1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <linux/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static const struct iw_handler_def ipw2100_wx_handler_def;
344
read_register(struct net_device * dev,u32 reg,u32 * val)345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
write_register(struct net_device * dev,u32 reg,u32 val)353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
read_register_word(struct net_device * dev,u32 reg,u16 * val)361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
read_register_byte(struct net_device * dev,u32 reg,u8 * val)370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
write_register_word(struct net_device * dev,u32 reg,u16 val)378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
write_register_byte(struct net_device * dev,u32 reg,u8 val)386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
read_nic_dword(struct net_device * dev,u32 addr,u32 * val)394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
write_nic_dword(struct net_device * dev,u32 addr,u32 val)401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
read_nic_word(struct net_device * dev,u32 addr,u16 * val)408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
write_nic_word(struct net_device * dev,u32 addr,u16 val)415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
read_nic_byte(struct net_device * dev,u32 addr,u8 * val)422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
write_nic_byte(struct net_device * dev,u32 addr,u8 val)429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
write_nic_auto_inc_address(struct net_device * dev,u32 addr)436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
write_nic_dword_auto_inc(struct net_device * dev,u32 val)442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
write_nic_memory(struct net_device * dev,u32 addr,u32 len,const u8 * buf)447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
read_nic_memory(struct net_device * dev,u32 addr,u32 len,u8 * buf)485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
ipw2100_hw_is_adapter_in_system(struct net_device * dev)522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
ipw2100_get_ordinal(struct ipw2100_priv * priv,u32 ord,void * val,u32 * len)531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
ipw2100_set_ordinal(struct ipw2100_priv * priv,u32 ord,u32 * val,u32 * len)610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
printk_buf(int level,const u8 * data,u32 len)675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
schedule_reset(struct ipw2100_priv * priv)693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 time64_t now = ktime_get_boottime_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = now;
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
ipw2100_hw_send_command(struct ipw2100_priv * priv,struct host_command * cmd)729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
ipw2100_verify(struct ipw2100_priv * priv)847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
ipw2100_wait_for_card_state(struct ipw2100_priv * priv,int state)891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
sw_reset_and_clock(struct ipw2100_priv * priv)934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
ipw2100_download_firmware(struct ipw2100_priv * priv)993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
ipw2100_enable_interrupts(struct ipw2100_priv * priv)1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
ipw2100_disable_interrupts(struct ipw2100_priv * priv)1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
ipw2100_initialize_ordinals(struct ipw2100_priv * priv)1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
ipw2100_hw_set_gpio(struct ipw2100_priv * priv)1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
rf_kill_active(struct ipw2100_priv * priv)1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
ipw2100_get_hw_features(struct ipw2100_priv * priv)1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and initialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
ipw2100_start_adapter(struct ipw2100_priv * priv)1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w initialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
ipw2100_reset_fatalerror(struct ipw2100_priv * priv)1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
ipw2100_power_cycle_adapter(struct ipw2100_priv * priv)1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
ipw2100_hw_phy_off(struct ipw2100_priv * priv)1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
ipw2100_enable_adapter(struct ipw2100_priv * priv)1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
ipw2100_hw_stop_adapter(struct ipw2100_priv * priv)1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
ipw2100_disable_adapter(struct ipw2100_priv * priv)1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
ipw2100_set_scan_options(struct ipw2100_priv * priv)1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
ipw2100_start_scan(struct ipw2100_priv * priv)1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
ipw2100_up(struct ipw2100_priv * priv,int deferred)1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int err = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 err = ipw2100_power_cycle_adapter(priv);
1761 if (err) {
1762 printk(KERN_WARNING DRV_NAME
1763 ": %s: Could not cycle adapter.\n",
1764 priv->net_dev->name);
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 err = ipw2100_start_adapter(priv);
1772 if (err) {
1773 printk(KERN_ERR DRV_NAME
1774 ": %s: Failed to start the firmware.\n",
1775 priv->net_dev->name);
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 err = ipw2100_get_hw_features(priv);
1783 if (err) {
1784 printk(KERN_ERR DRV_NAME
1785 ": %s: Failed to determine HW features.\n",
1786 priv->net_dev->name);
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1796 if (err) {
1797 printk(KERN_ERR DRV_NAME
1798 ": %s: Failed to clear ordinal lock.\n",
1799 priv->net_dev->name);
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 err = ipw2100_adapter_setup(priv);
1824 if (err) {
1825 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1826 priv->net_dev->name);
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 err = ipw2100_enable_adapter(priv);
1833 if (err) {
1834 printk(KERN_ERR DRV_NAME ": "
1835 "%s: failed in call to enable adapter.\n",
1836 priv->net_dev->name);
1837 ipw2100_hw_stop_adapter(priv);
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return err;
1848 }
1849
ipw2100_down(struct ipw2100_priv * priv)1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
ipw2100_wdev_init(struct net_device * dev)1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1909
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916 bg_band->band = NL80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1924 }
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1943 }
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1947
1948 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949 }
1950
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1958 }
1959
ipw2100_reset_adapter(struct work_struct * work)1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1968 };
1969 int associated = priv->status & STATUS_ASSOCIATED;
1970
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1976
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1987
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
isr_indicate_associated(struct ipw2100_priv * priv,u32 status)1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2008
2009 /*
2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 * an actual MAC of the AP. Seems like FW sets this
2012 * address too late. Read it later and expose through
2013 * /proc or schedule a later task to query and update
2014 */
2015
2016 essid_len = IW_ESSID_MAX_SIZE;
2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 essid, &essid_len);
2019 if (ret) {
2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 __LINE__);
2022 return;
2023 }
2024
2025 len = sizeof(u32);
2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 if (ret) {
2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 __LINE__);
2030 return;
2031 }
2032
2033 len = sizeof(u32);
2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 if (ret) {
2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 __LINE__);
2038 return;
2039 }
2040 len = ETH_ALEN;
2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 &len);
2043 if (ret) {
2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 __LINE__);
2046 return;
2047 }
2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050 switch (txrate) {
2051 case TX_RATE_1_MBIT:
2052 txratename = "1Mbps";
2053 break;
2054 case TX_RATE_2_MBIT:
2055 txratename = "2Mbsp";
2056 break;
2057 case TX_RATE_5_5_MBIT:
2058 txratename = "5.5Mbps";
2059 break;
2060 case TX_RATE_11_MBIT:
2061 txratename = "11Mbps";
2062 break;
2063 default:
2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 txratename = "unknown rate";
2066 break;
2067 }
2068
2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 priv->net_dev->name, essid_len, essid,
2071 txratename, chan, bssid);
2072
2073 /* now we copy read ssid into dev */
2074 if (!(priv->config & CFG_STATIC_ESSID)) {
2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 memcpy(priv->essid, essid, priv->essid_len);
2077 }
2078 priv->channel = chan;
2079 memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081 priv->status |= STATUS_ASSOCIATING;
2082 priv->connect_start = ktime_get_boottime_seconds();
2083
2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
ipw2100_set_essid(struct ipw2100_priv * priv,char * essid,int length,int batch_mode)2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 int length, int batch_mode)
2089 {
2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 struct host_command cmd = {
2092 .host_command = SSID,
2093 .host_command_sequence = 0,
2094 .host_command_length = ssid_len
2095 };
2096 int err;
2097
2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100 if (ssid_len)
2101 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103 if (!batch_mode) {
2104 err = ipw2100_disable_adapter(priv);
2105 if (err)
2106 return err;
2107 }
2108
2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 * disable auto association -- so we cheat by setting a bogus SSID */
2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 int i;
2113 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 bogus[i] = 0x18 + i;
2116 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 }
2118
2119 /* NOTE: We always send the SSID command even if the provided ESSID is
2120 * the same as what we currently think is set. */
2121
2122 err = ipw2100_hw_send_command(priv, &cmd);
2123 if (!err) {
2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 memcpy(priv->essid, essid, ssid_len);
2126 priv->essid_len = ssid_len;
2127 }
2128
2129 if (!batch_mode) {
2130 if (ipw2100_enable_adapter(priv))
2131 err = -EIO;
2132 }
2133
2134 return err;
2135 }
2136
isr_indicate_association_lost(struct ipw2100_priv * priv,u32 status)2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 priv->bssid);
2142
2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145 if (priv->status & STATUS_STOPPING) {
2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 return;
2148 }
2149
2150 eth_zero_addr(priv->bssid);
2151 eth_zero_addr(priv->ieee->bssid);
2152
2153 netif_carrier_off(priv->net_dev);
2154 netif_stop_queue(priv->net_dev);
2155
2156 if (!(priv->status & STATUS_RUNNING))
2157 return;
2158
2159 if (priv->status & STATUS_SECURITY_UPDATED)
2160 schedule_delayed_work(&priv->security_work, 0);
2161
2162 schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
isr_indicate_rf_kill(struct ipw2100_priv * priv,u32 status)2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 priv->net_dev->name);
2169
2170 /* RF_KILL is now enabled (else we wouldn't be here) */
2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 priv->status |= STATUS_RF_KILL_HW;
2173
2174 /* Make sure the RF Kill check timer is running */
2175 priv->stop_rf_kill = 0;
2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
ipw2100_scan_event(struct work_struct * work)2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 scan_event.work);
2183 union iwreq_data wrqu;
2184
2185 wrqu.data.length = 0;
2186 wrqu.data.flags = 0;
2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
isr_scan_complete(struct ipw2100_priv * priv,u32 status)2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 IPW_DEBUG_SCAN("scan complete\n");
2193 /* Age the scan results... */
2194 priv->ieee->scans++;
2195 priv->status &= ~STATUS_SCANNING;
2196
2197 /* Only userspace-requested scan completion events go out immediately */
2198 if (!priv->user_requested_scan) {
2199 schedule_delayed_work(&priv->scan_event,
2200 round_jiffies_relative(msecs_to_jiffies(4000)));
2201 } else {
2202 priv->user_requested_scan = 0;
2203 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 int status;
2211 void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 int status;
2218 void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif /* CONFIG_IPW2100_DEBUG */
2221
isr_indicate_scanning(struct ipw2100_priv * priv,u32 status)2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 IPW_DEBUG_SCAN("Scanning...\n");
2225 priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 IPW2100_HANDLER(-1, NULL)
2242 };
2243
isr_status_change(struct ipw2100_priv * priv,int status)2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 int i;
2247
2248 if (status == IPW_STATE_SCANNING &&
2249 priv->status & STATUS_ASSOCIATED &&
2250 !(priv->status & STATUS_SCANNING)) {
2251 IPW_DEBUG_INFO("Scan detected while associated, with "
2252 "no scan request. Restarting firmware.\n");
2253
2254 /* Wake up any sleeping jobs */
2255 schedule_reset(priv);
2256 }
2257
2258 for (i = 0; status_handlers[i].status != -1; i++) {
2259 if (status == status_handlers[i].status) {
2260 IPW_DEBUG_NOTIF("Status change: %s\n",
2261 status_handlers[i].name);
2262 if (status_handlers[i].cb)
2263 status_handlers[i].cb(priv, status);
2264 priv->wstats.status = status;
2265 return;
2266 }
2267 }
2268
2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
isr_rx_complete_command(struct ipw2100_priv * priv,struct ipw2100_cmd_header * cmd)2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 command_types[cmd->host_command_reg],
2279 cmd->host_command_reg);
2280 }
2281 #endif
2282 if (cmd->host_command_reg == HOST_COMPLETE)
2283 priv->status |= STATUS_ENABLED;
2284
2285 if (cmd->host_command_reg == CARD_DISABLE)
2286 priv->status &= ~STATUS_ENABLED;
2287
2288 priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290 wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 "COMMAND_STATUS_VAL",
2296 "STATUS_CHANGE_VAL",
2297 "P80211_DATA_VAL",
2298 "P8023_DATA_VAL",
2299 "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
ipw2100_alloc_skb(struct ipw2100_priv * priv,struct ipw2100_rx_packet * packet)2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 struct ipw2100_rx_packet *packet)
2305 {
2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 if (!packet->skb)
2308 return -ENOMEM;
2309
2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 sizeof(struct ipw2100_rx),
2313 PCI_DMA_FROMDEVICE);
2314 if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315 dev_kfree_skb(packet->skb);
2316 return -ENOMEM;
2317 }
2318
2319 return 0;
2320 }
2321
2322 #define SEARCH_ERROR 0xffffffff
2323 #define SEARCH_FAIL 0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
ipw2100_snapshot_free(struct ipw2100_priv * priv)2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331 int i;
2332 if (!priv->snapshot[0])
2333 return;
2334 for (i = 0; i < 0x30; i++)
2335 kfree(priv->snapshot[i]);
2336 priv->snapshot[0] = NULL;
2337 }
2338
2339 #ifdef IPW2100_DEBUG_C3
ipw2100_snapshot_alloc(struct ipw2100_priv * priv)2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342 int i;
2343 if (priv->snapshot[0])
2344 return 1;
2345 for (i = 0; i < 0x30; i++) {
2346 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347 if (!priv->snapshot[i]) {
2348 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349 "buffer %d\n", priv->net_dev->name, i);
2350 while (i > 0)
2351 kfree(priv->snapshot[--i]);
2352 priv->snapshot[0] = NULL;
2353 return 0;
2354 }
2355 }
2356
2357 return 1;
2358 }
2359
ipw2100_match_buf(struct ipw2100_priv * priv,u8 * in_buf,size_t len,int mode)2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361 size_t len, int mode)
2362 {
2363 u32 i, j;
2364 u32 tmp;
2365 u8 *s, *d;
2366 u32 ret;
2367
2368 s = in_buf;
2369 if (mode == SEARCH_SNAPSHOT) {
2370 if (!ipw2100_snapshot_alloc(priv))
2371 mode = SEARCH_DISCARD;
2372 }
2373
2374 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375 read_nic_dword(priv->net_dev, i, &tmp);
2376 if (mode == SEARCH_SNAPSHOT)
2377 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378 if (ret == SEARCH_FAIL) {
2379 d = (u8 *) & tmp;
2380 for (j = 0; j < 4; j++) {
2381 if (*s != *d) {
2382 s = in_buf;
2383 continue;
2384 }
2385
2386 s++;
2387 d++;
2388
2389 if ((s - in_buf) == len)
2390 ret = (i + j) - len + 1;
2391 }
2392 } else if (mode == SEARCH_DISCARD)
2393 return ret;
2394 }
2395
2396 return ret;
2397 }
2398 #endif
2399
2400 /*
2401 *
2402 * 0) Disconnect the SKB from the firmware (just unmap)
2403 * 1) Pack the ETH header into the SKB
2404 * 2) Pass the SKB to the network stack
2405 *
2406 * When packet is provided by the firmware, it contains the following:
2407 *
2408 * . libipw_hdr
2409 * . libipw_snap_hdr
2410 *
2411 * The size of the constructed ethernet
2412 *
2413 */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417
ipw2100_corruption_detected(struct ipw2100_priv * priv,int i)2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421 struct ipw2100_status *status = &priv->status_queue.drv[i];
2422 u32 match, reg;
2423 int j;
2424 #endif
2425
2426 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427 i * sizeof(struct ipw2100_status));
2428
2429 #ifdef IPW2100_DEBUG_C3
2430 /* Halt the firmware so we can get a good image */
2431 write_register(priv->net_dev, IPW_REG_RESET_REG,
2432 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433 j = 5;
2434 do {
2435 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2437
2438 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439 break;
2440 } while (j--);
2441
2442 match = ipw2100_match_buf(priv, (u8 *) status,
2443 sizeof(struct ipw2100_status),
2444 SEARCH_SNAPSHOT);
2445 if (match < SEARCH_SUCCESS)
2446 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447 "offset 0x%06X, length %d:\n",
2448 priv->net_dev->name, match,
2449 sizeof(struct ipw2100_status));
2450 else
2451 IPW_DEBUG_INFO("%s: No DMA status match in "
2452 "Firmware.\n", priv->net_dev->name);
2453
2454 printk_buf((u8 *) priv->status_queue.drv,
2455 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457
2458 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459 priv->net_dev->stats.rx_errors++;
2460 schedule_reset(priv);
2461 }
2462
isr_rx(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464 struct libipw_rx_stats *stats)
2465 {
2466 struct net_device *dev = priv->net_dev;
2467 struct ipw2100_status *status = &priv->status_queue.drv[i];
2468 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470 IPW_DEBUG_RX("Handler...\n");
2471
2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474 " Dropping.\n",
2475 dev->name,
2476 status->frame_size, skb_tailroom(packet->skb));
2477 dev->stats.rx_errors++;
2478 return;
2479 }
2480
2481 if (unlikely(!netif_running(dev))) {
2482 dev->stats.rx_errors++;
2483 priv->wstats.discard.misc++;
2484 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485 return;
2486 }
2487
2488 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489 !(priv->status & STATUS_ASSOCIATED))) {
2490 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491 priv->wstats.discard.misc++;
2492 return;
2493 }
2494
2495 pci_unmap_single(priv->pci_dev,
2496 packet->dma_addr,
2497 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498
2499 skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502 /* Make a copy of the frame so we can dump it to the logs if
2503 * libipw_rx fails */
2504 skb_copy_from_linear_data(packet->skb, packet_data,
2505 min_t(u32, status->frame_size,
2506 IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512 dev->name);
2513 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515 dev->stats.rx_errors++;
2516
2517 /* libipw_rx failed, so it didn't free the SKB */
2518 dev_kfree_skb_any(packet->skb);
2519 packet->skb = NULL;
2520 }
2521
2522 /* We need to allocate a new SKB and attach it to the RDB. */
2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524 printk(KERN_WARNING DRV_NAME ": "
2525 "%s: Unable to allocate SKB onto RBD ring - disabling "
2526 "adapter.\n", dev->name);
2527 /* TODO: schedule adapter shutdown */
2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529 }
2530
2531 /* Update the RDB entry */
2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
isr_rx_monitor(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538 struct libipw_rx_stats *stats)
2539 {
2540 struct net_device *dev = priv->net_dev;
2541 struct ipw2100_status *status = &priv->status_queue.drv[i];
2542 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544 /* Magic struct that slots into the radiotap header -- no reason
2545 * to build this manually element by element, we can write it much
2546 * more efficiently than we can parse it. ORDER MATTERS HERE */
2547 struct ipw_rt_hdr {
2548 struct ieee80211_radiotap_header rt_hdr;
2549 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550 } *ipw_rt;
2551
2552 IPW_DEBUG_RX("Handler...\n");
2553
2554 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555 sizeof(struct ipw_rt_hdr))) {
2556 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557 " Dropping.\n",
2558 dev->name,
2559 status->frame_size,
2560 skb_tailroom(packet->skb));
2561 dev->stats.rx_errors++;
2562 return;
2563 }
2564
2565 if (unlikely(!netif_running(dev))) {
2566 dev->stats.rx_errors++;
2567 priv->wstats.discard.misc++;
2568 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569 return;
2570 }
2571
2572 if (unlikely(priv->config & CFG_CRC_CHECK &&
2573 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2575 dev->stats.rx_errors++;
2576 return;
2577 }
2578
2579 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582 packet->skb->data, status->frame_size);
2583
2584 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597 dev->stats.rx_errors++;
2598
2599 /* libipw_rx failed, so it didn't free the SKB */
2600 dev_kfree_skb_any(packet->skb);
2601 packet->skb = NULL;
2602 }
2603
2604 /* We need to allocate a new SKB and attach it to the RDB. */
2605 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606 IPW_DEBUG_WARNING(
2607 "%s: Unable to allocate SKB onto RBD ring - disabling "
2608 "adapter.\n", dev->name);
2609 /* TODO: schedule adapter shutdown */
2610 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611 }
2612
2613 /* Update the RDB entry */
2614 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
ipw2100_corruption_check(struct ipw2100_priv * priv,int i)2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621 struct ipw2100_status *status = &priv->status_queue.drv[i];
2622 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625 switch (frame_type) {
2626 case COMMAND_STATUS_VAL:
2627 return (status->frame_size != sizeof(u->rx_data.command));
2628 case STATUS_CHANGE_VAL:
2629 return (status->frame_size != sizeof(u->rx_data.status));
2630 case HOST_NOTIFICATION_VAL:
2631 return (status->frame_size < sizeof(u->rx_data.notification));
2632 case P80211_DATA_VAL:
2633 case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635 return 0;
2636 #else
2637 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638 case IEEE80211_FTYPE_MGMT:
2639 case IEEE80211_FTYPE_CTL:
2640 return 0;
2641 case IEEE80211_FTYPE_DATA:
2642 return (status->frame_size >
2643 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644 }
2645 #endif
2646 }
2647
2648 return 1;
2649 }
2650
2651 /*
2652 * ipw2100 interrupts are disabled at this point, and the ISR
2653 * is the only code that calls this method. So, we do not need
2654 * to play with any locks.
2655 *
2656 * RX Queue works as follows:
2657 *
2658 * Read index - firmware places packet in entry identified by the
2659 * Read index and advances Read index. In this manner,
2660 * Read index will always point to the next packet to
2661 * be filled--but not yet valid.
2662 *
2663 * Write index - driver fills this entry with an unused RBD entry.
2664 * This entry has not filled by the firmware yet.
2665 *
2666 * In between the W and R indexes are the RBDs that have been received
2667 * but not yet processed.
2668 *
2669 * The process of handling packets will start at WRITE + 1 and advance
2670 * until it reaches the READ index.
2671 *
2672 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673 *
2674 */
__ipw2100_rx_process(struct ipw2100_priv * priv)2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678 struct ipw2100_status_queue *sq = &priv->status_queue;
2679 struct ipw2100_rx_packet *packet;
2680 u16 frame_type;
2681 u32 r, w, i, s;
2682 struct ipw2100_rx *u;
2683 struct libipw_rx_stats stats = {
2684 .mac_time = jiffies,
2685 };
2686
2687 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690 if (r >= rxq->entries) {
2691 IPW_DEBUG_RX("exit - bad read index\n");
2692 return;
2693 }
2694
2695 i = (rxq->next + 1) % rxq->entries;
2696 s = i;
2697 while (i != r) {
2698 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699 r, rxq->next, i); */
2700
2701 packet = &priv->rx_buffers[i];
2702
2703 /* Sync the DMA for the RX buffer so CPU is sure to get
2704 * the correct values */
2705 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706 sizeof(struct ipw2100_rx),
2707 PCI_DMA_FROMDEVICE);
2708
2709 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710 ipw2100_corruption_detected(priv, i);
2711 goto increment;
2712 }
2713
2714 u = packet->rxp;
2715 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717 stats.len = sq->drv[i].frame_size;
2718
2719 stats.mask = 0;
2720 if (stats.rssi != 0)
2721 stats.mask |= LIBIPW_STATMASK_RSSI;
2722 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725 priv->net_dev->name, frame_types[frame_type],
2726 stats.len);
2727
2728 switch (frame_type) {
2729 case COMMAND_STATUS_VAL:
2730 /* Reset Rx watchdog */
2731 isr_rx_complete_command(priv, &u->rx_data.command);
2732 break;
2733
2734 case STATUS_CHANGE_VAL:
2735 isr_status_change(priv, u->rx_data.status);
2736 break;
2737
2738 case P80211_DATA_VAL:
2739 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742 isr_rx_monitor(priv, i, &stats);
2743 break;
2744 }
2745 #endif
2746 if (stats.len < sizeof(struct libipw_hdr_3addr))
2747 break;
2748 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749 case IEEE80211_FTYPE_MGMT:
2750 libipw_rx_mgt(priv->ieee,
2751 &u->rx_data.header, &stats);
2752 break;
2753
2754 case IEEE80211_FTYPE_CTL:
2755 break;
2756
2757 case IEEE80211_FTYPE_DATA:
2758 isr_rx(priv, i, &stats);
2759 break;
2760
2761 }
2762 break;
2763 }
2764
2765 increment:
2766 /* clear status field associated with this RBD */
2767 rxq->drv[i].status.info.field = 0;
2768
2769 i = (i + 1) % rxq->entries;
2770 }
2771
2772 if (i != s) {
2773 /* backtrack one entry, wrapping to end if at 0 */
2774 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776 write_register(priv->net_dev,
2777 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778 }
2779 }
2780
2781 /*
2782 * __ipw2100_tx_process
2783 *
2784 * This routine will determine whether the next packet on
2785 * the fw_pend_list has been processed by the firmware yet.
2786 *
2787 * If not, then it does nothing and returns.
2788 *
2789 * If so, then it removes the item from the fw_pend_list, frees
2790 * any associated storage, and places the item back on the
2791 * free list of its source (either msg_free_list or tx_free_list)
2792 *
2793 * TX Queue works as follows:
2794 *
2795 * Read index - points to the next TBD that the firmware will
2796 * process. The firmware will read the data, and once
2797 * done processing, it will advance the Read index.
2798 *
2799 * Write index - driver fills this entry with an constructed TBD
2800 * entry. The Write index is not advanced until the
2801 * packet has been configured.
2802 *
2803 * In between the W and R indexes are the TBDs that have NOT been
2804 * processed. Lagging behind the R index are packets that have
2805 * been processed but have not been freed by the driver.
2806 *
2807 * In order to free old storage, an internal index will be maintained
2808 * that points to the next packet to be freed. When all used
2809 * packets have been freed, the oldest index will be the same as the
2810 * firmware's read index.
2811 *
2812 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813 *
2814 * Because the TBD structure can not contain arbitrary data, the
2815 * driver must keep an internal queue of cached allocations such that
2816 * it can put that data back into the tx_free_list and msg_free_list
2817 * for use by future command and data packets.
2818 *
2819 */
__ipw2100_tx_process(struct ipw2100_priv * priv)2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823 struct ipw2100_bd *tbd;
2824 struct list_head *element;
2825 struct ipw2100_tx_packet *packet;
2826 int descriptors_used;
2827 int e, i;
2828 u32 r, w, frag_num = 0;
2829
2830 if (list_empty(&priv->fw_pend_list))
2831 return 0;
2832
2833 element = priv->fw_pend_list.next;
2834
2835 packet = list_entry(element, struct ipw2100_tx_packet, list);
2836 tbd = &txq->drv[packet->index];
2837
2838 /* Determine how many TBD entries must be finished... */
2839 switch (packet->type) {
2840 case COMMAND:
2841 /* COMMAND uses only one slot; don't advance */
2842 descriptors_used = 1;
2843 e = txq->oldest;
2844 break;
2845
2846 case DATA:
2847 /* DATA uses two slots; advance and loop position. */
2848 descriptors_used = tbd->num_fragments;
2849 frag_num = tbd->num_fragments - 1;
2850 e = txq->oldest + frag_num;
2851 e %= txq->entries;
2852 break;
2853
2854 default:
2855 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856 priv->net_dev->name);
2857 return 0;
2858 }
2859
2860 /* if the last TBD is not done by NIC yet, then packet is
2861 * not ready to be released.
2862 *
2863 */
2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865 &r);
2866 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867 &w);
2868 if (w != txq->next)
2869 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870 priv->net_dev->name);
2871
2872 /*
2873 * txq->next is the index of the last packet written txq->oldest is
2874 * the index of the r is the index of the next packet to be read by
2875 * firmware
2876 */
2877
2878 /*
2879 * Quick graphic to help you visualize the following
2880 * if / else statement
2881 *
2882 * ===>| s---->|===============
2883 * e>|
2884 * | a | b | c | d | e | f | g | h | i | j | k | l
2885 * r---->|
2886 * w
2887 *
2888 * w - updated by driver
2889 * r - updated by firmware
2890 * s - start of oldest BD entry (txq->oldest)
2891 * e - end of oldest BD entry
2892 *
2893 */
2894 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896 return 0;
2897 }
2898
2899 list_del(element);
2900 DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903 {
2904 i = txq->oldest;
2905 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906 &txq->drv[i],
2907 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908 txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910 if (packet->type == DATA) {
2911 i = (i + 1) % txq->entries;
2912
2913 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914 &txq->drv[i],
2915 (u32) (txq->nic + i *
2916 sizeof(struct ipw2100_bd)),
2917 (u32) txq->drv[i].host_addr,
2918 txq->drv[i].buf_length);
2919 }
2920 }
2921 #endif
2922
2923 switch (packet->type) {
2924 case DATA:
2925 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2927 "Expecting DATA TBD but pulled "
2928 "something else: ids %d=%d.\n",
2929 priv->net_dev->name, txq->oldest, packet->index);
2930
2931 /* DATA packet; we have to unmap and free the SKB */
2932 for (i = 0; i < frag_num; i++) {
2933 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936 (packet->index + 1 + i) % txq->entries,
2937 tbd->host_addr, tbd->buf_length);
2938
2939 pci_unmap_single(priv->pci_dev,
2940 tbd->host_addr,
2941 tbd->buf_length, PCI_DMA_TODEVICE);
2942 }
2943
2944 libipw_txb_free(packet->info.d_struct.txb);
2945 packet->info.d_struct.txb = NULL;
2946
2947 list_add_tail(element, &priv->tx_free_list);
2948 INC_STAT(&priv->tx_free_stat);
2949
2950 /* We have a free slot in the Tx queue, so wake up the
2951 * transmit layer if it is stopped. */
2952 if (priv->status & STATUS_ASSOCIATED)
2953 netif_wake_queue(priv->net_dev);
2954
2955 /* A packet was processed by the hardware, so update the
2956 * watchdog */
2957 netif_trans_update(priv->net_dev);
2958
2959 break;
2960
2961 case COMMAND:
2962 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2964 "Expecting COMMAND TBD but pulled "
2965 "something else: ids %d=%d.\n",
2966 priv->net_dev->name, txq->oldest, packet->index);
2967
2968 #ifdef CONFIG_IPW2100_DEBUG
2969 if (packet->info.c_struct.cmd->host_command_reg <
2970 ARRAY_SIZE(command_types))
2971 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972 command_types[packet->info.c_struct.cmd->
2973 host_command_reg],
2974 packet->info.c_struct.cmd->
2975 host_command_reg,
2976 packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978
2979 list_add_tail(element, &priv->msg_free_list);
2980 INC_STAT(&priv->msg_free_stat);
2981 break;
2982 }
2983
2984 /* advance oldest used TBD pointer to start of next entry */
2985 txq->oldest = (e + 1) % txq->entries;
2986 /* increase available TBDs number */
2987 txq->available += descriptors_used;
2988 SET_STAT(&priv->txq_stat, txq->available);
2989
2990 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2991 jiffies - packet->jiffy_start);
2992
2993 return (!list_empty(&priv->fw_pend_list));
2994 }
2995
__ipw2100_tx_complete(struct ipw2100_priv * priv)2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998 int i = 0;
2999
3000 while (__ipw2100_tx_process(priv) && i < 200)
3001 i++;
3002
3003 if (i == 200) {
3004 printk(KERN_WARNING DRV_NAME ": "
3005 "%s: Driver is running slow (%d iters).\n",
3006 priv->net_dev->name, i);
3007 }
3008 }
3009
ipw2100_tx_send_commands(struct ipw2100_priv * priv)3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012 struct list_head *element;
3013 struct ipw2100_tx_packet *packet;
3014 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015 struct ipw2100_bd *tbd;
3016 int next = txq->next;
3017
3018 while (!list_empty(&priv->msg_pend_list)) {
3019 /* if there isn't enough space in TBD queue, then
3020 * don't stuff a new one in.
3021 * NOTE: 3 are needed as a command will take one,
3022 * and there is a minimum of 2 that must be
3023 * maintained between the r and w indexes
3024 */
3025 if (txq->available <= 3) {
3026 IPW_DEBUG_TX("no room in tx_queue\n");
3027 break;
3028 }
3029
3030 element = priv->msg_pend_list.next;
3031 list_del(element);
3032 DEC_STAT(&priv->msg_pend_stat);
3033
3034 packet = list_entry(element, struct ipw2100_tx_packet, list);
3035
3036 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037 &txq->drv[txq->next],
3038 (u32) (txq->nic + txq->next *
3039 sizeof(struct ipw2100_bd)));
3040
3041 packet->index = txq->next;
3042
3043 tbd = &txq->drv[txq->next];
3044
3045 /* initialize TBD */
3046 tbd->host_addr = packet->info.c_struct.cmd_phys;
3047 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048 /* not marking number of fragments causes problems
3049 * with f/w debug version */
3050 tbd->num_fragments = 1;
3051 tbd->status.info.field =
3052 IPW_BD_STATUS_TX_FRAME_COMMAND |
3053 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054
3055 /* update TBD queue counters */
3056 txq->next++;
3057 txq->next %= txq->entries;
3058 txq->available--;
3059 DEC_STAT(&priv->txq_stat);
3060
3061 list_add_tail(element, &priv->fw_pend_list);
3062 INC_STAT(&priv->fw_pend_stat);
3063 }
3064
3065 if (txq->next != next) {
3066 /* kick off the DMA by notifying firmware the
3067 * write index has moved; make sure TBD stores are sync'd */
3068 wmb();
3069 write_register(priv->net_dev,
3070 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071 txq->next);
3072 }
3073 }
3074
3075 /*
3076 * ipw2100_tx_send_data
3077 *
3078 */
ipw2100_tx_send_data(struct ipw2100_priv * priv)3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081 struct list_head *element;
3082 struct ipw2100_tx_packet *packet;
3083 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084 struct ipw2100_bd *tbd;
3085 int next = txq->next;
3086 int i = 0;
3087 struct ipw2100_data_header *ipw_hdr;
3088 struct libipw_hdr_3addr *hdr;
3089
3090 while (!list_empty(&priv->tx_pend_list)) {
3091 /* if there isn't enough space in TBD queue, then
3092 * don't stuff a new one in.
3093 * NOTE: 4 are needed as a data will take two,
3094 * and there is a minimum of 2 that must be
3095 * maintained between the r and w indexes
3096 */
3097 element = priv->tx_pend_list.next;
3098 packet = list_entry(element, struct ipw2100_tx_packet, list);
3099
3100 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101 IPW_MAX_BDS)) {
3102 /* TODO: Support merging buffers if more than
3103 * IPW_MAX_BDS are used */
3104 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3105 "Increase fragmentation level.\n",
3106 priv->net_dev->name);
3107 }
3108
3109 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110 IPW_DEBUG_TX("no room in tx_queue\n");
3111 break;
3112 }
3113
3114 list_del(element);
3115 DEC_STAT(&priv->tx_pend_stat);
3116
3117 tbd = &txq->drv[txq->next];
3118
3119 packet->index = txq->next;
3120
3121 ipw_hdr = packet->info.d_struct.data;
3122 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123 fragments[0]->data;
3124
3125 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126 /* To DS: Addr1 = BSSID, Addr2 = SA,
3127 Addr3 = DA */
3128 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3132 Addr3 = BSSID */
3133 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135 }
3136
3137 ipw_hdr->host_command_reg = SEND;
3138 ipw_hdr->host_command_reg1 = 0;
3139
3140 /* For now we only support host based encryption */
3141 ipw_hdr->needs_encryption = 0;
3142 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143 if (packet->info.d_struct.txb->nr_frags > 1)
3144 ipw_hdr->fragment_size =
3145 packet->info.d_struct.txb->frag_size -
3146 LIBIPW_3ADDR_LEN;
3147 else
3148 ipw_hdr->fragment_size = 0;
3149
3150 tbd->host_addr = packet->info.d_struct.data_phys;
3151 tbd->buf_length = sizeof(struct ipw2100_data_header);
3152 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153 tbd->status.info.field =
3154 IPW_BD_STATUS_TX_FRAME_802_3 |
3155 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156 txq->next++;
3157 txq->next %= txq->entries;
3158
3159 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160 packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162 if (packet->info.d_struct.txb->nr_frags > 1)
3163 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164 packet->info.d_struct.txb->nr_frags);
3165 #endif
3166
3167 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168 tbd = &txq->drv[txq->next];
3169 if (i == packet->info.d_struct.txb->nr_frags - 1)
3170 tbd->status.info.field =
3171 IPW_BD_STATUS_TX_FRAME_802_3 |
3172 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173 else
3174 tbd->status.info.field =
3175 IPW_BD_STATUS_TX_FRAME_802_3 |
3176 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177
3178 tbd->buf_length = packet->info.d_struct.txb->
3179 fragments[i]->len - LIBIPW_3ADDR_LEN;
3180
3181 tbd->host_addr = pci_map_single(priv->pci_dev,
3182 packet->info.d_struct.
3183 txb->fragments[i]->
3184 data +
3185 LIBIPW_3ADDR_LEN,
3186 tbd->buf_length,
3187 PCI_DMA_TODEVICE);
3188 if (pci_dma_mapping_error(priv->pci_dev,
3189 tbd->host_addr)) {
3190 IPW_DEBUG_TX("dma mapping error\n");
3191 break;
3192 }
3193
3194 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195 txq->next, tbd->host_addr,
3196 tbd->buf_length);
3197
3198 pci_dma_sync_single_for_device(priv->pci_dev,
3199 tbd->host_addr,
3200 tbd->buf_length,
3201 PCI_DMA_TODEVICE);
3202
3203 txq->next++;
3204 txq->next %= txq->entries;
3205 }
3206
3207 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208 SET_STAT(&priv->txq_stat, txq->available);
3209
3210 list_add_tail(element, &priv->fw_pend_list);
3211 INC_STAT(&priv->fw_pend_stat);
3212 }
3213
3214 if (txq->next != next) {
3215 /* kick off the DMA by notifying firmware the
3216 * write index has moved; make sure TBD stores are sync'd */
3217 write_register(priv->net_dev,
3218 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219 txq->next);
3220 }
3221 }
3222
ipw2100_irq_tasklet(struct ipw2100_priv * priv)3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3224 {
3225 struct net_device *dev = priv->net_dev;
3226 unsigned long flags;
3227 u32 inta, tmp;
3228
3229 spin_lock_irqsave(&priv->low_lock, flags);
3230 ipw2100_disable_interrupts(priv);
3231
3232 read_register(dev, IPW_REG_INTA, &inta);
3233
3234 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3235 (unsigned long)inta & IPW_INTERRUPT_MASK);
3236
3237 priv->in_isr++;
3238 priv->interrupts++;
3239
3240 /* We do not loop and keep polling for more interrupts as this
3241 * is frowned upon and doesn't play nicely with other potentially
3242 * chained IRQs */
3243 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3244 (unsigned long)inta & IPW_INTERRUPT_MASK);
3245
3246 if (inta & IPW2100_INTA_FATAL_ERROR) {
3247 printk(KERN_WARNING DRV_NAME
3248 ": Fatal interrupt. Scheduling firmware restart.\n");
3249 priv->inta_other++;
3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3251
3252 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3253 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3254 priv->net_dev->name, priv->fatal_error);
3255
3256 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3257 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3258 priv->net_dev->name, tmp);
3259
3260 /* Wake up any sleeping jobs */
3261 schedule_reset(priv);
3262 }
3263
3264 if (inta & IPW2100_INTA_PARITY_ERROR) {
3265 printk(KERN_ERR DRV_NAME
3266 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3267 priv->inta_other++;
3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3269 }
3270
3271 if (inta & IPW2100_INTA_RX_TRANSFER) {
3272 IPW_DEBUG_ISR("RX interrupt\n");
3273
3274 priv->rx_interrupts++;
3275
3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3277
3278 __ipw2100_rx_process(priv);
3279 __ipw2100_tx_complete(priv);
3280 }
3281
3282 if (inta & IPW2100_INTA_TX_TRANSFER) {
3283 IPW_DEBUG_ISR("TX interrupt\n");
3284
3285 priv->tx_interrupts++;
3286
3287 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3288
3289 __ipw2100_tx_complete(priv);
3290 ipw2100_tx_send_commands(priv);
3291 ipw2100_tx_send_data(priv);
3292 }
3293
3294 if (inta & IPW2100_INTA_TX_COMPLETE) {
3295 IPW_DEBUG_ISR("TX complete\n");
3296 priv->inta_other++;
3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3298
3299 __ipw2100_tx_complete(priv);
3300 }
3301
3302 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3303 /* ipw2100_handle_event(dev); */
3304 priv->inta_other++;
3305 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3306 }
3307
3308 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3309 IPW_DEBUG_ISR("FW init done interrupt\n");
3310 priv->inta_other++;
3311
3312 read_register(dev, IPW_REG_INTA, &tmp);
3313 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3314 IPW2100_INTA_PARITY_ERROR)) {
3315 write_register(dev, IPW_REG_INTA,
3316 IPW2100_INTA_FATAL_ERROR |
3317 IPW2100_INTA_PARITY_ERROR);
3318 }
3319
3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3321 }
3322
3323 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3324 IPW_DEBUG_ISR("Status change interrupt\n");
3325 priv->inta_other++;
3326 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3327 }
3328
3329 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3330 IPW_DEBUG_ISR("slave host mode interrupt\n");
3331 priv->inta_other++;
3332 write_register(dev, IPW_REG_INTA,
3333 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3334 }
3335
3336 priv->in_isr--;
3337 ipw2100_enable_interrupts(priv);
3338
3339 spin_unlock_irqrestore(&priv->low_lock, flags);
3340
3341 IPW_DEBUG_ISR("exit\n");
3342 }
3343
ipw2100_interrupt(int irq,void * data)3344 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3345 {
3346 struct ipw2100_priv *priv = data;
3347 u32 inta, inta_mask;
3348
3349 if (!data)
3350 return IRQ_NONE;
3351
3352 spin_lock(&priv->low_lock);
3353
3354 /* We check to see if we should be ignoring interrupts before
3355 * we touch the hardware. During ucode load if we try and handle
3356 * an interrupt we can cause keyboard problems as well as cause
3357 * the ucode to fail to initialize */
3358 if (!(priv->status & STATUS_INT_ENABLED)) {
3359 /* Shared IRQ */
3360 goto none;
3361 }
3362
3363 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3364 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3365
3366 if (inta == 0xFFFFFFFF) {
3367 /* Hardware disappeared */
3368 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3369 goto none;
3370 }
3371
3372 inta &= IPW_INTERRUPT_MASK;
3373
3374 if (!(inta & inta_mask)) {
3375 /* Shared interrupt */
3376 goto none;
3377 }
3378
3379 /* We disable the hardware interrupt here just to prevent unneeded
3380 * calls to be made. We disable this again within the actual
3381 * work tasklet, so if another part of the code re-enables the
3382 * interrupt, that is fine */
3383 ipw2100_disable_interrupts(priv);
3384
3385 tasklet_schedule(&priv->irq_tasklet);
3386 spin_unlock(&priv->low_lock);
3387
3388 return IRQ_HANDLED;
3389 none:
3390 spin_unlock(&priv->low_lock);
3391 return IRQ_NONE;
3392 }
3393
ipw2100_tx(struct libipw_txb * txb,struct net_device * dev,int pri)3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3395 struct net_device *dev, int pri)
3396 {
3397 struct ipw2100_priv *priv = libipw_priv(dev);
3398 struct list_head *element;
3399 struct ipw2100_tx_packet *packet;
3400 unsigned long flags;
3401
3402 spin_lock_irqsave(&priv->low_lock, flags);
3403
3404 if (!(priv->status & STATUS_ASSOCIATED)) {
3405 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3406 priv->net_dev->stats.tx_carrier_errors++;
3407 netif_stop_queue(dev);
3408 goto fail_unlock;
3409 }
3410
3411 if (list_empty(&priv->tx_free_list))
3412 goto fail_unlock;
3413
3414 element = priv->tx_free_list.next;
3415 packet = list_entry(element, struct ipw2100_tx_packet, list);
3416
3417 packet->info.d_struct.txb = txb;
3418
3419 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3420 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3421
3422 packet->jiffy_start = jiffies;
3423
3424 list_del(element);
3425 DEC_STAT(&priv->tx_free_stat);
3426
3427 list_add_tail(element, &priv->tx_pend_list);
3428 INC_STAT(&priv->tx_pend_stat);
3429
3430 ipw2100_tx_send_data(priv);
3431
3432 spin_unlock_irqrestore(&priv->low_lock, flags);
3433 return NETDEV_TX_OK;
3434
3435 fail_unlock:
3436 netif_stop_queue(dev);
3437 spin_unlock_irqrestore(&priv->low_lock, flags);
3438 return NETDEV_TX_BUSY;
3439 }
3440
ipw2100_msg_allocate(struct ipw2100_priv * priv)3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3442 {
3443 int i, j, err = -EINVAL;
3444 void *v;
3445 dma_addr_t p;
3446
3447 priv->msg_buffers =
3448 kmalloc_array(IPW_COMMAND_POOL_SIZE,
3449 sizeof(struct ipw2100_tx_packet),
3450 GFP_KERNEL);
3451 if (!priv->msg_buffers)
3452 return -ENOMEM;
3453
3454 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3455 v = pci_zalloc_consistent(priv->pci_dev,
3456 sizeof(struct ipw2100_cmd_header),
3457 &p);
3458 if (!v) {
3459 printk(KERN_ERR DRV_NAME ": "
3460 "%s: PCI alloc failed for msg "
3461 "buffers.\n", priv->net_dev->name);
3462 err = -ENOMEM;
3463 break;
3464 }
3465
3466 priv->msg_buffers[i].type = COMMAND;
3467 priv->msg_buffers[i].info.c_struct.cmd =
3468 (struct ipw2100_cmd_header *)v;
3469 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3470 }
3471
3472 if (i == IPW_COMMAND_POOL_SIZE)
3473 return 0;
3474
3475 for (j = 0; j < i; j++) {
3476 pci_free_consistent(priv->pci_dev,
3477 sizeof(struct ipw2100_cmd_header),
3478 priv->msg_buffers[j].info.c_struct.cmd,
3479 priv->msg_buffers[j].info.c_struct.
3480 cmd_phys);
3481 }
3482
3483 kfree(priv->msg_buffers);
3484 priv->msg_buffers = NULL;
3485
3486 return err;
3487 }
3488
ipw2100_msg_initialize(struct ipw2100_priv * priv)3489 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3490 {
3491 int i;
3492
3493 INIT_LIST_HEAD(&priv->msg_free_list);
3494 INIT_LIST_HEAD(&priv->msg_pend_list);
3495
3496 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3497 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3498 SET_STAT(&priv->msg_free_stat, i);
3499
3500 return 0;
3501 }
3502
ipw2100_msg_free(struct ipw2100_priv * priv)3503 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3504 {
3505 int i;
3506
3507 if (!priv->msg_buffers)
3508 return;
3509
3510 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3511 pci_free_consistent(priv->pci_dev,
3512 sizeof(struct ipw2100_cmd_header),
3513 priv->msg_buffers[i].info.c_struct.cmd,
3514 priv->msg_buffers[i].info.c_struct.
3515 cmd_phys);
3516 }
3517
3518 kfree(priv->msg_buffers);
3519 priv->msg_buffers = NULL;
3520 }
3521
show_pci(struct device * d,struct device_attribute * attr,char * buf)3522 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3523 char *buf)
3524 {
3525 struct pci_dev *pci_dev = to_pci_dev(d);
3526 char *out = buf;
3527 int i, j;
3528 u32 val;
3529
3530 for (i = 0; i < 16; i++) {
3531 out += sprintf(out, "[%08X] ", i * 16);
3532 for (j = 0; j < 16; j += 4) {
3533 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3534 out += sprintf(out, "%08X ", val);
3535 }
3536 out += sprintf(out, "\n");
3537 }
3538
3539 return out - buf;
3540 }
3541
3542 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3543
show_cfg(struct device * d,struct device_attribute * attr,char * buf)3544 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3545 char *buf)
3546 {
3547 struct ipw2100_priv *p = dev_get_drvdata(d);
3548 return sprintf(buf, "0x%08x\n", (int)p->config);
3549 }
3550
3551 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3552
show_status(struct device * d,struct device_attribute * attr,char * buf)3553 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3554 char *buf)
3555 {
3556 struct ipw2100_priv *p = dev_get_drvdata(d);
3557 return sprintf(buf, "0x%08x\n", (int)p->status);
3558 }
3559
3560 static DEVICE_ATTR(status, 0444, show_status, NULL);
3561
show_capability(struct device * d,struct device_attribute * attr,char * buf)3562 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3563 char *buf)
3564 {
3565 struct ipw2100_priv *p = dev_get_drvdata(d);
3566 return sprintf(buf, "0x%08x\n", (int)p->capability);
3567 }
3568
3569 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3570
3571 #define IPW2100_REG(x) { IPW_ ##x, #x }
3572 static const struct {
3573 u32 addr;
3574 const char *name;
3575 } hw_data[] = {
3576 IPW2100_REG(REG_GP_CNTRL),
3577 IPW2100_REG(REG_GPIO),
3578 IPW2100_REG(REG_INTA),
3579 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3580 #define IPW2100_NIC(x, s) { x, #x, s }
3581 static const struct {
3582 u32 addr;
3583 const char *name;
3584 size_t size;
3585 } nic_data[] = {
3586 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3587 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3588 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3589 static const struct {
3590 u8 index;
3591 const char *name;
3592 const char *desc;
3593 } ord_data[] = {
3594 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3595 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3596 "successful Host Tx's (MSDU)"),
3597 IPW2100_ORD(STAT_TX_DIR_DATA,
3598 "successful Directed Tx's (MSDU)"),
3599 IPW2100_ORD(STAT_TX_DIR_DATA1,
3600 "successful Directed Tx's (MSDU) @ 1MB"),
3601 IPW2100_ORD(STAT_TX_DIR_DATA2,
3602 "successful Directed Tx's (MSDU) @ 2MB"),
3603 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3604 "successful Directed Tx's (MSDU) @ 5_5MB"),
3605 IPW2100_ORD(STAT_TX_DIR_DATA11,
3606 "successful Directed Tx's (MSDU) @ 11MB"),
3607 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3608 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3609 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3610 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3611 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3612 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3613 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3614 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3615 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3616 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3617 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3618 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3619 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3620 IPW2100_ORD(STAT_TX_ASSN_RESP,
3621 "successful Association response Tx's"),
3622 IPW2100_ORD(STAT_TX_REASSN,
3623 "successful Reassociation Tx's"),
3624 IPW2100_ORD(STAT_TX_REASSN_RESP,
3625 "successful Reassociation response Tx's"),
3626 IPW2100_ORD(STAT_TX_PROBE,
3627 "probes successfully transmitted"),
3628 IPW2100_ORD(STAT_TX_PROBE_RESP,
3629 "probe responses successfully transmitted"),
3630 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3631 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3632 IPW2100_ORD(STAT_TX_DISASSN,
3633 "successful Disassociation TX"),
3634 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3635 IPW2100_ORD(STAT_TX_DEAUTH,
3636 "successful Deauthentication TX"),
3637 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3638 "Total successful Tx data bytes"),
3639 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3640 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3641 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3642 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3643 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3644 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3645 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3646 "times max tries in a hop failed"),
3647 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3648 "times disassociation failed"),
3649 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3650 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3651 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3652 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3653 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3654 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3655 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3656 "directed packets at 5.5MB"),
3657 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3658 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3659 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3660 "nondirected packets at 1MB"),
3661 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3662 "nondirected packets at 2MB"),
3663 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3664 "nondirected packets at 5.5MB"),
3665 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3666 "nondirected packets at 11MB"),
3667 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3668 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3669 "Rx CTS"),
3670 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3671 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3672 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3673 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3674 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3675 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3676 IPW2100_ORD(STAT_RX_REASSN_RESP,
3677 "Reassociation response Rx's"),
3678 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3679 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3680 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3681 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3682 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3683 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3684 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3685 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3686 "Total rx data bytes received"),
3687 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3688 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3689 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3690 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3691 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3692 IPW2100_ORD(STAT_RX_DUPLICATE1,
3693 "duplicate rx packets at 1MB"),
3694 IPW2100_ORD(STAT_RX_DUPLICATE2,
3695 "duplicate rx packets at 2MB"),
3696 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3697 "duplicate rx packets at 5.5MB"),
3698 IPW2100_ORD(STAT_RX_DUPLICATE11,
3699 "duplicate rx packets at 11MB"),
3700 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3701 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3702 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3703 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3704 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3705 "rx frames with invalid protocol"),
3706 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3707 IPW2100_ORD(STAT_RX_NO_BUFFER,
3708 "rx frames rejected due to no buffer"),
3709 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3710 "rx frames dropped due to missing fragment"),
3711 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3712 "rx frames dropped due to non-sequential fragment"),
3713 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3714 "rx frames dropped due to unmatched 1st frame"),
3715 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3716 "rx frames dropped due to uncompleted frame"),
3717 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3718 "ICV errors during decryption"),
3719 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3720 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3721 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3722 "poll response timeouts"),
3723 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3724 "timeouts waiting for last {broad,multi}cast pkt"),
3725 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3726 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3727 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3728 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3729 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3730 "current calculation of % missed beacons"),
3731 IPW2100_ORD(STAT_PERCENT_RETRIES,
3732 "current calculation of % missed tx retries"),
3733 IPW2100_ORD(ASSOCIATED_AP_PTR,
3734 "0 if not associated, else pointer to AP table entry"),
3735 IPW2100_ORD(AVAILABLE_AP_CNT,
3736 "AP's described in the AP table"),
3737 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3738 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3739 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3740 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3741 "failures due to response fail"),
3742 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3743 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3744 IPW2100_ORD(STAT_ROAM_INHIBIT,
3745 "times roaming was inhibited due to activity"),
3746 IPW2100_ORD(RSSI_AT_ASSN,
3747 "RSSI of associated AP at time of association"),
3748 IPW2100_ORD(STAT_ASSN_CAUSE1,
3749 "reassociation: no probe response or TX on hop"),
3750 IPW2100_ORD(STAT_ASSN_CAUSE2,
3751 "reassociation: poor tx/rx quality"),
3752 IPW2100_ORD(STAT_ASSN_CAUSE3,
3753 "reassociation: tx/rx quality (excessive AP load"),
3754 IPW2100_ORD(STAT_ASSN_CAUSE4,
3755 "reassociation: AP RSSI level"),
3756 IPW2100_ORD(STAT_ASSN_CAUSE5,
3757 "reassociations due to load leveling"),
3758 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3759 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3760 "times authentication response failed"),
3761 IPW2100_ORD(STATION_TABLE_CNT,
3762 "entries in association table"),
3763 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3764 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3765 IPW2100_ORD(COUNTRY_CODE,
3766 "IEEE country code as recv'd from beacon"),
3767 IPW2100_ORD(COUNTRY_CHANNELS,
3768 "channels supported by country"),
3769 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3770 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3771 IPW2100_ORD(ANTENNA_DIVERSITY,
3772 "TRUE if antenna diversity is disabled"),
3773 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3774 IPW2100_ORD(OUR_FREQ,
3775 "current radio freq lower digits - channel ID"),
3776 IPW2100_ORD(RTC_TIME, "current RTC time"),
3777 IPW2100_ORD(PORT_TYPE, "operating mode"),
3778 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3779 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3780 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3781 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3782 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3783 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3784 IPW2100_ORD(CAPABILITIES,
3785 "Management frame capability field"),
3786 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3787 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3788 IPW2100_ORD(RTS_THRESHOLD,
3789 "Min packet length for RTS handshaking"),
3790 IPW2100_ORD(INT_MODE, "International mode"),
3791 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3792 "protocol frag threshold"),
3793 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3794 "EEPROM offset in SRAM"),
3795 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3796 "EEPROM size in SRAM"),
3797 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3798 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3799 "EEPROM IBSS 11b channel set"),
3800 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3801 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3802 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3803 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3804 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3805
show_registers(struct device * d,struct device_attribute * attr,char * buf)3806 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3807 char *buf)
3808 {
3809 int i;
3810 struct ipw2100_priv *priv = dev_get_drvdata(d);
3811 struct net_device *dev = priv->net_dev;
3812 char *out = buf;
3813 u32 val = 0;
3814
3815 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3816
3817 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3818 read_register(dev, hw_data[i].addr, &val);
3819 out += sprintf(out, "%30s [%08X] : %08X\n",
3820 hw_data[i].name, hw_data[i].addr, val);
3821 }
3822
3823 return out - buf;
3824 }
3825
3826 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3827
show_hardware(struct device * d,struct device_attribute * attr,char * buf)3828 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3829 char *buf)
3830 {
3831 struct ipw2100_priv *priv = dev_get_drvdata(d);
3832 struct net_device *dev = priv->net_dev;
3833 char *out = buf;
3834 int i;
3835
3836 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3837
3838 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3839 u8 tmp8;
3840 u16 tmp16;
3841 u32 tmp32;
3842
3843 switch (nic_data[i].size) {
3844 case 1:
3845 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3846 out += sprintf(out, "%30s [%08X] : %02X\n",
3847 nic_data[i].name, nic_data[i].addr,
3848 tmp8);
3849 break;
3850 case 2:
3851 read_nic_word(dev, nic_data[i].addr, &tmp16);
3852 out += sprintf(out, "%30s [%08X] : %04X\n",
3853 nic_data[i].name, nic_data[i].addr,
3854 tmp16);
3855 break;
3856 case 4:
3857 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3858 out += sprintf(out, "%30s [%08X] : %08X\n",
3859 nic_data[i].name, nic_data[i].addr,
3860 tmp32);
3861 break;
3862 }
3863 }
3864 return out - buf;
3865 }
3866
3867 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3868
show_memory(struct device * d,struct device_attribute * attr,char * buf)3869 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3870 char *buf)
3871 {
3872 struct ipw2100_priv *priv = dev_get_drvdata(d);
3873 struct net_device *dev = priv->net_dev;
3874 static unsigned long loop = 0;
3875 int len = 0;
3876 u32 buffer[4];
3877 int i;
3878 char line[81];
3879
3880 if (loop >= 0x30000)
3881 loop = 0;
3882
3883 /* sysfs provides us PAGE_SIZE buffer */
3884 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3885
3886 if (priv->snapshot[0])
3887 for (i = 0; i < 4; i++)
3888 buffer[i] =
3889 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3890 else
3891 for (i = 0; i < 4; i++)
3892 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3893
3894 if (priv->dump_raw)
3895 len += sprintf(buf + len,
3896 "%c%c%c%c"
3897 "%c%c%c%c"
3898 "%c%c%c%c"
3899 "%c%c%c%c",
3900 ((u8 *) buffer)[0x0],
3901 ((u8 *) buffer)[0x1],
3902 ((u8 *) buffer)[0x2],
3903 ((u8 *) buffer)[0x3],
3904 ((u8 *) buffer)[0x4],
3905 ((u8 *) buffer)[0x5],
3906 ((u8 *) buffer)[0x6],
3907 ((u8 *) buffer)[0x7],
3908 ((u8 *) buffer)[0x8],
3909 ((u8 *) buffer)[0x9],
3910 ((u8 *) buffer)[0xa],
3911 ((u8 *) buffer)[0xb],
3912 ((u8 *) buffer)[0xc],
3913 ((u8 *) buffer)[0xd],
3914 ((u8 *) buffer)[0xe],
3915 ((u8 *) buffer)[0xf]);
3916 else
3917 len += sprintf(buf + len, "%s\n",
3918 snprint_line(line, sizeof(line),
3919 (u8 *) buffer, 16, loop));
3920 loop += 16;
3921 }
3922
3923 return len;
3924 }
3925
store_memory(struct device * d,struct device_attribute * attr,const char * buf,size_t count)3926 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3927 const char *buf, size_t count)
3928 {
3929 struct ipw2100_priv *priv = dev_get_drvdata(d);
3930 struct net_device *dev = priv->net_dev;
3931 const char *p = buf;
3932
3933 (void)dev; /* kill unused-var warning for debug-only code */
3934
3935 if (count < 1)
3936 return count;
3937
3938 if (p[0] == '1' ||
3939 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3940 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3941 dev->name);
3942 priv->dump_raw = 1;
3943
3944 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3945 tolower(p[1]) == 'f')) {
3946 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3947 dev->name);
3948 priv->dump_raw = 0;
3949
3950 } else if (tolower(p[0]) == 'r') {
3951 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3952 ipw2100_snapshot_free(priv);
3953
3954 } else
3955 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3956 "reset = clear memory snapshot\n", dev->name);
3957
3958 return count;
3959 }
3960
3961 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3962
show_ordinals(struct device * d,struct device_attribute * attr,char * buf)3963 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3964 char *buf)
3965 {
3966 struct ipw2100_priv *priv = dev_get_drvdata(d);
3967 u32 val = 0;
3968 int len = 0;
3969 u32 val_len;
3970 static int loop = 0;
3971
3972 if (priv->status & STATUS_RF_KILL_MASK)
3973 return 0;
3974
3975 if (loop >= ARRAY_SIZE(ord_data))
3976 loop = 0;
3977
3978 /* sysfs provides us PAGE_SIZE buffer */
3979 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3980 val_len = sizeof(u32);
3981
3982 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3983 &val_len))
3984 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3985 ord_data[loop].index,
3986 ord_data[loop].desc);
3987 else
3988 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3989 ord_data[loop].index, val,
3990 ord_data[loop].desc);
3991 loop++;
3992 }
3993
3994 return len;
3995 }
3996
3997 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3998
show_stats(struct device * d,struct device_attribute * attr,char * buf)3999 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4000 char *buf)
4001 {
4002 struct ipw2100_priv *priv = dev_get_drvdata(d);
4003 char *out = buf;
4004
4005 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4006 priv->interrupts, priv->tx_interrupts,
4007 priv->rx_interrupts, priv->inta_other);
4008 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4009 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4010 #ifdef CONFIG_IPW2100_DEBUG
4011 out += sprintf(out, "packet mismatch image: %s\n",
4012 priv->snapshot[0] ? "YES" : "NO");
4013 #endif
4014
4015 return out - buf;
4016 }
4017
4018 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4019
ipw2100_switch_mode(struct ipw2100_priv * priv,u32 mode)4020 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4021 {
4022 int err;
4023
4024 if (mode == priv->ieee->iw_mode)
4025 return 0;
4026
4027 err = ipw2100_disable_adapter(priv);
4028 if (err) {
4029 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4030 priv->net_dev->name, err);
4031 return err;
4032 }
4033
4034 switch (mode) {
4035 case IW_MODE_INFRA:
4036 priv->net_dev->type = ARPHRD_ETHER;
4037 break;
4038 case IW_MODE_ADHOC:
4039 priv->net_dev->type = ARPHRD_ETHER;
4040 break;
4041 #ifdef CONFIG_IPW2100_MONITOR
4042 case IW_MODE_MONITOR:
4043 priv->last_mode = priv->ieee->iw_mode;
4044 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4045 break;
4046 #endif /* CONFIG_IPW2100_MONITOR */
4047 }
4048
4049 priv->ieee->iw_mode = mode;
4050
4051 #ifdef CONFIG_PM
4052 /* Indicate ipw2100_download_firmware download firmware
4053 * from disk instead of memory. */
4054 ipw2100_firmware.version = 0;
4055 #endif
4056
4057 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4058 priv->reset_backoff = 0;
4059 schedule_reset(priv);
4060
4061 return 0;
4062 }
4063
show_internals(struct device * d,struct device_attribute * attr,char * buf)4064 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4065 char *buf)
4066 {
4067 struct ipw2100_priv *priv = dev_get_drvdata(d);
4068 int len = 0;
4069
4070 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4071
4072 if (priv->status & STATUS_ASSOCIATED)
4073 len += sprintf(buf + len, "connected: %llu\n",
4074 ktime_get_boottime_seconds() - priv->connect_start);
4075 else
4076 len += sprintf(buf + len, "not connected\n");
4077
4078 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4079 DUMP_VAR(status, "08lx");
4080 DUMP_VAR(config, "08lx");
4081 DUMP_VAR(capability, "08lx");
4082
4083 len +=
4084 sprintf(buf + len, "last_rtc: %lu\n",
4085 (unsigned long)priv->last_rtc);
4086
4087 DUMP_VAR(fatal_error, "d");
4088 DUMP_VAR(stop_hang_check, "d");
4089 DUMP_VAR(stop_rf_kill, "d");
4090 DUMP_VAR(messages_sent, "d");
4091
4092 DUMP_VAR(tx_pend_stat.value, "d");
4093 DUMP_VAR(tx_pend_stat.hi, "d");
4094
4095 DUMP_VAR(tx_free_stat.value, "d");
4096 DUMP_VAR(tx_free_stat.lo, "d");
4097
4098 DUMP_VAR(msg_free_stat.value, "d");
4099 DUMP_VAR(msg_free_stat.lo, "d");
4100
4101 DUMP_VAR(msg_pend_stat.value, "d");
4102 DUMP_VAR(msg_pend_stat.hi, "d");
4103
4104 DUMP_VAR(fw_pend_stat.value, "d");
4105 DUMP_VAR(fw_pend_stat.hi, "d");
4106
4107 DUMP_VAR(txq_stat.value, "d");
4108 DUMP_VAR(txq_stat.lo, "d");
4109
4110 DUMP_VAR(ieee->scans, "d");
4111 DUMP_VAR(reset_backoff, "lld");
4112
4113 return len;
4114 }
4115
4116 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4117
show_bssinfo(struct device * d,struct device_attribute * attr,char * buf)4118 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4119 char *buf)
4120 {
4121 struct ipw2100_priv *priv = dev_get_drvdata(d);
4122 char essid[IW_ESSID_MAX_SIZE + 1];
4123 u8 bssid[ETH_ALEN];
4124 u32 chan = 0;
4125 char *out = buf;
4126 unsigned int length;
4127 int ret;
4128
4129 if (priv->status & STATUS_RF_KILL_MASK)
4130 return 0;
4131
4132 memset(essid, 0, sizeof(essid));
4133 memset(bssid, 0, sizeof(bssid));
4134
4135 length = IW_ESSID_MAX_SIZE;
4136 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4137 if (ret)
4138 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139 __LINE__);
4140
4141 length = sizeof(bssid);
4142 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4143 bssid, &length);
4144 if (ret)
4145 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4146 __LINE__);
4147
4148 length = sizeof(u32);
4149 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4150 if (ret)
4151 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4152 __LINE__);
4153
4154 out += sprintf(out, "ESSID: %s\n", essid);
4155 out += sprintf(out, "BSSID: %pM\n", bssid);
4156 out += sprintf(out, "Channel: %d\n", chan);
4157
4158 return out - buf;
4159 }
4160
4161 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4162
4163 #ifdef CONFIG_IPW2100_DEBUG
debug_level_show(struct device_driver * d,char * buf)4164 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4165 {
4166 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4167 }
4168
debug_level_store(struct device_driver * d,const char * buf,size_t count)4169 static ssize_t debug_level_store(struct device_driver *d,
4170 const char *buf, size_t count)
4171 {
4172 u32 val;
4173 int ret;
4174
4175 ret = kstrtou32(buf, 0, &val);
4176 if (ret)
4177 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4178 else
4179 ipw2100_debug_level = val;
4180
4181 return strnlen(buf, count);
4182 }
4183 static DRIVER_ATTR_RW(debug_level);
4184 #endif /* CONFIG_IPW2100_DEBUG */
4185
show_fatal_error(struct device * d,struct device_attribute * attr,char * buf)4186 static ssize_t show_fatal_error(struct device *d,
4187 struct device_attribute *attr, char *buf)
4188 {
4189 struct ipw2100_priv *priv = dev_get_drvdata(d);
4190 char *out = buf;
4191 int i;
4192
4193 if (priv->fatal_error)
4194 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4195 else
4196 out += sprintf(out, "0\n");
4197
4198 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4199 if (!priv->fatal_errors[(priv->fatal_index - i) %
4200 IPW2100_ERROR_QUEUE])
4201 continue;
4202
4203 out += sprintf(out, "%d. 0x%08X\n", i,
4204 priv->fatal_errors[(priv->fatal_index - i) %
4205 IPW2100_ERROR_QUEUE]);
4206 }
4207
4208 return out - buf;
4209 }
4210
store_fatal_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4211 static ssize_t store_fatal_error(struct device *d,
4212 struct device_attribute *attr, const char *buf,
4213 size_t count)
4214 {
4215 struct ipw2100_priv *priv = dev_get_drvdata(d);
4216 schedule_reset(priv);
4217 return count;
4218 }
4219
4220 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4221
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)4222 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4223 char *buf)
4224 {
4225 struct ipw2100_priv *priv = dev_get_drvdata(d);
4226 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4227 }
4228
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4229 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4230 const char *buf, size_t count)
4231 {
4232 struct ipw2100_priv *priv = dev_get_drvdata(d);
4233 struct net_device *dev = priv->net_dev;
4234 unsigned long val;
4235 int ret;
4236
4237 (void)dev; /* kill unused-var warning for debug-only code */
4238
4239 IPW_DEBUG_INFO("enter\n");
4240
4241 ret = kstrtoul(buf, 0, &val);
4242 if (ret) {
4243 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4244 } else {
4245 priv->ieee->scan_age = val;
4246 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4247 }
4248
4249 IPW_DEBUG_INFO("exit\n");
4250 return strnlen(buf, count);
4251 }
4252
4253 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4254
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)4255 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4256 char *buf)
4257 {
4258 /* 0 - RF kill not enabled
4259 1 - SW based RF kill active (sysfs)
4260 2 - HW based RF kill active
4261 3 - Both HW and SW baed RF kill active */
4262 struct ipw2100_priv *priv = dev_get_drvdata(d);
4263 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4264 (rf_kill_active(priv) ? 0x2 : 0x0);
4265 return sprintf(buf, "%i\n", val);
4266 }
4267
ipw_radio_kill_sw(struct ipw2100_priv * priv,int disable_radio)4268 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4269 {
4270 if ((disable_radio ? 1 : 0) ==
4271 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4272 return 0;
4273
4274 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4275 disable_radio ? "OFF" : "ON");
4276
4277 mutex_lock(&priv->action_mutex);
4278
4279 if (disable_radio) {
4280 priv->status |= STATUS_RF_KILL_SW;
4281 ipw2100_down(priv);
4282 } else {
4283 priv->status &= ~STATUS_RF_KILL_SW;
4284 if (rf_kill_active(priv)) {
4285 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4286 "disabled by HW switch\n");
4287 /* Make sure the RF_KILL check timer is running */
4288 priv->stop_rf_kill = 0;
4289 mod_delayed_work(system_wq, &priv->rf_kill,
4290 round_jiffies_relative(HZ));
4291 } else
4292 schedule_reset(priv);
4293 }
4294
4295 mutex_unlock(&priv->action_mutex);
4296 return 1;
4297 }
4298
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4299 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4300 const char *buf, size_t count)
4301 {
4302 struct ipw2100_priv *priv = dev_get_drvdata(d);
4303 ipw_radio_kill_sw(priv, buf[0] == '1');
4304 return count;
4305 }
4306
4307 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4308
4309 static struct attribute *ipw2100_sysfs_entries[] = {
4310 &dev_attr_hardware.attr,
4311 &dev_attr_registers.attr,
4312 &dev_attr_ordinals.attr,
4313 &dev_attr_pci.attr,
4314 &dev_attr_stats.attr,
4315 &dev_attr_internals.attr,
4316 &dev_attr_bssinfo.attr,
4317 &dev_attr_memory.attr,
4318 &dev_attr_scan_age.attr,
4319 &dev_attr_fatal_error.attr,
4320 &dev_attr_rf_kill.attr,
4321 &dev_attr_cfg.attr,
4322 &dev_attr_status.attr,
4323 &dev_attr_capability.attr,
4324 NULL,
4325 };
4326
4327 static const struct attribute_group ipw2100_attribute_group = {
4328 .attrs = ipw2100_sysfs_entries,
4329 };
4330
status_queue_allocate(struct ipw2100_priv * priv,int entries)4331 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4332 {
4333 struct ipw2100_status_queue *q = &priv->status_queue;
4334
4335 IPW_DEBUG_INFO("enter\n");
4336
4337 q->size = entries * sizeof(struct ipw2100_status);
4338 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4339 if (!q->drv) {
4340 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4341 return -ENOMEM;
4342 }
4343
4344 IPW_DEBUG_INFO("exit\n");
4345
4346 return 0;
4347 }
4348
status_queue_free(struct ipw2100_priv * priv)4349 static void status_queue_free(struct ipw2100_priv *priv)
4350 {
4351 IPW_DEBUG_INFO("enter\n");
4352
4353 if (priv->status_queue.drv) {
4354 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4355 priv->status_queue.drv,
4356 priv->status_queue.nic);
4357 priv->status_queue.drv = NULL;
4358 }
4359
4360 IPW_DEBUG_INFO("exit\n");
4361 }
4362
bd_queue_allocate(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,int entries)4363 static int bd_queue_allocate(struct ipw2100_priv *priv,
4364 struct ipw2100_bd_queue *q, int entries)
4365 {
4366 IPW_DEBUG_INFO("enter\n");
4367
4368 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4369
4370 q->entries = entries;
4371 q->size = entries * sizeof(struct ipw2100_bd);
4372 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4373 if (!q->drv) {
4374 IPW_DEBUG_INFO
4375 ("can't allocate shared memory for buffer descriptors\n");
4376 return -ENOMEM;
4377 }
4378
4379 IPW_DEBUG_INFO("exit\n");
4380
4381 return 0;
4382 }
4383
bd_queue_free(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q)4384 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4385 {
4386 IPW_DEBUG_INFO("enter\n");
4387
4388 if (!q)
4389 return;
4390
4391 if (q->drv) {
4392 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4393 q->drv = NULL;
4394 }
4395
4396 IPW_DEBUG_INFO("exit\n");
4397 }
4398
bd_queue_initialize(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,u32 base,u32 size,u32 r,u32 w)4399 static void bd_queue_initialize(struct ipw2100_priv *priv,
4400 struct ipw2100_bd_queue *q, u32 base, u32 size,
4401 u32 r, u32 w)
4402 {
4403 IPW_DEBUG_INFO("enter\n");
4404
4405 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4406 (u32) q->nic);
4407
4408 write_register(priv->net_dev, base, q->nic);
4409 write_register(priv->net_dev, size, q->entries);
4410 write_register(priv->net_dev, r, q->oldest);
4411 write_register(priv->net_dev, w, q->next);
4412
4413 IPW_DEBUG_INFO("exit\n");
4414 }
4415
ipw2100_kill_works(struct ipw2100_priv * priv)4416 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4417 {
4418 priv->stop_rf_kill = 1;
4419 priv->stop_hang_check = 1;
4420 cancel_delayed_work_sync(&priv->reset_work);
4421 cancel_delayed_work_sync(&priv->security_work);
4422 cancel_delayed_work_sync(&priv->wx_event_work);
4423 cancel_delayed_work_sync(&priv->hang_check);
4424 cancel_delayed_work_sync(&priv->rf_kill);
4425 cancel_delayed_work_sync(&priv->scan_event);
4426 }
4427
ipw2100_tx_allocate(struct ipw2100_priv * priv)4428 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4429 {
4430 int i, j, err = -EINVAL;
4431 void *v;
4432 dma_addr_t p;
4433
4434 IPW_DEBUG_INFO("enter\n");
4435
4436 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4437 if (err) {
4438 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4439 priv->net_dev->name);
4440 return err;
4441 }
4442
4443 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4444 sizeof(struct ipw2100_tx_packet),
4445 GFP_ATOMIC);
4446 if (!priv->tx_buffers) {
4447 bd_queue_free(priv, &priv->tx_queue);
4448 return -ENOMEM;
4449 }
4450
4451 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4452 v = pci_alloc_consistent(priv->pci_dev,
4453 sizeof(struct ipw2100_data_header),
4454 &p);
4455 if (!v) {
4456 printk(KERN_ERR DRV_NAME
4457 ": %s: PCI alloc failed for tx " "buffers.\n",
4458 priv->net_dev->name);
4459 err = -ENOMEM;
4460 break;
4461 }
4462
4463 priv->tx_buffers[i].type = DATA;
4464 priv->tx_buffers[i].info.d_struct.data =
4465 (struct ipw2100_data_header *)v;
4466 priv->tx_buffers[i].info.d_struct.data_phys = p;
4467 priv->tx_buffers[i].info.d_struct.txb = NULL;
4468 }
4469
4470 if (i == TX_PENDED_QUEUE_LENGTH)
4471 return 0;
4472
4473 for (j = 0; j < i; j++) {
4474 pci_free_consistent(priv->pci_dev,
4475 sizeof(struct ipw2100_data_header),
4476 priv->tx_buffers[j].info.d_struct.data,
4477 priv->tx_buffers[j].info.d_struct.
4478 data_phys);
4479 }
4480
4481 kfree(priv->tx_buffers);
4482 priv->tx_buffers = NULL;
4483
4484 return err;
4485 }
4486
ipw2100_tx_initialize(struct ipw2100_priv * priv)4487 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4488 {
4489 int i;
4490
4491 IPW_DEBUG_INFO("enter\n");
4492
4493 /*
4494 * reinitialize packet info lists
4495 */
4496 INIT_LIST_HEAD(&priv->fw_pend_list);
4497 INIT_STAT(&priv->fw_pend_stat);
4498
4499 /*
4500 * reinitialize lists
4501 */
4502 INIT_LIST_HEAD(&priv->tx_pend_list);
4503 INIT_LIST_HEAD(&priv->tx_free_list);
4504 INIT_STAT(&priv->tx_pend_stat);
4505 INIT_STAT(&priv->tx_free_stat);
4506
4507 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4508 /* We simply drop any SKBs that have been queued for
4509 * transmit */
4510 if (priv->tx_buffers[i].info.d_struct.txb) {
4511 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4512 txb);
4513 priv->tx_buffers[i].info.d_struct.txb = NULL;
4514 }
4515
4516 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4517 }
4518
4519 SET_STAT(&priv->tx_free_stat, i);
4520
4521 priv->tx_queue.oldest = 0;
4522 priv->tx_queue.available = priv->tx_queue.entries;
4523 priv->tx_queue.next = 0;
4524 INIT_STAT(&priv->txq_stat);
4525 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4526
4527 bd_queue_initialize(priv, &priv->tx_queue,
4528 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4529 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4530 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4531 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4532
4533 IPW_DEBUG_INFO("exit\n");
4534
4535 }
4536
ipw2100_tx_free(struct ipw2100_priv * priv)4537 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4538 {
4539 int i;
4540
4541 IPW_DEBUG_INFO("enter\n");
4542
4543 bd_queue_free(priv, &priv->tx_queue);
4544
4545 if (!priv->tx_buffers)
4546 return;
4547
4548 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4549 if (priv->tx_buffers[i].info.d_struct.txb) {
4550 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4551 txb);
4552 priv->tx_buffers[i].info.d_struct.txb = NULL;
4553 }
4554 if (priv->tx_buffers[i].info.d_struct.data)
4555 pci_free_consistent(priv->pci_dev,
4556 sizeof(struct ipw2100_data_header),
4557 priv->tx_buffers[i].info.d_struct.
4558 data,
4559 priv->tx_buffers[i].info.d_struct.
4560 data_phys);
4561 }
4562
4563 kfree(priv->tx_buffers);
4564 priv->tx_buffers = NULL;
4565
4566 IPW_DEBUG_INFO("exit\n");
4567 }
4568
ipw2100_rx_allocate(struct ipw2100_priv * priv)4569 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4570 {
4571 int i, j, err = -EINVAL;
4572
4573 IPW_DEBUG_INFO("enter\n");
4574
4575 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4576 if (err) {
4577 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4578 return err;
4579 }
4580
4581 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4582 if (err) {
4583 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4584 bd_queue_free(priv, &priv->rx_queue);
4585 return err;
4586 }
4587
4588 /*
4589 * allocate packets
4590 */
4591 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4592 sizeof(struct ipw2100_rx_packet),
4593 GFP_KERNEL);
4594 if (!priv->rx_buffers) {
4595 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4596
4597 bd_queue_free(priv, &priv->rx_queue);
4598
4599 status_queue_free(priv);
4600
4601 return -ENOMEM;
4602 }
4603
4604 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4605 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4606
4607 err = ipw2100_alloc_skb(priv, packet);
4608 if (unlikely(err)) {
4609 err = -ENOMEM;
4610 break;
4611 }
4612
4613 /* The BD holds the cache aligned address */
4614 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4615 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4616 priv->status_queue.drv[i].status_fields = 0;
4617 }
4618
4619 if (i == RX_QUEUE_LENGTH)
4620 return 0;
4621
4622 for (j = 0; j < i; j++) {
4623 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4624 sizeof(struct ipw2100_rx_packet),
4625 PCI_DMA_FROMDEVICE);
4626 dev_kfree_skb(priv->rx_buffers[j].skb);
4627 }
4628
4629 kfree(priv->rx_buffers);
4630 priv->rx_buffers = NULL;
4631
4632 bd_queue_free(priv, &priv->rx_queue);
4633
4634 status_queue_free(priv);
4635
4636 return err;
4637 }
4638
ipw2100_rx_initialize(struct ipw2100_priv * priv)4639 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4640 {
4641 IPW_DEBUG_INFO("enter\n");
4642
4643 priv->rx_queue.oldest = 0;
4644 priv->rx_queue.available = priv->rx_queue.entries - 1;
4645 priv->rx_queue.next = priv->rx_queue.entries - 1;
4646
4647 INIT_STAT(&priv->rxq_stat);
4648 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4649
4650 bd_queue_initialize(priv, &priv->rx_queue,
4651 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4652 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4653 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4654 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4655
4656 /* set up the status queue */
4657 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4658 priv->status_queue.nic);
4659
4660 IPW_DEBUG_INFO("exit\n");
4661 }
4662
ipw2100_rx_free(struct ipw2100_priv * priv)4663 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4664 {
4665 int i;
4666
4667 IPW_DEBUG_INFO("enter\n");
4668
4669 bd_queue_free(priv, &priv->rx_queue);
4670 status_queue_free(priv);
4671
4672 if (!priv->rx_buffers)
4673 return;
4674
4675 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4676 if (priv->rx_buffers[i].rxp) {
4677 pci_unmap_single(priv->pci_dev,
4678 priv->rx_buffers[i].dma_addr,
4679 sizeof(struct ipw2100_rx),
4680 PCI_DMA_FROMDEVICE);
4681 dev_kfree_skb(priv->rx_buffers[i].skb);
4682 }
4683 }
4684
4685 kfree(priv->rx_buffers);
4686 priv->rx_buffers = NULL;
4687
4688 IPW_DEBUG_INFO("exit\n");
4689 }
4690
ipw2100_read_mac_address(struct ipw2100_priv * priv)4691 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4692 {
4693 u32 length = ETH_ALEN;
4694 u8 addr[ETH_ALEN];
4695
4696 int err;
4697
4698 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4699 if (err) {
4700 IPW_DEBUG_INFO("MAC address read failed\n");
4701 return -EIO;
4702 }
4703
4704 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4705 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4706
4707 return 0;
4708 }
4709
4710 /********************************************************************
4711 *
4712 * Firmware Commands
4713 *
4714 ********************************************************************/
4715
ipw2100_set_mac_address(struct ipw2100_priv * priv,int batch_mode)4716 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4717 {
4718 struct host_command cmd = {
4719 .host_command = ADAPTER_ADDRESS,
4720 .host_command_sequence = 0,
4721 .host_command_length = ETH_ALEN
4722 };
4723 int err;
4724
4725 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4726
4727 IPW_DEBUG_INFO("enter\n");
4728
4729 if (priv->config & CFG_CUSTOM_MAC) {
4730 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4731 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4732 } else
4733 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4734 ETH_ALEN);
4735
4736 err = ipw2100_hw_send_command(priv, &cmd);
4737
4738 IPW_DEBUG_INFO("exit\n");
4739 return err;
4740 }
4741
ipw2100_set_port_type(struct ipw2100_priv * priv,u32 port_type,int batch_mode)4742 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4743 int batch_mode)
4744 {
4745 struct host_command cmd = {
4746 .host_command = PORT_TYPE,
4747 .host_command_sequence = 0,
4748 .host_command_length = sizeof(u32)
4749 };
4750 int err;
4751
4752 switch (port_type) {
4753 case IW_MODE_INFRA:
4754 cmd.host_command_parameters[0] = IPW_BSS;
4755 break;
4756 case IW_MODE_ADHOC:
4757 cmd.host_command_parameters[0] = IPW_IBSS;
4758 break;
4759 }
4760
4761 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4762 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4763
4764 if (!batch_mode) {
4765 err = ipw2100_disable_adapter(priv);
4766 if (err) {
4767 printk(KERN_ERR DRV_NAME
4768 ": %s: Could not disable adapter %d\n",
4769 priv->net_dev->name, err);
4770 return err;
4771 }
4772 }
4773
4774 /* send cmd to firmware */
4775 err = ipw2100_hw_send_command(priv, &cmd);
4776
4777 if (!batch_mode)
4778 ipw2100_enable_adapter(priv);
4779
4780 return err;
4781 }
4782
ipw2100_set_channel(struct ipw2100_priv * priv,u32 channel,int batch_mode)4783 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4784 int batch_mode)
4785 {
4786 struct host_command cmd = {
4787 .host_command = CHANNEL,
4788 .host_command_sequence = 0,
4789 .host_command_length = sizeof(u32)
4790 };
4791 int err;
4792
4793 cmd.host_command_parameters[0] = channel;
4794
4795 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4796
4797 /* If BSS then we don't support channel selection */
4798 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4799 return 0;
4800
4801 if ((channel != 0) &&
4802 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4803 return -EINVAL;
4804
4805 if (!batch_mode) {
4806 err = ipw2100_disable_adapter(priv);
4807 if (err)
4808 return err;
4809 }
4810
4811 err = ipw2100_hw_send_command(priv, &cmd);
4812 if (err) {
4813 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4814 return err;
4815 }
4816
4817 if (channel)
4818 priv->config |= CFG_STATIC_CHANNEL;
4819 else
4820 priv->config &= ~CFG_STATIC_CHANNEL;
4821
4822 priv->channel = channel;
4823
4824 if (!batch_mode) {
4825 err = ipw2100_enable_adapter(priv);
4826 if (err)
4827 return err;
4828 }
4829
4830 return 0;
4831 }
4832
ipw2100_system_config(struct ipw2100_priv * priv,int batch_mode)4833 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4834 {
4835 struct host_command cmd = {
4836 .host_command = SYSTEM_CONFIG,
4837 .host_command_sequence = 0,
4838 .host_command_length = 12,
4839 };
4840 u32 ibss_mask, len = sizeof(u32);
4841 int err;
4842
4843 /* Set system configuration */
4844
4845 if (!batch_mode) {
4846 err = ipw2100_disable_adapter(priv);
4847 if (err)
4848 return err;
4849 }
4850
4851 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4852 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4853
4854 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4855 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4856
4857 if (!(priv->config & CFG_LONG_PREAMBLE))
4858 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4859
4860 err = ipw2100_get_ordinal(priv,
4861 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4862 &ibss_mask, &len);
4863 if (err)
4864 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4865
4866 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4867 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4868
4869 /* 11b only */
4870 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4871
4872 err = ipw2100_hw_send_command(priv, &cmd);
4873 if (err)
4874 return err;
4875
4876 /* If IPv6 is configured in the kernel then we don't want to filter out all
4877 * of the multicast packets as IPv6 needs some. */
4878 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4879 cmd.host_command = ADD_MULTICAST;
4880 cmd.host_command_sequence = 0;
4881 cmd.host_command_length = 0;
4882
4883 ipw2100_hw_send_command(priv, &cmd);
4884 #endif
4885 if (!batch_mode) {
4886 err = ipw2100_enable_adapter(priv);
4887 if (err)
4888 return err;
4889 }
4890
4891 return 0;
4892 }
4893
ipw2100_set_tx_rates(struct ipw2100_priv * priv,u32 rate,int batch_mode)4894 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4895 int batch_mode)
4896 {
4897 struct host_command cmd = {
4898 .host_command = BASIC_TX_RATES,
4899 .host_command_sequence = 0,
4900 .host_command_length = 4
4901 };
4902 int err;
4903
4904 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4905
4906 if (!batch_mode) {
4907 err = ipw2100_disable_adapter(priv);
4908 if (err)
4909 return err;
4910 }
4911
4912 /* Set BASIC TX Rate first */
4913 ipw2100_hw_send_command(priv, &cmd);
4914
4915 /* Set TX Rate */
4916 cmd.host_command = TX_RATES;
4917 ipw2100_hw_send_command(priv, &cmd);
4918
4919 /* Set MSDU TX Rate */
4920 cmd.host_command = MSDU_TX_RATES;
4921 ipw2100_hw_send_command(priv, &cmd);
4922
4923 if (!batch_mode) {
4924 err = ipw2100_enable_adapter(priv);
4925 if (err)
4926 return err;
4927 }
4928
4929 priv->tx_rates = rate;
4930
4931 return 0;
4932 }
4933
ipw2100_set_power_mode(struct ipw2100_priv * priv,int power_level)4934 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4935 {
4936 struct host_command cmd = {
4937 .host_command = POWER_MODE,
4938 .host_command_sequence = 0,
4939 .host_command_length = 4
4940 };
4941 int err;
4942
4943 cmd.host_command_parameters[0] = power_level;
4944
4945 err = ipw2100_hw_send_command(priv, &cmd);
4946 if (err)
4947 return err;
4948
4949 if (power_level == IPW_POWER_MODE_CAM)
4950 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4951 else
4952 priv->power_mode = IPW_POWER_ENABLED | power_level;
4953
4954 #ifdef IPW2100_TX_POWER
4955 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4956 /* Set beacon interval */
4957 cmd.host_command = TX_POWER_INDEX;
4958 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4959
4960 err = ipw2100_hw_send_command(priv, &cmd);
4961 if (err)
4962 return err;
4963 }
4964 #endif
4965
4966 return 0;
4967 }
4968
ipw2100_set_rts_threshold(struct ipw2100_priv * priv,u32 threshold)4969 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4970 {
4971 struct host_command cmd = {
4972 .host_command = RTS_THRESHOLD,
4973 .host_command_sequence = 0,
4974 .host_command_length = 4
4975 };
4976 int err;
4977
4978 if (threshold & RTS_DISABLED)
4979 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4980 else
4981 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4982
4983 err = ipw2100_hw_send_command(priv, &cmd);
4984 if (err)
4985 return err;
4986
4987 priv->rts_threshold = threshold;
4988
4989 return 0;
4990 }
4991
4992 #if 0
4993 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4994 u32 threshold, int batch_mode)
4995 {
4996 struct host_command cmd = {
4997 .host_command = FRAG_THRESHOLD,
4998 .host_command_sequence = 0,
4999 .host_command_length = 4,
5000 .host_command_parameters[0] = 0,
5001 };
5002 int err;
5003
5004 if (!batch_mode) {
5005 err = ipw2100_disable_adapter(priv);
5006 if (err)
5007 return err;
5008 }
5009
5010 if (threshold == 0)
5011 threshold = DEFAULT_FRAG_THRESHOLD;
5012 else {
5013 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5014 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5015 }
5016
5017 cmd.host_command_parameters[0] = threshold;
5018
5019 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5020
5021 err = ipw2100_hw_send_command(priv, &cmd);
5022
5023 if (!batch_mode)
5024 ipw2100_enable_adapter(priv);
5025
5026 if (!err)
5027 priv->frag_threshold = threshold;
5028
5029 return err;
5030 }
5031 #endif
5032
ipw2100_set_short_retry(struct ipw2100_priv * priv,u32 retry)5033 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5034 {
5035 struct host_command cmd = {
5036 .host_command = SHORT_RETRY_LIMIT,
5037 .host_command_sequence = 0,
5038 .host_command_length = 4
5039 };
5040 int err;
5041
5042 cmd.host_command_parameters[0] = retry;
5043
5044 err = ipw2100_hw_send_command(priv, &cmd);
5045 if (err)
5046 return err;
5047
5048 priv->short_retry_limit = retry;
5049
5050 return 0;
5051 }
5052
ipw2100_set_long_retry(struct ipw2100_priv * priv,u32 retry)5053 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5054 {
5055 struct host_command cmd = {
5056 .host_command = LONG_RETRY_LIMIT,
5057 .host_command_sequence = 0,
5058 .host_command_length = 4
5059 };
5060 int err;
5061
5062 cmd.host_command_parameters[0] = retry;
5063
5064 err = ipw2100_hw_send_command(priv, &cmd);
5065 if (err)
5066 return err;
5067
5068 priv->long_retry_limit = retry;
5069
5070 return 0;
5071 }
5072
ipw2100_set_mandatory_bssid(struct ipw2100_priv * priv,u8 * bssid,int batch_mode)5073 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5074 int batch_mode)
5075 {
5076 struct host_command cmd = {
5077 .host_command = MANDATORY_BSSID,
5078 .host_command_sequence = 0,
5079 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5080 };
5081 int err;
5082
5083 #ifdef CONFIG_IPW2100_DEBUG
5084 if (bssid != NULL)
5085 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5086 else
5087 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5088 #endif
5089 /* if BSSID is empty then we disable mandatory bssid mode */
5090 if (bssid != NULL)
5091 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5092
5093 if (!batch_mode) {
5094 err = ipw2100_disable_adapter(priv);
5095 if (err)
5096 return err;
5097 }
5098
5099 err = ipw2100_hw_send_command(priv, &cmd);
5100
5101 if (!batch_mode)
5102 ipw2100_enable_adapter(priv);
5103
5104 return err;
5105 }
5106
ipw2100_disassociate_bssid(struct ipw2100_priv * priv)5107 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5108 {
5109 struct host_command cmd = {
5110 .host_command = DISASSOCIATION_BSSID,
5111 .host_command_sequence = 0,
5112 .host_command_length = ETH_ALEN
5113 };
5114 int err;
5115
5116 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5117
5118 /* The Firmware currently ignores the BSSID and just disassociates from
5119 * the currently associated AP -- but in the off chance that a future
5120 * firmware does use the BSSID provided here, we go ahead and try and
5121 * set it to the currently associated AP's BSSID */
5122 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5123
5124 err = ipw2100_hw_send_command(priv, &cmd);
5125
5126 return err;
5127 }
5128
5129 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5130 struct ipw2100_wpa_assoc_frame *, int)
5131 __attribute__ ((unused));
5132
ipw2100_set_wpa_ie(struct ipw2100_priv * priv,struct ipw2100_wpa_assoc_frame * wpa_frame,int batch_mode)5133 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5134 struct ipw2100_wpa_assoc_frame *wpa_frame,
5135 int batch_mode)
5136 {
5137 struct host_command cmd = {
5138 .host_command = SET_WPA_IE,
5139 .host_command_sequence = 0,
5140 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5141 };
5142 int err;
5143
5144 IPW_DEBUG_HC("SET_WPA_IE\n");
5145
5146 if (!batch_mode) {
5147 err = ipw2100_disable_adapter(priv);
5148 if (err)
5149 return err;
5150 }
5151
5152 memcpy(cmd.host_command_parameters, wpa_frame,
5153 sizeof(struct ipw2100_wpa_assoc_frame));
5154
5155 err = ipw2100_hw_send_command(priv, &cmd);
5156
5157 if (!batch_mode) {
5158 if (ipw2100_enable_adapter(priv))
5159 err = -EIO;
5160 }
5161
5162 return err;
5163 }
5164
5165 struct security_info_params {
5166 u32 allowed_ciphers;
5167 u16 version;
5168 u8 auth_mode;
5169 u8 replay_counters_number;
5170 u8 unicast_using_group;
5171 } __packed;
5172
ipw2100_set_security_information(struct ipw2100_priv * priv,int auth_mode,int security_level,int unicast_using_group,int batch_mode)5173 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5174 int auth_mode,
5175 int security_level,
5176 int unicast_using_group,
5177 int batch_mode)
5178 {
5179 struct host_command cmd = {
5180 .host_command = SET_SECURITY_INFORMATION,
5181 .host_command_sequence = 0,
5182 .host_command_length = sizeof(struct security_info_params)
5183 };
5184 struct security_info_params *security =
5185 (struct security_info_params *)&cmd.host_command_parameters;
5186 int err;
5187 memset(security, 0, sizeof(*security));
5188
5189 /* If shared key AP authentication is turned on, then we need to
5190 * configure the firmware to try and use it.
5191 *
5192 * Actual data encryption/decryption is handled by the host. */
5193 security->auth_mode = auth_mode;
5194 security->unicast_using_group = unicast_using_group;
5195
5196 switch (security_level) {
5197 default:
5198 case SEC_LEVEL_0:
5199 security->allowed_ciphers = IPW_NONE_CIPHER;
5200 break;
5201 case SEC_LEVEL_1:
5202 security->allowed_ciphers = IPW_WEP40_CIPHER |
5203 IPW_WEP104_CIPHER;
5204 break;
5205 case SEC_LEVEL_2:
5206 security->allowed_ciphers = IPW_WEP40_CIPHER |
5207 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5208 break;
5209 case SEC_LEVEL_2_CKIP:
5210 security->allowed_ciphers = IPW_WEP40_CIPHER |
5211 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5212 break;
5213 case SEC_LEVEL_3:
5214 security->allowed_ciphers = IPW_WEP40_CIPHER |
5215 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5216 break;
5217 }
5218
5219 IPW_DEBUG_HC
5220 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5221 security->auth_mode, security->allowed_ciphers, security_level);
5222
5223 security->replay_counters_number = 0;
5224
5225 if (!batch_mode) {
5226 err = ipw2100_disable_adapter(priv);
5227 if (err)
5228 return err;
5229 }
5230
5231 err = ipw2100_hw_send_command(priv, &cmd);
5232
5233 if (!batch_mode)
5234 ipw2100_enable_adapter(priv);
5235
5236 return err;
5237 }
5238
ipw2100_set_tx_power(struct ipw2100_priv * priv,u32 tx_power)5239 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5240 {
5241 struct host_command cmd = {
5242 .host_command = TX_POWER_INDEX,
5243 .host_command_sequence = 0,
5244 .host_command_length = 4
5245 };
5246 int err = 0;
5247 u32 tmp = tx_power;
5248
5249 if (tx_power != IPW_TX_POWER_DEFAULT)
5250 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5251 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5252
5253 cmd.host_command_parameters[0] = tmp;
5254
5255 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5256 err = ipw2100_hw_send_command(priv, &cmd);
5257 if (!err)
5258 priv->tx_power = tx_power;
5259
5260 return 0;
5261 }
5262
ipw2100_set_ibss_beacon_interval(struct ipw2100_priv * priv,u32 interval,int batch_mode)5263 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5264 u32 interval, int batch_mode)
5265 {
5266 struct host_command cmd = {
5267 .host_command = BEACON_INTERVAL,
5268 .host_command_sequence = 0,
5269 .host_command_length = 4
5270 };
5271 int err;
5272
5273 cmd.host_command_parameters[0] = interval;
5274
5275 IPW_DEBUG_INFO("enter\n");
5276
5277 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5278 if (!batch_mode) {
5279 err = ipw2100_disable_adapter(priv);
5280 if (err)
5281 return err;
5282 }
5283
5284 ipw2100_hw_send_command(priv, &cmd);
5285
5286 if (!batch_mode) {
5287 err = ipw2100_enable_adapter(priv);
5288 if (err)
5289 return err;
5290 }
5291 }
5292
5293 IPW_DEBUG_INFO("exit\n");
5294
5295 return 0;
5296 }
5297
ipw2100_queues_initialize(struct ipw2100_priv * priv)5298 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5299 {
5300 ipw2100_tx_initialize(priv);
5301 ipw2100_rx_initialize(priv);
5302 ipw2100_msg_initialize(priv);
5303 }
5304
ipw2100_queues_free(struct ipw2100_priv * priv)5305 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5306 {
5307 ipw2100_tx_free(priv);
5308 ipw2100_rx_free(priv);
5309 ipw2100_msg_free(priv);
5310 }
5311
ipw2100_queues_allocate(struct ipw2100_priv * priv)5312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5313 {
5314 if (ipw2100_tx_allocate(priv) ||
5315 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5316 goto fail;
5317
5318 return 0;
5319
5320 fail:
5321 ipw2100_tx_free(priv);
5322 ipw2100_rx_free(priv);
5323 ipw2100_msg_free(priv);
5324 return -ENOMEM;
5325 }
5326
5327 #define IPW_PRIVACY_CAPABLE 0x0008
5328
ipw2100_set_wep_flags(struct ipw2100_priv * priv,u32 flags,int batch_mode)5329 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5330 int batch_mode)
5331 {
5332 struct host_command cmd = {
5333 .host_command = WEP_FLAGS,
5334 .host_command_sequence = 0,
5335 .host_command_length = 4
5336 };
5337 int err;
5338
5339 cmd.host_command_parameters[0] = flags;
5340
5341 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5342
5343 if (!batch_mode) {
5344 err = ipw2100_disable_adapter(priv);
5345 if (err) {
5346 printk(KERN_ERR DRV_NAME
5347 ": %s: Could not disable adapter %d\n",
5348 priv->net_dev->name, err);
5349 return err;
5350 }
5351 }
5352
5353 /* send cmd to firmware */
5354 err = ipw2100_hw_send_command(priv, &cmd);
5355
5356 if (!batch_mode)
5357 ipw2100_enable_adapter(priv);
5358
5359 return err;
5360 }
5361
5362 struct ipw2100_wep_key {
5363 u8 idx;
5364 u8 len;
5365 u8 key[13];
5366 };
5367
5368 /* Macros to ease up priting WEP keys */
5369 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5370 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5371 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5372 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5373
5374 /**
5375 * Set a the wep key
5376 *
5377 * @priv: struct to work on
5378 * @idx: index of the key we want to set
5379 * @key: ptr to the key data to set
5380 * @len: length of the buffer at @key
5381 * @batch_mode: FIXME perform the operation in batch mode, not
5382 * disabling the device.
5383 *
5384 * @returns 0 if OK, < 0 errno code on error.
5385 *
5386 * Fill out a command structure with the new wep key, length an
5387 * index and send it down the wire.
5388 */
ipw2100_set_key(struct ipw2100_priv * priv,int idx,char * key,int len,int batch_mode)5389 static int ipw2100_set_key(struct ipw2100_priv *priv,
5390 int idx, char *key, int len, int batch_mode)
5391 {
5392 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5393 struct host_command cmd = {
5394 .host_command = WEP_KEY_INFO,
5395 .host_command_sequence = 0,
5396 .host_command_length = sizeof(struct ipw2100_wep_key),
5397 };
5398 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5399 int err;
5400
5401 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5402 idx, keylen, len);
5403
5404 /* NOTE: We don't check cached values in case the firmware was reset
5405 * or some other problem is occurring. If the user is setting the key,
5406 * then we push the change */
5407
5408 wep_key->idx = idx;
5409 wep_key->len = keylen;
5410
5411 if (keylen) {
5412 memcpy(wep_key->key, key, len);
5413 memset(wep_key->key + len, 0, keylen - len);
5414 }
5415
5416 /* Will be optimized out on debug not being configured in */
5417 if (keylen == 0)
5418 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5419 priv->net_dev->name, wep_key->idx);
5420 else if (keylen == 5)
5421 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5422 priv->net_dev->name, wep_key->idx, wep_key->len,
5423 WEP_STR_64(wep_key->key));
5424 else
5425 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5426 "\n",
5427 priv->net_dev->name, wep_key->idx, wep_key->len,
5428 WEP_STR_128(wep_key->key));
5429
5430 if (!batch_mode) {
5431 err = ipw2100_disable_adapter(priv);
5432 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5433 if (err) {
5434 printk(KERN_ERR DRV_NAME
5435 ": %s: Could not disable adapter %d\n",
5436 priv->net_dev->name, err);
5437 return err;
5438 }
5439 }
5440
5441 /* send cmd to firmware */
5442 err = ipw2100_hw_send_command(priv, &cmd);
5443
5444 if (!batch_mode) {
5445 int err2 = ipw2100_enable_adapter(priv);
5446 if (err == 0)
5447 err = err2;
5448 }
5449 return err;
5450 }
5451
ipw2100_set_key_index(struct ipw2100_priv * priv,int idx,int batch_mode)5452 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5453 int idx, int batch_mode)
5454 {
5455 struct host_command cmd = {
5456 .host_command = WEP_KEY_INDEX,
5457 .host_command_sequence = 0,
5458 .host_command_length = 4,
5459 .host_command_parameters = {idx},
5460 };
5461 int err;
5462
5463 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5464
5465 if (idx < 0 || idx > 3)
5466 return -EINVAL;
5467
5468 if (!batch_mode) {
5469 err = ipw2100_disable_adapter(priv);
5470 if (err) {
5471 printk(KERN_ERR DRV_NAME
5472 ": %s: Could not disable adapter %d\n",
5473 priv->net_dev->name, err);
5474 return err;
5475 }
5476 }
5477
5478 /* send cmd to firmware */
5479 err = ipw2100_hw_send_command(priv, &cmd);
5480
5481 if (!batch_mode)
5482 ipw2100_enable_adapter(priv);
5483
5484 return err;
5485 }
5486
ipw2100_configure_security(struct ipw2100_priv * priv,int batch_mode)5487 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5488 {
5489 int i, err, auth_mode, sec_level, use_group;
5490
5491 if (!(priv->status & STATUS_RUNNING))
5492 return 0;
5493
5494 if (!batch_mode) {
5495 err = ipw2100_disable_adapter(priv);
5496 if (err)
5497 return err;
5498 }
5499
5500 if (!priv->ieee->sec.enabled) {
5501 err =
5502 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5503 SEC_LEVEL_0, 0, 1);
5504 } else {
5505 auth_mode = IPW_AUTH_OPEN;
5506 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5507 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5508 auth_mode = IPW_AUTH_SHARED;
5509 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5510 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5511 }
5512
5513 sec_level = SEC_LEVEL_0;
5514 if (priv->ieee->sec.flags & SEC_LEVEL)
5515 sec_level = priv->ieee->sec.level;
5516
5517 use_group = 0;
5518 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5519 use_group = priv->ieee->sec.unicast_uses_group;
5520
5521 err =
5522 ipw2100_set_security_information(priv, auth_mode, sec_level,
5523 use_group, 1);
5524 }
5525
5526 if (err)
5527 goto exit;
5528
5529 if (priv->ieee->sec.enabled) {
5530 for (i = 0; i < 4; i++) {
5531 if (!(priv->ieee->sec.flags & (1 << i))) {
5532 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5533 priv->ieee->sec.key_sizes[i] = 0;
5534 } else {
5535 err = ipw2100_set_key(priv, i,
5536 priv->ieee->sec.keys[i],
5537 priv->ieee->sec.
5538 key_sizes[i], 1);
5539 if (err)
5540 goto exit;
5541 }
5542 }
5543
5544 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5545 }
5546
5547 /* Always enable privacy so the Host can filter WEP packets if
5548 * encrypted data is sent up */
5549 err =
5550 ipw2100_set_wep_flags(priv,
5551 priv->ieee->sec.
5552 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5553 if (err)
5554 goto exit;
5555
5556 priv->status &= ~STATUS_SECURITY_UPDATED;
5557
5558 exit:
5559 if (!batch_mode)
5560 ipw2100_enable_adapter(priv);
5561
5562 return err;
5563 }
5564
ipw2100_security_work(struct work_struct * work)5565 static void ipw2100_security_work(struct work_struct *work)
5566 {
5567 struct ipw2100_priv *priv =
5568 container_of(work, struct ipw2100_priv, security_work.work);
5569
5570 /* If we happen to have reconnected before we get a chance to
5571 * process this, then update the security settings--which causes
5572 * a disassociation to occur */
5573 if (!(priv->status & STATUS_ASSOCIATED) &&
5574 priv->status & STATUS_SECURITY_UPDATED)
5575 ipw2100_configure_security(priv, 0);
5576 }
5577
shim__set_security(struct net_device * dev,struct libipw_security * sec)5578 static void shim__set_security(struct net_device *dev,
5579 struct libipw_security *sec)
5580 {
5581 struct ipw2100_priv *priv = libipw_priv(dev);
5582 int i, force_update = 0;
5583
5584 mutex_lock(&priv->action_mutex);
5585 if (!(priv->status & STATUS_INITIALIZED))
5586 goto done;
5587
5588 for (i = 0; i < 4; i++) {
5589 if (sec->flags & (1 << i)) {
5590 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5591 if (sec->key_sizes[i] == 0)
5592 priv->ieee->sec.flags &= ~(1 << i);
5593 else
5594 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5595 sec->key_sizes[i]);
5596 if (sec->level == SEC_LEVEL_1) {
5597 priv->ieee->sec.flags |= (1 << i);
5598 priv->status |= STATUS_SECURITY_UPDATED;
5599 } else
5600 priv->ieee->sec.flags &= ~(1 << i);
5601 }
5602 }
5603
5604 if ((sec->flags & SEC_ACTIVE_KEY) &&
5605 priv->ieee->sec.active_key != sec->active_key) {
5606 if (sec->active_key <= 3) {
5607 priv->ieee->sec.active_key = sec->active_key;
5608 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5609 } else
5610 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5611
5612 priv->status |= STATUS_SECURITY_UPDATED;
5613 }
5614
5615 if ((sec->flags & SEC_AUTH_MODE) &&
5616 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5617 priv->ieee->sec.auth_mode = sec->auth_mode;
5618 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5619 priv->status |= STATUS_SECURITY_UPDATED;
5620 }
5621
5622 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5623 priv->ieee->sec.flags |= SEC_ENABLED;
5624 priv->ieee->sec.enabled = sec->enabled;
5625 priv->status |= STATUS_SECURITY_UPDATED;
5626 force_update = 1;
5627 }
5628
5629 if (sec->flags & SEC_ENCRYPT)
5630 priv->ieee->sec.encrypt = sec->encrypt;
5631
5632 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5633 priv->ieee->sec.level = sec->level;
5634 priv->ieee->sec.flags |= SEC_LEVEL;
5635 priv->status |= STATUS_SECURITY_UPDATED;
5636 }
5637
5638 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5639 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5640 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5641 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5642 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5643 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5644 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5645 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5646 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5647 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5648
5649 /* As a temporary work around to enable WPA until we figure out why
5650 * wpa_supplicant toggles the security capability of the driver, which
5651 * forces a disassociation with force_update...
5652 *
5653 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5654 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5655 ipw2100_configure_security(priv, 0);
5656 done:
5657 mutex_unlock(&priv->action_mutex);
5658 }
5659
ipw2100_adapter_setup(struct ipw2100_priv * priv)5660 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5661 {
5662 int err;
5663 int batch_mode = 1;
5664 u8 *bssid;
5665
5666 IPW_DEBUG_INFO("enter\n");
5667
5668 err = ipw2100_disable_adapter(priv);
5669 if (err)
5670 return err;
5671 #ifdef CONFIG_IPW2100_MONITOR
5672 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5673 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5674 if (err)
5675 return err;
5676
5677 IPW_DEBUG_INFO("exit\n");
5678
5679 return 0;
5680 }
5681 #endif /* CONFIG_IPW2100_MONITOR */
5682
5683 err = ipw2100_read_mac_address(priv);
5684 if (err)
5685 return -EIO;
5686
5687 err = ipw2100_set_mac_address(priv, batch_mode);
5688 if (err)
5689 return err;
5690
5691 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5692 if (err)
5693 return err;
5694
5695 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5696 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5697 if (err)
5698 return err;
5699 }
5700
5701 err = ipw2100_system_config(priv, batch_mode);
5702 if (err)
5703 return err;
5704
5705 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5706 if (err)
5707 return err;
5708
5709 /* Default to power mode OFF */
5710 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5711 if (err)
5712 return err;
5713
5714 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5715 if (err)
5716 return err;
5717
5718 if (priv->config & CFG_STATIC_BSSID)
5719 bssid = priv->bssid;
5720 else
5721 bssid = NULL;
5722 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5723 if (err)
5724 return err;
5725
5726 if (priv->config & CFG_STATIC_ESSID)
5727 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5728 batch_mode);
5729 else
5730 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5731 if (err)
5732 return err;
5733
5734 err = ipw2100_configure_security(priv, batch_mode);
5735 if (err)
5736 return err;
5737
5738 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5739 err =
5740 ipw2100_set_ibss_beacon_interval(priv,
5741 priv->beacon_interval,
5742 batch_mode);
5743 if (err)
5744 return err;
5745
5746 err = ipw2100_set_tx_power(priv, priv->tx_power);
5747 if (err)
5748 return err;
5749 }
5750
5751 /*
5752 err = ipw2100_set_fragmentation_threshold(
5753 priv, priv->frag_threshold, batch_mode);
5754 if (err)
5755 return err;
5756 */
5757
5758 IPW_DEBUG_INFO("exit\n");
5759
5760 return 0;
5761 }
5762
5763 /*************************************************************************
5764 *
5765 * EXTERNALLY CALLED METHODS
5766 *
5767 *************************************************************************/
5768
5769 /* This method is called by the network layer -- not to be confused with
5770 * ipw2100_set_mac_address() declared above called by this driver (and this
5771 * method as well) to talk to the firmware */
ipw2100_set_address(struct net_device * dev,void * p)5772 static int ipw2100_set_address(struct net_device *dev, void *p)
5773 {
5774 struct ipw2100_priv *priv = libipw_priv(dev);
5775 struct sockaddr *addr = p;
5776 int err = 0;
5777
5778 if (!is_valid_ether_addr(addr->sa_data))
5779 return -EADDRNOTAVAIL;
5780
5781 mutex_lock(&priv->action_mutex);
5782
5783 priv->config |= CFG_CUSTOM_MAC;
5784 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5785
5786 err = ipw2100_set_mac_address(priv, 0);
5787 if (err)
5788 goto done;
5789
5790 priv->reset_backoff = 0;
5791 mutex_unlock(&priv->action_mutex);
5792 ipw2100_reset_adapter(&priv->reset_work.work);
5793 return 0;
5794
5795 done:
5796 mutex_unlock(&priv->action_mutex);
5797 return err;
5798 }
5799
ipw2100_open(struct net_device * dev)5800 static int ipw2100_open(struct net_device *dev)
5801 {
5802 struct ipw2100_priv *priv = libipw_priv(dev);
5803 unsigned long flags;
5804 IPW_DEBUG_INFO("dev->open\n");
5805
5806 spin_lock_irqsave(&priv->low_lock, flags);
5807 if (priv->status & STATUS_ASSOCIATED) {
5808 netif_carrier_on(dev);
5809 netif_start_queue(dev);
5810 }
5811 spin_unlock_irqrestore(&priv->low_lock, flags);
5812
5813 return 0;
5814 }
5815
ipw2100_close(struct net_device * dev)5816 static int ipw2100_close(struct net_device *dev)
5817 {
5818 struct ipw2100_priv *priv = libipw_priv(dev);
5819 unsigned long flags;
5820 struct list_head *element;
5821 struct ipw2100_tx_packet *packet;
5822
5823 IPW_DEBUG_INFO("enter\n");
5824
5825 spin_lock_irqsave(&priv->low_lock, flags);
5826
5827 if (priv->status & STATUS_ASSOCIATED)
5828 netif_carrier_off(dev);
5829 netif_stop_queue(dev);
5830
5831 /* Flush the TX queue ... */
5832 while (!list_empty(&priv->tx_pend_list)) {
5833 element = priv->tx_pend_list.next;
5834 packet = list_entry(element, struct ipw2100_tx_packet, list);
5835
5836 list_del(element);
5837 DEC_STAT(&priv->tx_pend_stat);
5838
5839 libipw_txb_free(packet->info.d_struct.txb);
5840 packet->info.d_struct.txb = NULL;
5841
5842 list_add_tail(element, &priv->tx_free_list);
5843 INC_STAT(&priv->tx_free_stat);
5844 }
5845 spin_unlock_irqrestore(&priv->low_lock, flags);
5846
5847 IPW_DEBUG_INFO("exit\n");
5848
5849 return 0;
5850 }
5851
5852 /*
5853 * TODO: Fix this function... its just wrong
5854 */
ipw2100_tx_timeout(struct net_device * dev)5855 static void ipw2100_tx_timeout(struct net_device *dev)
5856 {
5857 struct ipw2100_priv *priv = libipw_priv(dev);
5858
5859 dev->stats.tx_errors++;
5860
5861 #ifdef CONFIG_IPW2100_MONITOR
5862 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5863 return;
5864 #endif
5865
5866 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5867 dev->name);
5868 schedule_reset(priv);
5869 }
5870
ipw2100_wpa_enable(struct ipw2100_priv * priv,int value)5871 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5872 {
5873 /* This is called when wpa_supplicant loads and closes the driver
5874 * interface. */
5875 priv->ieee->wpa_enabled = value;
5876 return 0;
5877 }
5878
ipw2100_wpa_set_auth_algs(struct ipw2100_priv * priv,int value)5879 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5880 {
5881
5882 struct libipw_device *ieee = priv->ieee;
5883 struct libipw_security sec = {
5884 .flags = SEC_AUTH_MODE,
5885 };
5886 int ret = 0;
5887
5888 if (value & IW_AUTH_ALG_SHARED_KEY) {
5889 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5890 ieee->open_wep = 0;
5891 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5892 sec.auth_mode = WLAN_AUTH_OPEN;
5893 ieee->open_wep = 1;
5894 } else if (value & IW_AUTH_ALG_LEAP) {
5895 sec.auth_mode = WLAN_AUTH_LEAP;
5896 ieee->open_wep = 1;
5897 } else
5898 return -EINVAL;
5899
5900 if (ieee->set_security)
5901 ieee->set_security(ieee->dev, &sec);
5902 else
5903 ret = -EOPNOTSUPP;
5904
5905 return ret;
5906 }
5907
ipw2100_wpa_assoc_frame(struct ipw2100_priv * priv,char * wpa_ie,int wpa_ie_len)5908 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5909 char *wpa_ie, int wpa_ie_len)
5910 {
5911
5912 struct ipw2100_wpa_assoc_frame frame;
5913
5914 frame.fixed_ie_mask = 0;
5915
5916 /* copy WPA IE */
5917 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5918 frame.var_ie_len = wpa_ie_len;
5919
5920 /* make sure WPA is enabled */
5921 ipw2100_wpa_enable(priv, 1);
5922 ipw2100_set_wpa_ie(priv, &frame, 0);
5923 }
5924
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5925 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5926 struct ethtool_drvinfo *info)
5927 {
5928 struct ipw2100_priv *priv = libipw_priv(dev);
5929 char fw_ver[64], ucode_ver[64];
5930
5931 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5932 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5933
5934 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5935 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5936
5937 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5938 fw_ver, priv->eeprom_version, ucode_ver);
5939
5940 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5941 sizeof(info->bus_info));
5942 }
5943
ipw2100_ethtool_get_link(struct net_device * dev)5944 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5945 {
5946 struct ipw2100_priv *priv = libipw_priv(dev);
5947 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5948 }
5949
5950 static const struct ethtool_ops ipw2100_ethtool_ops = {
5951 .get_link = ipw2100_ethtool_get_link,
5952 .get_drvinfo = ipw_ethtool_get_drvinfo,
5953 };
5954
ipw2100_hang_check(struct work_struct * work)5955 static void ipw2100_hang_check(struct work_struct *work)
5956 {
5957 struct ipw2100_priv *priv =
5958 container_of(work, struct ipw2100_priv, hang_check.work);
5959 unsigned long flags;
5960 u32 rtc = 0xa5a5a5a5;
5961 u32 len = sizeof(rtc);
5962 int restart = 0;
5963
5964 spin_lock_irqsave(&priv->low_lock, flags);
5965
5966 if (priv->fatal_error != 0) {
5967 /* If fatal_error is set then we need to restart */
5968 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5969 priv->net_dev->name);
5970
5971 restart = 1;
5972 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5973 (rtc == priv->last_rtc)) {
5974 /* Check if firmware is hung */
5975 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5976 priv->net_dev->name);
5977
5978 restart = 1;
5979 }
5980
5981 if (restart) {
5982 /* Kill timer */
5983 priv->stop_hang_check = 1;
5984 priv->hangs++;
5985
5986 /* Restart the NIC */
5987 schedule_reset(priv);
5988 }
5989
5990 priv->last_rtc = rtc;
5991
5992 if (!priv->stop_hang_check)
5993 schedule_delayed_work(&priv->hang_check, HZ / 2);
5994
5995 spin_unlock_irqrestore(&priv->low_lock, flags);
5996 }
5997
ipw2100_rf_kill(struct work_struct * work)5998 static void ipw2100_rf_kill(struct work_struct *work)
5999 {
6000 struct ipw2100_priv *priv =
6001 container_of(work, struct ipw2100_priv, rf_kill.work);
6002 unsigned long flags;
6003
6004 spin_lock_irqsave(&priv->low_lock, flags);
6005
6006 if (rf_kill_active(priv)) {
6007 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6008 if (!priv->stop_rf_kill)
6009 schedule_delayed_work(&priv->rf_kill,
6010 round_jiffies_relative(HZ));
6011 goto exit_unlock;
6012 }
6013
6014 /* RF Kill is now disabled, so bring the device back up */
6015
6016 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6017 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6018 "device\n");
6019 schedule_reset(priv);
6020 } else
6021 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6022 "enabled\n");
6023
6024 exit_unlock:
6025 spin_unlock_irqrestore(&priv->low_lock, flags);
6026 }
6027
6028 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6029
6030 static const struct net_device_ops ipw2100_netdev_ops = {
6031 .ndo_open = ipw2100_open,
6032 .ndo_stop = ipw2100_close,
6033 .ndo_start_xmit = libipw_xmit,
6034 .ndo_tx_timeout = ipw2100_tx_timeout,
6035 .ndo_set_mac_address = ipw2100_set_address,
6036 .ndo_validate_addr = eth_validate_addr,
6037 };
6038
6039 /* Look into using netdev destructor to shutdown libipw? */
6040
ipw2100_alloc_device(struct pci_dev * pci_dev,void __iomem * ioaddr)6041 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6042 void __iomem * ioaddr)
6043 {
6044 struct ipw2100_priv *priv;
6045 struct net_device *dev;
6046
6047 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6048 if (!dev)
6049 return NULL;
6050 priv = libipw_priv(dev);
6051 priv->ieee = netdev_priv(dev);
6052 priv->pci_dev = pci_dev;
6053 priv->net_dev = dev;
6054 priv->ioaddr = ioaddr;
6055
6056 priv->ieee->hard_start_xmit = ipw2100_tx;
6057 priv->ieee->set_security = shim__set_security;
6058
6059 priv->ieee->perfect_rssi = -20;
6060 priv->ieee->worst_rssi = -85;
6061
6062 dev->netdev_ops = &ipw2100_netdev_ops;
6063 dev->ethtool_ops = &ipw2100_ethtool_ops;
6064 dev->wireless_handlers = &ipw2100_wx_handler_def;
6065 priv->wireless_data.libipw = priv->ieee;
6066 dev->wireless_data = &priv->wireless_data;
6067 dev->watchdog_timeo = 3 * HZ;
6068 dev->irq = 0;
6069 dev->min_mtu = 68;
6070 dev->max_mtu = LIBIPW_DATA_LEN;
6071
6072 /* NOTE: We don't use the wireless_handlers hook
6073 * in dev as the system will start throwing WX requests
6074 * to us before we're actually initialized and it just
6075 * ends up causing problems. So, we just handle
6076 * the WX extensions through the ipw2100_ioctl interface */
6077
6078 /* memset() puts everything to 0, so we only have explicitly set
6079 * those values that need to be something else */
6080
6081 /* If power management is turned on, default to AUTO mode */
6082 priv->power_mode = IPW_POWER_AUTO;
6083
6084 #ifdef CONFIG_IPW2100_MONITOR
6085 priv->config |= CFG_CRC_CHECK;
6086 #endif
6087 priv->ieee->wpa_enabled = 0;
6088 priv->ieee->drop_unencrypted = 0;
6089 priv->ieee->privacy_invoked = 0;
6090 priv->ieee->ieee802_1x = 1;
6091
6092 /* Set module parameters */
6093 switch (network_mode) {
6094 case 1:
6095 priv->ieee->iw_mode = IW_MODE_ADHOC;
6096 break;
6097 #ifdef CONFIG_IPW2100_MONITOR
6098 case 2:
6099 priv->ieee->iw_mode = IW_MODE_MONITOR;
6100 break;
6101 #endif
6102 default:
6103 case 0:
6104 priv->ieee->iw_mode = IW_MODE_INFRA;
6105 break;
6106 }
6107
6108 if (disable == 1)
6109 priv->status |= STATUS_RF_KILL_SW;
6110
6111 if (channel != 0 &&
6112 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6113 priv->config |= CFG_STATIC_CHANNEL;
6114 priv->channel = channel;
6115 }
6116
6117 if (associate)
6118 priv->config |= CFG_ASSOCIATE;
6119
6120 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6121 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6122 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6123 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6124 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6125 priv->tx_power = IPW_TX_POWER_DEFAULT;
6126 priv->tx_rates = DEFAULT_TX_RATES;
6127
6128 strcpy(priv->nick, "ipw2100");
6129
6130 spin_lock_init(&priv->low_lock);
6131 mutex_init(&priv->action_mutex);
6132 mutex_init(&priv->adapter_mutex);
6133
6134 init_waitqueue_head(&priv->wait_command_queue);
6135
6136 netif_carrier_off(dev);
6137
6138 INIT_LIST_HEAD(&priv->msg_free_list);
6139 INIT_LIST_HEAD(&priv->msg_pend_list);
6140 INIT_STAT(&priv->msg_free_stat);
6141 INIT_STAT(&priv->msg_pend_stat);
6142
6143 INIT_LIST_HEAD(&priv->tx_free_list);
6144 INIT_LIST_HEAD(&priv->tx_pend_list);
6145 INIT_STAT(&priv->tx_free_stat);
6146 INIT_STAT(&priv->tx_pend_stat);
6147
6148 INIT_LIST_HEAD(&priv->fw_pend_list);
6149 INIT_STAT(&priv->fw_pend_stat);
6150
6151 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6152 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6153 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6154 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6155 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6156 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6157
6158 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6159 ipw2100_irq_tasklet, (unsigned long)priv);
6160
6161 /* NOTE: We do not start the deferred work for status checks yet */
6162 priv->stop_rf_kill = 1;
6163 priv->stop_hang_check = 1;
6164
6165 return dev;
6166 }
6167
ipw2100_pci_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)6168 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6169 const struct pci_device_id *ent)
6170 {
6171 void __iomem *ioaddr;
6172 struct net_device *dev = NULL;
6173 struct ipw2100_priv *priv = NULL;
6174 int err = 0;
6175 int registered = 0;
6176 u32 val;
6177
6178 IPW_DEBUG_INFO("enter\n");
6179
6180 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6181 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6182 err = -ENODEV;
6183 goto out;
6184 }
6185
6186 ioaddr = pci_iomap(pci_dev, 0, 0);
6187 if (!ioaddr) {
6188 printk(KERN_WARNING DRV_NAME
6189 "Error calling ioremap_nocache.\n");
6190 err = -EIO;
6191 goto fail;
6192 }
6193
6194 /* allocate and initialize our net_device */
6195 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6196 if (!dev) {
6197 printk(KERN_WARNING DRV_NAME
6198 "Error calling ipw2100_alloc_device.\n");
6199 err = -ENOMEM;
6200 goto fail;
6201 }
6202
6203 /* set up PCI mappings for device */
6204 err = pci_enable_device(pci_dev);
6205 if (err) {
6206 printk(KERN_WARNING DRV_NAME
6207 "Error calling pci_enable_device.\n");
6208 return err;
6209 }
6210
6211 priv = libipw_priv(dev);
6212
6213 pci_set_master(pci_dev);
6214 pci_set_drvdata(pci_dev, priv);
6215
6216 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6217 if (err) {
6218 printk(KERN_WARNING DRV_NAME
6219 "Error calling pci_set_dma_mask.\n");
6220 pci_disable_device(pci_dev);
6221 return err;
6222 }
6223
6224 err = pci_request_regions(pci_dev, DRV_NAME);
6225 if (err) {
6226 printk(KERN_WARNING DRV_NAME
6227 "Error calling pci_request_regions.\n");
6228 pci_disable_device(pci_dev);
6229 return err;
6230 }
6231
6232 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6233 * PCI Tx retries from interfering with C3 CPU state */
6234 pci_read_config_dword(pci_dev, 0x40, &val);
6235 if ((val & 0x0000ff00) != 0)
6236 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6237
6238 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6239 printk(KERN_WARNING DRV_NAME
6240 "Device not found via register read.\n");
6241 err = -ENODEV;
6242 goto fail;
6243 }
6244
6245 SET_NETDEV_DEV(dev, &pci_dev->dev);
6246
6247 /* Force interrupts to be shut off on the device */
6248 priv->status |= STATUS_INT_ENABLED;
6249 ipw2100_disable_interrupts(priv);
6250
6251 /* Allocate and initialize the Tx/Rx queues and lists */
6252 if (ipw2100_queues_allocate(priv)) {
6253 printk(KERN_WARNING DRV_NAME
6254 "Error calling ipw2100_queues_allocate.\n");
6255 err = -ENOMEM;
6256 goto fail;
6257 }
6258 ipw2100_queues_initialize(priv);
6259
6260 err = request_irq(pci_dev->irq,
6261 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6262 if (err) {
6263 printk(KERN_WARNING DRV_NAME
6264 "Error calling request_irq: %d.\n", pci_dev->irq);
6265 goto fail;
6266 }
6267 dev->irq = pci_dev->irq;
6268
6269 IPW_DEBUG_INFO("Attempting to register device...\n");
6270
6271 printk(KERN_INFO DRV_NAME
6272 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6273
6274 err = ipw2100_up(priv, 1);
6275 if (err)
6276 goto fail;
6277
6278 err = ipw2100_wdev_init(dev);
6279 if (err)
6280 goto fail;
6281 registered = 1;
6282
6283 /* Bring up the interface. Pre 0.46, after we registered the
6284 * network device we would call ipw2100_up. This introduced a race
6285 * condition with newer hotplug configurations (network was coming
6286 * up and making calls before the device was initialized).
6287 */
6288 err = register_netdev(dev);
6289 if (err) {
6290 printk(KERN_WARNING DRV_NAME
6291 "Error calling register_netdev.\n");
6292 goto fail;
6293 }
6294 registered = 2;
6295
6296 mutex_lock(&priv->action_mutex);
6297
6298 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6299
6300 /* perform this after register_netdev so that dev->name is set */
6301 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6302 if (err)
6303 goto fail_unlock;
6304
6305 /* If the RF Kill switch is disabled, go ahead and complete the
6306 * startup sequence */
6307 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6308 /* Enable the adapter - sends HOST_COMPLETE */
6309 if (ipw2100_enable_adapter(priv)) {
6310 printk(KERN_WARNING DRV_NAME
6311 ": %s: failed in call to enable adapter.\n",
6312 priv->net_dev->name);
6313 ipw2100_hw_stop_adapter(priv);
6314 err = -EIO;
6315 goto fail_unlock;
6316 }
6317
6318 /* Start a scan . . . */
6319 ipw2100_set_scan_options(priv);
6320 ipw2100_start_scan(priv);
6321 }
6322
6323 IPW_DEBUG_INFO("exit\n");
6324
6325 priv->status |= STATUS_INITIALIZED;
6326
6327 mutex_unlock(&priv->action_mutex);
6328 out:
6329 return err;
6330
6331 fail_unlock:
6332 mutex_unlock(&priv->action_mutex);
6333 fail:
6334 if (dev) {
6335 if (registered >= 2)
6336 unregister_netdev(dev);
6337
6338 if (registered) {
6339 wiphy_unregister(priv->ieee->wdev.wiphy);
6340 kfree(priv->ieee->bg_band.channels);
6341 }
6342
6343 ipw2100_hw_stop_adapter(priv);
6344
6345 ipw2100_disable_interrupts(priv);
6346
6347 if (dev->irq)
6348 free_irq(dev->irq, priv);
6349
6350 ipw2100_kill_works(priv);
6351
6352 /* These are safe to call even if they weren't allocated */
6353 ipw2100_queues_free(priv);
6354 sysfs_remove_group(&pci_dev->dev.kobj,
6355 &ipw2100_attribute_group);
6356
6357 free_libipw(dev, 0);
6358 }
6359
6360 pci_iounmap(pci_dev, ioaddr);
6361
6362 pci_release_regions(pci_dev);
6363 pci_disable_device(pci_dev);
6364 goto out;
6365 }
6366
ipw2100_pci_remove_one(struct pci_dev * pci_dev)6367 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6368 {
6369 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6370 struct net_device *dev = priv->net_dev;
6371
6372 mutex_lock(&priv->action_mutex);
6373
6374 priv->status &= ~STATUS_INITIALIZED;
6375
6376 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6377
6378 #ifdef CONFIG_PM
6379 if (ipw2100_firmware.version)
6380 ipw2100_release_firmware(priv, &ipw2100_firmware);
6381 #endif
6382 /* Take down the hardware */
6383 ipw2100_down(priv);
6384
6385 /* Release the mutex so that the network subsystem can
6386 * complete any needed calls into the driver... */
6387 mutex_unlock(&priv->action_mutex);
6388
6389 /* Unregister the device first - this results in close()
6390 * being called if the device is open. If we free storage
6391 * first, then close() will crash.
6392 * FIXME: remove the comment above. */
6393 unregister_netdev(dev);
6394
6395 ipw2100_kill_works(priv);
6396
6397 ipw2100_queues_free(priv);
6398
6399 /* Free potential debugging firmware snapshot */
6400 ipw2100_snapshot_free(priv);
6401
6402 free_irq(dev->irq, priv);
6403
6404 pci_iounmap(pci_dev, priv->ioaddr);
6405
6406 /* wiphy_unregister needs to be here, before free_libipw */
6407 wiphy_unregister(priv->ieee->wdev.wiphy);
6408 kfree(priv->ieee->bg_band.channels);
6409 free_libipw(dev, 0);
6410
6411 pci_release_regions(pci_dev);
6412 pci_disable_device(pci_dev);
6413
6414 IPW_DEBUG_INFO("exit\n");
6415 }
6416
6417 #ifdef CONFIG_PM
ipw2100_suspend(struct pci_dev * pci_dev,pm_message_t state)6418 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6419 {
6420 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6421 struct net_device *dev = priv->net_dev;
6422
6423 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6424
6425 mutex_lock(&priv->action_mutex);
6426 if (priv->status & STATUS_INITIALIZED) {
6427 /* Take down the device; powers it off, etc. */
6428 ipw2100_down(priv);
6429 }
6430
6431 /* Remove the PRESENT state of the device */
6432 netif_device_detach(dev);
6433
6434 pci_save_state(pci_dev);
6435 pci_disable_device(pci_dev);
6436 pci_set_power_state(pci_dev, PCI_D3hot);
6437
6438 priv->suspend_at = ktime_get_boottime_seconds();
6439
6440 mutex_unlock(&priv->action_mutex);
6441
6442 return 0;
6443 }
6444
ipw2100_resume(struct pci_dev * pci_dev)6445 static int ipw2100_resume(struct pci_dev *pci_dev)
6446 {
6447 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6448 struct net_device *dev = priv->net_dev;
6449 int err;
6450 u32 val;
6451
6452 if (IPW2100_PM_DISABLED)
6453 return 0;
6454
6455 mutex_lock(&priv->action_mutex);
6456
6457 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6458
6459 pci_set_power_state(pci_dev, PCI_D0);
6460 err = pci_enable_device(pci_dev);
6461 if (err) {
6462 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6463 dev->name);
6464 mutex_unlock(&priv->action_mutex);
6465 return err;
6466 }
6467 pci_restore_state(pci_dev);
6468
6469 /*
6470 * Suspend/Resume resets the PCI configuration space, so we have to
6471 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6472 * from interfering with C3 CPU state. pci_restore_state won't help
6473 * here since it only restores the first 64 bytes pci config header.
6474 */
6475 pci_read_config_dword(pci_dev, 0x40, &val);
6476 if ((val & 0x0000ff00) != 0)
6477 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6478
6479 /* Set the device back into the PRESENT state; this will also wake
6480 * the queue of needed */
6481 netif_device_attach(dev);
6482
6483 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6484
6485 /* Bring the device back up */
6486 if (!(priv->status & STATUS_RF_KILL_SW))
6487 ipw2100_up(priv, 0);
6488
6489 mutex_unlock(&priv->action_mutex);
6490
6491 return 0;
6492 }
6493 #endif
6494
ipw2100_shutdown(struct pci_dev * pci_dev)6495 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6496 {
6497 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6498
6499 /* Take down the device; powers it off, etc. */
6500 ipw2100_down(priv);
6501
6502 pci_disable_device(pci_dev);
6503 }
6504
6505 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6506
6507 static const struct pci_device_id ipw2100_pci_id_table[] = {
6508 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6509 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6510 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6511 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6512 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6513 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6514 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6515 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6516 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6517 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6518 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6519 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6520 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6521
6522 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6523 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6524 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6525 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6526 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6527
6528 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6529 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6530 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6531 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6532 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6533 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6534 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6535
6536 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6537
6538 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6539 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6540 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6541 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6542 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6543 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6544 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6545
6546 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6547 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6548 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6549 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6550 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6551 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6552
6553 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6554 {0,},
6555 };
6556
6557 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6558
6559 static struct pci_driver ipw2100_pci_driver = {
6560 .name = DRV_NAME,
6561 .id_table = ipw2100_pci_id_table,
6562 .probe = ipw2100_pci_init_one,
6563 .remove = ipw2100_pci_remove_one,
6564 #ifdef CONFIG_PM
6565 .suspend = ipw2100_suspend,
6566 .resume = ipw2100_resume,
6567 #endif
6568 .shutdown = ipw2100_shutdown,
6569 };
6570
6571 /**
6572 * Initialize the ipw2100 driver/module
6573 *
6574 * @returns 0 if ok, < 0 errno node con error.
6575 *
6576 * Note: we cannot init the /proc stuff until the PCI driver is there,
6577 * or we risk an unlikely race condition on someone accessing
6578 * uninitialized data in the PCI dev struct through /proc.
6579 */
ipw2100_init(void)6580 static int __init ipw2100_init(void)
6581 {
6582 int ret;
6583
6584 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6585 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6586
6587 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6588 PM_QOS_DEFAULT_VALUE);
6589
6590 ret = pci_register_driver(&ipw2100_pci_driver);
6591 if (ret)
6592 goto out;
6593
6594 #ifdef CONFIG_IPW2100_DEBUG
6595 ipw2100_debug_level = debug;
6596 ret = driver_create_file(&ipw2100_pci_driver.driver,
6597 &driver_attr_debug_level);
6598 #endif
6599
6600 out:
6601 return ret;
6602 }
6603
6604 /**
6605 * Cleanup ipw2100 driver registration
6606 */
ipw2100_exit(void)6607 static void __exit ipw2100_exit(void)
6608 {
6609 /* FIXME: IPG: check that we have no instances of the devices open */
6610 #ifdef CONFIG_IPW2100_DEBUG
6611 driver_remove_file(&ipw2100_pci_driver.driver,
6612 &driver_attr_debug_level);
6613 #endif
6614 pci_unregister_driver(&ipw2100_pci_driver);
6615 pm_qos_remove_request(&ipw2100_pm_qos_req);
6616 }
6617
6618 module_init(ipw2100_init);
6619 module_exit(ipw2100_exit);
6620
ipw2100_wx_get_name(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6621 static int ipw2100_wx_get_name(struct net_device *dev,
6622 struct iw_request_info *info,
6623 union iwreq_data *wrqu, char *extra)
6624 {
6625 /*
6626 * This can be called at any time. No action lock required
6627 */
6628
6629 struct ipw2100_priv *priv = libipw_priv(dev);
6630 if (!(priv->status & STATUS_ASSOCIATED))
6631 strcpy(wrqu->name, "unassociated");
6632 else
6633 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6634
6635 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6636 return 0;
6637 }
6638
ipw2100_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6639 static int ipw2100_wx_set_freq(struct net_device *dev,
6640 struct iw_request_info *info,
6641 union iwreq_data *wrqu, char *extra)
6642 {
6643 struct ipw2100_priv *priv = libipw_priv(dev);
6644 struct iw_freq *fwrq = &wrqu->freq;
6645 int err = 0;
6646
6647 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6648 return -EOPNOTSUPP;
6649
6650 mutex_lock(&priv->action_mutex);
6651 if (!(priv->status & STATUS_INITIALIZED)) {
6652 err = -EIO;
6653 goto done;
6654 }
6655
6656 /* if setting by freq convert to channel */
6657 if (fwrq->e == 1) {
6658 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6659 int f = fwrq->m / 100000;
6660 int c = 0;
6661
6662 while ((c < REG_MAX_CHANNEL) &&
6663 (f != ipw2100_frequencies[c]))
6664 c++;
6665
6666 /* hack to fall through */
6667 fwrq->e = 0;
6668 fwrq->m = c + 1;
6669 }
6670 }
6671
6672 if (fwrq->e > 0 || fwrq->m > 1000) {
6673 err = -EOPNOTSUPP;
6674 goto done;
6675 } else { /* Set the channel */
6676 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6677 err = ipw2100_set_channel(priv, fwrq->m, 0);
6678 }
6679
6680 done:
6681 mutex_unlock(&priv->action_mutex);
6682 return err;
6683 }
6684
ipw2100_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6685 static int ipw2100_wx_get_freq(struct net_device *dev,
6686 struct iw_request_info *info,
6687 union iwreq_data *wrqu, char *extra)
6688 {
6689 /*
6690 * This can be called at any time. No action lock required
6691 */
6692
6693 struct ipw2100_priv *priv = libipw_priv(dev);
6694
6695 wrqu->freq.e = 0;
6696
6697 /* If we are associated, trying to associate, or have a statically
6698 * configured CHANNEL then return that; otherwise return ANY */
6699 if (priv->config & CFG_STATIC_CHANNEL ||
6700 priv->status & STATUS_ASSOCIATED)
6701 wrqu->freq.m = priv->channel;
6702 else
6703 wrqu->freq.m = 0;
6704
6705 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6706 return 0;
6707
6708 }
6709
ipw2100_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6710 static int ipw2100_wx_set_mode(struct net_device *dev,
6711 struct iw_request_info *info,
6712 union iwreq_data *wrqu, char *extra)
6713 {
6714 struct ipw2100_priv *priv = libipw_priv(dev);
6715 int err = 0;
6716
6717 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6718
6719 if (wrqu->mode == priv->ieee->iw_mode)
6720 return 0;
6721
6722 mutex_lock(&priv->action_mutex);
6723 if (!(priv->status & STATUS_INITIALIZED)) {
6724 err = -EIO;
6725 goto done;
6726 }
6727
6728 switch (wrqu->mode) {
6729 #ifdef CONFIG_IPW2100_MONITOR
6730 case IW_MODE_MONITOR:
6731 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6732 break;
6733 #endif /* CONFIG_IPW2100_MONITOR */
6734 case IW_MODE_ADHOC:
6735 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6736 break;
6737 case IW_MODE_INFRA:
6738 case IW_MODE_AUTO:
6739 default:
6740 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6741 break;
6742 }
6743
6744 done:
6745 mutex_unlock(&priv->action_mutex);
6746 return err;
6747 }
6748
ipw2100_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6749 static int ipw2100_wx_get_mode(struct net_device *dev,
6750 struct iw_request_info *info,
6751 union iwreq_data *wrqu, char *extra)
6752 {
6753 /*
6754 * This can be called at any time. No action lock required
6755 */
6756
6757 struct ipw2100_priv *priv = libipw_priv(dev);
6758
6759 wrqu->mode = priv->ieee->iw_mode;
6760 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6761
6762 return 0;
6763 }
6764
6765 #define POWER_MODES 5
6766
6767 /* Values are in microsecond */
6768 static const s32 timeout_duration[POWER_MODES] = {
6769 350000,
6770 250000,
6771 75000,
6772 37000,
6773 25000,
6774 };
6775
6776 static const s32 period_duration[POWER_MODES] = {
6777 400000,
6778 700000,
6779 1000000,
6780 1000000,
6781 1000000
6782 };
6783
ipw2100_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6784 static int ipw2100_wx_get_range(struct net_device *dev,
6785 struct iw_request_info *info,
6786 union iwreq_data *wrqu, char *extra)
6787 {
6788 /*
6789 * This can be called at any time. No action lock required
6790 */
6791
6792 struct ipw2100_priv *priv = libipw_priv(dev);
6793 struct iw_range *range = (struct iw_range *)extra;
6794 u16 val;
6795 int i, level;
6796
6797 wrqu->data.length = sizeof(*range);
6798 memset(range, 0, sizeof(*range));
6799
6800 /* Let's try to keep this struct in the same order as in
6801 * linux/include/wireless.h
6802 */
6803
6804 /* TODO: See what values we can set, and remove the ones we can't
6805 * set, or fill them with some default data.
6806 */
6807
6808 /* ~5 Mb/s real (802.11b) */
6809 range->throughput = 5 * 1000 * 1000;
6810
6811 // range->sensitivity; /* signal level threshold range */
6812
6813 range->max_qual.qual = 100;
6814 /* TODO: Find real max RSSI and stick here */
6815 range->max_qual.level = 0;
6816 range->max_qual.noise = 0;
6817 range->max_qual.updated = 7; /* Updated all three */
6818
6819 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6820 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6821 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6822 range->avg_qual.noise = 0;
6823 range->avg_qual.updated = 7; /* Updated all three */
6824
6825 range->num_bitrates = RATE_COUNT;
6826
6827 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6828 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6829 }
6830
6831 range->min_rts = MIN_RTS_THRESHOLD;
6832 range->max_rts = MAX_RTS_THRESHOLD;
6833 range->min_frag = MIN_FRAG_THRESHOLD;
6834 range->max_frag = MAX_FRAG_THRESHOLD;
6835
6836 range->min_pmp = period_duration[0]; /* Minimal PM period */
6837 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6838 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6839 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6840
6841 /* How to decode max/min PM period */
6842 range->pmp_flags = IW_POWER_PERIOD;
6843 /* How to decode max/min PM period */
6844 range->pmt_flags = IW_POWER_TIMEOUT;
6845 /* What PM options are supported */
6846 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6847
6848 range->encoding_size[0] = 5;
6849 range->encoding_size[1] = 13; /* Different token sizes */
6850 range->num_encoding_sizes = 2; /* Number of entry in the list */
6851 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6852 // range->encoding_login_index; /* token index for login token */
6853
6854 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6855 range->txpower_capa = IW_TXPOW_DBM;
6856 range->num_txpower = IW_MAX_TXPOWER;
6857 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6858 i < IW_MAX_TXPOWER;
6859 i++, level -=
6860 ((IPW_TX_POWER_MAX_DBM -
6861 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6862 range->txpower[i] = level / 16;
6863 } else {
6864 range->txpower_capa = 0;
6865 range->num_txpower = 0;
6866 }
6867
6868 /* Set the Wireless Extension versions */
6869 range->we_version_compiled = WIRELESS_EXT;
6870 range->we_version_source = 18;
6871
6872 // range->retry_capa; /* What retry options are supported */
6873 // range->retry_flags; /* How to decode max/min retry limit */
6874 // range->r_time_flags; /* How to decode max/min retry life */
6875 // range->min_retry; /* Minimal number of retries */
6876 // range->max_retry; /* Maximal number of retries */
6877 // range->min_r_time; /* Minimal retry lifetime */
6878 // range->max_r_time; /* Maximal retry lifetime */
6879
6880 range->num_channels = FREQ_COUNT;
6881
6882 val = 0;
6883 for (i = 0; i < FREQ_COUNT; i++) {
6884 // TODO: Include only legal frequencies for some countries
6885 // if (local->channel_mask & (1 << i)) {
6886 range->freq[val].i = i + 1;
6887 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6888 range->freq[val].e = 1;
6889 val++;
6890 // }
6891 if (val == IW_MAX_FREQUENCIES)
6892 break;
6893 }
6894 range->num_frequency = val;
6895
6896 /* Event capability (kernel + driver) */
6897 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6898 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6899 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6900
6901 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6902 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6903
6904 IPW_DEBUG_WX("GET Range\n");
6905
6906 return 0;
6907 }
6908
ipw2100_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6909 static int ipw2100_wx_set_wap(struct net_device *dev,
6910 struct iw_request_info *info,
6911 union iwreq_data *wrqu, char *extra)
6912 {
6913 struct ipw2100_priv *priv = libipw_priv(dev);
6914 int err = 0;
6915
6916 // sanity checks
6917 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6918 return -EINVAL;
6919
6920 mutex_lock(&priv->action_mutex);
6921 if (!(priv->status & STATUS_INITIALIZED)) {
6922 err = -EIO;
6923 goto done;
6924 }
6925
6926 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6927 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6928 /* we disable mandatory BSSID association */
6929 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6930 priv->config &= ~CFG_STATIC_BSSID;
6931 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6932 goto done;
6933 }
6934
6935 priv->config |= CFG_STATIC_BSSID;
6936 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6937
6938 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6939
6940 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6941
6942 done:
6943 mutex_unlock(&priv->action_mutex);
6944 return err;
6945 }
6946
ipw2100_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6947 static int ipw2100_wx_get_wap(struct net_device *dev,
6948 struct iw_request_info *info,
6949 union iwreq_data *wrqu, char *extra)
6950 {
6951 /*
6952 * This can be called at any time. No action lock required
6953 */
6954
6955 struct ipw2100_priv *priv = libipw_priv(dev);
6956
6957 /* If we are associated, trying to associate, or have a statically
6958 * configured BSSID then return that; otherwise return ANY */
6959 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6960 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6961 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6962 } else
6963 eth_zero_addr(wrqu->ap_addr.sa_data);
6964
6965 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6966 return 0;
6967 }
6968
ipw2100_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6969 static int ipw2100_wx_set_essid(struct net_device *dev,
6970 struct iw_request_info *info,
6971 union iwreq_data *wrqu, char *extra)
6972 {
6973 struct ipw2100_priv *priv = libipw_priv(dev);
6974 char *essid = ""; /* ANY */
6975 int length = 0;
6976 int err = 0;
6977
6978 mutex_lock(&priv->action_mutex);
6979 if (!(priv->status & STATUS_INITIALIZED)) {
6980 err = -EIO;
6981 goto done;
6982 }
6983
6984 if (wrqu->essid.flags && wrqu->essid.length) {
6985 length = wrqu->essid.length;
6986 essid = extra;
6987 }
6988
6989 if (length == 0) {
6990 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6991 priv->config &= ~CFG_STATIC_ESSID;
6992 err = ipw2100_set_essid(priv, NULL, 0, 0);
6993 goto done;
6994 }
6995
6996 length = min(length, IW_ESSID_MAX_SIZE);
6997
6998 priv->config |= CFG_STATIC_ESSID;
6999
7000 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7001 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7002 err = 0;
7003 goto done;
7004 }
7005
7006 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7007
7008 priv->essid_len = length;
7009 memcpy(priv->essid, essid, priv->essid_len);
7010
7011 err = ipw2100_set_essid(priv, essid, length, 0);
7012
7013 done:
7014 mutex_unlock(&priv->action_mutex);
7015 return err;
7016 }
7017
ipw2100_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7018 static int ipw2100_wx_get_essid(struct net_device *dev,
7019 struct iw_request_info *info,
7020 union iwreq_data *wrqu, char *extra)
7021 {
7022 /*
7023 * This can be called at any time. No action lock required
7024 */
7025
7026 struct ipw2100_priv *priv = libipw_priv(dev);
7027
7028 /* If we are associated, trying to associate, or have a statically
7029 * configured ESSID then return that; otherwise return ANY */
7030 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7031 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7032 priv->essid_len, priv->essid);
7033 memcpy(extra, priv->essid, priv->essid_len);
7034 wrqu->essid.length = priv->essid_len;
7035 wrqu->essid.flags = 1; /* active */
7036 } else {
7037 IPW_DEBUG_WX("Getting essid: ANY\n");
7038 wrqu->essid.length = 0;
7039 wrqu->essid.flags = 0; /* active */
7040 }
7041
7042 return 0;
7043 }
7044
ipw2100_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7045 static int ipw2100_wx_set_nick(struct net_device *dev,
7046 struct iw_request_info *info,
7047 union iwreq_data *wrqu, char *extra)
7048 {
7049 /*
7050 * This can be called at any time. No action lock required
7051 */
7052
7053 struct ipw2100_priv *priv = libipw_priv(dev);
7054
7055 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7056 return -E2BIG;
7057
7058 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7059 memset(priv->nick, 0, sizeof(priv->nick));
7060 memcpy(priv->nick, extra, wrqu->data.length);
7061
7062 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7063
7064 return 0;
7065 }
7066
ipw2100_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7067 static int ipw2100_wx_get_nick(struct net_device *dev,
7068 struct iw_request_info *info,
7069 union iwreq_data *wrqu, char *extra)
7070 {
7071 /*
7072 * This can be called at any time. No action lock required
7073 */
7074
7075 struct ipw2100_priv *priv = libipw_priv(dev);
7076
7077 wrqu->data.length = strlen(priv->nick);
7078 memcpy(extra, priv->nick, wrqu->data.length);
7079 wrqu->data.flags = 1; /* active */
7080
7081 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7082
7083 return 0;
7084 }
7085
ipw2100_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7086 static int ipw2100_wx_set_rate(struct net_device *dev,
7087 struct iw_request_info *info,
7088 union iwreq_data *wrqu, char *extra)
7089 {
7090 struct ipw2100_priv *priv = libipw_priv(dev);
7091 u32 target_rate = wrqu->bitrate.value;
7092 u32 rate;
7093 int err = 0;
7094
7095 mutex_lock(&priv->action_mutex);
7096 if (!(priv->status & STATUS_INITIALIZED)) {
7097 err = -EIO;
7098 goto done;
7099 }
7100
7101 rate = 0;
7102
7103 if (target_rate == 1000000 ||
7104 (!wrqu->bitrate.fixed && target_rate > 1000000))
7105 rate |= TX_RATE_1_MBIT;
7106 if (target_rate == 2000000 ||
7107 (!wrqu->bitrate.fixed && target_rate > 2000000))
7108 rate |= TX_RATE_2_MBIT;
7109 if (target_rate == 5500000 ||
7110 (!wrqu->bitrate.fixed && target_rate > 5500000))
7111 rate |= TX_RATE_5_5_MBIT;
7112 if (target_rate == 11000000 ||
7113 (!wrqu->bitrate.fixed && target_rate > 11000000))
7114 rate |= TX_RATE_11_MBIT;
7115 if (rate == 0)
7116 rate = DEFAULT_TX_RATES;
7117
7118 err = ipw2100_set_tx_rates(priv, rate, 0);
7119
7120 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7121 done:
7122 mutex_unlock(&priv->action_mutex);
7123 return err;
7124 }
7125
ipw2100_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7126 static int ipw2100_wx_get_rate(struct net_device *dev,
7127 struct iw_request_info *info,
7128 union iwreq_data *wrqu, char *extra)
7129 {
7130 struct ipw2100_priv *priv = libipw_priv(dev);
7131 int val;
7132 unsigned int len = sizeof(val);
7133 int err = 0;
7134
7135 if (!(priv->status & STATUS_ENABLED) ||
7136 priv->status & STATUS_RF_KILL_MASK ||
7137 !(priv->status & STATUS_ASSOCIATED)) {
7138 wrqu->bitrate.value = 0;
7139 return 0;
7140 }
7141
7142 mutex_lock(&priv->action_mutex);
7143 if (!(priv->status & STATUS_INITIALIZED)) {
7144 err = -EIO;
7145 goto done;
7146 }
7147
7148 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7149 if (err) {
7150 IPW_DEBUG_WX("failed querying ordinals.\n");
7151 goto done;
7152 }
7153
7154 switch (val & TX_RATE_MASK) {
7155 case TX_RATE_1_MBIT:
7156 wrqu->bitrate.value = 1000000;
7157 break;
7158 case TX_RATE_2_MBIT:
7159 wrqu->bitrate.value = 2000000;
7160 break;
7161 case TX_RATE_5_5_MBIT:
7162 wrqu->bitrate.value = 5500000;
7163 break;
7164 case TX_RATE_11_MBIT:
7165 wrqu->bitrate.value = 11000000;
7166 break;
7167 default:
7168 wrqu->bitrate.value = 0;
7169 }
7170
7171 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7172
7173 done:
7174 mutex_unlock(&priv->action_mutex);
7175 return err;
7176 }
7177
ipw2100_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7178 static int ipw2100_wx_set_rts(struct net_device *dev,
7179 struct iw_request_info *info,
7180 union iwreq_data *wrqu, char *extra)
7181 {
7182 struct ipw2100_priv *priv = libipw_priv(dev);
7183 int value, err;
7184
7185 /* Auto RTS not yet supported */
7186 if (wrqu->rts.fixed == 0)
7187 return -EINVAL;
7188
7189 mutex_lock(&priv->action_mutex);
7190 if (!(priv->status & STATUS_INITIALIZED)) {
7191 err = -EIO;
7192 goto done;
7193 }
7194
7195 if (wrqu->rts.disabled)
7196 value = priv->rts_threshold | RTS_DISABLED;
7197 else {
7198 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7199 err = -EINVAL;
7200 goto done;
7201 }
7202 value = wrqu->rts.value;
7203 }
7204
7205 err = ipw2100_set_rts_threshold(priv, value);
7206
7207 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7208 done:
7209 mutex_unlock(&priv->action_mutex);
7210 return err;
7211 }
7212
ipw2100_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7213 static int ipw2100_wx_get_rts(struct net_device *dev,
7214 struct iw_request_info *info,
7215 union iwreq_data *wrqu, char *extra)
7216 {
7217 /*
7218 * This can be called at any time. No action lock required
7219 */
7220
7221 struct ipw2100_priv *priv = libipw_priv(dev);
7222
7223 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7224 wrqu->rts.fixed = 1; /* no auto select */
7225
7226 /* If RTS is set to the default value, then it is disabled */
7227 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7228
7229 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7230
7231 return 0;
7232 }
7233
ipw2100_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7234 static int ipw2100_wx_set_txpow(struct net_device *dev,
7235 struct iw_request_info *info,
7236 union iwreq_data *wrqu, char *extra)
7237 {
7238 struct ipw2100_priv *priv = libipw_priv(dev);
7239 int err = 0, value;
7240
7241 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7242 return -EINPROGRESS;
7243
7244 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7245 return 0;
7246
7247 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7248 return -EINVAL;
7249
7250 if (wrqu->txpower.fixed == 0)
7251 value = IPW_TX_POWER_DEFAULT;
7252 else {
7253 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7254 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7255 return -EINVAL;
7256
7257 value = wrqu->txpower.value;
7258 }
7259
7260 mutex_lock(&priv->action_mutex);
7261 if (!(priv->status & STATUS_INITIALIZED)) {
7262 err = -EIO;
7263 goto done;
7264 }
7265
7266 err = ipw2100_set_tx_power(priv, value);
7267
7268 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7269
7270 done:
7271 mutex_unlock(&priv->action_mutex);
7272 return err;
7273 }
7274
ipw2100_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7275 static int ipw2100_wx_get_txpow(struct net_device *dev,
7276 struct iw_request_info *info,
7277 union iwreq_data *wrqu, char *extra)
7278 {
7279 /*
7280 * This can be called at any time. No action lock required
7281 */
7282
7283 struct ipw2100_priv *priv = libipw_priv(dev);
7284
7285 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7286
7287 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7288 wrqu->txpower.fixed = 0;
7289 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7290 } else {
7291 wrqu->txpower.fixed = 1;
7292 wrqu->txpower.value = priv->tx_power;
7293 }
7294
7295 wrqu->txpower.flags = IW_TXPOW_DBM;
7296
7297 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7298
7299 return 0;
7300 }
7301
ipw2100_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7302 static int ipw2100_wx_set_frag(struct net_device *dev,
7303 struct iw_request_info *info,
7304 union iwreq_data *wrqu, char *extra)
7305 {
7306 /*
7307 * This can be called at any time. No action lock required
7308 */
7309
7310 struct ipw2100_priv *priv = libipw_priv(dev);
7311
7312 if (!wrqu->frag.fixed)
7313 return -EINVAL;
7314
7315 if (wrqu->frag.disabled) {
7316 priv->frag_threshold |= FRAG_DISABLED;
7317 priv->ieee->fts = DEFAULT_FTS;
7318 } else {
7319 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7320 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7321 return -EINVAL;
7322
7323 priv->ieee->fts = wrqu->frag.value & ~0x1;
7324 priv->frag_threshold = priv->ieee->fts;
7325 }
7326
7327 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7328
7329 return 0;
7330 }
7331
ipw2100_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7332 static int ipw2100_wx_get_frag(struct net_device *dev,
7333 struct iw_request_info *info,
7334 union iwreq_data *wrqu, char *extra)
7335 {
7336 /*
7337 * This can be called at any time. No action lock required
7338 */
7339
7340 struct ipw2100_priv *priv = libipw_priv(dev);
7341 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7342 wrqu->frag.fixed = 0; /* no auto select */
7343 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7344
7345 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7346
7347 return 0;
7348 }
7349
ipw2100_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7350 static int ipw2100_wx_set_retry(struct net_device *dev,
7351 struct iw_request_info *info,
7352 union iwreq_data *wrqu, char *extra)
7353 {
7354 struct ipw2100_priv *priv = libipw_priv(dev);
7355 int err = 0;
7356
7357 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7358 return -EINVAL;
7359
7360 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7361 return 0;
7362
7363 mutex_lock(&priv->action_mutex);
7364 if (!(priv->status & STATUS_INITIALIZED)) {
7365 err = -EIO;
7366 goto done;
7367 }
7368
7369 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7370 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7371 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7372 wrqu->retry.value);
7373 goto done;
7374 }
7375
7376 if (wrqu->retry.flags & IW_RETRY_LONG) {
7377 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7378 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7379 wrqu->retry.value);
7380 goto done;
7381 }
7382
7383 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7384 if (!err)
7385 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7386
7387 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7388
7389 done:
7390 mutex_unlock(&priv->action_mutex);
7391 return err;
7392 }
7393
ipw2100_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7394 static int ipw2100_wx_get_retry(struct net_device *dev,
7395 struct iw_request_info *info,
7396 union iwreq_data *wrqu, char *extra)
7397 {
7398 /*
7399 * This can be called at any time. No action lock required
7400 */
7401
7402 struct ipw2100_priv *priv = libipw_priv(dev);
7403
7404 wrqu->retry.disabled = 0; /* can't be disabled */
7405
7406 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7407 return -EINVAL;
7408
7409 if (wrqu->retry.flags & IW_RETRY_LONG) {
7410 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7411 wrqu->retry.value = priv->long_retry_limit;
7412 } else {
7413 wrqu->retry.flags =
7414 (priv->short_retry_limit !=
7415 priv->long_retry_limit) ?
7416 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7417
7418 wrqu->retry.value = priv->short_retry_limit;
7419 }
7420
7421 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7422
7423 return 0;
7424 }
7425
ipw2100_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7426 static int ipw2100_wx_set_scan(struct net_device *dev,
7427 struct iw_request_info *info,
7428 union iwreq_data *wrqu, char *extra)
7429 {
7430 struct ipw2100_priv *priv = libipw_priv(dev);
7431 int err = 0;
7432
7433 mutex_lock(&priv->action_mutex);
7434 if (!(priv->status & STATUS_INITIALIZED)) {
7435 err = -EIO;
7436 goto done;
7437 }
7438
7439 IPW_DEBUG_WX("Initiating scan...\n");
7440
7441 priv->user_requested_scan = 1;
7442 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7443 IPW_DEBUG_WX("Start scan failed.\n");
7444
7445 /* TODO: Mark a scan as pending so when hardware initialized
7446 * a scan starts */
7447 }
7448
7449 done:
7450 mutex_unlock(&priv->action_mutex);
7451 return err;
7452 }
7453
ipw2100_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7454 static int ipw2100_wx_get_scan(struct net_device *dev,
7455 struct iw_request_info *info,
7456 union iwreq_data *wrqu, char *extra)
7457 {
7458 /*
7459 * This can be called at any time. No action lock required
7460 */
7461
7462 struct ipw2100_priv *priv = libipw_priv(dev);
7463 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7464 }
7465
7466 /*
7467 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7468 */
ipw2100_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7469 static int ipw2100_wx_set_encode(struct net_device *dev,
7470 struct iw_request_info *info,
7471 union iwreq_data *wrqu, char *key)
7472 {
7473 /*
7474 * No check of STATUS_INITIALIZED required
7475 */
7476
7477 struct ipw2100_priv *priv = libipw_priv(dev);
7478 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7479 }
7480
ipw2100_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7481 static int ipw2100_wx_get_encode(struct net_device *dev,
7482 struct iw_request_info *info,
7483 union iwreq_data *wrqu, char *key)
7484 {
7485 /*
7486 * This can be called at any time. No action lock required
7487 */
7488
7489 struct ipw2100_priv *priv = libipw_priv(dev);
7490 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7491 }
7492
ipw2100_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7493 static int ipw2100_wx_set_power(struct net_device *dev,
7494 struct iw_request_info *info,
7495 union iwreq_data *wrqu, char *extra)
7496 {
7497 struct ipw2100_priv *priv = libipw_priv(dev);
7498 int err = 0;
7499
7500 mutex_lock(&priv->action_mutex);
7501 if (!(priv->status & STATUS_INITIALIZED)) {
7502 err = -EIO;
7503 goto done;
7504 }
7505
7506 if (wrqu->power.disabled) {
7507 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7508 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7509 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7510 goto done;
7511 }
7512
7513 switch (wrqu->power.flags & IW_POWER_MODE) {
7514 case IW_POWER_ON: /* If not specified */
7515 case IW_POWER_MODE: /* If set all mask */
7516 case IW_POWER_ALL_R: /* If explicitly state all */
7517 break;
7518 default: /* Otherwise we don't support it */
7519 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7520 wrqu->power.flags);
7521 err = -EOPNOTSUPP;
7522 goto done;
7523 }
7524
7525 /* If the user hasn't specified a power management mode yet, default
7526 * to BATTERY */
7527 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7528 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7529
7530 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7531
7532 done:
7533 mutex_unlock(&priv->action_mutex);
7534 return err;
7535
7536 }
7537
ipw2100_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7538 static int ipw2100_wx_get_power(struct net_device *dev,
7539 struct iw_request_info *info,
7540 union iwreq_data *wrqu, char *extra)
7541 {
7542 /*
7543 * This can be called at any time. No action lock required
7544 */
7545
7546 struct ipw2100_priv *priv = libipw_priv(dev);
7547
7548 if (!(priv->power_mode & IPW_POWER_ENABLED))
7549 wrqu->power.disabled = 1;
7550 else {
7551 wrqu->power.disabled = 0;
7552 wrqu->power.flags = 0;
7553 }
7554
7555 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7556
7557 return 0;
7558 }
7559
7560 /*
7561 * WE-18 WPA support
7562 */
7563
7564 /* SIOCSIWGENIE */
ipw2100_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7565 static int ipw2100_wx_set_genie(struct net_device *dev,
7566 struct iw_request_info *info,
7567 union iwreq_data *wrqu, char *extra)
7568 {
7569
7570 struct ipw2100_priv *priv = libipw_priv(dev);
7571 struct libipw_device *ieee = priv->ieee;
7572 u8 *buf;
7573
7574 if (!ieee->wpa_enabled)
7575 return -EOPNOTSUPP;
7576
7577 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7578 (wrqu->data.length && extra == NULL))
7579 return -EINVAL;
7580
7581 if (wrqu->data.length) {
7582 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7583 if (buf == NULL)
7584 return -ENOMEM;
7585
7586 kfree(ieee->wpa_ie);
7587 ieee->wpa_ie = buf;
7588 ieee->wpa_ie_len = wrqu->data.length;
7589 } else {
7590 kfree(ieee->wpa_ie);
7591 ieee->wpa_ie = NULL;
7592 ieee->wpa_ie_len = 0;
7593 }
7594
7595 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7596
7597 return 0;
7598 }
7599
7600 /* SIOCGIWGENIE */
ipw2100_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7601 static int ipw2100_wx_get_genie(struct net_device *dev,
7602 struct iw_request_info *info,
7603 union iwreq_data *wrqu, char *extra)
7604 {
7605 struct ipw2100_priv *priv = libipw_priv(dev);
7606 struct libipw_device *ieee = priv->ieee;
7607
7608 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7609 wrqu->data.length = 0;
7610 return 0;
7611 }
7612
7613 if (wrqu->data.length < ieee->wpa_ie_len)
7614 return -E2BIG;
7615
7616 wrqu->data.length = ieee->wpa_ie_len;
7617 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7618
7619 return 0;
7620 }
7621
7622 /* SIOCSIWAUTH */
ipw2100_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7623 static int ipw2100_wx_set_auth(struct net_device *dev,
7624 struct iw_request_info *info,
7625 union iwreq_data *wrqu, char *extra)
7626 {
7627 struct ipw2100_priv *priv = libipw_priv(dev);
7628 struct libipw_device *ieee = priv->ieee;
7629 struct iw_param *param = &wrqu->param;
7630 struct lib80211_crypt_data *crypt;
7631 unsigned long flags;
7632 int ret = 0;
7633
7634 switch (param->flags & IW_AUTH_INDEX) {
7635 case IW_AUTH_WPA_VERSION:
7636 case IW_AUTH_CIPHER_PAIRWISE:
7637 case IW_AUTH_CIPHER_GROUP:
7638 case IW_AUTH_KEY_MGMT:
7639 /*
7640 * ipw2200 does not use these parameters
7641 */
7642 break;
7643
7644 case IW_AUTH_TKIP_COUNTERMEASURES:
7645 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7646 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7647 break;
7648
7649 flags = crypt->ops->get_flags(crypt->priv);
7650
7651 if (param->value)
7652 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7653 else
7654 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7655
7656 crypt->ops->set_flags(flags, crypt->priv);
7657
7658 break;
7659
7660 case IW_AUTH_DROP_UNENCRYPTED:{
7661 /* HACK:
7662 *
7663 * wpa_supplicant calls set_wpa_enabled when the driver
7664 * is loaded and unloaded, regardless of if WPA is being
7665 * used. No other calls are made which can be used to
7666 * determine if encryption will be used or not prior to
7667 * association being expected. If encryption is not being
7668 * used, drop_unencrypted is set to false, else true -- we
7669 * can use this to determine if the CAP_PRIVACY_ON bit should
7670 * be set.
7671 */
7672 struct libipw_security sec = {
7673 .flags = SEC_ENABLED,
7674 .enabled = param->value,
7675 };
7676 priv->ieee->drop_unencrypted = param->value;
7677 /* We only change SEC_LEVEL for open mode. Others
7678 * are set by ipw_wpa_set_encryption.
7679 */
7680 if (!param->value) {
7681 sec.flags |= SEC_LEVEL;
7682 sec.level = SEC_LEVEL_0;
7683 } else {
7684 sec.flags |= SEC_LEVEL;
7685 sec.level = SEC_LEVEL_1;
7686 }
7687 if (priv->ieee->set_security)
7688 priv->ieee->set_security(priv->ieee->dev, &sec);
7689 break;
7690 }
7691
7692 case IW_AUTH_80211_AUTH_ALG:
7693 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7694 break;
7695
7696 case IW_AUTH_WPA_ENABLED:
7697 ret = ipw2100_wpa_enable(priv, param->value);
7698 break;
7699
7700 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7701 ieee->ieee802_1x = param->value;
7702 break;
7703
7704 //case IW_AUTH_ROAMING_CONTROL:
7705 case IW_AUTH_PRIVACY_INVOKED:
7706 ieee->privacy_invoked = param->value;
7707 break;
7708
7709 default:
7710 return -EOPNOTSUPP;
7711 }
7712 return ret;
7713 }
7714
7715 /* SIOCGIWAUTH */
ipw2100_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7716 static int ipw2100_wx_get_auth(struct net_device *dev,
7717 struct iw_request_info *info,
7718 union iwreq_data *wrqu, char *extra)
7719 {
7720 struct ipw2100_priv *priv = libipw_priv(dev);
7721 struct libipw_device *ieee = priv->ieee;
7722 struct lib80211_crypt_data *crypt;
7723 struct iw_param *param = &wrqu->param;
7724
7725 switch (param->flags & IW_AUTH_INDEX) {
7726 case IW_AUTH_WPA_VERSION:
7727 case IW_AUTH_CIPHER_PAIRWISE:
7728 case IW_AUTH_CIPHER_GROUP:
7729 case IW_AUTH_KEY_MGMT:
7730 /*
7731 * wpa_supplicant will control these internally
7732 */
7733 break;
7734
7735 case IW_AUTH_TKIP_COUNTERMEASURES:
7736 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7737 if (!crypt || !crypt->ops->get_flags) {
7738 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7739 "crypt not set!\n");
7740 break;
7741 }
7742
7743 param->value = (crypt->ops->get_flags(crypt->priv) &
7744 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7745
7746 break;
7747
7748 case IW_AUTH_DROP_UNENCRYPTED:
7749 param->value = ieee->drop_unencrypted;
7750 break;
7751
7752 case IW_AUTH_80211_AUTH_ALG:
7753 param->value = priv->ieee->sec.auth_mode;
7754 break;
7755
7756 case IW_AUTH_WPA_ENABLED:
7757 param->value = ieee->wpa_enabled;
7758 break;
7759
7760 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7761 param->value = ieee->ieee802_1x;
7762 break;
7763
7764 case IW_AUTH_ROAMING_CONTROL:
7765 case IW_AUTH_PRIVACY_INVOKED:
7766 param->value = ieee->privacy_invoked;
7767 break;
7768
7769 default:
7770 return -EOPNOTSUPP;
7771 }
7772 return 0;
7773 }
7774
7775 /* SIOCSIWENCODEEXT */
ipw2100_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7776 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7777 struct iw_request_info *info,
7778 union iwreq_data *wrqu, char *extra)
7779 {
7780 struct ipw2100_priv *priv = libipw_priv(dev);
7781 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7782 }
7783
7784 /* SIOCGIWENCODEEXT */
ipw2100_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7785 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7786 struct iw_request_info *info,
7787 union iwreq_data *wrqu, char *extra)
7788 {
7789 struct ipw2100_priv *priv = libipw_priv(dev);
7790 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7791 }
7792
7793 /* SIOCSIWMLME */
ipw2100_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7794 static int ipw2100_wx_set_mlme(struct net_device *dev,
7795 struct iw_request_info *info,
7796 union iwreq_data *wrqu, char *extra)
7797 {
7798 struct ipw2100_priv *priv = libipw_priv(dev);
7799 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7800
7801 switch (mlme->cmd) {
7802 case IW_MLME_DEAUTH:
7803 // silently ignore
7804 break;
7805
7806 case IW_MLME_DISASSOC:
7807 ipw2100_disassociate_bssid(priv);
7808 break;
7809
7810 default:
7811 return -EOPNOTSUPP;
7812 }
7813 return 0;
7814 }
7815
7816 /*
7817 *
7818 * IWPRIV handlers
7819 *
7820 */
7821 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_promisc(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7822 static int ipw2100_wx_set_promisc(struct net_device *dev,
7823 struct iw_request_info *info,
7824 union iwreq_data *wrqu, char *extra)
7825 {
7826 struct ipw2100_priv *priv = libipw_priv(dev);
7827 int *parms = (int *)extra;
7828 int enable = (parms[0] > 0);
7829 int err = 0;
7830
7831 mutex_lock(&priv->action_mutex);
7832 if (!(priv->status & STATUS_INITIALIZED)) {
7833 err = -EIO;
7834 goto done;
7835 }
7836
7837 if (enable) {
7838 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7839 err = ipw2100_set_channel(priv, parms[1], 0);
7840 goto done;
7841 }
7842 priv->channel = parms[1];
7843 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7844 } else {
7845 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7846 err = ipw2100_switch_mode(priv, priv->last_mode);
7847 }
7848 done:
7849 mutex_unlock(&priv->action_mutex);
7850 return err;
7851 }
7852
ipw2100_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7853 static int ipw2100_wx_reset(struct net_device *dev,
7854 struct iw_request_info *info,
7855 union iwreq_data *wrqu, char *extra)
7856 {
7857 struct ipw2100_priv *priv = libipw_priv(dev);
7858 if (priv->status & STATUS_INITIALIZED)
7859 schedule_reset(priv);
7860 return 0;
7861 }
7862
7863 #endif
7864
ipw2100_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7865 static int ipw2100_wx_set_powermode(struct net_device *dev,
7866 struct iw_request_info *info,
7867 union iwreq_data *wrqu, char *extra)
7868 {
7869 struct ipw2100_priv *priv = libipw_priv(dev);
7870 int err = 0, mode = *(int *)extra;
7871
7872 mutex_lock(&priv->action_mutex);
7873 if (!(priv->status & STATUS_INITIALIZED)) {
7874 err = -EIO;
7875 goto done;
7876 }
7877
7878 if ((mode < 0) || (mode > POWER_MODES))
7879 mode = IPW_POWER_AUTO;
7880
7881 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7882 err = ipw2100_set_power_mode(priv, mode);
7883 done:
7884 mutex_unlock(&priv->action_mutex);
7885 return err;
7886 }
7887
7888 #define MAX_POWER_STRING 80
ipw2100_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7889 static int ipw2100_wx_get_powermode(struct net_device *dev,
7890 struct iw_request_info *info,
7891 union iwreq_data *wrqu, char *extra)
7892 {
7893 /*
7894 * This can be called at any time. No action lock required
7895 */
7896
7897 struct ipw2100_priv *priv = libipw_priv(dev);
7898 int level = IPW_POWER_LEVEL(priv->power_mode);
7899 s32 timeout, period;
7900
7901 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7902 snprintf(extra, MAX_POWER_STRING,
7903 "Power save level: %d (Off)", level);
7904 } else {
7905 switch (level) {
7906 case IPW_POWER_MODE_CAM:
7907 snprintf(extra, MAX_POWER_STRING,
7908 "Power save level: %d (None)", level);
7909 break;
7910 case IPW_POWER_AUTO:
7911 snprintf(extra, MAX_POWER_STRING,
7912 "Power save level: %d (Auto)", level);
7913 break;
7914 default:
7915 timeout = timeout_duration[level - 1] / 1000;
7916 period = period_duration[level - 1] / 1000;
7917 snprintf(extra, MAX_POWER_STRING,
7918 "Power save level: %d "
7919 "(Timeout %dms, Period %dms)",
7920 level, timeout, period);
7921 }
7922 }
7923
7924 wrqu->data.length = strlen(extra) + 1;
7925
7926 return 0;
7927 }
7928
ipw2100_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7929 static int ipw2100_wx_set_preamble(struct net_device *dev,
7930 struct iw_request_info *info,
7931 union iwreq_data *wrqu, char *extra)
7932 {
7933 struct ipw2100_priv *priv = libipw_priv(dev);
7934 int err, mode = *(int *)extra;
7935
7936 mutex_lock(&priv->action_mutex);
7937 if (!(priv->status & STATUS_INITIALIZED)) {
7938 err = -EIO;
7939 goto done;
7940 }
7941
7942 if (mode == 1)
7943 priv->config |= CFG_LONG_PREAMBLE;
7944 else if (mode == 0)
7945 priv->config &= ~CFG_LONG_PREAMBLE;
7946 else {
7947 err = -EINVAL;
7948 goto done;
7949 }
7950
7951 err = ipw2100_system_config(priv, 0);
7952
7953 done:
7954 mutex_unlock(&priv->action_mutex);
7955 return err;
7956 }
7957
ipw2100_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7958 static int ipw2100_wx_get_preamble(struct net_device *dev,
7959 struct iw_request_info *info,
7960 union iwreq_data *wrqu, char *extra)
7961 {
7962 /*
7963 * This can be called at any time. No action lock required
7964 */
7965
7966 struct ipw2100_priv *priv = libipw_priv(dev);
7967
7968 if (priv->config & CFG_LONG_PREAMBLE)
7969 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7970 else
7971 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7972
7973 return 0;
7974 }
7975
7976 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7977 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7978 struct iw_request_info *info,
7979 union iwreq_data *wrqu, char *extra)
7980 {
7981 struct ipw2100_priv *priv = libipw_priv(dev);
7982 int err, mode = *(int *)extra;
7983
7984 mutex_lock(&priv->action_mutex);
7985 if (!(priv->status & STATUS_INITIALIZED)) {
7986 err = -EIO;
7987 goto done;
7988 }
7989
7990 if (mode == 1)
7991 priv->config |= CFG_CRC_CHECK;
7992 else if (mode == 0)
7993 priv->config &= ~CFG_CRC_CHECK;
7994 else {
7995 err = -EINVAL;
7996 goto done;
7997 }
7998 err = 0;
7999
8000 done:
8001 mutex_unlock(&priv->action_mutex);
8002 return err;
8003 }
8004
ipw2100_wx_get_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8005 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8006 struct iw_request_info *info,
8007 union iwreq_data *wrqu, char *extra)
8008 {
8009 /*
8010 * This can be called at any time. No action lock required
8011 */
8012
8013 struct ipw2100_priv *priv = libipw_priv(dev);
8014
8015 if (priv->config & CFG_CRC_CHECK)
8016 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8017 else
8018 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8019
8020 return 0;
8021 }
8022 #endif /* CONFIG_IPW2100_MONITOR */
8023
8024 static iw_handler ipw2100_wx_handlers[] = {
8025 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8026 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8027 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8028 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8029 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8030 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8031 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8032 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8033 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8034 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8035 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8036 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8037 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8038 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8039 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8040 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8041 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8042 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8043 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8044 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8045 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8046 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8047 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8048 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8049 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8050 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8051 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8052 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8053 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8054 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8055 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8056 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8057 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8058 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8059 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8060 };
8061
8062 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8063 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8064 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8065 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8066 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8067 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8068 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8069 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8070
8071 static const struct iw_priv_args ipw2100_private_args[] = {
8072
8073 #ifdef CONFIG_IPW2100_MONITOR
8074 {
8075 IPW2100_PRIV_SET_MONITOR,
8076 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8077 {
8078 IPW2100_PRIV_RESET,
8079 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8080 #endif /* CONFIG_IPW2100_MONITOR */
8081
8082 {
8083 IPW2100_PRIV_SET_POWER,
8084 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8085 {
8086 IPW2100_PRIV_GET_POWER,
8087 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8088 "get_power"},
8089 {
8090 IPW2100_PRIV_SET_LONGPREAMBLE,
8091 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8092 {
8093 IPW2100_PRIV_GET_LONGPREAMBLE,
8094 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8095 #ifdef CONFIG_IPW2100_MONITOR
8096 {
8097 IPW2100_PRIV_SET_CRC_CHECK,
8098 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8099 {
8100 IPW2100_PRIV_GET_CRC_CHECK,
8101 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8102 #endif /* CONFIG_IPW2100_MONITOR */
8103 };
8104
8105 static iw_handler ipw2100_private_handler[] = {
8106 #ifdef CONFIG_IPW2100_MONITOR
8107 ipw2100_wx_set_promisc,
8108 ipw2100_wx_reset,
8109 #else /* CONFIG_IPW2100_MONITOR */
8110 NULL,
8111 NULL,
8112 #endif /* CONFIG_IPW2100_MONITOR */
8113 ipw2100_wx_set_powermode,
8114 ipw2100_wx_get_powermode,
8115 ipw2100_wx_set_preamble,
8116 ipw2100_wx_get_preamble,
8117 #ifdef CONFIG_IPW2100_MONITOR
8118 ipw2100_wx_set_crc_check,
8119 ipw2100_wx_get_crc_check,
8120 #else /* CONFIG_IPW2100_MONITOR */
8121 NULL,
8122 NULL,
8123 #endif /* CONFIG_IPW2100_MONITOR */
8124 };
8125
8126 /*
8127 * Get wireless statistics.
8128 * Called by /proc/net/wireless
8129 * Also called by SIOCGIWSTATS
8130 */
ipw2100_wx_wireless_stats(struct net_device * dev)8131 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8132 {
8133 enum {
8134 POOR = 30,
8135 FAIR = 60,
8136 GOOD = 80,
8137 VERY_GOOD = 90,
8138 EXCELLENT = 95,
8139 PERFECT = 100
8140 };
8141 int rssi_qual;
8142 int tx_qual;
8143 int beacon_qual;
8144 int quality;
8145
8146 struct ipw2100_priv *priv = libipw_priv(dev);
8147 struct iw_statistics *wstats;
8148 u32 rssi, tx_retries, missed_beacons, tx_failures;
8149 u32 ord_len = sizeof(u32);
8150
8151 if (!priv)
8152 return (struct iw_statistics *)NULL;
8153
8154 wstats = &priv->wstats;
8155
8156 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8157 * ipw2100_wx_wireless_stats seems to be called before fw is
8158 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8159 * and associated; if not associcated, the values are all meaningless
8160 * anyway, so set them all to NULL and INVALID */
8161 if (!(priv->status & STATUS_ASSOCIATED)) {
8162 wstats->miss.beacon = 0;
8163 wstats->discard.retries = 0;
8164 wstats->qual.qual = 0;
8165 wstats->qual.level = 0;
8166 wstats->qual.noise = 0;
8167 wstats->qual.updated = 7;
8168 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8169 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8170 return wstats;
8171 }
8172
8173 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8174 &missed_beacons, &ord_len))
8175 goto fail_get_ordinal;
8176
8177 /* If we don't have a connection the quality and level is 0 */
8178 if (!(priv->status & STATUS_ASSOCIATED)) {
8179 wstats->qual.qual = 0;
8180 wstats->qual.level = 0;
8181 } else {
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8183 &rssi, &ord_len))
8184 goto fail_get_ordinal;
8185 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8186 if (rssi < 10)
8187 rssi_qual = rssi * POOR / 10;
8188 else if (rssi < 15)
8189 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8190 else if (rssi < 20)
8191 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8192 else if (rssi < 30)
8193 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8194 10 + GOOD;
8195 else
8196 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8197 10 + VERY_GOOD;
8198
8199 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8200 &tx_retries, &ord_len))
8201 goto fail_get_ordinal;
8202
8203 if (tx_retries > 75)
8204 tx_qual = (90 - tx_retries) * POOR / 15;
8205 else if (tx_retries > 70)
8206 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8207 else if (tx_retries > 65)
8208 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8209 else if (tx_retries > 50)
8210 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8211 15 + GOOD;
8212 else
8213 tx_qual = (50 - tx_retries) *
8214 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8215
8216 if (missed_beacons > 50)
8217 beacon_qual = (60 - missed_beacons) * POOR / 10;
8218 else if (missed_beacons > 40)
8219 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8220 10 + POOR;
8221 else if (missed_beacons > 32)
8222 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8223 18 + FAIR;
8224 else if (missed_beacons > 20)
8225 beacon_qual = (32 - missed_beacons) *
8226 (VERY_GOOD - GOOD) / 20 + GOOD;
8227 else
8228 beacon_qual = (20 - missed_beacons) *
8229 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8230
8231 quality = min(tx_qual, rssi_qual);
8232 quality = min(beacon_qual, quality);
8233
8234 #ifdef CONFIG_IPW2100_DEBUG
8235 if (beacon_qual == quality)
8236 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8237 else if (tx_qual == quality)
8238 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8239 else if (quality != 100)
8240 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8241 else
8242 IPW_DEBUG_WX("Quality not clamped.\n");
8243 #endif
8244
8245 wstats->qual.qual = quality;
8246 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8247 }
8248
8249 wstats->qual.noise = 0;
8250 wstats->qual.updated = 7;
8251 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8252
8253 /* FIXME: this is percent and not a # */
8254 wstats->miss.beacon = missed_beacons;
8255
8256 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8257 &tx_failures, &ord_len))
8258 goto fail_get_ordinal;
8259 wstats->discard.retries = tx_failures;
8260
8261 return wstats;
8262
8263 fail_get_ordinal:
8264 IPW_DEBUG_WX("failed querying ordinals.\n");
8265
8266 return (struct iw_statistics *)NULL;
8267 }
8268
8269 static const struct iw_handler_def ipw2100_wx_handler_def = {
8270 .standard = ipw2100_wx_handlers,
8271 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8272 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8273 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8274 .private = (iw_handler *) ipw2100_private_handler,
8275 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8276 .get_wireless_stats = ipw2100_wx_wireless_stats,
8277 };
8278
ipw2100_wx_event_work(struct work_struct * work)8279 static void ipw2100_wx_event_work(struct work_struct *work)
8280 {
8281 struct ipw2100_priv *priv =
8282 container_of(work, struct ipw2100_priv, wx_event_work.work);
8283 union iwreq_data wrqu;
8284 unsigned int len = ETH_ALEN;
8285
8286 if (priv->status & STATUS_STOPPING)
8287 return;
8288
8289 mutex_lock(&priv->action_mutex);
8290
8291 IPW_DEBUG_WX("enter\n");
8292
8293 mutex_unlock(&priv->action_mutex);
8294
8295 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8296
8297 /* Fetch BSSID from the hardware */
8298 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8299 priv->status & STATUS_RF_KILL_MASK ||
8300 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8301 &priv->bssid, &len)) {
8302 eth_zero_addr(wrqu.ap_addr.sa_data);
8303 } else {
8304 /* We now have the BSSID, so can finish setting to the full
8305 * associated state */
8306 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8307 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8308 priv->status &= ~STATUS_ASSOCIATING;
8309 priv->status |= STATUS_ASSOCIATED;
8310 netif_carrier_on(priv->net_dev);
8311 netif_wake_queue(priv->net_dev);
8312 }
8313
8314 if (!(priv->status & STATUS_ASSOCIATED)) {
8315 IPW_DEBUG_WX("Configuring ESSID\n");
8316 mutex_lock(&priv->action_mutex);
8317 /* This is a disassociation event, so kick the firmware to
8318 * look for another AP */
8319 if (priv->config & CFG_STATIC_ESSID)
8320 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8321 0);
8322 else
8323 ipw2100_set_essid(priv, NULL, 0, 0);
8324 mutex_unlock(&priv->action_mutex);
8325 }
8326
8327 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8328 }
8329
8330 #define IPW2100_FW_MAJOR_VERSION 1
8331 #define IPW2100_FW_MINOR_VERSION 3
8332
8333 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8334 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8335
8336 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8337 IPW2100_FW_MAJOR_VERSION)
8338
8339 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8340 "." __stringify(IPW2100_FW_MINOR_VERSION)
8341
8342 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8343
8344 /*
8345
8346 BINARY FIRMWARE HEADER FORMAT
8347
8348 offset length desc
8349 0 2 version
8350 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8351 4 4 fw_len
8352 8 4 uc_len
8353 C fw_len firmware data
8354 12 + fw_len uc_len microcode data
8355
8356 */
8357
8358 struct ipw2100_fw_header {
8359 short version;
8360 short mode;
8361 unsigned int fw_size;
8362 unsigned int uc_size;
8363 } __packed;
8364
ipw2100_mod_firmware_load(struct ipw2100_fw * fw)8365 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8366 {
8367 struct ipw2100_fw_header *h =
8368 (struct ipw2100_fw_header *)fw->fw_entry->data;
8369
8370 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8371 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8372 "(detected version id of %u). "
8373 "See Documentation/networking/README.ipw2100\n",
8374 h->version);
8375 return 1;
8376 }
8377
8378 fw->version = h->version;
8379 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8380 fw->fw.size = h->fw_size;
8381 fw->uc.data = fw->fw.data + h->fw_size;
8382 fw->uc.size = h->uc_size;
8383
8384 return 0;
8385 }
8386
ipw2100_get_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8387 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8388 struct ipw2100_fw *fw)
8389 {
8390 char *fw_name;
8391 int rc;
8392
8393 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8394 priv->net_dev->name);
8395
8396 switch (priv->ieee->iw_mode) {
8397 case IW_MODE_ADHOC:
8398 fw_name = IPW2100_FW_NAME("-i");
8399 break;
8400 #ifdef CONFIG_IPW2100_MONITOR
8401 case IW_MODE_MONITOR:
8402 fw_name = IPW2100_FW_NAME("-p");
8403 break;
8404 #endif
8405 case IW_MODE_INFRA:
8406 default:
8407 fw_name = IPW2100_FW_NAME("");
8408 break;
8409 }
8410
8411 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8412
8413 if (rc < 0) {
8414 printk(KERN_ERR DRV_NAME ": "
8415 "%s: Firmware '%s' not available or load failed.\n",
8416 priv->net_dev->name, fw_name);
8417 return rc;
8418 }
8419 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8420 fw->fw_entry->size);
8421
8422 ipw2100_mod_firmware_load(fw);
8423
8424 return 0;
8425 }
8426
8427 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8428 #ifdef CONFIG_IPW2100_MONITOR
8429 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8430 #endif
8431 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8432
ipw2100_release_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8433 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8434 struct ipw2100_fw *fw)
8435 {
8436 fw->version = 0;
8437 release_firmware(fw->fw_entry);
8438 fw->fw_entry = NULL;
8439 }
8440
ipw2100_get_fwversion(struct ipw2100_priv * priv,char * buf,size_t max)8441 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8442 size_t max)
8443 {
8444 char ver[MAX_FW_VERSION_LEN];
8445 u32 len = MAX_FW_VERSION_LEN;
8446 u32 tmp;
8447 int i;
8448 /* firmware version is an ascii string (max len of 14) */
8449 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8450 return -EIO;
8451 tmp = max;
8452 if (len >= max)
8453 len = max - 1;
8454 for (i = 0; i < len; i++)
8455 buf[i] = ver[i];
8456 buf[i] = '\0';
8457 return tmp;
8458 }
8459
ipw2100_get_ucodeversion(struct ipw2100_priv * priv,char * buf,size_t max)8460 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8461 size_t max)
8462 {
8463 u32 ver;
8464 u32 len = sizeof(ver);
8465 /* microcode version is a 32 bit integer */
8466 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8467 return -EIO;
8468 return snprintf(buf, max, "%08X", ver);
8469 }
8470
8471 /*
8472 * On exit, the firmware will have been freed from the fw list
8473 */
ipw2100_fw_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8474 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8475 {
8476 /* firmware is constructed of N contiguous entries, each entry is
8477 * structured as:
8478 *
8479 * offset sie desc
8480 * 0 4 address to write to
8481 * 4 2 length of data run
8482 * 6 length data
8483 */
8484 unsigned int addr;
8485 unsigned short len;
8486
8487 const unsigned char *firmware_data = fw->fw.data;
8488 unsigned int firmware_data_left = fw->fw.size;
8489
8490 while (firmware_data_left > 0) {
8491 addr = *(u32 *) (firmware_data);
8492 firmware_data += 4;
8493 firmware_data_left -= 4;
8494
8495 len = *(u16 *) (firmware_data);
8496 firmware_data += 2;
8497 firmware_data_left -= 2;
8498
8499 if (len > 32) {
8500 printk(KERN_ERR DRV_NAME ": "
8501 "Invalid firmware run-length of %d bytes\n",
8502 len);
8503 return -EINVAL;
8504 }
8505
8506 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8507 firmware_data += len;
8508 firmware_data_left -= len;
8509 }
8510
8511 return 0;
8512 }
8513
8514 struct symbol_alive_response {
8515 u8 cmd_id;
8516 u8 seq_num;
8517 u8 ucode_rev;
8518 u8 eeprom_valid;
8519 u16 valid_flags;
8520 u8 IEEE_addr[6];
8521 u16 flags;
8522 u16 pcb_rev;
8523 u16 clock_settle_time; // 1us LSB
8524 u16 powerup_settle_time; // 1us LSB
8525 u16 hop_settle_time; // 1us LSB
8526 u8 date[3]; // month, day, year
8527 u8 time[2]; // hours, minutes
8528 u8 ucode_valid;
8529 };
8530
ipw2100_ucode_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8531 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8532 struct ipw2100_fw *fw)
8533 {
8534 struct net_device *dev = priv->net_dev;
8535 const unsigned char *microcode_data = fw->uc.data;
8536 unsigned int microcode_data_left = fw->uc.size;
8537 void __iomem *reg = priv->ioaddr;
8538
8539 struct symbol_alive_response response;
8540 int i, j;
8541 u8 data;
8542
8543 /* Symbol control */
8544 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8545 readl(reg);
8546 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8547 readl(reg);
8548
8549 /* HW config */
8550 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8551 readl(reg);
8552 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8553 readl(reg);
8554
8555 /* EN_CS_ACCESS bit to reset control store pointer */
8556 write_nic_byte(dev, 0x210000, 0x40);
8557 readl(reg);
8558 write_nic_byte(dev, 0x210000, 0x0);
8559 readl(reg);
8560 write_nic_byte(dev, 0x210000, 0x40);
8561 readl(reg);
8562
8563 /* copy microcode from buffer into Symbol */
8564
8565 while (microcode_data_left > 0) {
8566 write_nic_byte(dev, 0x210010, *microcode_data++);
8567 write_nic_byte(dev, 0x210010, *microcode_data++);
8568 microcode_data_left -= 2;
8569 }
8570
8571 /* EN_CS_ACCESS bit to reset the control store pointer */
8572 write_nic_byte(dev, 0x210000, 0x0);
8573 readl(reg);
8574
8575 /* Enable System (Reg 0)
8576 * first enable causes garbage in RX FIFO */
8577 write_nic_byte(dev, 0x210000, 0x0);
8578 readl(reg);
8579 write_nic_byte(dev, 0x210000, 0x80);
8580 readl(reg);
8581
8582 /* Reset External Baseband Reg */
8583 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8584 readl(reg);
8585 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8586 readl(reg);
8587
8588 /* HW Config (Reg 5) */
8589 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8590 readl(reg);
8591 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8592 readl(reg);
8593
8594 /* Enable System (Reg 0)
8595 * second enable should be OK */
8596 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8597 readl(reg);
8598 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8599
8600 /* check Symbol is enabled - upped this from 5 as it wasn't always
8601 * catching the update */
8602 for (i = 0; i < 10; i++) {
8603 udelay(10);
8604
8605 /* check Dino is enabled bit */
8606 read_nic_byte(dev, 0x210000, &data);
8607 if (data & 0x1)
8608 break;
8609 }
8610
8611 if (i == 10) {
8612 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8613 dev->name);
8614 return -EIO;
8615 }
8616
8617 /* Get Symbol alive response */
8618 for (i = 0; i < 30; i++) {
8619 /* Read alive response structure */
8620 for (j = 0;
8621 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8622 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8623
8624 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8625 break;
8626 udelay(10);
8627 }
8628
8629 if (i == 30) {
8630 printk(KERN_ERR DRV_NAME
8631 ": %s: No response from Symbol - hw not alive\n",
8632 dev->name);
8633 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8634 return -EIO;
8635 }
8636
8637 return 0;
8638 }
8639