1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/slab.h>
25 #include <linux/usb.h>
26 #include <linux/jiffies.h>
27 #include <net/ieee80211_radiotap.h>
28
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_rf.h"
33
34 struct zd_reg_alpha2_map {
35 u32 reg;
36 char alpha2[2];
37 };
38
39 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
40 { ZD_REGDOMAIN_FCC, "US" },
41 { ZD_REGDOMAIN_IC, "CA" },
42 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
43 { ZD_REGDOMAIN_JAPAN, "JP" },
44 { ZD_REGDOMAIN_JAPAN_2, "JP" },
45 { ZD_REGDOMAIN_JAPAN_3, "JP" },
46 { ZD_REGDOMAIN_SPAIN, "ES" },
47 { ZD_REGDOMAIN_FRANCE, "FR" },
48 };
49
50 /* This table contains the hardware specific values for the modulation rates. */
51 static const struct ieee80211_rate zd_rates[] = {
52 { .bitrate = 10,
53 .hw_value = ZD_CCK_RATE_1M, },
54 { .bitrate = 20,
55 .hw_value = ZD_CCK_RATE_2M,
56 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
57 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
58 { .bitrate = 55,
59 .hw_value = ZD_CCK_RATE_5_5M,
60 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
61 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
62 { .bitrate = 110,
63 .hw_value = ZD_CCK_RATE_11M,
64 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
65 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
66 { .bitrate = 60,
67 .hw_value = ZD_OFDM_RATE_6M,
68 .flags = 0 },
69 { .bitrate = 90,
70 .hw_value = ZD_OFDM_RATE_9M,
71 .flags = 0 },
72 { .bitrate = 120,
73 .hw_value = ZD_OFDM_RATE_12M,
74 .flags = 0 },
75 { .bitrate = 180,
76 .hw_value = ZD_OFDM_RATE_18M,
77 .flags = 0 },
78 { .bitrate = 240,
79 .hw_value = ZD_OFDM_RATE_24M,
80 .flags = 0 },
81 { .bitrate = 360,
82 .hw_value = ZD_OFDM_RATE_36M,
83 .flags = 0 },
84 { .bitrate = 480,
85 .hw_value = ZD_OFDM_RATE_48M,
86 .flags = 0 },
87 { .bitrate = 540,
88 .hw_value = ZD_OFDM_RATE_54M,
89 .flags = 0 },
90 };
91
92 /*
93 * Zydas retry rates table. Each line is listed in the same order as
94 * in zd_rates[] and contains all the rate used when a packet is sent
95 * starting with a given rates. Let's consider an example :
96 *
97 * "11 Mbits : 4, 3, 2, 1, 0" means :
98 * - packet is sent using 4 different rates
99 * - 1st rate is index 3 (ie 11 Mbits)
100 * - 2nd rate is index 2 (ie 5.5 Mbits)
101 * - 3rd rate is index 1 (ie 2 Mbits)
102 * - 4th rate is index 0 (ie 1 Mbits)
103 */
104
105 static const struct tx_retry_rate zd_retry_rates[] = {
106 { /* 1 Mbits */ 1, { 0 }},
107 { /* 2 Mbits */ 2, { 1, 0 }},
108 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
109 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
110 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
111 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
112 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
113 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
114 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
115 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
116 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
118 };
119
120 static const struct ieee80211_channel zd_channels[] = {
121 { .center_freq = 2412, .hw_value = 1 },
122 { .center_freq = 2417, .hw_value = 2 },
123 { .center_freq = 2422, .hw_value = 3 },
124 { .center_freq = 2427, .hw_value = 4 },
125 { .center_freq = 2432, .hw_value = 5 },
126 { .center_freq = 2437, .hw_value = 6 },
127 { .center_freq = 2442, .hw_value = 7 },
128 { .center_freq = 2447, .hw_value = 8 },
129 { .center_freq = 2452, .hw_value = 9 },
130 { .center_freq = 2457, .hw_value = 10 },
131 { .center_freq = 2462, .hw_value = 11 },
132 { .center_freq = 2467, .hw_value = 12 },
133 { .center_freq = 2472, .hw_value = 13 },
134 { .center_freq = 2484, .hw_value = 14 },
135 };
136
137 static void housekeeping_init(struct zd_mac *mac);
138 static void housekeeping_enable(struct zd_mac *mac);
139 static void housekeeping_disable(struct zd_mac *mac);
140 static void beacon_init(struct zd_mac *mac);
141 static void beacon_enable(struct zd_mac *mac);
142 static void beacon_disable(struct zd_mac *mac);
143 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
144 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
145 struct sk_buff *beacon, bool in_intr);
146
zd_reg2alpha2(u8 regdomain,char * alpha2)147 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
148 {
149 unsigned int i;
150 struct zd_reg_alpha2_map *reg_map;
151 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
152 reg_map = ®_alpha2_map[i];
153 if (regdomain == reg_map->reg) {
154 alpha2[0] = reg_map->alpha2[0];
155 alpha2[1] = reg_map->alpha2[1];
156 return 0;
157 }
158 }
159 return 1;
160 }
161
zd_check_signal(struct ieee80211_hw * hw,int signal)162 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
163 {
164 struct zd_mac *mac = zd_hw_mac(hw);
165
166 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
167 "%s: signal value from device not in range 0..100, "
168 "but %d.\n", __func__, signal);
169
170 if (signal < 0)
171 signal = 0;
172 else if (signal > 100)
173 signal = 100;
174
175 return signal;
176 }
177
zd_mac_preinit_hw(struct ieee80211_hw * hw)178 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
179 {
180 int r;
181 u8 addr[ETH_ALEN];
182 struct zd_mac *mac = zd_hw_mac(hw);
183
184 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
185 if (r)
186 return r;
187
188 SET_IEEE80211_PERM_ADDR(hw, addr);
189
190 return 0;
191 }
192
zd_mac_init_hw(struct ieee80211_hw * hw)193 int zd_mac_init_hw(struct ieee80211_hw *hw)
194 {
195 int r;
196 struct zd_mac *mac = zd_hw_mac(hw);
197 struct zd_chip *chip = &mac->chip;
198 char alpha2[2];
199 u8 default_regdomain;
200
201 r = zd_chip_enable_int(chip);
202 if (r)
203 goto out;
204 r = zd_chip_init_hw(chip);
205 if (r)
206 goto disable_int;
207
208 ZD_ASSERT(!irqs_disabled());
209
210 r = zd_read_regdomain(chip, &default_regdomain);
211 if (r)
212 goto disable_int;
213 spin_lock_irq(&mac->lock);
214 mac->regdomain = mac->default_regdomain = default_regdomain;
215 spin_unlock_irq(&mac->lock);
216
217 /* We must inform the device that we are doing encryption/decryption in
218 * software at the moment. */
219 r = zd_set_encryption_type(chip, ENC_SNIFFER);
220 if (r)
221 goto disable_int;
222
223 r = zd_reg2alpha2(mac->regdomain, alpha2);
224 if (r)
225 goto disable_int;
226
227 r = regulatory_hint(hw->wiphy, alpha2);
228 disable_int:
229 zd_chip_disable_int(chip);
230 out:
231 return r;
232 }
233
zd_mac_clear(struct zd_mac * mac)234 void zd_mac_clear(struct zd_mac *mac)
235 {
236 flush_workqueue(zd_workqueue);
237 zd_chip_clear(&mac->chip);
238 ZD_ASSERT(!spin_is_locked(&mac->lock));
239 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
240 }
241
set_rx_filter(struct zd_mac * mac)242 static int set_rx_filter(struct zd_mac *mac)
243 {
244 unsigned long flags;
245 u32 filter = STA_RX_FILTER;
246
247 spin_lock_irqsave(&mac->lock, flags);
248 if (mac->pass_ctrl)
249 filter |= RX_FILTER_CTRL;
250 spin_unlock_irqrestore(&mac->lock, flags);
251
252 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
253 }
254
set_mac_and_bssid(struct zd_mac * mac)255 static int set_mac_and_bssid(struct zd_mac *mac)
256 {
257 int r;
258
259 if (!mac->vif)
260 return -1;
261
262 r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
263 if (r)
264 return r;
265
266 /* Vendor driver after setting MAC either sets BSSID for AP or
267 * filter for other modes.
268 */
269 if (mac->type != NL80211_IFTYPE_AP)
270 return set_rx_filter(mac);
271 else
272 return zd_write_bssid(&mac->chip, mac->vif->addr);
273 }
274
set_mc_hash(struct zd_mac * mac)275 static int set_mc_hash(struct zd_mac *mac)
276 {
277 struct zd_mc_hash hash;
278 zd_mc_clear(&hash);
279 return zd_chip_set_multicast_hash(&mac->chip, &hash);
280 }
281
zd_op_start(struct ieee80211_hw * hw)282 int zd_op_start(struct ieee80211_hw *hw)
283 {
284 struct zd_mac *mac = zd_hw_mac(hw);
285 struct zd_chip *chip = &mac->chip;
286 struct zd_usb *usb = &chip->usb;
287 int r;
288
289 if (!usb->initialized) {
290 r = zd_usb_init_hw(usb);
291 if (r)
292 goto out;
293 }
294
295 r = zd_chip_enable_int(chip);
296 if (r < 0)
297 goto out;
298
299 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
300 if (r < 0)
301 goto disable_int;
302 r = set_rx_filter(mac);
303 if (r)
304 goto disable_int;
305 r = set_mc_hash(mac);
306 if (r)
307 goto disable_int;
308
309 /* Wait after setting the multicast hash table and powering on
310 * the radio otherwise interface bring up will fail. This matches
311 * what the vendor driver did.
312 */
313 msleep(10);
314
315 r = zd_chip_switch_radio_on(chip);
316 if (r < 0) {
317 dev_err(zd_chip_dev(chip),
318 "%s: failed to set radio on\n", __func__);
319 goto disable_int;
320 }
321 r = zd_chip_enable_rxtx(chip);
322 if (r < 0)
323 goto disable_radio;
324 r = zd_chip_enable_hwint(chip);
325 if (r < 0)
326 goto disable_rxtx;
327
328 housekeeping_enable(mac);
329 beacon_enable(mac);
330 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
331 return 0;
332 disable_rxtx:
333 zd_chip_disable_rxtx(chip);
334 disable_radio:
335 zd_chip_switch_radio_off(chip);
336 disable_int:
337 zd_chip_disable_int(chip);
338 out:
339 return r;
340 }
341
zd_op_stop(struct ieee80211_hw * hw)342 void zd_op_stop(struct ieee80211_hw *hw)
343 {
344 struct zd_mac *mac = zd_hw_mac(hw);
345 struct zd_chip *chip = &mac->chip;
346 struct sk_buff *skb;
347 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
348
349 clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
350
351 /* The order here deliberately is a little different from the open()
352 * method, since we need to make sure there is no opportunity for RX
353 * frames to be processed by mac80211 after we have stopped it.
354 */
355
356 zd_chip_disable_rxtx(chip);
357 beacon_disable(mac);
358 housekeeping_disable(mac);
359 flush_workqueue(zd_workqueue);
360
361 zd_chip_disable_hwint(chip);
362 zd_chip_switch_radio_off(chip);
363 zd_chip_disable_int(chip);
364
365
366 while ((skb = skb_dequeue(ack_wait_queue)))
367 dev_kfree_skb_any(skb);
368 }
369
zd_restore_settings(struct zd_mac * mac)370 int zd_restore_settings(struct zd_mac *mac)
371 {
372 struct sk_buff *beacon;
373 struct zd_mc_hash multicast_hash;
374 unsigned int short_preamble;
375 int r, beacon_interval, beacon_period;
376 u8 channel;
377
378 dev_dbg_f(zd_mac_dev(mac), "\n");
379
380 spin_lock_irq(&mac->lock);
381 multicast_hash = mac->multicast_hash;
382 short_preamble = mac->short_preamble;
383 beacon_interval = mac->beacon.interval;
384 beacon_period = mac->beacon.period;
385 channel = mac->channel;
386 spin_unlock_irq(&mac->lock);
387
388 r = set_mac_and_bssid(mac);
389 if (r < 0) {
390 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
391 return r;
392 }
393
394 r = zd_chip_set_channel(&mac->chip, channel);
395 if (r < 0) {
396 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
397 r);
398 return r;
399 }
400
401 set_rts_cts(mac, short_preamble);
402
403 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
404 if (r < 0) {
405 dev_dbg_f(zd_mac_dev(mac),
406 "zd_chip_set_multicast_hash failed, %d\n", r);
407 return r;
408 }
409
410 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
411 mac->type == NL80211_IFTYPE_ADHOC ||
412 mac->type == NL80211_IFTYPE_AP) {
413 if (mac->vif != NULL) {
414 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
415 if (beacon)
416 zd_mac_config_beacon(mac->hw, beacon, false);
417 }
418
419 zd_set_beacon_interval(&mac->chip, beacon_interval,
420 beacon_period, mac->type);
421
422 spin_lock_irq(&mac->lock);
423 mac->beacon.last_update = jiffies;
424 spin_unlock_irq(&mac->lock);
425 }
426
427 return 0;
428 }
429
430 /**
431 * zd_mac_tx_status - reports tx status of a packet if required
432 * @hw - a &struct ieee80211_hw pointer
433 * @skb - a sk-buffer
434 * @flags: extra flags to set in the TX status info
435 * @ackssi: ACK signal strength
436 * @success - True for successful transmission of the frame
437 *
438 * This information calls ieee80211_tx_status_irqsafe() if required by the
439 * control information. It copies the control information into the status
440 * information.
441 *
442 * If no status information has been requested, the skb is freed.
443 */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)444 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
445 int ackssi, struct tx_status *tx_status)
446 {
447 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
448 int i;
449 int success = 1, retry = 1;
450 int first_idx;
451 const struct tx_retry_rate *retries;
452
453 ieee80211_tx_info_clear_status(info);
454
455 if (tx_status) {
456 success = !tx_status->failure;
457 retry = tx_status->retry + success;
458 }
459
460 if (success) {
461 /* success */
462 info->flags |= IEEE80211_TX_STAT_ACK;
463 } else {
464 /* failure */
465 info->flags &= ~IEEE80211_TX_STAT_ACK;
466 }
467
468 first_idx = info->status.rates[0].idx;
469 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
470 retries = &zd_retry_rates[first_idx];
471 ZD_ASSERT(1 <= retry && retry <= retries->count);
472
473 info->status.rates[0].idx = retries->rate[0];
474 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
475
476 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
477 info->status.rates[i].idx = retries->rate[i];
478 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
479 }
480 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
481 info->status.rates[i].idx = retries->rate[retry - 1];
482 info->status.rates[i].count = 1; // (success ? 1:2);
483 }
484 if (i<IEEE80211_TX_MAX_RATES)
485 info->status.rates[i].idx = -1; /* terminate */
486
487 info->status.ack_signal = zd_check_signal(hw, ackssi);
488 ieee80211_tx_status_irqsafe(hw, skb);
489 }
490
491 /**
492 * zd_mac_tx_failed - callback for failed frames
493 * @dev: the mac80211 wireless device
494 *
495 * This function is called if a frame couldn't be successfully
496 * transferred. The first frame from the tx queue, will be selected and
497 * reported as error to the upper layers.
498 */
zd_mac_tx_failed(struct urb * urb)499 void zd_mac_tx_failed(struct urb *urb)
500 {
501 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
502 struct zd_mac *mac = zd_hw_mac(hw);
503 struct sk_buff_head *q = &mac->ack_wait_queue;
504 struct sk_buff *skb;
505 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
506 unsigned long flags;
507 int success = !tx_status->failure;
508 int retry = tx_status->retry + success;
509 int found = 0;
510 int i, position = 0;
511
512 spin_lock_irqsave(&q->lock, flags);
513
514 skb_queue_walk(q, skb) {
515 struct ieee80211_hdr *tx_hdr;
516 struct ieee80211_tx_info *info;
517 int first_idx, final_idx;
518 const struct tx_retry_rate *retries;
519 u8 final_rate;
520
521 position ++;
522
523 /* if the hardware reports a failure and we had a 802.11 ACK
524 * pending, then we skip the first skb when searching for a
525 * matching frame */
526 if (tx_status->failure && mac->ack_pending &&
527 skb_queue_is_first(q, skb)) {
528 continue;
529 }
530
531 tx_hdr = (struct ieee80211_hdr *)skb->data;
532
533 /* we skip all frames not matching the reported destination */
534 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
535 continue;
536
537 /* we skip all frames not matching the reported final rate */
538
539 info = IEEE80211_SKB_CB(skb);
540 first_idx = info->status.rates[0].idx;
541 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
542 retries = &zd_retry_rates[first_idx];
543 if (retry <= 0 || retry > retries->count)
544 continue;
545
546 final_idx = retries->rate[retry - 1];
547 final_rate = zd_rates[final_idx].hw_value;
548
549 if (final_rate != tx_status->rate) {
550 continue;
551 }
552
553 found = 1;
554 break;
555 }
556
557 if (found) {
558 for (i=1; i<=position; i++) {
559 skb = __skb_dequeue(q);
560 zd_mac_tx_status(hw, skb,
561 mac->ack_pending ? mac->ack_signal : 0,
562 i == position ? tx_status : NULL);
563 mac->ack_pending = 0;
564 }
565 }
566
567 spin_unlock_irqrestore(&q->lock, flags);
568 }
569
570 /**
571 * zd_mac_tx_to_dev - callback for USB layer
572 * @skb: a &sk_buff pointer
573 * @error: error value, 0 if transmission successful
574 *
575 * Informs the MAC layer that the frame has successfully transferred to the
576 * device. If an ACK is required and the transfer to the device has been
577 * successful, the packets are put on the @ack_wait_queue with
578 * the control set removed.
579 */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)580 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
581 {
582 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
583 struct ieee80211_hw *hw = info->rate_driver_data[0];
584 struct zd_mac *mac = zd_hw_mac(hw);
585
586 ieee80211_tx_info_clear_status(info);
587
588 skb_pull(skb, sizeof(struct zd_ctrlset));
589 if (unlikely(error ||
590 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
591 /*
592 * FIXME : do we need to fill in anything ?
593 */
594 ieee80211_tx_status_irqsafe(hw, skb);
595 } else {
596 struct sk_buff_head *q = &mac->ack_wait_queue;
597
598 skb_queue_tail(q, skb);
599 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
600 zd_mac_tx_status(hw, skb_dequeue(q),
601 mac->ack_pending ? mac->ack_signal : 0,
602 NULL);
603 mac->ack_pending = 0;
604 }
605 }
606 }
607
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)608 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
609 {
610 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
611 * the zd-rate values.
612 */
613 static const u8 rate_divisor[] = {
614 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
615 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
616 /* Bits must be doubled. */
617 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
618 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
619 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
620 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
621 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
622 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
623 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
624 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
625 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
626 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
627 };
628
629 u32 bits = (u32)tx_length * 8;
630 u32 divisor;
631
632 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
633 if (divisor == 0)
634 return -EINVAL;
635
636 switch (zd_rate) {
637 case ZD_CCK_RATE_5_5M:
638 bits = (2*bits) + 10; /* round up to the next integer */
639 break;
640 case ZD_CCK_RATE_11M:
641 if (service) {
642 u32 t = bits % 11;
643 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
644 if (0 < t && t <= 3) {
645 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
646 }
647 }
648 bits += 10; /* round up to the next integer */
649 break;
650 }
651
652 return bits/divisor;
653 }
654
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)655 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
656 struct ieee80211_hdr *header,
657 struct ieee80211_tx_info *info)
658 {
659 /*
660 * CONTROL TODO:
661 * - if backoff needed, enable bit 0
662 * - if burst (backoff not needed) disable bit 0
663 */
664
665 cs->control = 0;
666
667 /* First fragment */
668 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
669 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
670
671 /* No ACK expected (multicast, etc.) */
672 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
673 cs->control |= ZD_CS_NO_ACK;
674
675 /* PS-POLL */
676 if (ieee80211_is_pspoll(header->frame_control))
677 cs->control |= ZD_CS_PS_POLL_FRAME;
678
679 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
680 cs->control |= ZD_CS_RTS;
681
682 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
683 cs->control |= ZD_CS_SELF_CTS;
684
685 /* FIXME: Management frame? */
686 }
687
zd_mac_match_cur_beacon(struct zd_mac * mac,struct sk_buff * beacon)688 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
689 {
690 if (!mac->beacon.cur_beacon)
691 return false;
692
693 if (mac->beacon.cur_beacon->len != beacon->len)
694 return false;
695
696 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
697 }
698
zd_mac_free_cur_beacon_locked(struct zd_mac * mac)699 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
700 {
701 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
702
703 kfree_skb(mac->beacon.cur_beacon);
704 mac->beacon.cur_beacon = NULL;
705 }
706
zd_mac_free_cur_beacon(struct zd_mac * mac)707 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
708 {
709 mutex_lock(&mac->chip.mutex);
710 zd_mac_free_cur_beacon_locked(mac);
711 mutex_unlock(&mac->chip.mutex);
712 }
713
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon,bool in_intr)714 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
715 bool in_intr)
716 {
717 struct zd_mac *mac = zd_hw_mac(hw);
718 int r, ret, num_cmds, req_pos = 0;
719 u32 tmp, j = 0;
720 /* 4 more bytes for tail CRC */
721 u32 full_len = beacon->len + 4;
722 unsigned long end_jiffies, message_jiffies;
723 struct zd_ioreq32 *ioreqs;
724
725 mutex_lock(&mac->chip.mutex);
726
727 /* Check if hw already has this beacon. */
728 if (zd_mac_match_cur_beacon(mac, beacon)) {
729 r = 0;
730 goto out_nofree;
731 }
732
733 /* Alloc memory for full beacon write at once. */
734 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
735 ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
736 GFP_KERNEL);
737 if (!ioreqs) {
738 r = -ENOMEM;
739 goto out_nofree;
740 }
741
742 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
743 if (r < 0)
744 goto out;
745 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
746 if (r < 0)
747 goto release_sema;
748 if (in_intr && tmp & 0x2) {
749 r = -EBUSY;
750 goto release_sema;
751 }
752
753 end_jiffies = jiffies + HZ / 2; /*~500ms*/
754 message_jiffies = jiffies + HZ / 10; /*~100ms*/
755 while (tmp & 0x2) {
756 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
757 if (r < 0)
758 goto release_sema;
759 if (time_is_before_eq_jiffies(message_jiffies)) {
760 message_jiffies = jiffies + HZ / 10;
761 dev_err(zd_mac_dev(mac),
762 "CR_BCN_FIFO_SEMAPHORE not ready\n");
763 if (time_is_before_eq_jiffies(end_jiffies)) {
764 dev_err(zd_mac_dev(mac),
765 "Giving up beacon config.\n");
766 r = -ETIMEDOUT;
767 goto reset_device;
768 }
769 }
770 msleep(20);
771 }
772
773 ioreqs[req_pos].addr = CR_BCN_FIFO;
774 ioreqs[req_pos].value = full_len - 1;
775 req_pos++;
776 if (zd_chip_is_zd1211b(&mac->chip)) {
777 ioreqs[req_pos].addr = CR_BCN_LENGTH;
778 ioreqs[req_pos].value = full_len - 1;
779 req_pos++;
780 }
781
782 for (j = 0 ; j < beacon->len; j++) {
783 ioreqs[req_pos].addr = CR_BCN_FIFO;
784 ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
785 req_pos++;
786 }
787
788 for (j = 0; j < 4; j++) {
789 ioreqs[req_pos].addr = CR_BCN_FIFO;
790 ioreqs[req_pos].value = 0x0;
791 req_pos++;
792 }
793
794 BUG_ON(req_pos != num_cmds);
795
796 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
797
798 release_sema:
799 /*
800 * Try very hard to release device beacon semaphore, as otherwise
801 * device/driver can be left in unusable state.
802 */
803 end_jiffies = jiffies + HZ / 2; /*~500ms*/
804 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
805 while (ret < 0) {
806 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
807 ret = -ETIMEDOUT;
808 break;
809 }
810
811 msleep(20);
812 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
813 }
814
815 if (ret < 0)
816 dev_err(zd_mac_dev(mac), "Could not release "
817 "CR_BCN_FIFO_SEMAPHORE!\n");
818 if (r < 0 || ret < 0) {
819 if (r >= 0)
820 r = ret;
821
822 /* We don't know if beacon was written successfully or not,
823 * so clear current. */
824 zd_mac_free_cur_beacon_locked(mac);
825
826 goto out;
827 }
828
829 /* Beacon has now been written successfully, update current. */
830 zd_mac_free_cur_beacon_locked(mac);
831 mac->beacon.cur_beacon = beacon;
832 beacon = NULL;
833
834 /* 802.11b/g 2.4G CCK 1Mb
835 * 802.11a, not yet implemented, uses different values (see GPL vendor
836 * driver)
837 */
838 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
839 CR_BCN_PLCP_CFG);
840 out:
841 kfree(ioreqs);
842 out_nofree:
843 kfree_skb(beacon);
844 mutex_unlock(&mac->chip.mutex);
845
846 return r;
847
848 reset_device:
849 zd_mac_free_cur_beacon_locked(mac);
850 kfree_skb(beacon);
851
852 mutex_unlock(&mac->chip.mutex);
853 kfree(ioreqs);
854
855 /* semaphore stuck, reset device to avoid fw freeze later */
856 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
857 "resetting device...");
858 usb_queue_reset_device(mac->chip.usb.intf);
859
860 return r;
861 }
862
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)863 static int fill_ctrlset(struct zd_mac *mac,
864 struct sk_buff *skb)
865 {
866 int r;
867 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
868 unsigned int frag_len = skb->len + FCS_LEN;
869 unsigned int packet_length;
870 struct ieee80211_rate *txrate;
871 struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
872 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
873
874 ZD_ASSERT(frag_len <= 0xffff);
875
876 /*
877 * Firmware computes the duration itself (for all frames except PSPoll)
878 * and needs the field set to 0 at input, otherwise firmware messes up
879 * duration_id and sets bits 14 and 15 on.
880 */
881 if (!ieee80211_is_pspoll(hdr->frame_control))
882 hdr->duration_id = 0;
883
884 txrate = ieee80211_get_tx_rate(mac->hw, info);
885
886 cs->modulation = txrate->hw_value;
887 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
888 cs->modulation = txrate->hw_value_short;
889
890 cs->tx_length = cpu_to_le16(frag_len);
891
892 cs_set_control(mac, cs, hdr, info);
893
894 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
895 ZD_ASSERT(packet_length <= 0xffff);
896 /* ZD1211B: Computing the length difference this way, gives us
897 * flexibility to compute the packet length.
898 */
899 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
900 packet_length - frag_len : packet_length);
901
902 /*
903 * CURRENT LENGTH:
904 * - transmit frame length in microseconds
905 * - seems to be derived from frame length
906 * - see Cal_Us_Service() in zdinlinef.h
907 * - if macp->bTxBurstEnable is enabled, then multiply by 4
908 * - bTxBurstEnable is never set in the vendor driver
909 *
910 * SERVICE:
911 * - "for PLCP configuration"
912 * - always 0 except in some situations at 802.11b 11M
913 * - see line 53 of zdinlinef.h
914 */
915 cs->service = 0;
916 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
917 le16_to_cpu(cs->tx_length));
918 if (r < 0)
919 return r;
920 cs->current_length = cpu_to_le16(r);
921 cs->next_frame_length = 0;
922
923 return 0;
924 }
925
926 /**
927 * zd_op_tx - transmits a network frame to the device
928 *
929 * @dev: mac80211 hardware device
930 * @skb: socket buffer
931 * @control: the control structure
932 *
933 * This function transmit an IEEE 802.11 network frame to the device. The
934 * control block of the skbuff will be initialized. If necessary the incoming
935 * mac80211 queues will be stopped.
936 */
zd_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)937 static void zd_op_tx(struct ieee80211_hw *hw,
938 struct ieee80211_tx_control *control,
939 struct sk_buff *skb)
940 {
941 struct zd_mac *mac = zd_hw_mac(hw);
942 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
943 int r;
944
945 r = fill_ctrlset(mac, skb);
946 if (r)
947 goto fail;
948
949 info->rate_driver_data[0] = hw;
950
951 r = zd_usb_tx(&mac->chip.usb, skb);
952 if (r)
953 goto fail;
954 return;
955
956 fail:
957 dev_kfree_skb(skb);
958 }
959
960 /**
961 * filter_ack - filters incoming packets for acknowledgements
962 * @dev: the mac80211 device
963 * @rx_hdr: received header
964 * @stats: the status for the received packet
965 *
966 * This functions looks for ACK packets and tries to match them with the
967 * frames in the tx queue. If a match is found the frame will be dequeued and
968 * the upper layers is informed about the successful transmission. If
969 * mac80211 queues have been stopped and the number of frames still to be
970 * transmitted is low the queues will be opened again.
971 *
972 * Returns 1 if the frame was an ACK, 0 if it was ignored.
973 */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)974 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
975 struct ieee80211_rx_status *stats)
976 {
977 struct zd_mac *mac = zd_hw_mac(hw);
978 struct sk_buff *skb;
979 struct sk_buff_head *q;
980 unsigned long flags;
981 int found = 0;
982 int i, position = 0;
983
984 if (!ieee80211_is_ack(rx_hdr->frame_control))
985 return 0;
986
987 q = &mac->ack_wait_queue;
988 spin_lock_irqsave(&q->lock, flags);
989 skb_queue_walk(q, skb) {
990 struct ieee80211_hdr *tx_hdr;
991
992 position ++;
993
994 if (mac->ack_pending && skb_queue_is_first(q, skb))
995 continue;
996
997 tx_hdr = (struct ieee80211_hdr *)skb->data;
998 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
999 {
1000 found = 1;
1001 break;
1002 }
1003 }
1004
1005 if (found) {
1006 for (i=1; i<position; i++) {
1007 skb = __skb_dequeue(q);
1008 zd_mac_tx_status(hw, skb,
1009 mac->ack_pending ? mac->ack_signal : 0,
1010 NULL);
1011 mac->ack_pending = 0;
1012 }
1013
1014 mac->ack_pending = 1;
1015 mac->ack_signal = stats->signal;
1016
1017 /* Prevent pending tx-packet on AP-mode */
1018 if (mac->type == NL80211_IFTYPE_AP) {
1019 skb = __skb_dequeue(q);
1020 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1021 mac->ack_pending = 0;
1022 }
1023 }
1024
1025 spin_unlock_irqrestore(&q->lock, flags);
1026 return 1;
1027 }
1028
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)1029 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1030 {
1031 struct zd_mac *mac = zd_hw_mac(hw);
1032 struct ieee80211_rx_status stats;
1033 const struct rx_status *status;
1034 struct sk_buff *skb;
1035 int bad_frame = 0;
1036 __le16 fc;
1037 int need_padding;
1038 int i;
1039 u8 rate;
1040
1041 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1042 FCS_LEN + sizeof(struct rx_status))
1043 return -EINVAL;
1044
1045 memset(&stats, 0, sizeof(stats));
1046
1047 /* Note about pass_failed_fcs and pass_ctrl access below:
1048 * mac locking intentionally omitted here, as this is the only unlocked
1049 * reader and the only writer is configure_filter. Plus, if there were
1050 * any races accessing these variables, it wouldn't really matter.
1051 * If mac80211 ever provides a way for us to access filter flags
1052 * from outside configure_filter, we could improve on this. Also, this
1053 * situation may change once we implement some kind of DMA-into-skb
1054 * RX path. */
1055
1056 /* Caller has to ensure that length >= sizeof(struct rx_status). */
1057 status = (struct rx_status *)
1058 (buffer + (length - sizeof(struct rx_status)));
1059 if (status->frame_status & ZD_RX_ERROR) {
1060 if (mac->pass_failed_fcs &&
1061 (status->frame_status & ZD_RX_CRC32_ERROR)) {
1062 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1063 bad_frame = 1;
1064 } else {
1065 return -EINVAL;
1066 }
1067 }
1068
1069 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1070 stats.band = NL80211_BAND_2GHZ;
1071 stats.signal = zd_check_signal(hw, status->signal_strength);
1072
1073 rate = zd_rx_rate(buffer, status);
1074
1075 /* todo: return index in the big switches in zd_rx_rate instead */
1076 for (i = 0; i < mac->band.n_bitrates; i++)
1077 if (rate == mac->band.bitrates[i].hw_value)
1078 stats.rate_idx = i;
1079
1080 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1081 buffer += ZD_PLCP_HEADER_SIZE;
1082
1083 /* Except for bad frames, filter each frame to see if it is an ACK, in
1084 * which case our internal TX tracking is updated. Normally we then
1085 * bail here as there's no need to pass ACKs on up to the stack, but
1086 * there is also the case where the stack has requested us to pass
1087 * control frames on up (pass_ctrl) which we must consider. */
1088 if (!bad_frame &&
1089 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1090 && !mac->pass_ctrl)
1091 return 0;
1092
1093 fc = get_unaligned((__le16*)buffer);
1094 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1095
1096 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1097 if (skb == NULL)
1098 return -ENOMEM;
1099 if (need_padding) {
1100 /* Make sure the payload data is 4 byte aligned. */
1101 skb_reserve(skb, 2);
1102 }
1103
1104 /* FIXME : could we avoid this big memcpy ? */
1105 skb_put_data(skb, buffer, length);
1106
1107 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1108 ieee80211_rx_irqsafe(hw, skb);
1109 return 0;
1110 }
1111
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1112 static int zd_op_add_interface(struct ieee80211_hw *hw,
1113 struct ieee80211_vif *vif)
1114 {
1115 struct zd_mac *mac = zd_hw_mac(hw);
1116
1117 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1118 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1119 return -EOPNOTSUPP;
1120
1121 switch (vif->type) {
1122 case NL80211_IFTYPE_MONITOR:
1123 case NL80211_IFTYPE_MESH_POINT:
1124 case NL80211_IFTYPE_STATION:
1125 case NL80211_IFTYPE_ADHOC:
1126 case NL80211_IFTYPE_AP:
1127 mac->type = vif->type;
1128 break;
1129 default:
1130 return -EOPNOTSUPP;
1131 }
1132
1133 mac->vif = vif;
1134
1135 return set_mac_and_bssid(mac);
1136 }
1137
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1138 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1139 struct ieee80211_vif *vif)
1140 {
1141 struct zd_mac *mac = zd_hw_mac(hw);
1142 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1143 mac->vif = NULL;
1144 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1145 zd_write_mac_addr(&mac->chip, NULL);
1146
1147 zd_mac_free_cur_beacon(mac);
1148 }
1149
zd_op_config(struct ieee80211_hw * hw,u32 changed)1150 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1151 {
1152 struct zd_mac *mac = zd_hw_mac(hw);
1153 struct ieee80211_conf *conf = &hw->conf;
1154
1155 spin_lock_irq(&mac->lock);
1156 mac->channel = conf->chandef.chan->hw_value;
1157 spin_unlock_irq(&mac->lock);
1158
1159 return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1160 }
1161
zd_beacon_done(struct zd_mac * mac)1162 static void zd_beacon_done(struct zd_mac *mac)
1163 {
1164 struct sk_buff *skb, *beacon;
1165
1166 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1167 return;
1168 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1169 return;
1170
1171 /*
1172 * Send out buffered broad- and multicast frames.
1173 */
1174 while (!ieee80211_queue_stopped(mac->hw, 0)) {
1175 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1176 if (!skb)
1177 break;
1178 zd_op_tx(mac->hw, NULL, skb);
1179 }
1180
1181 /*
1182 * Fetch next beacon so that tim_count is updated.
1183 */
1184 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1185 if (beacon)
1186 zd_mac_config_beacon(mac->hw, beacon, true);
1187
1188 spin_lock_irq(&mac->lock);
1189 mac->beacon.last_update = jiffies;
1190 spin_unlock_irq(&mac->lock);
1191 }
1192
zd_process_intr(struct work_struct * work)1193 static void zd_process_intr(struct work_struct *work)
1194 {
1195 u16 int_status;
1196 unsigned long flags;
1197 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1198
1199 spin_lock_irqsave(&mac->lock, flags);
1200 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1201 spin_unlock_irqrestore(&mac->lock, flags);
1202
1203 if (int_status & INT_CFG_NEXT_BCN) {
1204 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1205 zd_beacon_done(mac);
1206 } else {
1207 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1208 }
1209
1210 zd_chip_enable_hwint(&mac->chip);
1211 }
1212
1213
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1214 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1215 struct netdev_hw_addr_list *mc_list)
1216 {
1217 struct zd_mac *mac = zd_hw_mac(hw);
1218 struct zd_mc_hash hash;
1219 struct netdev_hw_addr *ha;
1220
1221 zd_mc_clear(&hash);
1222
1223 netdev_hw_addr_list_for_each(ha, mc_list) {
1224 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1225 zd_mc_add_addr(&hash, ha->addr);
1226 }
1227
1228 return hash.low | ((u64)hash.high << 32);
1229 }
1230
1231 #define SUPPORTED_FIF_FLAGS \
1232 (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1233 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1234 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1235 unsigned int changed_flags,
1236 unsigned int *new_flags,
1237 u64 multicast)
1238 {
1239 struct zd_mc_hash hash = {
1240 .low = multicast,
1241 .high = multicast >> 32,
1242 };
1243 struct zd_mac *mac = zd_hw_mac(hw);
1244 unsigned long flags;
1245 int r;
1246
1247 /* Only deal with supported flags */
1248 changed_flags &= SUPPORTED_FIF_FLAGS;
1249 *new_flags &= SUPPORTED_FIF_FLAGS;
1250
1251 /*
1252 * If multicast parameter (as returned by zd_op_prepare_multicast)
1253 * has changed, no bit in changed_flags is set. To handle this
1254 * situation, we do not return if changed_flags is 0. If we do so,
1255 * we will have some issue with IPv6 which uses multicast for link
1256 * layer address resolution.
1257 */
1258 if (*new_flags & FIF_ALLMULTI)
1259 zd_mc_add_all(&hash);
1260
1261 spin_lock_irqsave(&mac->lock, flags);
1262 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1263 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1264 mac->multicast_hash = hash;
1265 spin_unlock_irqrestore(&mac->lock, flags);
1266
1267 zd_chip_set_multicast_hash(&mac->chip, &hash);
1268
1269 if (changed_flags & FIF_CONTROL) {
1270 r = set_rx_filter(mac);
1271 if (r)
1272 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1273 }
1274
1275 /* no handling required for FIF_OTHER_BSS as we don't currently
1276 * do BSSID filtering */
1277 /* FIXME: in future it would be nice to enable the probe response
1278 * filter (so that the driver doesn't see them) until
1279 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1280 * have to schedule work to enable prbresp reception, which might
1281 * happen too late. For now we'll just listen and forward them all the
1282 * time. */
1283 }
1284
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1285 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1286 {
1287 mutex_lock(&mac->chip.mutex);
1288 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1289 mutex_unlock(&mac->chip.mutex);
1290 }
1291
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1292 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1293 struct ieee80211_vif *vif,
1294 struct ieee80211_bss_conf *bss_conf,
1295 u32 changes)
1296 {
1297 struct zd_mac *mac = zd_hw_mac(hw);
1298 int associated;
1299
1300 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1301
1302 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1303 mac->type == NL80211_IFTYPE_ADHOC ||
1304 mac->type == NL80211_IFTYPE_AP) {
1305 associated = true;
1306 if (changes & BSS_CHANGED_BEACON) {
1307 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1308
1309 if (beacon) {
1310 zd_chip_disable_hwint(&mac->chip);
1311 zd_mac_config_beacon(hw, beacon, false);
1312 zd_chip_enable_hwint(&mac->chip);
1313 }
1314 }
1315
1316 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1317 u16 interval = 0;
1318 u8 period = 0;
1319
1320 if (bss_conf->enable_beacon) {
1321 period = bss_conf->dtim_period;
1322 interval = bss_conf->beacon_int;
1323 }
1324
1325 spin_lock_irq(&mac->lock);
1326 mac->beacon.period = period;
1327 mac->beacon.interval = interval;
1328 mac->beacon.last_update = jiffies;
1329 spin_unlock_irq(&mac->lock);
1330
1331 zd_set_beacon_interval(&mac->chip, interval, period,
1332 mac->type);
1333 }
1334 } else
1335 associated = is_valid_ether_addr(bss_conf->bssid);
1336
1337 spin_lock_irq(&mac->lock);
1338 mac->associated = associated;
1339 spin_unlock_irq(&mac->lock);
1340
1341 /* TODO: do hardware bssid filtering */
1342
1343 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1344 spin_lock_irq(&mac->lock);
1345 mac->short_preamble = bss_conf->use_short_preamble;
1346 spin_unlock_irq(&mac->lock);
1347
1348 set_rts_cts(mac, bss_conf->use_short_preamble);
1349 }
1350 }
1351
zd_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1352 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1353 {
1354 struct zd_mac *mac = zd_hw_mac(hw);
1355 return zd_chip_get_tsf(&mac->chip);
1356 }
1357
1358 static const struct ieee80211_ops zd_ops = {
1359 .tx = zd_op_tx,
1360 .start = zd_op_start,
1361 .stop = zd_op_stop,
1362 .add_interface = zd_op_add_interface,
1363 .remove_interface = zd_op_remove_interface,
1364 .config = zd_op_config,
1365 .prepare_multicast = zd_op_prepare_multicast,
1366 .configure_filter = zd_op_configure_filter,
1367 .bss_info_changed = zd_op_bss_info_changed,
1368 .get_tsf = zd_op_get_tsf,
1369 };
1370
zd_mac_alloc_hw(struct usb_interface * intf)1371 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1372 {
1373 struct zd_mac *mac;
1374 struct ieee80211_hw *hw;
1375
1376 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1377 if (!hw) {
1378 dev_dbg_f(&intf->dev, "out of memory\n");
1379 return NULL;
1380 }
1381
1382 mac = zd_hw_mac(hw);
1383
1384 memset(mac, 0, sizeof(*mac));
1385 spin_lock_init(&mac->lock);
1386 mac->hw = hw;
1387
1388 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1389
1390 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1391 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1392 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1393 mac->band.bitrates = mac->rates;
1394 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1395 mac->band.channels = mac->channels;
1396
1397 hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1398
1399 ieee80211_hw_set(hw, MFP_CAPABLE);
1400 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1401 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1402 ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1403
1404 hw->wiphy->interface_modes =
1405 BIT(NL80211_IFTYPE_MESH_POINT) |
1406 BIT(NL80211_IFTYPE_STATION) |
1407 BIT(NL80211_IFTYPE_ADHOC) |
1408 BIT(NL80211_IFTYPE_AP);
1409
1410 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1411
1412 hw->max_signal = 100;
1413 hw->queues = 1;
1414 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1415
1416 /*
1417 * Tell mac80211 that we support multi rate retries
1418 */
1419 hw->max_rates = IEEE80211_TX_MAX_RATES;
1420 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1421
1422 skb_queue_head_init(&mac->ack_wait_queue);
1423 mac->ack_pending = 0;
1424
1425 zd_chip_init(&mac->chip, hw, intf);
1426 housekeeping_init(mac);
1427 beacon_init(mac);
1428 INIT_WORK(&mac->process_intr, zd_process_intr);
1429
1430 SET_IEEE80211_DEV(hw, &intf->dev);
1431 return hw;
1432 }
1433
1434 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1435
beacon_watchdog_handler(struct work_struct * work)1436 static void beacon_watchdog_handler(struct work_struct *work)
1437 {
1438 struct zd_mac *mac =
1439 container_of(work, struct zd_mac, beacon.watchdog_work.work);
1440 struct sk_buff *beacon;
1441 unsigned long timeout;
1442 int interval, period;
1443
1444 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1445 goto rearm;
1446 if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1447 goto rearm;
1448
1449 spin_lock_irq(&mac->lock);
1450 interval = mac->beacon.interval;
1451 period = mac->beacon.period;
1452 timeout = mac->beacon.last_update +
1453 msecs_to_jiffies(interval * 1024 / 1000) * 3;
1454 spin_unlock_irq(&mac->lock);
1455
1456 if (interval > 0 && time_is_before_jiffies(timeout)) {
1457 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1458 "restarting. "
1459 "(interval: %d, dtim: %d)\n",
1460 interval, period);
1461
1462 zd_chip_disable_hwint(&mac->chip);
1463
1464 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1465 if (beacon) {
1466 zd_mac_free_cur_beacon(mac);
1467
1468 zd_mac_config_beacon(mac->hw, beacon, false);
1469 }
1470
1471 zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1472
1473 zd_chip_enable_hwint(&mac->chip);
1474
1475 spin_lock_irq(&mac->lock);
1476 mac->beacon.last_update = jiffies;
1477 spin_unlock_irq(&mac->lock);
1478 }
1479
1480 rearm:
1481 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1482 BEACON_WATCHDOG_DELAY);
1483 }
1484
beacon_init(struct zd_mac * mac)1485 static void beacon_init(struct zd_mac *mac)
1486 {
1487 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1488 }
1489
beacon_enable(struct zd_mac * mac)1490 static void beacon_enable(struct zd_mac *mac)
1491 {
1492 dev_dbg_f(zd_mac_dev(mac), "\n");
1493
1494 mac->beacon.last_update = jiffies;
1495 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1496 BEACON_WATCHDOG_DELAY);
1497 }
1498
beacon_disable(struct zd_mac * mac)1499 static void beacon_disable(struct zd_mac *mac)
1500 {
1501 dev_dbg_f(zd_mac_dev(mac), "\n");
1502 cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1503
1504 zd_mac_free_cur_beacon(mac);
1505 }
1506
1507 #define LINK_LED_WORK_DELAY HZ
1508
link_led_handler(struct work_struct * work)1509 static void link_led_handler(struct work_struct *work)
1510 {
1511 struct zd_mac *mac =
1512 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1513 struct zd_chip *chip = &mac->chip;
1514 int is_associated;
1515 int r;
1516
1517 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1518 goto requeue;
1519
1520 spin_lock_irq(&mac->lock);
1521 is_associated = mac->associated;
1522 spin_unlock_irq(&mac->lock);
1523
1524 r = zd_chip_control_leds(chip,
1525 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1526 if (r)
1527 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1528
1529 requeue:
1530 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1531 LINK_LED_WORK_DELAY);
1532 }
1533
housekeeping_init(struct zd_mac * mac)1534 static void housekeeping_init(struct zd_mac *mac)
1535 {
1536 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1537 }
1538
housekeeping_enable(struct zd_mac * mac)1539 static void housekeeping_enable(struct zd_mac *mac)
1540 {
1541 dev_dbg_f(zd_mac_dev(mac), "\n");
1542 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1543 0);
1544 }
1545
housekeeping_disable(struct zd_mac * mac)1546 static void housekeeping_disable(struct zd_mac *mac)
1547 {
1548 dev_dbg_f(zd_mac_dev(mac), "\n");
1549 cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1550 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1551 }
1552