1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2015 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32
33 #include <asm/div64.h>
34
35 #include "ravb.h"
36
37 #define RAVB_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR | \
41 NETIF_MSG_TX_ERR)
42
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 "ch0", /* RAVB_BE */
45 "ch1", /* RAVB_NC */
46 };
47
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 "ch18", /* RAVB_BE */
50 "ch19", /* RAVB_NC */
51 };
52
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 u32 set)
55 {
56 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 int i;
62
63 for (i = 0; i < 10000; i++) {
64 if ((ravb_read(ndev, reg) & mask) == value)
65 return 0;
66 udelay(10);
67 }
68 return -ETIMEDOUT;
69 }
70
ravb_config(struct net_device * ndev)71 static int ravb_config(struct net_device *ndev)
72 {
73 int error;
74
75 /* Set config mode */
76 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 /* Check if the operating mode is changed to the config mode */
78 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 if (error)
80 netdev_err(ndev, "failed to switch device to config mode\n");
81
82 return error;
83 }
84
ravb_set_duplex(struct net_device * ndev)85 static void ravb_set_duplex(struct net_device *ndev)
86 {
87 struct ravb_private *priv = netdev_priv(ndev);
88
89 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
90 }
91
ravb_set_rate(struct net_device * ndev)92 static void ravb_set_rate(struct net_device *ndev)
93 {
94 struct ravb_private *priv = netdev_priv(ndev);
95
96 switch (priv->speed) {
97 case 100: /* 100BASE */
98 ravb_write(ndev, GECMR_SPEED_100, GECMR);
99 break;
100 case 1000: /* 1000BASE */
101 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
102 break;
103 }
104 }
105
ravb_set_buffer_align(struct sk_buff * skb)106 static void ravb_set_buffer_align(struct sk_buff *skb)
107 {
108 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
109
110 if (reserve)
111 skb_reserve(skb, RAVB_ALIGN - reserve);
112 }
113
114 /* Get MAC address from the MAC address registers
115 *
116 * Ethernet AVB device doesn't have ROM for MAC address.
117 * This function gets the MAC address that was used by a bootloader.
118 */
ravb_read_mac_address(struct net_device * ndev,const u8 * mac)119 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
120 {
121 if (mac) {
122 ether_addr_copy(ndev->dev_addr, mac);
123 } else {
124 u32 mahr = ravb_read(ndev, MAHR);
125 u32 malr = ravb_read(ndev, MALR);
126
127 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
128 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
129 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
130 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
131 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
132 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
133 }
134 }
135
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)136 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
137 {
138 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
139 mdiobb);
140
141 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
142 }
143
144 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)145 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
146 {
147 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
148 }
149
150 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)151 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
152 {
153 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
154 }
155
156 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)157 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
158 {
159 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
160 }
161
162 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)163 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
164 {
165 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
166 mdiobb);
167
168 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
169 }
170
171 /* MDIO bus control struct */
172 static struct mdiobb_ops bb_ops = {
173 .owner = THIS_MODULE,
174 .set_mdc = ravb_set_mdc,
175 .set_mdio_dir = ravb_set_mdio_dir,
176 .set_mdio_data = ravb_set_mdio_data,
177 .get_mdio_data = ravb_get_mdio_data,
178 };
179
180 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)181 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
182 {
183 struct ravb_private *priv = netdev_priv(ndev);
184 struct net_device_stats *stats = &priv->stats[q];
185 struct ravb_tx_desc *desc;
186 int free_num = 0;
187 int entry;
188 u32 size;
189
190 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
191 bool txed;
192
193 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
194 NUM_TX_DESC);
195 desc = &priv->tx_ring[q][entry];
196 txed = desc->die_dt == DT_FEMPTY;
197 if (free_txed_only && !txed)
198 break;
199 /* Descriptor type must be checked before all other reads */
200 dma_rmb();
201 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
202 /* Free the original skb. */
203 if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
204 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
205 size, DMA_TO_DEVICE);
206 /* Last packet descriptor? */
207 if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
208 entry /= NUM_TX_DESC;
209 dev_kfree_skb_any(priv->tx_skb[q][entry]);
210 priv->tx_skb[q][entry] = NULL;
211 if (txed)
212 stats->tx_packets++;
213 }
214 free_num++;
215 }
216 if (txed)
217 stats->tx_bytes += size;
218 desc->die_dt = DT_EEMPTY;
219 }
220 return free_num;
221 }
222
223 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)224 static void ravb_ring_free(struct net_device *ndev, int q)
225 {
226 struct ravb_private *priv = netdev_priv(ndev);
227 int ring_size;
228 int i;
229
230 if (priv->rx_ring[q]) {
231 for (i = 0; i < priv->num_rx_ring[q]; i++) {
232 struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
233
234 if (!dma_mapping_error(ndev->dev.parent,
235 le32_to_cpu(desc->dptr)))
236 dma_unmap_single(ndev->dev.parent,
237 le32_to_cpu(desc->dptr),
238 priv->rx_buf_sz,
239 DMA_FROM_DEVICE);
240 }
241 ring_size = sizeof(struct ravb_ex_rx_desc) *
242 (priv->num_rx_ring[q] + 1);
243 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
244 priv->rx_desc_dma[q]);
245 priv->rx_ring[q] = NULL;
246 }
247
248 if (priv->tx_ring[q]) {
249 ravb_tx_free(ndev, q, false);
250
251 ring_size = sizeof(struct ravb_tx_desc) *
252 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
253 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
254 priv->tx_desc_dma[q]);
255 priv->tx_ring[q] = NULL;
256 }
257
258 /* Free RX skb ringbuffer */
259 if (priv->rx_skb[q]) {
260 for (i = 0; i < priv->num_rx_ring[q]; i++)
261 dev_kfree_skb(priv->rx_skb[q][i]);
262 }
263 kfree(priv->rx_skb[q]);
264 priv->rx_skb[q] = NULL;
265
266 /* Free aligned TX buffers */
267 kfree(priv->tx_align[q]);
268 priv->tx_align[q] = NULL;
269
270 /* Free TX skb ringbuffer.
271 * SKBs are freed by ravb_tx_free() call above.
272 */
273 kfree(priv->tx_skb[q]);
274 priv->tx_skb[q] = NULL;
275 }
276
277 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)278 static void ravb_ring_format(struct net_device *ndev, int q)
279 {
280 struct ravb_private *priv = netdev_priv(ndev);
281 struct ravb_ex_rx_desc *rx_desc;
282 struct ravb_tx_desc *tx_desc;
283 struct ravb_desc *desc;
284 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
285 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
286 NUM_TX_DESC;
287 dma_addr_t dma_addr;
288 int i;
289
290 priv->cur_rx[q] = 0;
291 priv->cur_tx[q] = 0;
292 priv->dirty_rx[q] = 0;
293 priv->dirty_tx[q] = 0;
294
295 memset(priv->rx_ring[q], 0, rx_ring_size);
296 /* Build RX ring buffer */
297 for (i = 0; i < priv->num_rx_ring[q]; i++) {
298 /* RX descriptor */
299 rx_desc = &priv->rx_ring[q][i];
300 rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
301 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
302 priv->rx_buf_sz,
303 DMA_FROM_DEVICE);
304 /* We just set the data size to 0 for a failed mapping which
305 * should prevent DMA from happening...
306 */
307 if (dma_mapping_error(ndev->dev.parent, dma_addr))
308 rx_desc->ds_cc = cpu_to_le16(0);
309 rx_desc->dptr = cpu_to_le32(dma_addr);
310 rx_desc->die_dt = DT_FEMPTY;
311 }
312 rx_desc = &priv->rx_ring[q][i];
313 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
314 rx_desc->die_dt = DT_LINKFIX; /* type */
315
316 memset(priv->tx_ring[q], 0, tx_ring_size);
317 /* Build TX ring buffer */
318 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
319 i++, tx_desc++) {
320 tx_desc->die_dt = DT_EEMPTY;
321 tx_desc++;
322 tx_desc->die_dt = DT_EEMPTY;
323 }
324 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
325 tx_desc->die_dt = DT_LINKFIX; /* type */
326
327 /* RX descriptor base address for best effort */
328 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
329 desc->die_dt = DT_LINKFIX; /* type */
330 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
331
332 /* TX descriptor base address for best effort */
333 desc = &priv->desc_bat[q];
334 desc->die_dt = DT_LINKFIX; /* type */
335 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
336 }
337
338 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)339 static int ravb_ring_init(struct net_device *ndev, int q)
340 {
341 struct ravb_private *priv = netdev_priv(ndev);
342 struct sk_buff *skb;
343 int ring_size;
344 int i;
345
346 priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
347 ETH_HLEN + VLAN_HLEN;
348
349 /* Allocate RX and TX skb rings */
350 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
351 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
352 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
353 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
354 if (!priv->rx_skb[q] || !priv->tx_skb[q])
355 goto error;
356
357 for (i = 0; i < priv->num_rx_ring[q]; i++) {
358 skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
359 if (!skb)
360 goto error;
361 ravb_set_buffer_align(skb);
362 priv->rx_skb[q][i] = skb;
363 }
364
365 /* Allocate rings for the aligned buffers */
366 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 DPTR_ALIGN - 1, GFP_KERNEL);
368 if (!priv->tx_align[q])
369 goto error;
370
371 /* Allocate all RX descriptors. */
372 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
373 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
374 &priv->rx_desc_dma[q],
375 GFP_KERNEL);
376 if (!priv->rx_ring[q])
377 goto error;
378
379 priv->dirty_rx[q] = 0;
380
381 /* Allocate all TX descriptors. */
382 ring_size = sizeof(struct ravb_tx_desc) *
383 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
384 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
385 &priv->tx_desc_dma[q],
386 GFP_KERNEL);
387 if (!priv->tx_ring[q])
388 goto error;
389
390 return 0;
391
392 error:
393 ravb_ring_free(ndev, q);
394
395 return -ENOMEM;
396 }
397
398 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)399 static void ravb_emac_init(struct net_device *ndev)
400 {
401 struct ravb_private *priv = netdev_priv(ndev);
402
403 /* Receive frame limit set register */
404 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
405
406 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
407 ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
408 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
409 ECMR_TE | ECMR_RE, ECMR);
410
411 ravb_set_rate(ndev);
412
413 /* Set MAC address */
414 ravb_write(ndev,
415 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
416 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
417 ravb_write(ndev,
418 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
419
420 /* E-MAC status register clear */
421 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
422
423 /* E-MAC interrupt enable register */
424 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
425 }
426
427 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)428 static int ravb_dmac_init(struct net_device *ndev)
429 {
430 struct ravb_private *priv = netdev_priv(ndev);
431 int error;
432
433 /* Set CONFIG mode */
434 error = ravb_config(ndev);
435 if (error)
436 return error;
437
438 error = ravb_ring_init(ndev, RAVB_BE);
439 if (error)
440 return error;
441 error = ravb_ring_init(ndev, RAVB_NC);
442 if (error) {
443 ravb_ring_free(ndev, RAVB_BE);
444 return error;
445 }
446
447 /* Descriptor format */
448 ravb_ring_format(ndev, RAVB_BE);
449 ravb_ring_format(ndev, RAVB_NC);
450
451 #if defined(__LITTLE_ENDIAN)
452 ravb_modify(ndev, CCC, CCC_BOC, 0);
453 #else
454 ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
455 #endif
456
457 /* Set AVB RX */
458 ravb_write(ndev,
459 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
460
461 /* Set FIFO size */
462 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
463
464 /* Timestamp enable */
465 ravb_write(ndev, TCCR_TFEN, TCCR);
466
467 /* Interrupt init: */
468 if (priv->chip_id == RCAR_GEN3) {
469 /* Clear DIL.DPLx */
470 ravb_write(ndev, 0, DIL);
471 /* Set queue specific interrupt */
472 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
473 }
474 /* Frame receive */
475 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
476 /* Disable FIFO full warning */
477 ravb_write(ndev, 0, RIC1);
478 /* Receive FIFO full error, descriptor empty */
479 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
480 /* Frame transmitted, timestamp FIFO updated */
481 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
482
483 /* Setting the control will start the AVB-DMAC process. */
484 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
485
486 return 0;
487 }
488
ravb_get_tx_tstamp(struct net_device * ndev)489 static void ravb_get_tx_tstamp(struct net_device *ndev)
490 {
491 struct ravb_private *priv = netdev_priv(ndev);
492 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
493 struct skb_shared_hwtstamps shhwtstamps;
494 struct sk_buff *skb;
495 struct timespec64 ts;
496 u16 tag, tfa_tag;
497 int count;
498 u32 tfa2;
499
500 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
501 while (count--) {
502 tfa2 = ravb_read(ndev, TFA2);
503 tfa_tag = (tfa2 & TFA2_TST) >> 16;
504 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
505 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
506 ravb_read(ndev, TFA1);
507 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
508 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
509 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
510 list) {
511 skb = ts_skb->skb;
512 tag = ts_skb->tag;
513 list_del(&ts_skb->list);
514 kfree(ts_skb);
515 if (tag == tfa_tag) {
516 skb_tstamp_tx(skb, &shhwtstamps);
517 break;
518 }
519 }
520 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
521 }
522 }
523
ravb_rx_csum(struct sk_buff * skb)524 static void ravb_rx_csum(struct sk_buff *skb)
525 {
526 u8 *hw_csum;
527
528 /* The hardware checksum is 2 bytes appended to packet data */
529 if (unlikely(skb->len < 2))
530 return;
531 hw_csum = skb_tail_pointer(skb) - 2;
532 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
533 skb->ip_summed = CHECKSUM_COMPLETE;
534 skb_trim(skb, skb->len - 2);
535 }
536
537 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int * quota,int q)538 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
539 {
540 struct ravb_private *priv = netdev_priv(ndev);
541 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
542 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
543 priv->cur_rx[q];
544 struct net_device_stats *stats = &priv->stats[q];
545 struct ravb_ex_rx_desc *desc;
546 struct sk_buff *skb;
547 dma_addr_t dma_addr;
548 struct timespec64 ts;
549 u8 desc_status;
550 u16 pkt_len;
551 int limit;
552
553 boguscnt = min(boguscnt, *quota);
554 limit = boguscnt;
555 desc = &priv->rx_ring[q][entry];
556 while (desc->die_dt != DT_FEMPTY) {
557 /* Descriptor type must be checked before all other reads */
558 dma_rmb();
559 desc_status = desc->msc;
560 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
561
562 if (--boguscnt < 0)
563 break;
564
565 /* We use 0-byte descriptors to mark the DMA mapping errors */
566 if (!pkt_len)
567 continue;
568
569 if (desc_status & MSC_MC)
570 stats->multicast++;
571
572 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
573 MSC_CEEF)) {
574 stats->rx_errors++;
575 if (desc_status & MSC_CRC)
576 stats->rx_crc_errors++;
577 if (desc_status & MSC_RFE)
578 stats->rx_frame_errors++;
579 if (desc_status & (MSC_RTLF | MSC_RTSF))
580 stats->rx_length_errors++;
581 if (desc_status & MSC_CEEF)
582 stats->rx_missed_errors++;
583 } else {
584 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
585
586 skb = priv->rx_skb[q][entry];
587 priv->rx_skb[q][entry] = NULL;
588 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
589 priv->rx_buf_sz,
590 DMA_FROM_DEVICE);
591 get_ts &= (q == RAVB_NC) ?
592 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
593 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
594 if (get_ts) {
595 struct skb_shared_hwtstamps *shhwtstamps;
596
597 shhwtstamps = skb_hwtstamps(skb);
598 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
599 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
600 32) | le32_to_cpu(desc->ts_sl);
601 ts.tv_nsec = le32_to_cpu(desc->ts_n);
602 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
603 }
604
605 skb_put(skb, pkt_len);
606 skb->protocol = eth_type_trans(skb, ndev);
607 if (ndev->features & NETIF_F_RXCSUM)
608 ravb_rx_csum(skb);
609 napi_gro_receive(&priv->napi[q], skb);
610 stats->rx_packets++;
611 stats->rx_bytes += pkt_len;
612 }
613
614 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
615 desc = &priv->rx_ring[q][entry];
616 }
617
618 /* Refill the RX ring buffers. */
619 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
620 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
621 desc = &priv->rx_ring[q][entry];
622 desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
623
624 if (!priv->rx_skb[q][entry]) {
625 skb = netdev_alloc_skb(ndev,
626 priv->rx_buf_sz +
627 RAVB_ALIGN - 1);
628 if (!skb)
629 break; /* Better luck next round. */
630 ravb_set_buffer_align(skb);
631 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
632 le16_to_cpu(desc->ds_cc),
633 DMA_FROM_DEVICE);
634 skb_checksum_none_assert(skb);
635 /* We just set the data size to 0 for a failed mapping
636 * which should prevent DMA from happening...
637 */
638 if (dma_mapping_error(ndev->dev.parent, dma_addr))
639 desc->ds_cc = cpu_to_le16(0);
640 desc->dptr = cpu_to_le32(dma_addr);
641 priv->rx_skb[q][entry] = skb;
642 }
643 /* Descriptor type must be set after all the above writes */
644 dma_wmb();
645 desc->die_dt = DT_FEMPTY;
646 }
647
648 *quota -= limit - (++boguscnt);
649
650 return boguscnt <= 0;
651 }
652
ravb_rcv_snd_disable(struct net_device * ndev)653 static void ravb_rcv_snd_disable(struct net_device *ndev)
654 {
655 /* Disable TX and RX */
656 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
657 }
658
ravb_rcv_snd_enable(struct net_device * ndev)659 static void ravb_rcv_snd_enable(struct net_device *ndev)
660 {
661 /* Enable TX and RX */
662 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
663 }
664
665 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)666 static int ravb_stop_dma(struct net_device *ndev)
667 {
668 int error;
669
670 /* Wait for stopping the hardware TX process */
671 error = ravb_wait(ndev, TCCR,
672 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
673 if (error)
674 return error;
675
676 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
677 0);
678 if (error)
679 return error;
680
681 /* Stop the E-MAC's RX/TX processes. */
682 ravb_rcv_snd_disable(ndev);
683
684 /* Wait for stopping the RX DMA process */
685 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
686 if (error)
687 return error;
688
689 /* Stop AVB-DMAC process */
690 return ravb_config(ndev);
691 }
692
693 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)694 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
695 {
696 struct ravb_private *priv = netdev_priv(ndev);
697 u32 ecsr, psr;
698
699 ecsr = ravb_read(ndev, ECSR);
700 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
701
702 if (ecsr & ECSR_MPD)
703 pm_wakeup_event(&priv->pdev->dev, 0);
704 if (ecsr & ECSR_ICD)
705 ndev->stats.tx_carrier_errors++;
706 if (ecsr & ECSR_LCHNG) {
707 /* Link changed */
708 if (priv->no_avb_link)
709 return;
710 psr = ravb_read(ndev, PSR);
711 if (priv->avb_link_active_low)
712 psr ^= PSR_LMON;
713 if (!(psr & PSR_LMON)) {
714 /* DIsable RX and TX */
715 ravb_rcv_snd_disable(ndev);
716 } else {
717 /* Enable RX and TX */
718 ravb_rcv_snd_enable(ndev);
719 }
720 }
721 }
722
ravb_emac_interrupt(int irq,void * dev_id)723 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
724 {
725 struct net_device *ndev = dev_id;
726 struct ravb_private *priv = netdev_priv(ndev);
727
728 spin_lock(&priv->lock);
729 ravb_emac_interrupt_unlocked(ndev);
730 mmiowb();
731 spin_unlock(&priv->lock);
732 return IRQ_HANDLED;
733 }
734
735 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)736 static void ravb_error_interrupt(struct net_device *ndev)
737 {
738 struct ravb_private *priv = netdev_priv(ndev);
739 u32 eis, ris2;
740
741 eis = ravb_read(ndev, EIS);
742 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
743 if (eis & EIS_QFS) {
744 ris2 = ravb_read(ndev, RIS2);
745 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
746 RIS2);
747
748 /* Receive Descriptor Empty int */
749 if (ris2 & RIS2_QFF0)
750 priv->stats[RAVB_BE].rx_over_errors++;
751
752 /* Receive Descriptor Empty int */
753 if (ris2 & RIS2_QFF1)
754 priv->stats[RAVB_NC].rx_over_errors++;
755
756 /* Receive FIFO Overflow int */
757 if (ris2 & RIS2_RFFF)
758 priv->rx_fifo_errors++;
759 }
760 }
761
ravb_queue_interrupt(struct net_device * ndev,int q)762 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
763 {
764 struct ravb_private *priv = netdev_priv(ndev);
765 u32 ris0 = ravb_read(ndev, RIS0);
766 u32 ric0 = ravb_read(ndev, RIC0);
767 u32 tis = ravb_read(ndev, TIS);
768 u32 tic = ravb_read(ndev, TIC);
769
770 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
771 if (napi_schedule_prep(&priv->napi[q])) {
772 /* Mask RX and TX interrupts */
773 if (priv->chip_id == RCAR_GEN2) {
774 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
775 ravb_write(ndev, tic & ~BIT(q), TIC);
776 } else {
777 ravb_write(ndev, BIT(q), RID0);
778 ravb_write(ndev, BIT(q), TID);
779 }
780 __napi_schedule(&priv->napi[q]);
781 } else {
782 netdev_warn(ndev,
783 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
784 ris0, ric0);
785 netdev_warn(ndev,
786 " tx status 0x%08x, tx mask 0x%08x.\n",
787 tis, tic);
788 }
789 return true;
790 }
791 return false;
792 }
793
ravb_timestamp_interrupt(struct net_device * ndev)794 static bool ravb_timestamp_interrupt(struct net_device *ndev)
795 {
796 u32 tis = ravb_read(ndev, TIS);
797
798 if (tis & TIS_TFUF) {
799 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
800 ravb_get_tx_tstamp(ndev);
801 return true;
802 }
803 return false;
804 }
805
ravb_interrupt(int irq,void * dev_id)806 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
807 {
808 struct net_device *ndev = dev_id;
809 struct ravb_private *priv = netdev_priv(ndev);
810 irqreturn_t result = IRQ_NONE;
811 u32 iss;
812
813 spin_lock(&priv->lock);
814 /* Get interrupt status */
815 iss = ravb_read(ndev, ISS);
816
817 /* Received and transmitted interrupts */
818 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
819 int q;
820
821 /* Timestamp updated */
822 if (ravb_timestamp_interrupt(ndev))
823 result = IRQ_HANDLED;
824
825 /* Network control and best effort queue RX/TX */
826 for (q = RAVB_NC; q >= RAVB_BE; q--) {
827 if (ravb_queue_interrupt(ndev, q))
828 result = IRQ_HANDLED;
829 }
830 }
831
832 /* E-MAC status summary */
833 if (iss & ISS_MS) {
834 ravb_emac_interrupt_unlocked(ndev);
835 result = IRQ_HANDLED;
836 }
837
838 /* Error status summary */
839 if (iss & ISS_ES) {
840 ravb_error_interrupt(ndev);
841 result = IRQ_HANDLED;
842 }
843
844 /* gPTP interrupt status summary */
845 if (iss & ISS_CGIS) {
846 ravb_ptp_interrupt(ndev);
847 result = IRQ_HANDLED;
848 }
849
850 mmiowb();
851 spin_unlock(&priv->lock);
852 return result;
853 }
854
855 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)856 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
857 {
858 struct net_device *ndev = dev_id;
859 struct ravb_private *priv = netdev_priv(ndev);
860 irqreturn_t result = IRQ_NONE;
861 u32 iss;
862
863 spin_lock(&priv->lock);
864 /* Get interrupt status */
865 iss = ravb_read(ndev, ISS);
866
867 /* Timestamp updated */
868 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
869 result = IRQ_HANDLED;
870
871 /* Error status summary */
872 if (iss & ISS_ES) {
873 ravb_error_interrupt(ndev);
874 result = IRQ_HANDLED;
875 }
876
877 /* gPTP interrupt status summary */
878 if (iss & ISS_CGIS) {
879 ravb_ptp_interrupt(ndev);
880 result = IRQ_HANDLED;
881 }
882
883 mmiowb();
884 spin_unlock(&priv->lock);
885 return result;
886 }
887
ravb_dma_interrupt(int irq,void * dev_id,int q)888 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
889 {
890 struct net_device *ndev = dev_id;
891 struct ravb_private *priv = netdev_priv(ndev);
892 irqreturn_t result = IRQ_NONE;
893
894 spin_lock(&priv->lock);
895
896 /* Network control/Best effort queue RX/TX */
897 if (ravb_queue_interrupt(ndev, q))
898 result = IRQ_HANDLED;
899
900 mmiowb();
901 spin_unlock(&priv->lock);
902 return result;
903 }
904
ravb_be_interrupt(int irq,void * dev_id)905 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
906 {
907 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
908 }
909
ravb_nc_interrupt(int irq,void * dev_id)910 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
911 {
912 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
913 }
914
ravb_poll(struct napi_struct * napi,int budget)915 static int ravb_poll(struct napi_struct *napi, int budget)
916 {
917 struct net_device *ndev = napi->dev;
918 struct ravb_private *priv = netdev_priv(ndev);
919 unsigned long flags;
920 int q = napi - priv->napi;
921 int mask = BIT(q);
922 int quota = budget;
923 u32 ris0, tis;
924
925 for (;;) {
926 tis = ravb_read(ndev, TIS);
927 ris0 = ravb_read(ndev, RIS0);
928 if (!((ris0 & mask) || (tis & mask)))
929 break;
930
931 /* Processing RX Descriptor Ring */
932 if (ris0 & mask) {
933 /* Clear RX interrupt */
934 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
935 if (ravb_rx(ndev, "a, q))
936 goto out;
937 }
938 /* Processing TX Descriptor Ring */
939 if (tis & mask) {
940 spin_lock_irqsave(&priv->lock, flags);
941 /* Clear TX interrupt */
942 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
943 ravb_tx_free(ndev, q, true);
944 netif_wake_subqueue(ndev, q);
945 mmiowb();
946 spin_unlock_irqrestore(&priv->lock, flags);
947 }
948 }
949
950 napi_complete(napi);
951
952 /* Re-enable RX/TX interrupts */
953 spin_lock_irqsave(&priv->lock, flags);
954 if (priv->chip_id == RCAR_GEN2) {
955 ravb_modify(ndev, RIC0, mask, mask);
956 ravb_modify(ndev, TIC, mask, mask);
957 } else {
958 ravb_write(ndev, mask, RIE0);
959 ravb_write(ndev, mask, TIE);
960 }
961 mmiowb();
962 spin_unlock_irqrestore(&priv->lock, flags);
963
964 /* Receive error message handling */
965 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
966 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
967 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
968 ndev->stats.rx_over_errors = priv->rx_over_errors;
969 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
970 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
971 out:
972 return budget - quota;
973 }
974
975 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)976 static void ravb_adjust_link(struct net_device *ndev)
977 {
978 struct ravb_private *priv = netdev_priv(ndev);
979 struct phy_device *phydev = ndev->phydev;
980 bool new_state = false;
981 unsigned long flags;
982
983 spin_lock_irqsave(&priv->lock, flags);
984
985 /* Disable TX and RX right over here, if E-MAC change is ignored */
986 if (priv->no_avb_link)
987 ravb_rcv_snd_disable(ndev);
988
989 if (phydev->link) {
990 if (phydev->duplex != priv->duplex) {
991 new_state = true;
992 priv->duplex = phydev->duplex;
993 ravb_set_duplex(ndev);
994 }
995
996 if (phydev->speed != priv->speed) {
997 new_state = true;
998 priv->speed = phydev->speed;
999 ravb_set_rate(ndev);
1000 }
1001 if (!priv->link) {
1002 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1003 new_state = true;
1004 priv->link = phydev->link;
1005 }
1006 } else if (priv->link) {
1007 new_state = true;
1008 priv->link = 0;
1009 priv->speed = 0;
1010 priv->duplex = -1;
1011 }
1012
1013 /* Enable TX and RX right over here, if E-MAC change is ignored */
1014 if (priv->no_avb_link && phydev->link)
1015 ravb_rcv_snd_enable(ndev);
1016
1017 mmiowb();
1018 spin_unlock_irqrestore(&priv->lock, flags);
1019
1020 if (new_state && netif_msg_link(priv))
1021 phy_print_status(phydev);
1022 }
1023
1024 static const struct soc_device_attribute r8a7795es10[] = {
1025 { .soc_id = "r8a7795", .revision = "ES1.0", },
1026 { /* sentinel */ }
1027 };
1028
1029 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1030 static int ravb_phy_init(struct net_device *ndev)
1031 {
1032 struct device_node *np = ndev->dev.parent->of_node;
1033 struct ravb_private *priv = netdev_priv(ndev);
1034 struct phy_device *phydev;
1035 struct device_node *pn;
1036 int err;
1037
1038 priv->link = 0;
1039 priv->speed = 0;
1040 priv->duplex = -1;
1041
1042 /* Try connecting to PHY */
1043 pn = of_parse_phandle(np, "phy-handle", 0);
1044 if (!pn) {
1045 /* In the case of a fixed PHY, the DT node associated
1046 * to the PHY is the Ethernet MAC DT node.
1047 */
1048 if (of_phy_is_fixed_link(np)) {
1049 err = of_phy_register_fixed_link(np);
1050 if (err)
1051 return err;
1052 }
1053 pn = of_node_get(np);
1054 }
1055 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1056 priv->phy_interface);
1057 of_node_put(pn);
1058 if (!phydev) {
1059 netdev_err(ndev, "failed to connect PHY\n");
1060 err = -ENOENT;
1061 goto err_deregister_fixed_link;
1062 }
1063
1064 /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1065 * at this time.
1066 */
1067 if (soc_device_match(r8a7795es10)) {
1068 err = phy_set_max_speed(phydev, SPEED_100);
1069 if (err) {
1070 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1071 goto err_phy_disconnect;
1072 }
1073
1074 netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1075 }
1076
1077 /* 10BASE is not supported */
1078 phydev->supported &= ~PHY_10BT_FEATURES;
1079
1080 phy_attached_info(phydev);
1081
1082 return 0;
1083
1084 err_phy_disconnect:
1085 phy_disconnect(phydev);
1086 err_deregister_fixed_link:
1087 if (of_phy_is_fixed_link(np))
1088 of_phy_deregister_fixed_link(np);
1089
1090 return err;
1091 }
1092
1093 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1094 static int ravb_phy_start(struct net_device *ndev)
1095 {
1096 int error;
1097
1098 error = ravb_phy_init(ndev);
1099 if (error)
1100 return error;
1101
1102 phy_start(ndev->phydev);
1103
1104 return 0;
1105 }
1106
ravb_get_msglevel(struct net_device * ndev)1107 static u32 ravb_get_msglevel(struct net_device *ndev)
1108 {
1109 struct ravb_private *priv = netdev_priv(ndev);
1110
1111 return priv->msg_enable;
1112 }
1113
ravb_set_msglevel(struct net_device * ndev,u32 value)1114 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1115 {
1116 struct ravb_private *priv = netdev_priv(ndev);
1117
1118 priv->msg_enable = value;
1119 }
1120
1121 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1122 "rx_queue_0_current",
1123 "tx_queue_0_current",
1124 "rx_queue_0_dirty",
1125 "tx_queue_0_dirty",
1126 "rx_queue_0_packets",
1127 "tx_queue_0_packets",
1128 "rx_queue_0_bytes",
1129 "tx_queue_0_bytes",
1130 "rx_queue_0_mcast_packets",
1131 "rx_queue_0_errors",
1132 "rx_queue_0_crc_errors",
1133 "rx_queue_0_frame_errors",
1134 "rx_queue_0_length_errors",
1135 "rx_queue_0_missed_errors",
1136 "rx_queue_0_over_errors",
1137
1138 "rx_queue_1_current",
1139 "tx_queue_1_current",
1140 "rx_queue_1_dirty",
1141 "tx_queue_1_dirty",
1142 "rx_queue_1_packets",
1143 "tx_queue_1_packets",
1144 "rx_queue_1_bytes",
1145 "tx_queue_1_bytes",
1146 "rx_queue_1_mcast_packets",
1147 "rx_queue_1_errors",
1148 "rx_queue_1_crc_errors",
1149 "rx_queue_1_frame_errors",
1150 "rx_queue_1_length_errors",
1151 "rx_queue_1_missed_errors",
1152 "rx_queue_1_over_errors",
1153 };
1154
1155 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
1156
ravb_get_sset_count(struct net_device * netdev,int sset)1157 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1158 {
1159 switch (sset) {
1160 case ETH_SS_STATS:
1161 return RAVB_STATS_LEN;
1162 default:
1163 return -EOPNOTSUPP;
1164 }
1165 }
1166
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1167 static void ravb_get_ethtool_stats(struct net_device *ndev,
1168 struct ethtool_stats *estats, u64 *data)
1169 {
1170 struct ravb_private *priv = netdev_priv(ndev);
1171 int i = 0;
1172 int q;
1173
1174 /* Device-specific stats */
1175 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1176 struct net_device_stats *stats = &priv->stats[q];
1177
1178 data[i++] = priv->cur_rx[q];
1179 data[i++] = priv->cur_tx[q];
1180 data[i++] = priv->dirty_rx[q];
1181 data[i++] = priv->dirty_tx[q];
1182 data[i++] = stats->rx_packets;
1183 data[i++] = stats->tx_packets;
1184 data[i++] = stats->rx_bytes;
1185 data[i++] = stats->tx_bytes;
1186 data[i++] = stats->multicast;
1187 data[i++] = stats->rx_errors;
1188 data[i++] = stats->rx_crc_errors;
1189 data[i++] = stats->rx_frame_errors;
1190 data[i++] = stats->rx_length_errors;
1191 data[i++] = stats->rx_missed_errors;
1192 data[i++] = stats->rx_over_errors;
1193 }
1194 }
1195
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1196 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1197 {
1198 switch (stringset) {
1199 case ETH_SS_STATS:
1200 memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1201 break;
1202 }
1203 }
1204
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1205 static void ravb_get_ringparam(struct net_device *ndev,
1206 struct ethtool_ringparam *ring)
1207 {
1208 struct ravb_private *priv = netdev_priv(ndev);
1209
1210 ring->rx_max_pending = BE_RX_RING_MAX;
1211 ring->tx_max_pending = BE_TX_RING_MAX;
1212 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1213 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1214 }
1215
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1216 static int ravb_set_ringparam(struct net_device *ndev,
1217 struct ethtool_ringparam *ring)
1218 {
1219 struct ravb_private *priv = netdev_priv(ndev);
1220 int error;
1221
1222 if (ring->tx_pending > BE_TX_RING_MAX ||
1223 ring->rx_pending > BE_RX_RING_MAX ||
1224 ring->tx_pending < BE_TX_RING_MIN ||
1225 ring->rx_pending < BE_RX_RING_MIN)
1226 return -EINVAL;
1227 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1228 return -EINVAL;
1229
1230 if (netif_running(ndev)) {
1231 netif_device_detach(ndev);
1232 /* Stop PTP Clock driver */
1233 if (priv->chip_id == RCAR_GEN2)
1234 ravb_ptp_stop(ndev);
1235 /* Wait for DMA stopping */
1236 error = ravb_stop_dma(ndev);
1237 if (error) {
1238 netdev_err(ndev,
1239 "cannot set ringparam! Any AVB processes are still running?\n");
1240 return error;
1241 }
1242 synchronize_irq(ndev->irq);
1243
1244 /* Free all the skb's in the RX queue and the DMA buffers. */
1245 ravb_ring_free(ndev, RAVB_BE);
1246 ravb_ring_free(ndev, RAVB_NC);
1247 }
1248
1249 /* Set new parameters */
1250 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1251 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1252
1253 if (netif_running(ndev)) {
1254 error = ravb_dmac_init(ndev);
1255 if (error) {
1256 netdev_err(ndev,
1257 "%s: ravb_dmac_init() failed, error %d\n",
1258 __func__, error);
1259 return error;
1260 }
1261
1262 ravb_emac_init(ndev);
1263
1264 /* Initialise PTP Clock driver */
1265 if (priv->chip_id == RCAR_GEN2)
1266 ravb_ptp_init(ndev, priv->pdev);
1267
1268 netif_device_attach(ndev);
1269 }
1270
1271 return 0;
1272 }
1273
ravb_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)1274 static int ravb_get_ts_info(struct net_device *ndev,
1275 struct ethtool_ts_info *info)
1276 {
1277 struct ravb_private *priv = netdev_priv(ndev);
1278
1279 info->so_timestamping =
1280 SOF_TIMESTAMPING_TX_SOFTWARE |
1281 SOF_TIMESTAMPING_RX_SOFTWARE |
1282 SOF_TIMESTAMPING_SOFTWARE |
1283 SOF_TIMESTAMPING_TX_HARDWARE |
1284 SOF_TIMESTAMPING_RX_HARDWARE |
1285 SOF_TIMESTAMPING_RAW_HARDWARE;
1286 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1287 info->rx_filters =
1288 (1 << HWTSTAMP_FILTER_NONE) |
1289 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1290 (1 << HWTSTAMP_FILTER_ALL);
1291 info->phc_index = ptp_clock_index(priv->ptp.clock);
1292
1293 return 0;
1294 }
1295
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1296 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1297 {
1298 struct ravb_private *priv = netdev_priv(ndev);
1299
1300 wol->supported = WAKE_MAGIC;
1301 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1302 }
1303
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1304 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1305 {
1306 struct ravb_private *priv = netdev_priv(ndev);
1307
1308 if (wol->wolopts & ~WAKE_MAGIC)
1309 return -EOPNOTSUPP;
1310
1311 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1312
1313 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1314
1315 return 0;
1316 }
1317
1318 static const struct ethtool_ops ravb_ethtool_ops = {
1319 .nway_reset = phy_ethtool_nway_reset,
1320 .get_msglevel = ravb_get_msglevel,
1321 .set_msglevel = ravb_set_msglevel,
1322 .get_link = ethtool_op_get_link,
1323 .get_strings = ravb_get_strings,
1324 .get_ethtool_stats = ravb_get_ethtool_stats,
1325 .get_sset_count = ravb_get_sset_count,
1326 .get_ringparam = ravb_get_ringparam,
1327 .set_ringparam = ravb_set_ringparam,
1328 .get_ts_info = ravb_get_ts_info,
1329 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1330 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1331 .get_wol = ravb_get_wol,
1332 .set_wol = ravb_set_wol,
1333 };
1334
ravb_hook_irq(unsigned int irq,irq_handler_t handler,struct net_device * ndev,struct device * dev,const char * ch)1335 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1336 struct net_device *ndev, struct device *dev,
1337 const char *ch)
1338 {
1339 char *name;
1340 int error;
1341
1342 name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1343 if (!name)
1344 return -ENOMEM;
1345 error = request_irq(irq, handler, 0, name, ndev);
1346 if (error)
1347 netdev_err(ndev, "cannot request IRQ %s\n", name);
1348
1349 return error;
1350 }
1351
1352 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1353 static int ravb_open(struct net_device *ndev)
1354 {
1355 struct ravb_private *priv = netdev_priv(ndev);
1356 struct platform_device *pdev = priv->pdev;
1357 struct device *dev = &pdev->dev;
1358 int error;
1359
1360 napi_enable(&priv->napi[RAVB_BE]);
1361 napi_enable(&priv->napi[RAVB_NC]);
1362
1363 if (priv->chip_id == RCAR_GEN2) {
1364 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1365 ndev->name, ndev);
1366 if (error) {
1367 netdev_err(ndev, "cannot request IRQ\n");
1368 goto out_napi_off;
1369 }
1370 } else {
1371 error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1372 dev, "ch22:multi");
1373 if (error)
1374 goto out_napi_off;
1375 error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1376 dev, "ch24:emac");
1377 if (error)
1378 goto out_free_irq;
1379 error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1380 ndev, dev, "ch0:rx_be");
1381 if (error)
1382 goto out_free_irq_emac;
1383 error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1384 ndev, dev, "ch18:tx_be");
1385 if (error)
1386 goto out_free_irq_be_rx;
1387 error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1388 ndev, dev, "ch1:rx_nc");
1389 if (error)
1390 goto out_free_irq_be_tx;
1391 error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1392 ndev, dev, "ch19:tx_nc");
1393 if (error)
1394 goto out_free_irq_nc_rx;
1395 }
1396
1397 /* Device init */
1398 error = ravb_dmac_init(ndev);
1399 if (error)
1400 goto out_free_irq_nc_tx;
1401 ravb_emac_init(ndev);
1402
1403 /* Initialise PTP Clock driver */
1404 if (priv->chip_id == RCAR_GEN2)
1405 ravb_ptp_init(ndev, priv->pdev);
1406
1407 netif_tx_start_all_queues(ndev);
1408
1409 /* PHY control start */
1410 error = ravb_phy_start(ndev);
1411 if (error)
1412 goto out_ptp_stop;
1413
1414 return 0;
1415
1416 out_ptp_stop:
1417 /* Stop PTP Clock driver */
1418 if (priv->chip_id == RCAR_GEN2)
1419 ravb_ptp_stop(ndev);
1420 out_free_irq_nc_tx:
1421 if (priv->chip_id == RCAR_GEN2)
1422 goto out_free_irq;
1423 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1424 out_free_irq_nc_rx:
1425 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1426 out_free_irq_be_tx:
1427 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1428 out_free_irq_be_rx:
1429 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1430 out_free_irq_emac:
1431 free_irq(priv->emac_irq, ndev);
1432 out_free_irq:
1433 free_irq(ndev->irq, ndev);
1434 out_napi_off:
1435 napi_disable(&priv->napi[RAVB_NC]);
1436 napi_disable(&priv->napi[RAVB_BE]);
1437 return error;
1438 }
1439
1440 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev)1441 static void ravb_tx_timeout(struct net_device *ndev)
1442 {
1443 struct ravb_private *priv = netdev_priv(ndev);
1444
1445 netif_err(priv, tx_err, ndev,
1446 "transmit timed out, status %08x, resetting...\n",
1447 ravb_read(ndev, ISS));
1448
1449 /* tx_errors count up */
1450 ndev->stats.tx_errors++;
1451
1452 schedule_work(&priv->work);
1453 }
1454
ravb_tx_timeout_work(struct work_struct * work)1455 static void ravb_tx_timeout_work(struct work_struct *work)
1456 {
1457 struct ravb_private *priv = container_of(work, struct ravb_private,
1458 work);
1459 struct net_device *ndev = priv->ndev;
1460
1461 netif_tx_stop_all_queues(ndev);
1462
1463 /* Stop PTP Clock driver */
1464 if (priv->chip_id == RCAR_GEN2)
1465 ravb_ptp_stop(ndev);
1466
1467 /* Wait for DMA stopping */
1468 ravb_stop_dma(ndev);
1469
1470 ravb_ring_free(ndev, RAVB_BE);
1471 ravb_ring_free(ndev, RAVB_NC);
1472
1473 /* Device init */
1474 ravb_dmac_init(ndev);
1475 ravb_emac_init(ndev);
1476
1477 /* Initialise PTP Clock driver */
1478 if (priv->chip_id == RCAR_GEN2)
1479 ravb_ptp_init(ndev, priv->pdev);
1480
1481 netif_tx_start_all_queues(ndev);
1482 }
1483
1484 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)1485 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1486 {
1487 struct ravb_private *priv = netdev_priv(ndev);
1488 u16 q = skb_get_queue_mapping(skb);
1489 struct ravb_tstamp_skb *ts_skb;
1490 struct ravb_tx_desc *desc;
1491 unsigned long flags;
1492 u32 dma_addr;
1493 void *buffer;
1494 u32 entry;
1495 u32 len;
1496
1497 spin_lock_irqsave(&priv->lock, flags);
1498 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1499 NUM_TX_DESC) {
1500 netif_err(priv, tx_queued, ndev,
1501 "still transmitting with the full ring!\n");
1502 netif_stop_subqueue(ndev, q);
1503 spin_unlock_irqrestore(&priv->lock, flags);
1504 return NETDEV_TX_BUSY;
1505 }
1506
1507 if (skb_put_padto(skb, ETH_ZLEN))
1508 goto exit;
1509
1510 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1511 priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1512
1513 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1514 entry / NUM_TX_DESC * DPTR_ALIGN;
1515 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1516 /* Zero length DMA descriptors are problematic as they seem to
1517 * terminate DMA transfers. Avoid them by simply using a length of
1518 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1519 *
1520 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1521 * data by the call to skb_put_padto() above this is safe with
1522 * respect to both the length of the first DMA descriptor (len)
1523 * overflowing the available data and the length of the second DMA
1524 * descriptor (skb->len - len) being negative.
1525 */
1526 if (len == 0)
1527 len = DPTR_ALIGN;
1528
1529 memcpy(buffer, skb->data, len);
1530 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1531 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1532 goto drop;
1533
1534 desc = &priv->tx_ring[q][entry];
1535 desc->ds_tagl = cpu_to_le16(len);
1536 desc->dptr = cpu_to_le32(dma_addr);
1537
1538 buffer = skb->data + len;
1539 len = skb->len - len;
1540 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1541 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1542 goto unmap;
1543
1544 desc++;
1545 desc->ds_tagl = cpu_to_le16(len);
1546 desc->dptr = cpu_to_le32(dma_addr);
1547
1548 /* TX timestamp required */
1549 if (q == RAVB_NC) {
1550 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1551 if (!ts_skb) {
1552 desc--;
1553 dma_unmap_single(ndev->dev.parent, dma_addr, len,
1554 DMA_TO_DEVICE);
1555 goto unmap;
1556 }
1557 ts_skb->skb = skb;
1558 ts_skb->tag = priv->ts_skb_tag++;
1559 priv->ts_skb_tag &= 0x3ff;
1560 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1561
1562 /* TAG and timestamp required flag */
1563 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1564 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1565 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1566 }
1567
1568 skb_tx_timestamp(skb);
1569 /* Descriptor type must be set after all the above writes */
1570 dma_wmb();
1571 desc->die_dt = DT_FEND;
1572 desc--;
1573 desc->die_dt = DT_FSTART;
1574
1575 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1576
1577 priv->cur_tx[q] += NUM_TX_DESC;
1578 if (priv->cur_tx[q] - priv->dirty_tx[q] >
1579 (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
1580 !ravb_tx_free(ndev, q, true))
1581 netif_stop_subqueue(ndev, q);
1582
1583 exit:
1584 mmiowb();
1585 spin_unlock_irqrestore(&priv->lock, flags);
1586 return NETDEV_TX_OK;
1587
1588 unmap:
1589 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1590 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1591 drop:
1592 dev_kfree_skb_any(skb);
1593 priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1594 goto exit;
1595 }
1596
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)1597 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1598 struct net_device *sb_dev,
1599 select_queue_fallback_t fallback)
1600 {
1601 /* If skb needs TX timestamp, it is handled in network control queue */
1602 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1603 RAVB_BE;
1604
1605 }
1606
ravb_get_stats(struct net_device * ndev)1607 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1608 {
1609 struct ravb_private *priv = netdev_priv(ndev);
1610 struct net_device_stats *nstats, *stats0, *stats1;
1611
1612 nstats = &ndev->stats;
1613 stats0 = &priv->stats[RAVB_BE];
1614 stats1 = &priv->stats[RAVB_NC];
1615
1616 nstats->tx_dropped += ravb_read(ndev, TROCR);
1617 ravb_write(ndev, 0, TROCR); /* (write clear) */
1618 nstats->collisions += ravb_read(ndev, CDCR);
1619 ravb_write(ndev, 0, CDCR); /* (write clear) */
1620 nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1621 ravb_write(ndev, 0, LCCR); /* (write clear) */
1622
1623 nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1624 ravb_write(ndev, 0, CERCR); /* (write clear) */
1625 nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1626 ravb_write(ndev, 0, CEECR); /* (write clear) */
1627
1628 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1629 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1630 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1631 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1632 nstats->multicast = stats0->multicast + stats1->multicast;
1633 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1634 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1635 nstats->rx_frame_errors =
1636 stats0->rx_frame_errors + stats1->rx_frame_errors;
1637 nstats->rx_length_errors =
1638 stats0->rx_length_errors + stats1->rx_length_errors;
1639 nstats->rx_missed_errors =
1640 stats0->rx_missed_errors + stats1->rx_missed_errors;
1641 nstats->rx_over_errors =
1642 stats0->rx_over_errors + stats1->rx_over_errors;
1643
1644 return nstats;
1645 }
1646
1647 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)1648 static void ravb_set_rx_mode(struct net_device *ndev)
1649 {
1650 struct ravb_private *priv = netdev_priv(ndev);
1651 unsigned long flags;
1652
1653 spin_lock_irqsave(&priv->lock, flags);
1654 ravb_modify(ndev, ECMR, ECMR_PRM,
1655 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1656 mmiowb();
1657 spin_unlock_irqrestore(&priv->lock, flags);
1658 }
1659
1660 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)1661 static int ravb_close(struct net_device *ndev)
1662 {
1663 struct device_node *np = ndev->dev.parent->of_node;
1664 struct ravb_private *priv = netdev_priv(ndev);
1665 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1666
1667 netif_tx_stop_all_queues(ndev);
1668
1669 /* Disable interrupts by clearing the interrupt masks. */
1670 ravb_write(ndev, 0, RIC0);
1671 ravb_write(ndev, 0, RIC2);
1672 ravb_write(ndev, 0, TIC);
1673
1674 /* Stop PTP Clock driver */
1675 if (priv->chip_id == RCAR_GEN2)
1676 ravb_ptp_stop(ndev);
1677
1678 /* Set the config mode to stop the AVB-DMAC's processes */
1679 if (ravb_stop_dma(ndev) < 0)
1680 netdev_err(ndev,
1681 "device will be stopped after h/w processes are done.\n");
1682
1683 /* Clear the timestamp list */
1684 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1685 list_del(&ts_skb->list);
1686 kfree(ts_skb);
1687 }
1688
1689 /* PHY disconnect */
1690 if (ndev->phydev) {
1691 phy_stop(ndev->phydev);
1692 phy_disconnect(ndev->phydev);
1693 if (of_phy_is_fixed_link(np))
1694 of_phy_deregister_fixed_link(np);
1695 }
1696
1697 if (priv->chip_id != RCAR_GEN2) {
1698 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1699 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1700 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1701 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1702 free_irq(priv->emac_irq, ndev);
1703 }
1704 free_irq(ndev->irq, ndev);
1705
1706 napi_disable(&priv->napi[RAVB_NC]);
1707 napi_disable(&priv->napi[RAVB_BE]);
1708
1709 /* Free all the skb's in the RX queue and the DMA buffers. */
1710 ravb_ring_free(ndev, RAVB_BE);
1711 ravb_ring_free(ndev, RAVB_NC);
1712
1713 return 0;
1714 }
1715
ravb_hwtstamp_get(struct net_device * ndev,struct ifreq * req)1716 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1717 {
1718 struct ravb_private *priv = netdev_priv(ndev);
1719 struct hwtstamp_config config;
1720
1721 config.flags = 0;
1722 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1723 HWTSTAMP_TX_OFF;
1724 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1725 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1726 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1727 config.rx_filter = HWTSTAMP_FILTER_ALL;
1728 else
1729 config.rx_filter = HWTSTAMP_FILTER_NONE;
1730
1731 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1732 -EFAULT : 0;
1733 }
1734
1735 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct ifreq * req)1736 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1737 {
1738 struct ravb_private *priv = netdev_priv(ndev);
1739 struct hwtstamp_config config;
1740 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1741 u32 tstamp_tx_ctrl;
1742
1743 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1744 return -EFAULT;
1745
1746 /* Reserved for future extensions */
1747 if (config.flags)
1748 return -EINVAL;
1749
1750 switch (config.tx_type) {
1751 case HWTSTAMP_TX_OFF:
1752 tstamp_tx_ctrl = 0;
1753 break;
1754 case HWTSTAMP_TX_ON:
1755 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1756 break;
1757 default:
1758 return -ERANGE;
1759 }
1760
1761 switch (config.rx_filter) {
1762 case HWTSTAMP_FILTER_NONE:
1763 tstamp_rx_ctrl = 0;
1764 break;
1765 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1766 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1767 break;
1768 default:
1769 config.rx_filter = HWTSTAMP_FILTER_ALL;
1770 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1771 }
1772
1773 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1774 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1775
1776 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1777 -EFAULT : 0;
1778 }
1779
1780 /* ioctl to device function */
ravb_do_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)1781 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1782 {
1783 struct phy_device *phydev = ndev->phydev;
1784
1785 if (!netif_running(ndev))
1786 return -EINVAL;
1787
1788 if (!phydev)
1789 return -ENODEV;
1790
1791 switch (cmd) {
1792 case SIOCGHWTSTAMP:
1793 return ravb_hwtstamp_get(ndev, req);
1794 case SIOCSHWTSTAMP:
1795 return ravb_hwtstamp_set(ndev, req);
1796 }
1797
1798 return phy_mii_ioctl(phydev, req, cmd);
1799 }
1800
ravb_change_mtu(struct net_device * ndev,int new_mtu)1801 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1802 {
1803 if (netif_running(ndev))
1804 return -EBUSY;
1805
1806 ndev->mtu = new_mtu;
1807 netdev_update_features(ndev);
1808
1809 return 0;
1810 }
1811
ravb_set_rx_csum(struct net_device * ndev,bool enable)1812 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1813 {
1814 struct ravb_private *priv = netdev_priv(ndev);
1815 unsigned long flags;
1816
1817 spin_lock_irqsave(&priv->lock, flags);
1818
1819 /* Disable TX and RX */
1820 ravb_rcv_snd_disable(ndev);
1821
1822 /* Modify RX Checksum setting */
1823 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1824
1825 /* Enable TX and RX */
1826 ravb_rcv_snd_enable(ndev);
1827
1828 spin_unlock_irqrestore(&priv->lock, flags);
1829 }
1830
ravb_set_features(struct net_device * ndev,netdev_features_t features)1831 static int ravb_set_features(struct net_device *ndev,
1832 netdev_features_t features)
1833 {
1834 netdev_features_t changed = ndev->features ^ features;
1835
1836 if (changed & NETIF_F_RXCSUM)
1837 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1838
1839 ndev->features = features;
1840
1841 return 0;
1842 }
1843
1844 static const struct net_device_ops ravb_netdev_ops = {
1845 .ndo_open = ravb_open,
1846 .ndo_stop = ravb_close,
1847 .ndo_start_xmit = ravb_start_xmit,
1848 .ndo_select_queue = ravb_select_queue,
1849 .ndo_get_stats = ravb_get_stats,
1850 .ndo_set_rx_mode = ravb_set_rx_mode,
1851 .ndo_tx_timeout = ravb_tx_timeout,
1852 .ndo_do_ioctl = ravb_do_ioctl,
1853 .ndo_change_mtu = ravb_change_mtu,
1854 .ndo_validate_addr = eth_validate_addr,
1855 .ndo_set_mac_address = eth_mac_addr,
1856 .ndo_set_features = ravb_set_features,
1857 };
1858
1859 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)1860 static int ravb_mdio_init(struct ravb_private *priv)
1861 {
1862 struct platform_device *pdev = priv->pdev;
1863 struct device *dev = &pdev->dev;
1864 int error;
1865
1866 /* Bitbang init */
1867 priv->mdiobb.ops = &bb_ops;
1868
1869 /* MII controller setting */
1870 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1871 if (!priv->mii_bus)
1872 return -ENOMEM;
1873
1874 /* Hook up MII support for ethtool */
1875 priv->mii_bus->name = "ravb_mii";
1876 priv->mii_bus->parent = dev;
1877 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1878 pdev->name, pdev->id);
1879
1880 /* Register MDIO bus */
1881 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1882 if (error)
1883 goto out_free_bus;
1884
1885 return 0;
1886
1887 out_free_bus:
1888 free_mdio_bitbang(priv->mii_bus);
1889 return error;
1890 }
1891
1892 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)1893 static int ravb_mdio_release(struct ravb_private *priv)
1894 {
1895 /* Unregister mdio bus */
1896 mdiobus_unregister(priv->mii_bus);
1897
1898 /* Free bitbang info */
1899 free_mdio_bitbang(priv->mii_bus);
1900
1901 return 0;
1902 }
1903
1904 static const struct of_device_id ravb_match_table[] = {
1905 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1906 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1907 { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1908 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1909 { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1910 { }
1911 };
1912 MODULE_DEVICE_TABLE(of, ravb_match_table);
1913
ravb_set_gti(struct net_device * ndev)1914 static int ravb_set_gti(struct net_device *ndev)
1915 {
1916 struct ravb_private *priv = netdev_priv(ndev);
1917 struct device *dev = ndev->dev.parent;
1918 unsigned long rate;
1919 uint64_t inc;
1920
1921 rate = clk_get_rate(priv->clk);
1922 if (!rate)
1923 return -EINVAL;
1924
1925 inc = 1000000000ULL << 20;
1926 do_div(inc, rate);
1927
1928 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1929 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1930 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1931 return -EINVAL;
1932 }
1933
1934 ravb_write(ndev, inc, GTI);
1935
1936 return 0;
1937 }
1938
ravb_set_config_mode(struct net_device * ndev)1939 static void ravb_set_config_mode(struct net_device *ndev)
1940 {
1941 struct ravb_private *priv = netdev_priv(ndev);
1942
1943 if (priv->chip_id == RCAR_GEN2) {
1944 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1945 /* Set CSEL value */
1946 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1947 } else {
1948 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1949 CCC_GAC | CCC_CSEL_HPB);
1950 }
1951 }
1952
1953 /* Set tx and rx clock internal delay modes */
ravb_set_delay_mode(struct net_device * ndev)1954 static void ravb_set_delay_mode(struct net_device *ndev)
1955 {
1956 struct ravb_private *priv = netdev_priv(ndev);
1957 int set = 0;
1958
1959 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1960 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1961 set |= APSR_DM_RDM;
1962
1963 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1964 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1965 set |= APSR_DM_TDM;
1966
1967 ravb_modify(ndev, APSR, APSR_DM, set);
1968 }
1969
ravb_probe(struct platform_device * pdev)1970 static int ravb_probe(struct platform_device *pdev)
1971 {
1972 struct device_node *np = pdev->dev.of_node;
1973 struct ravb_private *priv;
1974 enum ravb_chip_id chip_id;
1975 struct net_device *ndev;
1976 int error, irq, q;
1977 struct resource *res;
1978 int i;
1979
1980 if (!np) {
1981 dev_err(&pdev->dev,
1982 "this driver is required to be instantiated from device tree\n");
1983 return -EINVAL;
1984 }
1985
1986 /* Get base address */
1987 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1988 if (!res) {
1989 dev_err(&pdev->dev, "invalid resource\n");
1990 return -EINVAL;
1991 }
1992
1993 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1994 NUM_TX_QUEUE, NUM_RX_QUEUE);
1995 if (!ndev)
1996 return -ENOMEM;
1997
1998 ndev->features = NETIF_F_RXCSUM;
1999 ndev->hw_features = NETIF_F_RXCSUM;
2000
2001 pm_runtime_enable(&pdev->dev);
2002 pm_runtime_get_sync(&pdev->dev);
2003
2004 /* The Ether-specific entries in the device structure. */
2005 ndev->base_addr = res->start;
2006
2007 chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2008
2009 if (chip_id == RCAR_GEN3)
2010 irq = platform_get_irq_byname(pdev, "ch22");
2011 else
2012 irq = platform_get_irq(pdev, 0);
2013 if (irq < 0) {
2014 error = irq;
2015 goto out_release;
2016 }
2017 ndev->irq = irq;
2018
2019 SET_NETDEV_DEV(ndev, &pdev->dev);
2020
2021 priv = netdev_priv(ndev);
2022 priv->ndev = ndev;
2023 priv->pdev = pdev;
2024 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2025 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2026 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2027 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2028 priv->addr = devm_ioremap_resource(&pdev->dev, res);
2029 if (IS_ERR(priv->addr)) {
2030 error = PTR_ERR(priv->addr);
2031 goto out_release;
2032 }
2033
2034 spin_lock_init(&priv->lock);
2035 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2036
2037 priv->phy_interface = of_get_phy_mode(np);
2038
2039 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2040 priv->avb_link_active_low =
2041 of_property_read_bool(np, "renesas,ether-link-active-low");
2042
2043 if (chip_id == RCAR_GEN3) {
2044 irq = platform_get_irq_byname(pdev, "ch24");
2045 if (irq < 0) {
2046 error = irq;
2047 goto out_release;
2048 }
2049 priv->emac_irq = irq;
2050 for (i = 0; i < NUM_RX_QUEUE; i++) {
2051 irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2052 if (irq < 0) {
2053 error = irq;
2054 goto out_release;
2055 }
2056 priv->rx_irqs[i] = irq;
2057 }
2058 for (i = 0; i < NUM_TX_QUEUE; i++) {
2059 irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2060 if (irq < 0) {
2061 error = irq;
2062 goto out_release;
2063 }
2064 priv->tx_irqs[i] = irq;
2065 }
2066 }
2067
2068 priv->chip_id = chip_id;
2069
2070 priv->clk = devm_clk_get(&pdev->dev, NULL);
2071 if (IS_ERR(priv->clk)) {
2072 error = PTR_ERR(priv->clk);
2073 goto out_release;
2074 }
2075
2076 ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2077 ndev->min_mtu = ETH_MIN_MTU;
2078
2079 /* Set function */
2080 ndev->netdev_ops = &ravb_netdev_ops;
2081 ndev->ethtool_ops = &ravb_ethtool_ops;
2082
2083 /* Set AVB config mode */
2084 ravb_set_config_mode(ndev);
2085
2086 /* Set GTI value */
2087 error = ravb_set_gti(ndev);
2088 if (error)
2089 goto out_release;
2090
2091 /* Request GTI loading */
2092 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2093
2094 if (priv->chip_id != RCAR_GEN2)
2095 ravb_set_delay_mode(ndev);
2096
2097 /* Allocate descriptor base address table */
2098 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2099 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2100 &priv->desc_bat_dma, GFP_KERNEL);
2101 if (!priv->desc_bat) {
2102 dev_err(&pdev->dev,
2103 "Cannot allocate desc base address table (size %d bytes)\n",
2104 priv->desc_bat_size);
2105 error = -ENOMEM;
2106 goto out_release;
2107 }
2108 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2109 priv->desc_bat[q].die_dt = DT_EOS;
2110 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2111
2112 /* Initialise HW timestamp list */
2113 INIT_LIST_HEAD(&priv->ts_skb_list);
2114
2115 /* Initialise PTP Clock driver */
2116 if (chip_id != RCAR_GEN2)
2117 ravb_ptp_init(ndev, pdev);
2118
2119 /* Debug message level */
2120 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2121
2122 /* Read and set MAC address */
2123 ravb_read_mac_address(ndev, of_get_mac_address(np));
2124 if (!is_valid_ether_addr(ndev->dev_addr)) {
2125 dev_warn(&pdev->dev,
2126 "no valid MAC address supplied, using a random one\n");
2127 eth_hw_addr_random(ndev);
2128 }
2129
2130 /* MDIO bus init */
2131 error = ravb_mdio_init(priv);
2132 if (error) {
2133 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2134 goto out_dma_free;
2135 }
2136
2137 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2138 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2139
2140 /* Network device register */
2141 error = register_netdev(ndev);
2142 if (error)
2143 goto out_napi_del;
2144
2145 device_set_wakeup_capable(&pdev->dev, 1);
2146
2147 /* Print device information */
2148 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2149 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2150
2151 platform_set_drvdata(pdev, ndev);
2152
2153 return 0;
2154
2155 out_napi_del:
2156 netif_napi_del(&priv->napi[RAVB_NC]);
2157 netif_napi_del(&priv->napi[RAVB_BE]);
2158 ravb_mdio_release(priv);
2159 out_dma_free:
2160 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2161 priv->desc_bat_dma);
2162
2163 /* Stop PTP Clock driver */
2164 if (chip_id != RCAR_GEN2)
2165 ravb_ptp_stop(ndev);
2166 out_release:
2167 free_netdev(ndev);
2168
2169 pm_runtime_put(&pdev->dev);
2170 pm_runtime_disable(&pdev->dev);
2171 return error;
2172 }
2173
ravb_remove(struct platform_device * pdev)2174 static int ravb_remove(struct platform_device *pdev)
2175 {
2176 struct net_device *ndev = platform_get_drvdata(pdev);
2177 struct ravb_private *priv = netdev_priv(ndev);
2178
2179 /* Stop PTP Clock driver */
2180 if (priv->chip_id != RCAR_GEN2)
2181 ravb_ptp_stop(ndev);
2182
2183 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2184 priv->desc_bat_dma);
2185 /* Set reset mode */
2186 ravb_write(ndev, CCC_OPC_RESET, CCC);
2187 pm_runtime_put_sync(&pdev->dev);
2188 unregister_netdev(ndev);
2189 netif_napi_del(&priv->napi[RAVB_NC]);
2190 netif_napi_del(&priv->napi[RAVB_BE]);
2191 ravb_mdio_release(priv);
2192 pm_runtime_disable(&pdev->dev);
2193 free_netdev(ndev);
2194 platform_set_drvdata(pdev, NULL);
2195
2196 return 0;
2197 }
2198
ravb_wol_setup(struct net_device * ndev)2199 static int ravb_wol_setup(struct net_device *ndev)
2200 {
2201 struct ravb_private *priv = netdev_priv(ndev);
2202
2203 /* Disable interrupts by clearing the interrupt masks. */
2204 ravb_write(ndev, 0, RIC0);
2205 ravb_write(ndev, 0, RIC2);
2206 ravb_write(ndev, 0, TIC);
2207
2208 /* Only allow ECI interrupts */
2209 synchronize_irq(priv->emac_irq);
2210 napi_disable(&priv->napi[RAVB_NC]);
2211 napi_disable(&priv->napi[RAVB_BE]);
2212 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2213
2214 /* Enable MagicPacket */
2215 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2216
2217 return enable_irq_wake(priv->emac_irq);
2218 }
2219
ravb_wol_restore(struct net_device * ndev)2220 static int ravb_wol_restore(struct net_device *ndev)
2221 {
2222 struct ravb_private *priv = netdev_priv(ndev);
2223 int ret;
2224
2225 napi_enable(&priv->napi[RAVB_NC]);
2226 napi_enable(&priv->napi[RAVB_BE]);
2227
2228 /* Disable MagicPacket */
2229 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2230
2231 ret = ravb_close(ndev);
2232 if (ret < 0)
2233 return ret;
2234
2235 return disable_irq_wake(priv->emac_irq);
2236 }
2237
ravb_suspend(struct device * dev)2238 static int __maybe_unused ravb_suspend(struct device *dev)
2239 {
2240 struct net_device *ndev = dev_get_drvdata(dev);
2241 struct ravb_private *priv = netdev_priv(ndev);
2242 int ret;
2243
2244 if (!netif_running(ndev))
2245 return 0;
2246
2247 netif_device_detach(ndev);
2248
2249 if (priv->wol_enabled)
2250 ret = ravb_wol_setup(ndev);
2251 else
2252 ret = ravb_close(ndev);
2253
2254 return ret;
2255 }
2256
ravb_resume(struct device * dev)2257 static int __maybe_unused ravb_resume(struct device *dev)
2258 {
2259 struct net_device *ndev = dev_get_drvdata(dev);
2260 struct ravb_private *priv = netdev_priv(ndev);
2261 int ret = 0;
2262
2263 /* If WoL is enabled set reset mode to rearm the WoL logic */
2264 if (priv->wol_enabled)
2265 ravb_write(ndev, CCC_OPC_RESET, CCC);
2266
2267 /* All register have been reset to default values.
2268 * Restore all registers which where setup at probe time and
2269 * reopen device if it was running before system suspended.
2270 */
2271
2272 /* Set AVB config mode */
2273 ravb_set_config_mode(ndev);
2274
2275 /* Set GTI value */
2276 ret = ravb_set_gti(ndev);
2277 if (ret)
2278 return ret;
2279
2280 /* Request GTI loading */
2281 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2282
2283 if (priv->chip_id != RCAR_GEN2)
2284 ravb_set_delay_mode(ndev);
2285
2286 /* Restore descriptor base address table */
2287 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2288
2289 if (netif_running(ndev)) {
2290 if (priv->wol_enabled) {
2291 ret = ravb_wol_restore(ndev);
2292 if (ret)
2293 return ret;
2294 }
2295 ret = ravb_open(ndev);
2296 if (ret < 0)
2297 return ret;
2298 netif_device_attach(ndev);
2299 }
2300
2301 return ret;
2302 }
2303
ravb_runtime_nop(struct device * dev)2304 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2305 {
2306 /* Runtime PM callback shared between ->runtime_suspend()
2307 * and ->runtime_resume(). Simply returns success.
2308 *
2309 * This driver re-initializes all registers after
2310 * pm_runtime_get_sync() anyway so there is no need
2311 * to save and restore registers here.
2312 */
2313 return 0;
2314 }
2315
2316 static const struct dev_pm_ops ravb_dev_pm_ops = {
2317 SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2318 SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2319 };
2320
2321 static struct platform_driver ravb_driver = {
2322 .probe = ravb_probe,
2323 .remove = ravb_remove,
2324 .driver = {
2325 .name = "ravb",
2326 .pm = &ravb_dev_pm_ops,
2327 .of_match_table = ravb_match_table,
2328 },
2329 };
2330
2331 module_platform_driver(ravb_driver);
2332
2333 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2334 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2335 MODULE_LICENSE("GPL v2");
2336