493 */
1494 static int
rio_std_route_add_entry(struct rio_mport * mport,u16 destid,u8 hopcount,u16 table,u16 route_destid,u8 route_port)1495 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1496 u16 table, u16 route_destid, u8 route_port)
1497 {
1498 if (table == RIO_GLOBAL_TABLE) {
1499 rio_mport_write_config_32(mport, destid, hopcount,
1500 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1501 (u32)route_destid);
1502 rio_mport_write_config_32(mport, destid, hopcount,
1503 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1504 (u32)route_port);
1505 }
1506
1507 udelay(10);
1508 return 0;
1509 }
1510
1511 /**
1512 * rio_std_route_get_entry - Read switch route table entry (port number)
1513 * associated with specified destID using standard registers defined in RIO
1514 * specification rev.1.3
1515 * @mport: Master port to issue transaction
1516 * @destid: Destination ID of the device
1517 * @hopcount: Number of switch hops to the device
1518 * @table: routing table ID (global or port-specific)
1519 * @route_destid: destID entry in the RT
1520 * @route_port: returned destination port for specified destID
1521 */
1522 static int
rio_std_route_get_entry(struct rio_mport * mport,u16 destid,u8 hopcount,u16 table,u16 route_destid,u8 * route_port)1523 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1524 u16 table, u16 route_destid, u8 *route_port)
1525 {
1526 u32 result;
1527
1528 if (table == RIO_GLOBAL_TABLE) {
1529 rio_mport_write_config_32(mport, destid, hopcount,
1530 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1531 rio_mport_read_config_32(mport, destid, hopcount,
1532 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1533
1534 *route_port = (u8)result;
1535 }
1536
1537 return 0;
1538 }
1539
1540 /**
1541 * rio_std_route_clr_table - Clear swotch route table using standard registers
1542 * defined in RIO specification rev.1.3.
1543 * @mport: Master port to issue transaction
1544 * @destid: Destination ID of the device
1545 * @hopcount: Number of switch hops to the device
1546 * @table: routing table ID (global or port-specific)
1547 */
1548 static int
rio_std_route_clr_table(struct rio_mport * mport,u16 destid,u8 hopcount,u16 table)1549 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1550 u16 table)
1551 {
1552 u32 max_destid = 0xff;
1553 u32 i, pef, id_inc = 1, ext_cfg = 0;
1554 u32 port_sel = RIO_INVALID_ROUTE;
1555
1556 if (table == RIO_GLOBAL_TABLE) {
1557 rio_mport_read_config_32(mport, destid, hopcount,
1558 RIO_PEF_CAR, &pef);
1559
1560 if (mport->sys_size) {
1561 rio_mport_read_config_32(mport, destid, hopcount,
1562 RIO_SWITCH_RT_LIMIT,
1563 &max_destid);
1564 max_destid &= RIO_RT_MAX_DESTID;
1565 }
1566
1567 if (pef & RIO_PEF_EXT_RT) {
1568 ext_cfg = 0x80000000;
1569 id_inc = 4;
1570 port_sel = (RIO_INVALID_ROUTE << 24) |
1571 (RIO_INVALID_ROUTE << 16) |
1572 (RIO_INVALID_ROUTE << 8) |
1573 RIO_INVALID_ROUTE;
1574 }
1575
1576 for (i = 0; i <= max_destid;) {
1577 rio_mport_write_config_32(mport, destid, hopcount,
1578 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1579 ext_cfg | i);
1580 rio_mport_write_config_32(mport, destid, hopcount,
1581 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1582 port_sel);
1583 i += id_inc;
1584 }
1585 }
1586
1587 udelay(10);
1588 return 0;
1589 }
1590
1591 /**
1592 * rio_lock_device - Acquires host device lock for specified device
1593 * @port: Master port to send transaction
1594 * @destid: Destination ID for device/switch
1595 * @hopcount: Hopcount to reach switch
1596 * @wait_ms: Max wait time in msec (0 = no timeout)
1597 *
1598 * Attepts to acquire host device lock for specified device
1599 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1600 */
rio_lock_device(struct rio_mport * port,u16 destid,u8 hopcount,int wait_ms)1601 int rio_lock_device(struct rio_mport *port, u16 destid,
1602 u8 hopcount, int wait_ms)
1603 {
1604 u32 result;
1605 int tcnt = 0;
1606
1607 /* Attempt to acquire device lock */
1608 rio_mport_write_config_32(port, destid, hopcount,
1609 RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1610 rio_mport_read_config_32(port, destid, hopcount,
1611 RIO_HOST_DID_LOCK_CSR, &result);
1612
1613 while (result != port->host_deviceid) {
1614 if (wait_ms != 0 && tcnt == wait_ms) {
1615 pr_debug("RIO: timeout when locking device %x:%x\n",
1616 destid, hopcount);
1617 return -EINVAL;
1618 }
1619
1620 /* Delay a bit */
1621 mdelay(1);
1622 tcnt++;
1623 /* Try to acquire device lock again */
1624 rio_mport_write_config_32(port, destid,
1625 hopcount,
1626 RIO_HOST_DID_LOCK_CSR,
1627 port->host_deviceid);
1628 rio_mport_read_config_32(port, destid,
1629 hopcount,
1630 RIO_HOST_DID_LOCK_CSR, &result);
1631 }
1632
1633 return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(rio_lock_device);
1636
1637 /**
1638 * rio_unlock_device - Releases host device lock for specified device
1639 * @port: Master port to send transaction
1640 * @destid: Destination ID for device/switch
1641 * @hopcount: Hopcount to reach switch
1642 *
1643 * Returns 0 if device lock released or EINVAL if fails.
1644 */
rio_unlock_device(struct rio_mport * port,u16 destid,u8 hopcount)1645 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1646 {
1647 u32 result;
1648
1649 /* Release device lock */
1650 rio_mport_write_config_32(port, destid,
1651 hopcount,
1652 RIO_HOST_DID_LOCK_CSR,
1653 port->host_deviceid);
1654 rio_mport_read_config_32(port, destid, hopcount,
1655 RIO_HOST_DID_LOCK_CSR, &result);
1656 if ((result & 0xffff) != 0xffff) {
1657 pr_debug("RIO: badness when releasing device lock %x:%x\n",
1658 destid, hopcount);
1659 return -EINVAL;
1660 }
1661
1662 return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(rio_unlock_device);
1665
1666 /**
1667 * rio_route_add_entry- Add a route entry to a switch routing table
1668 * @rdev: RIO device
1669 * @table: Routing table ID
1670 * @route_destid: Destination ID to be routed
1671 * @route_port: Port number to be routed
1672 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1673 *
1674 * If available calls the switch specific add_entry() method to add a route
1675 * entry into a switch routing table. Otherwise uses standard RT update method
1676 * as defined by RapidIO specification. A specific routing table can be selected
1677 * using the @table argument if a switch has per port routing tables or
1678 * the standard (or global) table may be used by passing
1679 * %RIO_GLOBAL_TABLE in @table.
1680 *
1681 * Returns %0 on success or %-EINVAL on failure.
1682 */
rio_route_add_entry(struct rio_dev * rdev,u16 table,u16 route_destid,u8 route_port,int lock)1683 int rio_route_add_entry(struct rio_dev *rdev,
1684 u16 table, u16 route_destid, u8 route_port, int lock)
1685 {
1686 int rc = -EINVAL;
1687 struct rio_switch_ops *ops = rdev->rswitch->ops;
1688
1689 if (lock) {
1690 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1691 rdev->hopcount, 1000);
1692 if (rc)
1693 return rc;
1694 }
1695
1696 spin_lock(&rdev->rswitch->lock);
1697
1698 if (!ops || !ops->add_entry) {
1699 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1700 rdev->hopcount, table,
1701 route_destid, route_port);
1702 } else if (try_module_get(ops->owner)) {
1703 rc = ops->add_entry(rdev->net->hport, rdev->destid,
1704 rdev->hopcount, table, route_destid,
1705 route_port);
1706 module_put(ops->owner);
1707 }
1708
1709 spin_unlock(&rdev->rswitch->lock);
1710
1711 if (lock)
1712 rio_unlock_device(rdev->net->hport, rdev->destid,
1713 rdev->hopcount);
1714
1715 return rc;
1716 }
1717 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1718
1719 /**
1720 * rio_route_get_entry- Read an entry from a switch routing table
1721 * @rdev: RIO device
1722 * @table: Routing table ID
1723 * @route_destid: Destination ID to be routed
1724 * @route_port: Pointer to read port number into
1725 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1726 *
1727 * If available calls the switch specific get_entry() method to fetch a route
1728 * entry from a switch routing table. Otherwise uses standard RT read method
1729 * as defined by RapidIO specification. A specific routing table can be selected
1730 * using the @table argument if a switch has per port routing tables or
1731 * the standard (or global) table may be used by passing
1732 * %RIO_GLOBAL_TABLE in @table.
1733 *
1734 * Returns %0 on success or %-EINVAL on failure.
1735 */
rio_route_get_entry(struct rio_dev * rdev,u16 table,u16 route_destid,u8 * route_port,int lock)1736 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1737 u16 route_destid, u8 *route_port, int lock)
1738 {
1739 int rc = -EINVAL;
1740 struct rio_switch_ops *ops = rdev->rswitch->ops;
1741
1742 if (lock) {
1743 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1744 rdev->hopcount, 1000);
1745 if (rc)
1746 return rc;
1747 }
1748
1749 spin_lock(&rdev->rswitch->lock);
1750
1751 if (!ops || !ops->get_entry) {
1752 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1753 rdev->hopcount, table,
1754 route_destid, route_port);
1755 } else if (try_module_get(ops->owner)) {
1756 rc = ops->get_entry(rdev->net->hport, rdev->destid,
1757 rdev->hopcount, table, route_destid,
1758 route_port);
1759 module_put(ops->owner);
1760 }
1761
1762 spin_unlock(&rdev->rswitch->lock);
1763
1764 if (lock)
1765 rio_unlock_device(rdev->net->hport, rdev->destid,
1766 rdev->hopcount);
1767 return rc;
1768 }
1769 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1770
1771 /**
1772 * rio_route_clr_table - Clear a switch routing table
1773 * @rdev: RIO device
1774 * @table: Routing table ID
1775 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1776 *
1777 * If available calls the switch specific clr_table() method to clear a switch
1778 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1779 * specification. A specific routing table can be selected using the @table
1780 * argument if a switch has per port routing tables or the standard (or global)
1781 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1782 *
1783 * Returns %0 on success or %-EINVAL on failure.
1784 */
rio_route_clr_table(struct rio_dev * rdev,u16 table,int lock)1785 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1786 {
1787 int rc = -EINVAL;
1788 struct rio_switch_ops *ops = rdev->rswitch->ops;
1789
1790 if (lock) {
1791 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1792 rdev->hopcount, 1000);
1793 if (rc)
1794 return rc;
1795 }
1796
1797 spin_lock(&rdev->rswitch->lock);
1798
1799 if (!ops || !ops->clr_table) {
1800 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1801 rdev->hopcount, table);
1802 } else if (try_module_get(ops->owner)) {
1803 rc = ops->clr_table(rdev->net->hport, rdev->destid,
1804 rdev->hopcount, table);
1805
1806 module_put(ops->owner);
1807 }
1808
1809 spin_unlock(&rdev->rswitch->lock);
1810
1811 if (lock)
1812 rio_unlock_device(rdev->net->hport, rdev->destid,
1813 rdev->hopcount);
1814
1815 return rc;
1816 }
1817 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1818
1819 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1820
rio_chan_filter(struct dma_chan * chan,void * arg)1821 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1822 {
1823 struct rio_mport *mport = arg;
1824
1825 /* Check that DMA device belongs to the right MPORT */
1826 return mport == container_of(chan->device, struct rio_mport, dma);
1827 }
1828
1829 /**
1830 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1831 * with specified local RapidIO mport device.
1832 * @mport: RIO mport to perform DMA data transfers
1833 *
1834 * Returns pointer to allocated DMA channel or NULL if failed.
1835 */
rio_request_mport_dma(struct rio_mport * mport)1836 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1837 {
1838 dma_cap_mask_t mask;
1839
1840 dma_cap_zero(mask);
1841 dma_cap_set(DMA_SLAVE, mask);
1842 return dma_request_channel(mask, rio_chan_filter, mport);
1843 }
1844 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1845
1846 /**
1847 * rio_request_dma - request RapidIO capable DMA channel that supports
1848 * specified target RapidIO device.
1849 * @rdev: RIO device associated with DMA transfer
1850 *
1851 * Returns pointer to allocated DMA channel or NULL if failed.
1852 */
rio_request_dma(struct rio_dev * rdev)1853 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1854 {
1855 return rio_request_mport_dma(rdev->net->hport);
1856 }
1857 EXPORT_SYMBOL_GPL(rio_request_dma);
1858
1859 /**
1860 * rio_release_dma - release specified DMA channel
1861 * @dchan: DMA channel to release
1862 */
rio_release_dma(struct dma_chan * dchan)1863 void rio_release_dma(struct dma_chan *dchan)
1864 {
1865 dma_release_channel(dchan);
1866 }
1867 EXPORT_SYMBOL_GPL(rio_release_dma);
1868
1869 /**
1870 * rio_dma_prep_xfer - RapidIO specific wrapper
1871 * for device_prep_slave_sg callback defined by DMAENGINE.
1872 * @dchan: DMA channel to configure
1873 * @destid: target RapidIO device destination ID
1874 * @data: RIO specific data descriptor
1875 * @direction: DMA data transfer direction (TO or FROM the device)
1876 * @flags: dmaengine defined flags
1877 *
1878 * Initializes RapidIO capable DMA channel for the specified data transfer.
1879 * Uses DMA channel private extension to pass information related to remote
1880 * target RIO device.
1881 *
1882 * Returns: pointer to DMA transaction descriptor if successful,
1883 * error-valued pointer or NULL if failed.
1884 */
rio_dma_prep_xfer(struct dma_chan * dchan,u16 destid,struct rio_dma_data * data,enum dma_transfer_direction direction,unsigned long flags)1885 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1886 u16 destid, struct rio_dma_data *data,
1887 enum dma_transfer_direction direction, unsigned long flags)
1888 {
1889 struct rio_dma_ext rio_ext;
1890
1891 if (!dchan->device->device_prep_slave_sg) {
1892 pr_err("%s: prep_rio_sg == NULL\n", __func__);
1893 return NULL;
1894 }
1895
1896 rio_ext.destid = destid;
1897 rio_ext.rio_addr_u = data->rio_addr_u;
1898 rio_ext.rio_addr = data->rio_addr;
1899 rio_ext.wr_type = data->wr_type;
1900
1901 return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1902 direction, flags, &rio_ext);
1903 }
1904 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1905
1906 /**
1907 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1908 * for device_prep_slave_sg callback defined by DMAENGINE.
1909 * @rdev: RIO device control structure
1910 * @dchan: DMA channel to configure
1911 * @data: RIO specific data descriptor
1912 * @direction: DMA data transfer direction (TO or FROM the device)
1913 * @flags: dmaengine defined flags
1914 *
1915 * Initializes RapidIO capable DMA channel for the specified data transfer.
1916 * Uses DMA channel private extension to pass information related to remote
1917 * target RIO device.
1918 *
1919 * Returns: pointer to DMA transaction descriptor if successful,
1920 * error-valued pointer or NULL if failed.
1921 */
rio_dma_prep_slave_sg(struct rio_dev * rdev,struct dma_chan * dchan,struct rio_dma_data * data,enum dma_transfer_direction direction,unsigned long flags)1922 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1923 struct dma_chan *dchan, struct rio_dma_data *data,
1924 enum dma_transfer_direction direction, unsigned long flags)
1925 {
1926 return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1927 }
1928 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1929
1930 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1931
1932 /**
1933 * rio_find_mport - find RIO mport by its ID
1934 * @mport_id: number (ID) of mport device
1935 *
1936 * Given a RIO mport number, the desired mport is located
1937 * in the global list of mports. If the mport is found, a pointer to its
1938 * data structure is returned. If no mport is found, %NULL is returned.
1939 */
rio_find_mport(int mport_id)1940 struct rio_mport *rio_find_mport(int mport_id)
1941 {
1942 struct rio_mport *port;
1943
1944 mutex_lock(&rio_mport_list_lock);
1945 list_for_each_entry(port, &rio_mports, node) {
1946 if (port->id == mport_id)
1947 goto found;
1948 }
1949 port = NULL;
1950 found:
1951 mutex_unlock(&rio_mport_list_lock);
1952
1953 return port;
1954 }
1955
1956 /**
1957 * rio_register_scan - enumeration/discovery method registration interface
1958 * @mport_id: mport device ID for which fabric scan routine has to be set
1959 * (RIO_MPORT_ANY = set for all available mports)
1960 * @scan_ops: enumeration/discovery operations structure
1961 *
1962 * Registers enumeration/discovery operations with RapidIO subsystem and
1963 * attaches it to the specified mport device (or all available mports
1964 * if RIO_MPORT_ANY is specified).
1965 *
1966 * Returns error if the mport already has an enumerator attached to it.
1967 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1968 */
rio_register_scan(int mport_id,struct rio_scan * scan_ops)1969 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1970 {
1971 struct rio_mport *port;
1972 struct rio_scan_node *scan;
1973 int rc = 0;
1974
1975 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1976
1977 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1978 !scan_ops)
1979 return -EINVAL;
1980
1981 mutex_lock(&rio_mport_list_lock);
1982
1983 /*
1984 * Check if there is another enumerator already registered for
1985 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1986 * for the same mport ID are not supported.
1987 */
1988 list_for_each_entry(scan, &rio_scans, node) {
1989 if (scan->mport_id == mport_id) {
1990 rc = -EBUSY;
1991 goto err_out;
1992 }
1993 }
1994
1995 /*
1996 * Allocate and initialize new scan registration node.
1997 */
1998 scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1999 if (!scan) {
2000 rc = -ENOMEM;
2001 goto err_out;
2002 }
2003
2004 scan->mport_id = mport_id;
2005 scan->ops = scan_ops;
2006
2007 /*
2008 * Traverse the list of registered mports to attach this new scan.
2009 *
2010 * The new scan with matching mport ID overrides any previously attached
2011 * scan assuming that old scan (if any) is the default one (based on the
2012 * enumerator registration check above).
2013 * If the new scan is the global one, it will be attached only to mports
2014 * that do not have their own individual operations already attached.
2015 */
2016 list_for_each_entry(port, &rio_mports, node) {
2017 if (port->id == mport_id) {
2018 port->nscan = scan_ops;
2019 break;
2020 } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2021 port->nscan = scan_ops;
2022 }
2023
2024 list_add_tail(&scan->node, &rio_scans);
2025
2026 err_out:
2027 mutex_unlock(&rio_mport_list_lock);
2028
2029 return rc;
2030 }
2031 EXPORT_SYMBOL_GPL(rio_register_scan);
2032
2033 /**
2034 * rio_unregister_scan - removes enumeration/discovery method from mport
2035 * @mport_id: mport device ID for which fabric scan routine has to be
2036 * unregistered (RIO_MPORT_ANY = apply to all mports that use
2037 * the specified scan_ops)
2038 * @scan_ops: enumeration/discovery operations structure
2039 *
2040 * Removes enumeration or discovery method assigned to the specified mport
2041 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2042 * all mports that have them attached.
2043 */
rio_unregister_scan(int mport_id,struct rio_scan * scan_ops)2044 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2045 {
2046 struct rio_mport *port;
2047 struct rio_scan_node *scan;
2048
2049 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2050
2051 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2052 return -EINVAL;
2053
2054 mutex_lock(&rio_mport_list_lock);
2055
2056 list_for_each_entry(port, &rio_mports, node)
2057 if (port->id == mport_id ||
2058 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2059 port->nscan = NULL;
2060
2061 list_for_each_entry(scan, &rio_scans, node) {
2062 if (scan->mport_id == mport_id) {
2063 list_del(&scan->node);
2064 kfree(scan);
2065 break;
2066 }
2067 }
2068
2069 mutex_unlock(&rio_mport_list_lock);
2070
2071 return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2074
2075 /**
2076 * rio_mport_scan - execute enumeration/discovery on the specified mport
2077 * @mport_id: number (ID) of mport device
2078 */
rio_mport_scan(int mport_id)2079 int rio_mport_scan(int mport_id)
2080 {
2081 struct rio_mport *port = NULL;
2082 int rc;
2083
2084 mutex_lock(&rio_mport_list_lock);
2085 list_for_each_entry(port, &rio_mports, node) {
2086 if (port->id == mport_id)
2087 goto found;
2088 }
2089 mutex_unlock(&rio_mport_list_lock);
2090 return -ENODEV;
2091 found:
2092 if (!port->nscan) {
2093 mutex_unlock(&rio_mport_list_lock);
2094 return -EINVAL;
2095 }
2096
2097 if (!try_module_get(port->nscan->owner)) {
2098 mutex_unlock(&rio_mport_list_lock);
2099 return -ENODEV;
2100 }
2101
2102 mutex_unlock(&rio_mport_list_lock);
2103
2104 if (port->host_deviceid >= 0)
2105 rc = port->nscan->enumerate(port, 0);
2106 else
2107 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2108
2109 module_put(port->nscan->owner);
2110 return rc;
2111 }
2112
rio_fixup_device(struct rio_dev * dev)2113 static void rio_fixup_device(struct rio_dev *dev)
2114 {
2115 }
2116
rio_init(void)2117 static int rio_init(void)
2118 {
2119 struct rio_dev *dev = NULL;
2120
2121 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2122 rio_fixup_device(dev);
2123 }
2124 return 0;
2125 }
2126
2127 static struct workqueue_struct *rio_wq;
2128
2129 struct rio_disc_work {
2130 struct work_struct work;
2131 struct rio_mport *mport;
2132 };
2133
disc_work_handler(struct work_struct * _work)2134 static void disc_work_handler(struct work_struct *_work)
2135 {
2136 struct rio_disc_work *work;
2137
2138 work = container_of(_work, struct rio_disc_work, work);
2139 pr_debug("RIO: discovery work for mport %d %s\n",
2140 work->mport->id, work->mport->name);
2141 if (try_module_get(work->mport->nscan->owner)) {
2142 work->mport->nscan->discover(work->mport, 0);
2143 module_put(work->mport->nscan->owner);
2144 }
2145 }
2146
rio_init_mports(void)2147 int rio_init_mports(void)
2148 {
2149 struct rio_mport *port;
2150 struct rio_disc_work *work;
2151 int n = 0;
2152
2153 if (!next_portid)
2154 return -ENODEV;
2155
2156 /*
2157 * First, run enumerations and check if we need to perform discovery
2158 * on any of the registered mports.
2159 */
2160 mutex_lock(&rio_mport_list_lock);
2161 list_for_each_entry(port, &rio_mports, node) {
2162 if (port->host_deviceid >= 0) {
2163 if (port->nscan && try_module_get(port->nscan->owner)) {
2164 port->nscan->enumerate(port, 0);
2165 module_put(port->nscan->owner);
2166 }
2167 } else
2168 n++;
2169 }
2170 mutex_unlock(&rio_mport_list_lock);
2171
2172 if (!n)
2173 goto no_disc;
2174
2175 /*
2176 * If we have mports that require discovery schedule a discovery work
2177 * for each of them. If the code below fails to allocate needed
2178 * resources, exit without error to keep results of enumeration
2179 * process (if any).
2180 * TODO: Implement restart of discovery process for all or
2181 * individual discovering mports.
2182 */
2183 rio_wq = alloc_workqueue("riodisc", 0, 0);
2184 if (!rio_wq) {
2185 pr_err("RIO: unable allocate rio_wq\n");
2186 goto no_disc;
2187 }
2188
2189 work = kcalloc(n, sizeof *work, GFP_KERNEL);
2190 if (!work) {
2191 destroy_workqueue(rio_wq);
2192 goto no_disc;
2193 }
2194
2195 n = 0;
2196 mutex_lock(&rio_mport_list_lock);
2197 list_for_each_entry(port, &rio_mports, node) {
2198 if (port->host_deviceid < 0 && port->nscan) {
2199 work[n].mport = port;
2200 INIT_WORK(&work[n].work, disc_work_handler);
2201 queue_work(rio_wq, &work[n].work);
2202 n++;
2203 }
2204 }
2205
2206 flush_workqueue(rio_wq);
2207 mutex_unlock(&rio_mport_list_lock);
2208 pr_debug("RIO: destroy discovery workqueue\n");
2209 destroy_workqueue(rio_wq);
2210 kfree(work);
2211
2212 no_disc:
2213 rio_init();
2214
2215 return 0;
2216 }
2217 EXPORT_SYMBOL_GPL(rio_init_mports);
2218
rio_get_hdid(int index)2219 static int rio_get_hdid(int index)
2220 {
2221 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2222 return -1;
2223
2224 return hdid[index];
2225 }
2226
rio_mport_initialize(struct rio_mport * mport)2227 int rio_mport_initialize(struct rio_mport *mport)
2228 {
2229 if (next_portid >= RIO_MAX_MPORTS) {
2230 pr_err("RIO: reached specified max number of mports\n");
2231 return -ENODEV;
2232 }
2233
2234 atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2235 mport->id = next_portid++;
2236 mport->host_deviceid = rio_get_hdid(mport->id);
2237 mport->nscan = NULL;
2238 mutex_init(&mport->lock);
2239 mport->pwe_refcnt = 0;
2240 INIT_LIST_HEAD(&mport->pwrites);
2241
2242 return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2245
rio_register_mport(struct rio_mport * port)2246 int rio_register_mport(struct rio_mport *port)
2247 {
2248 struct rio_scan_node *scan = NULL;
2249 int res = 0;
2250
2251 mutex_lock(&rio_mport_list_lock);
2252
2253 /*
2254 * Check if there are any registered enumeration/discovery operations
2255 * that have to be attached to the added mport.
2256 */
2257 list_for_each_entry(scan, &rio_scans, node) {
2258 if (port->id == scan->mport_id ||
2259 scan->mport_id == RIO_MPORT_ANY) {
2260 port->nscan = scan->ops;
2261 if (port->id == scan->mport_id)
2262 break;
2263 }
2264 }
2265
2266 list_add_tail(&port->node, &rio_mports);
2267 mutex_unlock(&rio_mport_list_lock);
2268
2269 dev_set_name(&port->dev, "rapidio%d", port->id);
2270 port->dev.class = &rio_mport_class;
2271 atomic_set(&port->state, RIO_DEVICE_RUNNING);
2272
2273 res = device_register(&port->dev);
2274 if (res)
2275 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2276 port->id, res);
2277 else
2278 dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2279
2280 return res;
2281 }
2282 EXPORT_SYMBOL_GPL(rio_register_mport);
2283
rio_mport_cleanup_callback(struct device * dev,void * data)2284 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2285 {
2286 struct rio_dev *rdev = to_rio_dev(dev);
2287
2288 if (dev->bus == &rio_bus_type)
2289 rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2290 return 0;
2291 }
2292
rio_net_remove_children(struct rio_net * net)2293 static int rio_net_remove_children(struct rio_net *net)
2294 {
2295 /*
2296 * Unregister all RapidIO devices residing on this net (this will
2297 * invoke notification of registered subsystem interfaces as well).
2298 */
2299 device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2300 return 0;
2301 }
2302
rio_unregister_mport(struct rio_mport * port)2303 int rio_unregister_mport(struct rio_mport *port)
2304 {
2305 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2306
2307 /* Transition mport to the SHUTDOWN state */
2308 if (atomic_cmpxchg(&port->state,
2309 RIO_DEVICE_RUNNING,
2310 RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2311 pr_err("RIO: %s unexpected state transition for mport %s\n",
2312 __func__, port->name);
2313 }
2314
2315 if (port->net && port->net->hport == port) {
2316 rio_net_remove_children(port->net);
2317 rio_free_net(port->net);
2318 }
2319
2320 /*
2321 * Unregister all RapidIO devices attached to this mport (this will
2322 * invoke notification of registered subsystem interfaces as well).
2323 */
2324 mutex_lock(&rio_mport_list_lock);
2325 list_del(&port->node);
2326 mutex_unlock(&rio_mport_list_lock);
2327 device_unregister(&port->dev);
2328
2329 return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2332