1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EF4_IO_H
12 #define EF4_IO_H
13 
14 #include <linux/io.h>
15 #include <linux/spinlock.h>
16 
17 /**************************************************************************
18  *
19  * NIC register I/O
20  *
21  **************************************************************************
22  *
23  * Notes on locking strategy for the Falcon architecture:
24  *
25  * Many CSRs are very wide and cannot be read or written atomically.
26  * Writes from the host are buffered by the Bus Interface Unit (BIU)
27  * up to 128 bits.  Whenever the host writes part of such a register,
28  * the BIU collects the written value and does not write to the
29  * underlying register until all 4 dwords have been written.  A
30  * similar buffering scheme applies to host access to the NIC's 64-bit
31  * SRAM.
32  *
33  * Writes to different CSRs and 64-bit SRAM words must be serialised,
34  * since interleaved access can result in lost writes.  We use
35  * ef4_nic::biu_lock for this.
36  *
37  * We also serialise reads from 128-bit CSRs and SRAM with the same
38  * spinlock.  This may not be necessary, but it doesn't really matter
39  * as there are no such reads on the fast path.
40  *
41  * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
42  * 128-bit but are special-cased in the BIU to avoid the need for
43  * locking in the host:
44  *
45  * - They are write-only.
46  * - The semantics of writing to these registers are such that
47  *   replacing the low 96 bits with zero does not affect functionality.
48  * - If the host writes to the last dword address of such a register
49  *   (i.e. the high 32 bits) the underlying register will always be
50  *   written.  If the collector and the current write together do not
51  *   provide values for all 128 bits of the register, the low 96 bits
52  *   will be written as zero.
53  * - If the host writes to the address of any other part of such a
54  *   register while the collector already holds values for some other
55  *   register, the write is discarded and the collector maintains its
56  *   current state.
57  *
58  * The EF10 architecture exposes very few registers to the host and
59  * most of them are only 32 bits wide.  The only exceptions are the MC
60  * doorbell register pair, which has its own latching, and
61  * TX_DESC_UPD, which works in a similar way to the Falcon
62  * architecture.
63  */
64 
65 #if BITS_PER_LONG == 64
66 #define EF4_USE_QWORD_IO 1
67 #endif
68 
69 #ifdef EF4_USE_QWORD_IO
_ef4_writeq(struct ef4_nic * efx,__le64 value,unsigned int reg)70 static inline void _ef4_writeq(struct ef4_nic *efx, __le64 value,
71 				  unsigned int reg)
72 {
73 	__raw_writeq((__force u64)value, efx->membase + reg);
74 }
_ef4_readq(struct ef4_nic * efx,unsigned int reg)75 static inline __le64 _ef4_readq(struct ef4_nic *efx, unsigned int reg)
76 {
77 	return (__force __le64)__raw_readq(efx->membase + reg);
78 }
79 #endif
80 
_ef4_writed(struct ef4_nic * efx,__le32 value,unsigned int reg)81 static inline void _ef4_writed(struct ef4_nic *efx, __le32 value,
82 				  unsigned int reg)
83 {
84 	__raw_writel((__force u32)value, efx->membase + reg);
85 }
_ef4_readd(struct ef4_nic * efx,unsigned int reg)86 static inline __le32 _ef4_readd(struct ef4_nic *efx, unsigned int reg)
87 {
88 	return (__force __le32)__raw_readl(efx->membase + reg);
89 }
90 
91 /* Write a normal 128-bit CSR, locking as appropriate. */
ef4_writeo(struct ef4_nic * efx,const ef4_oword_t * value,unsigned int reg)92 static inline void ef4_writeo(struct ef4_nic *efx, const ef4_oword_t *value,
93 			      unsigned int reg)
94 {
95 	unsigned long flags __attribute__ ((unused));
96 
97 	netif_vdbg(efx, hw, efx->net_dev,
98 		   "writing register %x with " EF4_OWORD_FMT "\n", reg,
99 		   EF4_OWORD_VAL(*value));
100 
101 	spin_lock_irqsave(&efx->biu_lock, flags);
102 #ifdef EF4_USE_QWORD_IO
103 	_ef4_writeq(efx, value->u64[0], reg + 0);
104 	_ef4_writeq(efx, value->u64[1], reg + 8);
105 #else
106 	_ef4_writed(efx, value->u32[0], reg + 0);
107 	_ef4_writed(efx, value->u32[1], reg + 4);
108 	_ef4_writed(efx, value->u32[2], reg + 8);
109 	_ef4_writed(efx, value->u32[3], reg + 12);
110 #endif
111 	mmiowb();
112 	spin_unlock_irqrestore(&efx->biu_lock, flags);
113 }
114 
115 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
ef4_sram_writeq(struct ef4_nic * efx,void __iomem * membase,const ef4_qword_t * value,unsigned int index)116 static inline void ef4_sram_writeq(struct ef4_nic *efx, void __iomem *membase,
117 				   const ef4_qword_t *value, unsigned int index)
118 {
119 	unsigned int addr = index * sizeof(*value);
120 	unsigned long flags __attribute__ ((unused));
121 
122 	netif_vdbg(efx, hw, efx->net_dev,
123 		   "writing SRAM address %x with " EF4_QWORD_FMT "\n",
124 		   addr, EF4_QWORD_VAL(*value));
125 
126 	spin_lock_irqsave(&efx->biu_lock, flags);
127 #ifdef EF4_USE_QWORD_IO
128 	__raw_writeq((__force u64)value->u64[0], membase + addr);
129 #else
130 	__raw_writel((__force u32)value->u32[0], membase + addr);
131 	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
132 #endif
133 	mmiowb();
134 	spin_unlock_irqrestore(&efx->biu_lock, flags);
135 }
136 
137 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
ef4_writed(struct ef4_nic * efx,const ef4_dword_t * value,unsigned int reg)138 static inline void ef4_writed(struct ef4_nic *efx, const ef4_dword_t *value,
139 			      unsigned int reg)
140 {
141 	netif_vdbg(efx, hw, efx->net_dev,
142 		   "writing register %x with "EF4_DWORD_FMT"\n",
143 		   reg, EF4_DWORD_VAL(*value));
144 
145 	/* No lock required */
146 	_ef4_writed(efx, value->u32[0], reg);
147 }
148 
149 /* Read a 128-bit CSR, locking as appropriate. */
ef4_reado(struct ef4_nic * efx,ef4_oword_t * value,unsigned int reg)150 static inline void ef4_reado(struct ef4_nic *efx, ef4_oword_t *value,
151 			     unsigned int reg)
152 {
153 	unsigned long flags __attribute__ ((unused));
154 
155 	spin_lock_irqsave(&efx->biu_lock, flags);
156 	value->u32[0] = _ef4_readd(efx, reg + 0);
157 	value->u32[1] = _ef4_readd(efx, reg + 4);
158 	value->u32[2] = _ef4_readd(efx, reg + 8);
159 	value->u32[3] = _ef4_readd(efx, reg + 12);
160 	spin_unlock_irqrestore(&efx->biu_lock, flags);
161 
162 	netif_vdbg(efx, hw, efx->net_dev,
163 		   "read from register %x, got " EF4_OWORD_FMT "\n", reg,
164 		   EF4_OWORD_VAL(*value));
165 }
166 
167 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
ef4_sram_readq(struct ef4_nic * efx,void __iomem * membase,ef4_qword_t * value,unsigned int index)168 static inline void ef4_sram_readq(struct ef4_nic *efx, void __iomem *membase,
169 				  ef4_qword_t *value, unsigned int index)
170 {
171 	unsigned int addr = index * sizeof(*value);
172 	unsigned long flags __attribute__ ((unused));
173 
174 	spin_lock_irqsave(&efx->biu_lock, flags);
175 #ifdef EF4_USE_QWORD_IO
176 	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
177 #else
178 	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
179 	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
180 #endif
181 	spin_unlock_irqrestore(&efx->biu_lock, flags);
182 
183 	netif_vdbg(efx, hw, efx->net_dev,
184 		   "read from SRAM address %x, got "EF4_QWORD_FMT"\n",
185 		   addr, EF4_QWORD_VAL(*value));
186 }
187 
188 /* Read a 32-bit CSR or SRAM */
ef4_readd(struct ef4_nic * efx,ef4_dword_t * value,unsigned int reg)189 static inline void ef4_readd(struct ef4_nic *efx, ef4_dword_t *value,
190 				unsigned int reg)
191 {
192 	value->u32[0] = _ef4_readd(efx, reg);
193 	netif_vdbg(efx, hw, efx->net_dev,
194 		   "read from register %x, got "EF4_DWORD_FMT"\n",
195 		   reg, EF4_DWORD_VAL(*value));
196 }
197 
198 /* Write a 128-bit CSR forming part of a table */
199 static inline void
ef4_writeo_table(struct ef4_nic * efx,const ef4_oword_t * value,unsigned int reg,unsigned int index)200 ef4_writeo_table(struct ef4_nic *efx, const ef4_oword_t *value,
201 		 unsigned int reg, unsigned int index)
202 {
203 	ef4_writeo(efx, value, reg + index * sizeof(ef4_oword_t));
204 }
205 
206 /* Read a 128-bit CSR forming part of a table */
ef4_reado_table(struct ef4_nic * efx,ef4_oword_t * value,unsigned int reg,unsigned int index)207 static inline void ef4_reado_table(struct ef4_nic *efx, ef4_oword_t *value,
208 				     unsigned int reg, unsigned int index)
209 {
210 	ef4_reado(efx, value, reg + index * sizeof(ef4_oword_t));
211 }
212 
213 /* Page size used as step between per-VI registers */
214 #define EF4_VI_PAGE_SIZE 0x2000
215 
216 /* Calculate offset to page-mapped register */
217 #define EF4_PAGED_REG(page, reg) \
218 	((page) * EF4_VI_PAGE_SIZE + (reg))
219 
220 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
_ef4_writeo_page(struct ef4_nic * efx,ef4_oword_t * value,unsigned int reg,unsigned int page)221 static inline void _ef4_writeo_page(struct ef4_nic *efx, ef4_oword_t *value,
222 				    unsigned int reg, unsigned int page)
223 {
224 	reg = EF4_PAGED_REG(page, reg);
225 
226 	netif_vdbg(efx, hw, efx->net_dev,
227 		   "writing register %x with " EF4_OWORD_FMT "\n", reg,
228 		   EF4_OWORD_VAL(*value));
229 
230 #ifdef EF4_USE_QWORD_IO
231 	_ef4_writeq(efx, value->u64[0], reg + 0);
232 	_ef4_writeq(efx, value->u64[1], reg + 8);
233 #else
234 	_ef4_writed(efx, value->u32[0], reg + 0);
235 	_ef4_writed(efx, value->u32[1], reg + 4);
236 	_ef4_writed(efx, value->u32[2], reg + 8);
237 	_ef4_writed(efx, value->u32[3], reg + 12);
238 #endif
239 }
240 #define ef4_writeo_page(efx, value, reg, page)				\
241 	_ef4_writeo_page(efx, value,					\
242 			 reg +						\
243 			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
244 			 page)
245 
246 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
247  * high bits of RX_DESC_UPD or TX_DESC_UPD)
248  */
249 static inline void
_ef4_writed_page(struct ef4_nic * efx,const ef4_dword_t * value,unsigned int reg,unsigned int page)250 _ef4_writed_page(struct ef4_nic *efx, const ef4_dword_t *value,
251 		 unsigned int reg, unsigned int page)
252 {
253 	ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
254 }
255 #define ef4_writed_page(efx, value, reg, page)				\
256 	_ef4_writed_page(efx, value,					\
257 			 reg +						\
258 			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
259 					   (reg) != 0x420 &&		\
260 					   (reg) != 0x830 &&		\
261 					   (reg) != 0x83c &&		\
262 					   (reg) != 0xa18 &&		\
263 					   (reg) != 0xa1c),		\
264 			 page)
265 
266 /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
267  * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
268  * collector register.
269  */
_ef4_writed_page_locked(struct ef4_nic * efx,const ef4_dword_t * value,unsigned int reg,unsigned int page)270 static inline void _ef4_writed_page_locked(struct ef4_nic *efx,
271 					   const ef4_dword_t *value,
272 					   unsigned int reg,
273 					   unsigned int page)
274 {
275 	unsigned long flags __attribute__ ((unused));
276 
277 	if (page == 0) {
278 		spin_lock_irqsave(&efx->biu_lock, flags);
279 		ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
280 		spin_unlock_irqrestore(&efx->biu_lock, flags);
281 	} else {
282 		ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
283 	}
284 }
285 #define ef4_writed_page_locked(efx, value, reg, page)			\
286 	_ef4_writed_page_locked(efx, value,				\
287 				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
288 				page)
289 
290 #endif /* EF4_IO_H */
291