1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40
bnx2x_add_all_napi_cnic(struct bnx2x * bp)41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 int i;
44
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp, i) {
47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 bnx2x_poll, NAPI_POLL_WEIGHT);
49 }
50 }
51
bnx2x_add_all_napi(struct bnx2x * bp)52 static void bnx2x_add_all_napi(struct bnx2x *bp)
53 {
54 int i;
55
56 /* Add NAPI objects */
57 for_each_eth_queue(bp, i) {
58 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 bnx2x_poll, NAPI_POLL_WEIGHT);
60 }
61 }
62
bnx2x_calc_num_queues(struct bnx2x * bp)63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
64 {
65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
66
67 /* Reduce memory usage in kdump environment by using only one queue */
68 if (is_kdump_kernel())
69 nq = 1;
70
71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 return nq;
73 }
74
75 /**
76 * bnx2x_move_fp - move content of the fastpath structure.
77 *
78 * @bp: driver handle
79 * @from: source FP index
80 * @to: destination FP index
81 *
82 * Makes sure the contents of the bp->fp[to].napi is kept
83 * intact. This is done by first copying the napi struct from
84 * the target to the source, and then mem copying the entire
85 * source onto the target. Update txdata pointers and related
86 * content.
87 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
89 {
90 struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 int old_max_eth_txqs, new_max_eth_txqs;
97 int old_txdata_index = 0, new_txdata_index = 0;
98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
99
100 /* Copy the NAPI object as it has been already initialized */
101 from_fp->napi = to_fp->napi;
102
103 /* Move bnx2x_fastpath contents */
104 memcpy(to_fp, from_fp, sizeof(*to_fp));
105 to_fp->index = to;
106
107 /* Retain the tpa_info of the original `to' version as we don't want
108 * 2 FPs to contain the same tpa_info pointer.
109 */
110 to_fp->tpa_info = old_tpa_info;
111
112 /* move sp_objs contents as well, as their indices match fp ones */
113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
114
115 /* move fp_stats contents as well, as their indices match fp ones */
116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
117
118 /* Update txdata pointers in fp and move txdata content accordingly:
119 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 * decremented by max_cos x delta.
121 */
122
123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 (bp)->max_cos;
126 if (from == FCOE_IDX(bp)) {
127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
129 }
130
131 memcpy(&bp->bnx2x_txq[new_txdata_index],
132 &bp->bnx2x_txq[old_txdata_index],
133 sizeof(struct bnx2x_fp_txdata));
134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
135 }
136
137 /**
138 * bnx2x_fill_fw_str - Fill buffer with FW version string.
139 *
140 * @bp: driver handle
141 * @buf: character buffer to fill with the fw name
142 * @buf_len: length of the above buffer
143 *
144 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
146 {
147 if (IS_PF(bp)) {
148 u8 phy_fw_ver[PHY_FW_VER_LEN];
149
150 phy_fw_ver[0] = '\0';
151 bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 phy_fw_ver, PHY_FW_VER_LEN);
153 strlcpy(buf, bp->fw_ver, buf_len);
154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 "bc %d.%d.%d%s%s",
156 (bp->common.bc_ver & 0xff0000) >> 16,
157 (bp->common.bc_ver & 0xff00) >> 8,
158 (bp->common.bc_ver & 0xff),
159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 } else {
161 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
162 }
163 }
164
165 /**
166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
167 *
168 * @bp: driver handle
169 * @delta: number of eth queues which were not allocated
170 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
172 {
173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
174
175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 * backward along the array could cause memory to be overridden
177 */
178 for (cos = 1; cos < bp->max_cos; cos++) {
179 for (i = 0; i < old_eth_num - delta; i++) {
180 struct bnx2x_fastpath *fp = &bp->fp[i];
181 int new_idx = cos * (old_eth_num - delta) + i;
182
183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 sizeof(struct bnx2x_fp_txdata));
185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
186 }
187 }
188 }
189
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191
192 /* free skb in the packet ring at pos idx
193 * return idx of last bd freed
194 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 u16 idx, unsigned int *pkts_compl,
197 unsigned int *bytes_compl)
198 {
199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 struct eth_tx_start_bd *tx_start_bd;
201 struct eth_tx_bd *tx_data_bd;
202 struct sk_buff *skb = tx_buf->skb;
203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 int nbd;
205 u16 split_bd_len = 0;
206
207 /* prefetch skb end pointer to speedup dev_kfree_skb() */
208 prefetch(&skb->end);
209
210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
211 txdata->txq_index, idx, tx_buf, skb);
212
213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
214
215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 BNX2X_ERR("BAD nbd!\n");
219 bnx2x_panic();
220 }
221 #endif
222 new_cons = nbd + tx_buf->first_bd;
223
224 /* Get the next bd */
225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
226
227 /* Skip a parse bd... */
228 --nbd;
229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
230
231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 /* Skip second parse bd... */
233 --nbd;
234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
235 }
236
237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 --nbd;
242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
243 }
244
245 /* unmap first bd */
246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 DMA_TO_DEVICE);
249
250 /* now free frags */
251 while (nbd > 0) {
252
253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 if (--nbd)
257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
258 }
259
260 /* release skb */
261 WARN_ON(!skb);
262 if (likely(skb)) {
263 (*pkts_compl)++;
264 (*bytes_compl) += skb->len;
265 dev_kfree_skb_any(skb);
266 }
267
268 tx_buf->first_bd = 0;
269 tx_buf->skb = NULL;
270
271 return new_cons;
272 }
273
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
275 {
276 struct netdev_queue *txq;
277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 unsigned int pkts_compl = 0, bytes_compl = 0;
279
280 #ifdef BNX2X_STOP_ON_ERROR
281 if (unlikely(bp->panic))
282 return -1;
283 #endif
284
285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 sw_cons = txdata->tx_pkt_cons;
288
289 while (sw_cons != hw_cons) {
290 u16 pkt_cons;
291
292 pkt_cons = TX_BD(sw_cons);
293
294 DP(NETIF_MSG_TX_DONE,
295 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
296 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
297
298 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
299 &pkts_compl, &bytes_compl);
300
301 sw_cons++;
302 }
303
304 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
305
306 txdata->tx_pkt_cons = sw_cons;
307 txdata->tx_bd_cons = bd_cons;
308
309 /* Need to make the tx_bd_cons update visible to start_xmit()
310 * before checking for netif_tx_queue_stopped(). Without the
311 * memory barrier, there is a small possibility that
312 * start_xmit() will miss it and cause the queue to be stopped
313 * forever.
314 * On the other hand we need an rmb() here to ensure the proper
315 * ordering of bit testing in the following
316 * netif_tx_queue_stopped(txq) call.
317 */
318 smp_mb();
319
320 if (unlikely(netif_tx_queue_stopped(txq))) {
321 /* Taking tx_lock() is needed to prevent re-enabling the queue
322 * while it's empty. This could have happen if rx_action() gets
323 * suspended in bnx2x_tx_int() after the condition before
324 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
325 *
326 * stops the queue->sees fresh tx_bd_cons->releases the queue->
327 * sends some packets consuming the whole queue again->
328 * stops the queue
329 */
330
331 __netif_tx_lock(txq, smp_processor_id());
332
333 if ((netif_tx_queue_stopped(txq)) &&
334 (bp->state == BNX2X_STATE_OPEN) &&
335 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
336 netif_tx_wake_queue(txq);
337
338 __netif_tx_unlock(txq);
339 }
340 return 0;
341 }
342
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
344 u16 idx)
345 {
346 u16 last_max = fp->last_max_sge;
347
348 if (SUB_S16(idx, last_max) > 0)
349 fp->last_max_sge = idx;
350 }
351
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
353 u16 sge_len,
354 struct eth_end_agg_rx_cqe *cqe)
355 {
356 struct bnx2x *bp = fp->bp;
357 u16 last_max, last_elem, first_elem;
358 u16 delta = 0;
359 u16 i;
360
361 if (!sge_len)
362 return;
363
364 /* First mark all used pages */
365 for (i = 0; i < sge_len; i++)
366 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
367 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
368
369 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
370 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
371
372 /* Here we assume that the last SGE index is the biggest */
373 prefetch((void *)(fp->sge_mask));
374 bnx2x_update_last_max_sge(fp,
375 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
376
377 last_max = RX_SGE(fp->last_max_sge);
378 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
379 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
380
381 /* If ring is not full */
382 if (last_elem + 1 != first_elem)
383 last_elem++;
384
385 /* Now update the prod */
386 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
387 if (likely(fp->sge_mask[i]))
388 break;
389
390 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
391 delta += BIT_VEC64_ELEM_SZ;
392 }
393
394 if (delta > 0) {
395 fp->rx_sge_prod += delta;
396 /* clear page-end entries */
397 bnx2x_clear_sge_mask_next_elems(fp);
398 }
399
400 DP(NETIF_MSG_RX_STATUS,
401 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
402 fp->last_max_sge, fp->rx_sge_prod);
403 }
404
405 /* Get Toeplitz hash value in the skb using the value from the
406 * CQE (calculated by HW).
407 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
409 const struct eth_fast_path_rx_cqe *cqe,
410 enum pkt_hash_types *rxhash_type)
411 {
412 /* Get Toeplitz hash from CQE */
413 if ((bp->dev->features & NETIF_F_RXHASH) &&
414 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
415 enum eth_rss_hash_type htype;
416
417 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
418 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
419 (htype == TCP_IPV6_HASH_TYPE)) ?
420 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
421
422 return le32_to_cpu(cqe->rss_hash_result);
423 }
424 *rxhash_type = PKT_HASH_TYPE_NONE;
425 return 0;
426 }
427
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
429 u16 cons, u16 prod,
430 struct eth_fast_path_rx_cqe *cqe)
431 {
432 struct bnx2x *bp = fp->bp;
433 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
434 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
435 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
436 dma_addr_t mapping;
437 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
438 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
439
440 /* print error if current state != stop */
441 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
442 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
443
444 /* Try to map an empty data buffer from the aggregation info */
445 mapping = dma_map_single(&bp->pdev->dev,
446 first_buf->data + NET_SKB_PAD,
447 fp->rx_buf_size, DMA_FROM_DEVICE);
448 /*
449 * ...if it fails - move the skb from the consumer to the producer
450 * and set the current aggregation state as ERROR to drop it
451 * when TPA_STOP arrives.
452 */
453
454 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
455 /* Move the BD from the consumer to the producer */
456 bnx2x_reuse_rx_data(fp, cons, prod);
457 tpa_info->tpa_state = BNX2X_TPA_ERROR;
458 return;
459 }
460
461 /* move empty data from pool to prod */
462 prod_rx_buf->data = first_buf->data;
463 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
464 /* point prod_bd to new data */
465 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
466 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
467
468 /* move partial skb from cons to pool (don't unmap yet) */
469 *first_buf = *cons_rx_buf;
470
471 /* mark bin state as START */
472 tpa_info->parsing_flags =
473 le16_to_cpu(cqe->pars_flags.flags);
474 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
475 tpa_info->tpa_state = BNX2X_TPA_START;
476 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
477 tpa_info->placement_offset = cqe->placement_offset;
478 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
479 if (fp->mode == TPA_MODE_GRO) {
480 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
481 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
482 tpa_info->gro_size = gro_size;
483 }
484
485 #ifdef BNX2X_STOP_ON_ERROR
486 fp->tpa_queue_used |= (1 << queue);
487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
488 fp->tpa_queue_used);
489 #endif
490 }
491
492 /* Timestamp option length allowed for TPA aggregation:
493 *
494 * nop nop kind length echo val
495 */
496 #define TPA_TSTAMP_OPT_LEN 12
497 /**
498 * bnx2x_set_gro_params - compute GRO values
499 *
500 * @skb: packet skb
501 * @parsing_flags: parsing flags from the START CQE
502 * @len_on_bd: total length of the first packet for the
503 * aggregation.
504 * @pkt_len: length of all segments
505 *
506 * Approximate value of the MSS for this aggregation calculated using
507 * the first packet of it.
508 * Compute number of aggregated segments, and gso_type.
509 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
511 u16 len_on_bd, unsigned int pkt_len,
512 u16 num_of_coalesced_segs)
513 {
514 /* TPA aggregation won't have either IP options or TCP options
515 * other than timestamp or IPv6 extension headers.
516 */
517 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
518
519 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
520 PRS_FLAG_OVERETH_IPV6) {
521 hdrs_len += sizeof(struct ipv6hdr);
522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
523 } else {
524 hdrs_len += sizeof(struct iphdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
526 }
527
528 /* Check if there was a TCP timestamp, if there is it's will
529 * always be 12 bytes length: nop nop kind length echo val.
530 *
531 * Otherwise FW would close the aggregation.
532 */
533 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
534 hdrs_len += TPA_TSTAMP_OPT_LEN;
535
536 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
537
538 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
539 * to skb_shinfo(skb)->gso_segs
540 */
541 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
542 }
543
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
545 u16 index, gfp_t gfp_mask)
546 {
547 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
548 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
549 struct bnx2x_alloc_pool *pool = &fp->page_pool;
550 dma_addr_t mapping;
551
552 if (!pool->page) {
553 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
554 if (unlikely(!pool->page))
555 return -ENOMEM;
556
557 pool->offset = 0;
558 }
559
560 mapping = dma_map_page(&bp->pdev->dev, pool->page,
561 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
562 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
563 BNX2X_ERR("Can't map sge\n");
564 return -ENOMEM;
565 }
566
567 sw_buf->page = pool->page;
568 sw_buf->offset = pool->offset;
569
570 dma_unmap_addr_set(sw_buf, mapping, mapping);
571
572 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
573 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
574
575 pool->offset += SGE_PAGE_SIZE;
576 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
577 get_page(pool->page);
578 else
579 pool->page = NULL;
580 return 0;
581 }
582
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)583 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
584 struct bnx2x_agg_info *tpa_info,
585 u16 pages,
586 struct sk_buff *skb,
587 struct eth_end_agg_rx_cqe *cqe,
588 u16 cqe_idx)
589 {
590 struct sw_rx_page *rx_pg, old_rx_pg;
591 u32 i, frag_len, frag_size;
592 int err, j, frag_id = 0;
593 u16 len_on_bd = tpa_info->len_on_bd;
594 u16 full_page = 0, gro_size = 0;
595
596 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
597
598 if (fp->mode == TPA_MODE_GRO) {
599 gro_size = tpa_info->gro_size;
600 full_page = tpa_info->full_page;
601 }
602
603 /* This is needed in order to enable forwarding support */
604 if (frag_size)
605 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
606 le16_to_cpu(cqe->pkt_len),
607 le16_to_cpu(cqe->num_of_coalesced_segs));
608
609 #ifdef BNX2X_STOP_ON_ERROR
610 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
611 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
612 pages, cqe_idx);
613 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
614 bnx2x_panic();
615 return -EINVAL;
616 }
617 #endif
618
619 /* Run through the SGL and compose the fragmented skb */
620 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
621 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
622
623 /* FW gives the indices of the SGE as if the ring is an array
624 (meaning that "next" element will consume 2 indices) */
625 if (fp->mode == TPA_MODE_GRO)
626 frag_len = min_t(u32, frag_size, (u32)full_page);
627 else /* LRO */
628 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
629
630 rx_pg = &fp->rx_page_ring[sge_idx];
631 old_rx_pg = *rx_pg;
632
633 /* If we fail to allocate a substitute page, we simply stop
634 where we are and drop the whole packet */
635 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
636 if (unlikely(err)) {
637 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
638 return err;
639 }
640
641 dma_unmap_page(&bp->pdev->dev,
642 dma_unmap_addr(&old_rx_pg, mapping),
643 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
644 /* Add one frag and update the appropriate fields in the skb */
645 if (fp->mode == TPA_MODE_LRO)
646 skb_fill_page_desc(skb, j, old_rx_pg.page,
647 old_rx_pg.offset, frag_len);
648 else { /* GRO */
649 int rem;
650 int offset = 0;
651 for (rem = frag_len; rem > 0; rem -= gro_size) {
652 int len = rem > gro_size ? gro_size : rem;
653 skb_fill_page_desc(skb, frag_id++,
654 old_rx_pg.page,
655 old_rx_pg.offset + offset,
656 len);
657 if (offset)
658 get_page(old_rx_pg.page);
659 offset += len;
660 }
661 }
662
663 skb->data_len += frag_len;
664 skb->truesize += SGE_PAGES;
665 skb->len += frag_len;
666
667 frag_size -= frag_len;
668 }
669
670 return 0;
671 }
672
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)673 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
674 {
675 if (fp->rx_frag_size)
676 skb_free_frag(data);
677 else
678 kfree(data);
679 }
680
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)681 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
682 {
683 if (fp->rx_frag_size) {
684 /* GFP_KERNEL allocations are used only during initialization */
685 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
686 return (void *)__get_free_page(gfp_mask);
687
688 return netdev_alloc_frag(fp->rx_frag_size);
689 }
690
691 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
692 }
693
694 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)695 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
696 {
697 const struct iphdr *iph = ip_hdr(skb);
698 struct tcphdr *th;
699
700 skb_set_transport_header(skb, sizeof(struct iphdr));
701 th = tcp_hdr(skb);
702
703 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
704 iph->saddr, iph->daddr, 0);
705 }
706
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)707 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
708 {
709 struct ipv6hdr *iph = ipv6_hdr(skb);
710 struct tcphdr *th;
711
712 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
713 th = tcp_hdr(skb);
714
715 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
716 &iph->saddr, &iph->daddr, 0);
717 }
718
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))719 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
720 void (*gro_func)(struct bnx2x*, struct sk_buff*))
721 {
722 skb_reset_network_header(skb);
723 gro_func(bp, skb);
724 tcp_gro_complete(skb);
725 }
726 #endif
727
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)728 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
729 struct sk_buff *skb)
730 {
731 #ifdef CONFIG_INET
732 if (skb_shinfo(skb)->gso_size) {
733 switch (be16_to_cpu(skb->protocol)) {
734 case ETH_P_IP:
735 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
736 break;
737 case ETH_P_IPV6:
738 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
739 break;
740 default:
741 netdev_WARN_ONCE(bp->dev,
742 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
743 be16_to_cpu(skb->protocol));
744 }
745 }
746 #endif
747 skb_record_rx_queue(skb, fp->rx_queue);
748 napi_gro_receive(&fp->napi, skb);
749 }
750
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)751 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
752 struct bnx2x_agg_info *tpa_info,
753 u16 pages,
754 struct eth_end_agg_rx_cqe *cqe,
755 u16 cqe_idx)
756 {
757 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
758 u8 pad = tpa_info->placement_offset;
759 u16 len = tpa_info->len_on_bd;
760 struct sk_buff *skb = NULL;
761 u8 *new_data, *data = rx_buf->data;
762 u8 old_tpa_state = tpa_info->tpa_state;
763
764 tpa_info->tpa_state = BNX2X_TPA_STOP;
765
766 /* If we there was an error during the handling of the TPA_START -
767 * drop this aggregation.
768 */
769 if (old_tpa_state == BNX2X_TPA_ERROR)
770 goto drop;
771
772 /* Try to allocate the new data */
773 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
774 /* Unmap skb in the pool anyway, as we are going to change
775 pool entry status to BNX2X_TPA_STOP even if new skb allocation
776 fails. */
777 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
778 fp->rx_buf_size, DMA_FROM_DEVICE);
779 if (likely(new_data))
780 skb = build_skb(data, fp->rx_frag_size);
781
782 if (likely(skb)) {
783 #ifdef BNX2X_STOP_ON_ERROR
784 if (pad + len > fp->rx_buf_size) {
785 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
786 pad, len, fp->rx_buf_size);
787 bnx2x_panic();
788 return;
789 }
790 #endif
791
792 skb_reserve(skb, pad + NET_SKB_PAD);
793 skb_put(skb, len);
794 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
795
796 skb->protocol = eth_type_trans(skb, bp->dev);
797 skb->ip_summed = CHECKSUM_UNNECESSARY;
798
799 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
800 skb, cqe, cqe_idx)) {
801 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
803 bnx2x_gro_receive(bp, fp, skb);
804 } else {
805 DP(NETIF_MSG_RX_STATUS,
806 "Failed to allocate new pages - dropping packet!\n");
807 dev_kfree_skb_any(skb);
808 }
809
810 /* put new data in bin */
811 rx_buf->data = new_data;
812
813 return;
814 }
815 if (new_data)
816 bnx2x_frag_free(fp, new_data);
817 drop:
818 /* drop the packet and keep the buffer in the bin */
819 DP(NETIF_MSG_RX_STATUS,
820 "Failed to allocate or map a new skb - dropping packet!\n");
821 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
822 }
823
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)824 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
825 u16 index, gfp_t gfp_mask)
826 {
827 u8 *data;
828 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
829 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
830 dma_addr_t mapping;
831
832 data = bnx2x_frag_alloc(fp, gfp_mask);
833 if (unlikely(data == NULL))
834 return -ENOMEM;
835
836 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
837 fp->rx_buf_size,
838 DMA_FROM_DEVICE);
839 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
840 bnx2x_frag_free(fp, data);
841 BNX2X_ERR("Can't map rx data\n");
842 return -ENOMEM;
843 }
844
845 rx_buf->data = data;
846 dma_unmap_addr_set(rx_buf, mapping, mapping);
847
848 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
849 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
850
851 return 0;
852 }
853
854 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)855 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
856 struct bnx2x_fastpath *fp,
857 struct bnx2x_eth_q_stats *qstats)
858 {
859 /* Do nothing if no L4 csum validation was done.
860 * We do not check whether IP csum was validated. For IPv4 we assume
861 * that if the card got as far as validating the L4 csum, it also
862 * validated the IP csum. IPv6 has no IP csum.
863 */
864 if (cqe->fast_path_cqe.status_flags &
865 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
866 return;
867
868 /* If L4 validation was done, check if an error was found. */
869
870 if (cqe->fast_path_cqe.type_error_flags &
871 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
872 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
873 qstats->hw_csum_err++;
874 else
875 skb->ip_summed = CHECKSUM_UNNECESSARY;
876 }
877
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)878 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
879 {
880 struct bnx2x *bp = fp->bp;
881 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
882 u16 sw_comp_cons, sw_comp_prod;
883 int rx_pkt = 0;
884 union eth_rx_cqe *cqe;
885 struct eth_fast_path_rx_cqe *cqe_fp;
886
887 #ifdef BNX2X_STOP_ON_ERROR
888 if (unlikely(bp->panic))
889 return 0;
890 #endif
891 if (budget <= 0)
892 return rx_pkt;
893
894 bd_cons = fp->rx_bd_cons;
895 bd_prod = fp->rx_bd_prod;
896 bd_prod_fw = bd_prod;
897 sw_comp_cons = fp->rx_comp_cons;
898 sw_comp_prod = fp->rx_comp_prod;
899
900 comp_ring_cons = RCQ_BD(sw_comp_cons);
901 cqe = &fp->rx_comp_ring[comp_ring_cons];
902 cqe_fp = &cqe->fast_path_cqe;
903
904 DP(NETIF_MSG_RX_STATUS,
905 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
906
907 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
908 struct sw_rx_bd *rx_buf = NULL;
909 struct sk_buff *skb;
910 u8 cqe_fp_flags;
911 enum eth_rx_cqe_type cqe_fp_type;
912 u16 len, pad, queue;
913 u8 *data;
914 u32 rxhash;
915 enum pkt_hash_types rxhash_type;
916
917 #ifdef BNX2X_STOP_ON_ERROR
918 if (unlikely(bp->panic))
919 return 0;
920 #endif
921
922 bd_prod = RX_BD(bd_prod);
923 bd_cons = RX_BD(bd_cons);
924
925 /* A rmb() is required to ensure that the CQE is not read
926 * before it is written by the adapter DMA. PCI ordering
927 * rules will make sure the other fields are written before
928 * the marker at the end of struct eth_fast_path_rx_cqe
929 * but without rmb() a weakly ordered processor can process
930 * stale data. Without the barrier TPA state-machine might
931 * enter inconsistent state and kernel stack might be
932 * provided with incorrect packet description - these lead
933 * to various kernel crashed.
934 */
935 rmb();
936
937 cqe_fp_flags = cqe_fp->type_error_flags;
938 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
939
940 DP(NETIF_MSG_RX_STATUS,
941 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
942 CQE_TYPE(cqe_fp_flags),
943 cqe_fp_flags, cqe_fp->status_flags,
944 le32_to_cpu(cqe_fp->rss_hash_result),
945 le16_to_cpu(cqe_fp->vlan_tag),
946 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
947
948 /* is this a slowpath msg? */
949 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
950 bnx2x_sp_event(fp, cqe);
951 goto next_cqe;
952 }
953
954 rx_buf = &fp->rx_buf_ring[bd_cons];
955 data = rx_buf->data;
956
957 if (!CQE_TYPE_FAST(cqe_fp_type)) {
958 struct bnx2x_agg_info *tpa_info;
959 u16 frag_size, pages;
960 #ifdef BNX2X_STOP_ON_ERROR
961 /* sanity check */
962 if (fp->mode == TPA_MODE_DISABLED &&
963 (CQE_TYPE_START(cqe_fp_type) ||
964 CQE_TYPE_STOP(cqe_fp_type)))
965 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
966 CQE_TYPE(cqe_fp_type));
967 #endif
968
969 if (CQE_TYPE_START(cqe_fp_type)) {
970 u16 queue = cqe_fp->queue_index;
971 DP(NETIF_MSG_RX_STATUS,
972 "calling tpa_start on queue %d\n",
973 queue);
974
975 bnx2x_tpa_start(fp, queue,
976 bd_cons, bd_prod,
977 cqe_fp);
978
979 goto next_rx;
980 }
981 queue = cqe->end_agg_cqe.queue_index;
982 tpa_info = &fp->tpa_info[queue];
983 DP(NETIF_MSG_RX_STATUS,
984 "calling tpa_stop on queue %d\n",
985 queue);
986
987 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
988 tpa_info->len_on_bd;
989
990 if (fp->mode == TPA_MODE_GRO)
991 pages = (frag_size + tpa_info->full_page - 1) /
992 tpa_info->full_page;
993 else
994 pages = SGE_PAGE_ALIGN(frag_size) >>
995 SGE_PAGE_SHIFT;
996
997 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
998 &cqe->end_agg_cqe, comp_ring_cons);
999 #ifdef BNX2X_STOP_ON_ERROR
1000 if (bp->panic)
1001 return 0;
1002 #endif
1003
1004 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1005 goto next_cqe;
1006 }
1007 /* non TPA */
1008 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1009 pad = cqe_fp->placement_offset;
1010 dma_sync_single_for_cpu(&bp->pdev->dev,
1011 dma_unmap_addr(rx_buf, mapping),
1012 pad + RX_COPY_THRESH,
1013 DMA_FROM_DEVICE);
1014 pad += NET_SKB_PAD;
1015 prefetch(data + pad); /* speedup eth_type_trans() */
1016 /* is this an error packet? */
1017 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1018 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1019 "ERROR flags %x rx packet %u\n",
1020 cqe_fp_flags, sw_comp_cons);
1021 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1022 goto reuse_rx;
1023 }
1024
1025 /* Since we don't have a jumbo ring
1026 * copy small packets if mtu > 1500
1027 */
1028 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1029 (len <= RX_COPY_THRESH)) {
1030 skb = napi_alloc_skb(&fp->napi, len);
1031 if (skb == NULL) {
1032 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1033 "ERROR packet dropped because of alloc failure\n");
1034 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1035 goto reuse_rx;
1036 }
1037 memcpy(skb->data, data + pad, len);
1038 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1039 } else {
1040 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1041 GFP_ATOMIC) == 0)) {
1042 dma_unmap_single(&bp->pdev->dev,
1043 dma_unmap_addr(rx_buf, mapping),
1044 fp->rx_buf_size,
1045 DMA_FROM_DEVICE);
1046 skb = build_skb(data, fp->rx_frag_size);
1047 if (unlikely(!skb)) {
1048 bnx2x_frag_free(fp, data);
1049 bnx2x_fp_qstats(bp, fp)->
1050 rx_skb_alloc_failed++;
1051 goto next_rx;
1052 }
1053 skb_reserve(skb, pad);
1054 } else {
1055 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1056 "ERROR packet dropped because of alloc failure\n");
1057 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1058 reuse_rx:
1059 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1060 goto next_rx;
1061 }
1062 }
1063
1064 skb_put(skb, len);
1065 skb->protocol = eth_type_trans(skb, bp->dev);
1066
1067 /* Set Toeplitz hash for a none-LRO skb */
1068 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1069 skb_set_hash(skb, rxhash, rxhash_type);
1070
1071 skb_checksum_none_assert(skb);
1072
1073 if (bp->dev->features & NETIF_F_RXCSUM)
1074 bnx2x_csum_validate(skb, cqe, fp,
1075 bnx2x_fp_qstats(bp, fp));
1076
1077 skb_record_rx_queue(skb, fp->rx_queue);
1078
1079 /* Check if this packet was timestamped */
1080 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1081 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1082 bnx2x_set_rx_ts(bp, skb);
1083
1084 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1085 PARSING_FLAGS_VLAN)
1086 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1087 le16_to_cpu(cqe_fp->vlan_tag));
1088
1089 napi_gro_receive(&fp->napi, skb);
1090 next_rx:
1091 rx_buf->data = NULL;
1092
1093 bd_cons = NEXT_RX_IDX(bd_cons);
1094 bd_prod = NEXT_RX_IDX(bd_prod);
1095 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1096 rx_pkt++;
1097 next_cqe:
1098 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1099 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1100
1101 /* mark CQE as free */
1102 BNX2X_SEED_CQE(cqe_fp);
1103
1104 if (rx_pkt == budget)
1105 break;
1106
1107 comp_ring_cons = RCQ_BD(sw_comp_cons);
1108 cqe = &fp->rx_comp_ring[comp_ring_cons];
1109 cqe_fp = &cqe->fast_path_cqe;
1110 } /* while */
1111
1112 fp->rx_bd_cons = bd_cons;
1113 fp->rx_bd_prod = bd_prod_fw;
1114 fp->rx_comp_cons = sw_comp_cons;
1115 fp->rx_comp_prod = sw_comp_prod;
1116
1117 /* Update producers */
1118 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1119 fp->rx_sge_prod);
1120
1121 return rx_pkt;
1122 }
1123
bnx2x_msix_fp_int(int irq,void * fp_cookie)1124 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1125 {
1126 struct bnx2x_fastpath *fp = fp_cookie;
1127 struct bnx2x *bp = fp->bp;
1128 u8 cos;
1129
1130 DP(NETIF_MSG_INTR,
1131 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1132 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1133
1134 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1135
1136 #ifdef BNX2X_STOP_ON_ERROR
1137 if (unlikely(bp->panic))
1138 return IRQ_HANDLED;
1139 #endif
1140
1141 /* Handle Rx and Tx according to MSI-X vector */
1142 for_each_cos_in_tx_queue(fp, cos)
1143 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1144
1145 prefetch(&fp->sb_running_index[SM_RX_ID]);
1146 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1147
1148 return IRQ_HANDLED;
1149 }
1150
1151 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1152 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1153 {
1154 mutex_lock(&bp->port.phy_mutex);
1155
1156 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1157 }
1158
bnx2x_release_phy_lock(struct bnx2x * bp)1159 void bnx2x_release_phy_lock(struct bnx2x *bp)
1160 {
1161 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1162
1163 mutex_unlock(&bp->port.phy_mutex);
1164 }
1165
1166 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1167 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1168 {
1169 u16 line_speed = bp->link_vars.line_speed;
1170 if (IS_MF(bp)) {
1171 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1172 bp->mf_config[BP_VN(bp)]);
1173
1174 /* Calculate the current MAX line speed limit for the MF
1175 * devices
1176 */
1177 if (IS_MF_PERCENT_BW(bp))
1178 line_speed = (line_speed * maxCfg) / 100;
1179 else { /* SD mode */
1180 u16 vn_max_rate = maxCfg * 100;
1181
1182 if (vn_max_rate < line_speed)
1183 line_speed = vn_max_rate;
1184 }
1185 }
1186
1187 return line_speed;
1188 }
1189
1190 /**
1191 * bnx2x_fill_report_data - fill link report data to report
1192 *
1193 * @bp: driver handle
1194 * @data: link state to update
1195 *
1196 * It uses a none-atomic bit operations because is called under the mutex.
1197 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1198 static void bnx2x_fill_report_data(struct bnx2x *bp,
1199 struct bnx2x_link_report_data *data)
1200 {
1201 memset(data, 0, sizeof(*data));
1202
1203 if (IS_PF(bp)) {
1204 /* Fill the report data: effective line speed */
1205 data->line_speed = bnx2x_get_mf_speed(bp);
1206
1207 /* Link is down */
1208 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1209 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1210 &data->link_report_flags);
1211
1212 if (!BNX2X_NUM_ETH_QUEUES(bp))
1213 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 &data->link_report_flags);
1215
1216 /* Full DUPLEX */
1217 if (bp->link_vars.duplex == DUPLEX_FULL)
1218 __set_bit(BNX2X_LINK_REPORT_FD,
1219 &data->link_report_flags);
1220
1221 /* Rx Flow Control is ON */
1222 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1223 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1224 &data->link_report_flags);
1225
1226 /* Tx Flow Control is ON */
1227 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1228 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1229 &data->link_report_flags);
1230 } else { /* VF */
1231 *data = bp->vf_link_vars;
1232 }
1233 }
1234
1235 /**
1236 * bnx2x_link_report - report link status to OS.
1237 *
1238 * @bp: driver handle
1239 *
1240 * Calls the __bnx2x_link_report() under the same locking scheme
1241 * as a link/PHY state managing code to ensure a consistent link
1242 * reporting.
1243 */
1244
bnx2x_link_report(struct bnx2x * bp)1245 void bnx2x_link_report(struct bnx2x *bp)
1246 {
1247 bnx2x_acquire_phy_lock(bp);
1248 __bnx2x_link_report(bp);
1249 bnx2x_release_phy_lock(bp);
1250 }
1251
1252 /**
1253 * __bnx2x_link_report - report link status to OS.
1254 *
1255 * @bp: driver handle
1256 *
1257 * None atomic implementation.
1258 * Should be called under the phy_lock.
1259 */
__bnx2x_link_report(struct bnx2x * bp)1260 void __bnx2x_link_report(struct bnx2x *bp)
1261 {
1262 struct bnx2x_link_report_data cur_data;
1263
1264 if (bp->force_link_down) {
1265 bp->link_vars.link_up = 0;
1266 return;
1267 }
1268
1269 /* reread mf_cfg */
1270 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1271 bnx2x_read_mf_cfg(bp);
1272
1273 /* Read the current link report info */
1274 bnx2x_fill_report_data(bp, &cur_data);
1275
1276 /* Don't report link down or exactly the same link status twice */
1277 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1278 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1279 &bp->last_reported_link.link_report_flags) &&
1280 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1281 &cur_data.link_report_flags)))
1282 return;
1283
1284 bp->link_cnt++;
1285
1286 /* We are going to report a new link parameters now -
1287 * remember the current data for the next time.
1288 */
1289 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1290
1291 /* propagate status to VFs */
1292 if (IS_PF(bp))
1293 bnx2x_iov_link_update(bp);
1294
1295 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1296 &cur_data.link_report_flags)) {
1297 netif_carrier_off(bp->dev);
1298 netdev_err(bp->dev, "NIC Link is Down\n");
1299 return;
1300 } else {
1301 const char *duplex;
1302 const char *flow;
1303
1304 netif_carrier_on(bp->dev);
1305
1306 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1307 &cur_data.link_report_flags))
1308 duplex = "full";
1309 else
1310 duplex = "half";
1311
1312 /* Handle the FC at the end so that only these flags would be
1313 * possibly set. This way we may easily check if there is no FC
1314 * enabled.
1315 */
1316 if (cur_data.link_report_flags) {
1317 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1318 &cur_data.link_report_flags)) {
1319 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1320 &cur_data.link_report_flags))
1321 flow = "ON - receive & transmit";
1322 else
1323 flow = "ON - receive";
1324 } else {
1325 flow = "ON - transmit";
1326 }
1327 } else {
1328 flow = "none";
1329 }
1330 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1331 cur_data.line_speed, duplex, flow);
1332 }
1333 }
1334
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1335 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1336 {
1337 int i;
1338
1339 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1340 struct eth_rx_sge *sge;
1341
1342 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1343 sge->addr_hi =
1344 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1345 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1346
1347 sge->addr_lo =
1348 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1349 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1350 }
1351 }
1352
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1353 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1354 struct bnx2x_fastpath *fp, int last)
1355 {
1356 int i;
1357
1358 for (i = 0; i < last; i++) {
1359 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1360 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1361 u8 *data = first_buf->data;
1362
1363 if (data == NULL) {
1364 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1365 continue;
1366 }
1367 if (tpa_info->tpa_state == BNX2X_TPA_START)
1368 dma_unmap_single(&bp->pdev->dev,
1369 dma_unmap_addr(first_buf, mapping),
1370 fp->rx_buf_size, DMA_FROM_DEVICE);
1371 bnx2x_frag_free(fp, data);
1372 first_buf->data = NULL;
1373 }
1374 }
1375
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1376 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1377 {
1378 int j;
1379
1380 for_each_rx_queue_cnic(bp, j) {
1381 struct bnx2x_fastpath *fp = &bp->fp[j];
1382
1383 fp->rx_bd_cons = 0;
1384
1385 /* Activate BD ring */
1386 /* Warning!
1387 * this will generate an interrupt (to the TSTORM)
1388 * must only be done after chip is initialized
1389 */
1390 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1391 fp->rx_sge_prod);
1392 }
1393 }
1394
bnx2x_init_rx_rings(struct bnx2x * bp)1395 void bnx2x_init_rx_rings(struct bnx2x *bp)
1396 {
1397 int func = BP_FUNC(bp);
1398 u16 ring_prod;
1399 int i, j;
1400
1401 /* Allocate TPA resources */
1402 for_each_eth_queue(bp, j) {
1403 struct bnx2x_fastpath *fp = &bp->fp[j];
1404
1405 DP(NETIF_MSG_IFUP,
1406 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1407
1408 if (fp->mode != TPA_MODE_DISABLED) {
1409 /* Fill the per-aggregation pool */
1410 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1411 struct bnx2x_agg_info *tpa_info =
1412 &fp->tpa_info[i];
1413 struct sw_rx_bd *first_buf =
1414 &tpa_info->first_buf;
1415
1416 first_buf->data =
1417 bnx2x_frag_alloc(fp, GFP_KERNEL);
1418 if (!first_buf->data) {
1419 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1420 j);
1421 bnx2x_free_tpa_pool(bp, fp, i);
1422 fp->mode = TPA_MODE_DISABLED;
1423 break;
1424 }
1425 dma_unmap_addr_set(first_buf, mapping, 0);
1426 tpa_info->tpa_state = BNX2X_TPA_STOP;
1427 }
1428
1429 /* "next page" elements initialization */
1430 bnx2x_set_next_page_sgl(fp);
1431
1432 /* set SGEs bit mask */
1433 bnx2x_init_sge_ring_bit_mask(fp);
1434
1435 /* Allocate SGEs and initialize the ring elements */
1436 for (i = 0, ring_prod = 0;
1437 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1438
1439 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1440 GFP_KERNEL) < 0) {
1441 BNX2X_ERR("was only able to allocate %d rx sges\n",
1442 i);
1443 BNX2X_ERR("disabling TPA for queue[%d]\n",
1444 j);
1445 /* Cleanup already allocated elements */
1446 bnx2x_free_rx_sge_range(bp, fp,
1447 ring_prod);
1448 bnx2x_free_tpa_pool(bp, fp,
1449 MAX_AGG_QS(bp));
1450 fp->mode = TPA_MODE_DISABLED;
1451 ring_prod = 0;
1452 break;
1453 }
1454 ring_prod = NEXT_SGE_IDX(ring_prod);
1455 }
1456
1457 fp->rx_sge_prod = ring_prod;
1458 }
1459 }
1460
1461 for_each_eth_queue(bp, j) {
1462 struct bnx2x_fastpath *fp = &bp->fp[j];
1463
1464 fp->rx_bd_cons = 0;
1465
1466 /* Activate BD ring */
1467 /* Warning!
1468 * this will generate an interrupt (to the TSTORM)
1469 * must only be done after chip is initialized
1470 */
1471 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1472 fp->rx_sge_prod);
1473
1474 if (j != 0)
1475 continue;
1476
1477 if (CHIP_IS_E1(bp)) {
1478 REG_WR(bp, BAR_USTRORM_INTMEM +
1479 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1480 U64_LO(fp->rx_comp_mapping));
1481 REG_WR(bp, BAR_USTRORM_INTMEM +
1482 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1483 U64_HI(fp->rx_comp_mapping));
1484 }
1485 }
1486 }
1487
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1488 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1489 {
1490 u8 cos;
1491 struct bnx2x *bp = fp->bp;
1492
1493 for_each_cos_in_tx_queue(fp, cos) {
1494 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1495 unsigned pkts_compl = 0, bytes_compl = 0;
1496
1497 u16 sw_prod = txdata->tx_pkt_prod;
1498 u16 sw_cons = txdata->tx_pkt_cons;
1499
1500 while (sw_cons != sw_prod) {
1501 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1502 &pkts_compl, &bytes_compl);
1503 sw_cons++;
1504 }
1505
1506 netdev_tx_reset_queue(
1507 netdev_get_tx_queue(bp->dev,
1508 txdata->txq_index));
1509 }
1510 }
1511
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1512 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1513 {
1514 int i;
1515
1516 for_each_tx_queue_cnic(bp, i) {
1517 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1518 }
1519 }
1520
bnx2x_free_tx_skbs(struct bnx2x * bp)1521 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1522 {
1523 int i;
1524
1525 for_each_eth_queue(bp, i) {
1526 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1527 }
1528 }
1529
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1530 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1531 {
1532 struct bnx2x *bp = fp->bp;
1533 int i;
1534
1535 /* ring wasn't allocated */
1536 if (fp->rx_buf_ring == NULL)
1537 return;
1538
1539 for (i = 0; i < NUM_RX_BD; i++) {
1540 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1541 u8 *data = rx_buf->data;
1542
1543 if (data == NULL)
1544 continue;
1545 dma_unmap_single(&bp->pdev->dev,
1546 dma_unmap_addr(rx_buf, mapping),
1547 fp->rx_buf_size, DMA_FROM_DEVICE);
1548
1549 rx_buf->data = NULL;
1550 bnx2x_frag_free(fp, data);
1551 }
1552 }
1553
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1554 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1555 {
1556 int j;
1557
1558 for_each_rx_queue_cnic(bp, j) {
1559 bnx2x_free_rx_bds(&bp->fp[j]);
1560 }
1561 }
1562
bnx2x_free_rx_skbs(struct bnx2x * bp)1563 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1564 {
1565 int j;
1566
1567 for_each_eth_queue(bp, j) {
1568 struct bnx2x_fastpath *fp = &bp->fp[j];
1569
1570 bnx2x_free_rx_bds(fp);
1571
1572 if (fp->mode != TPA_MODE_DISABLED)
1573 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1574 }
1575 }
1576
bnx2x_free_skbs_cnic(struct bnx2x * bp)1577 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1578 {
1579 bnx2x_free_tx_skbs_cnic(bp);
1580 bnx2x_free_rx_skbs_cnic(bp);
1581 }
1582
bnx2x_free_skbs(struct bnx2x * bp)1583 void bnx2x_free_skbs(struct bnx2x *bp)
1584 {
1585 bnx2x_free_tx_skbs(bp);
1586 bnx2x_free_rx_skbs(bp);
1587 }
1588
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1589 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1590 {
1591 /* load old values */
1592 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1593
1594 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1595 /* leave all but MAX value */
1596 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1597
1598 /* set new MAX value */
1599 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1600 & FUNC_MF_CFG_MAX_BW_MASK;
1601
1602 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1603 }
1604 }
1605
1606 /**
1607 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1608 *
1609 * @bp: driver handle
1610 * @nvecs: number of vectors to be released
1611 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1612 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1613 {
1614 int i, offset = 0;
1615
1616 if (nvecs == offset)
1617 return;
1618
1619 /* VFs don't have a default SB */
1620 if (IS_PF(bp)) {
1621 free_irq(bp->msix_table[offset].vector, bp->dev);
1622 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1623 bp->msix_table[offset].vector);
1624 offset++;
1625 }
1626
1627 if (CNIC_SUPPORT(bp)) {
1628 if (nvecs == offset)
1629 return;
1630 offset++;
1631 }
1632
1633 for_each_eth_queue(bp, i) {
1634 if (nvecs == offset)
1635 return;
1636 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1637 i, bp->msix_table[offset].vector);
1638
1639 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1640 }
1641 }
1642
bnx2x_free_irq(struct bnx2x * bp)1643 void bnx2x_free_irq(struct bnx2x *bp)
1644 {
1645 if (bp->flags & USING_MSIX_FLAG &&
1646 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1647 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1648
1649 /* vfs don't have a default status block */
1650 if (IS_PF(bp))
1651 nvecs++;
1652
1653 bnx2x_free_msix_irqs(bp, nvecs);
1654 } else {
1655 free_irq(bp->dev->irq, bp->dev);
1656 }
1657 }
1658
bnx2x_enable_msix(struct bnx2x * bp)1659 int bnx2x_enable_msix(struct bnx2x *bp)
1660 {
1661 int msix_vec = 0, i, rc;
1662
1663 /* VFs don't have a default status block */
1664 if (IS_PF(bp)) {
1665 bp->msix_table[msix_vec].entry = msix_vec;
1666 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1667 bp->msix_table[0].entry);
1668 msix_vec++;
1669 }
1670
1671 /* Cnic requires an msix vector for itself */
1672 if (CNIC_SUPPORT(bp)) {
1673 bp->msix_table[msix_vec].entry = msix_vec;
1674 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1675 msix_vec, bp->msix_table[msix_vec].entry);
1676 msix_vec++;
1677 }
1678
1679 /* We need separate vectors for ETH queues only (not FCoE) */
1680 for_each_eth_queue(bp, i) {
1681 bp->msix_table[msix_vec].entry = msix_vec;
1682 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1683 msix_vec, msix_vec, i);
1684 msix_vec++;
1685 }
1686
1687 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1688 msix_vec);
1689
1690 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1691 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1692 /*
1693 * reconfigure number of tx/rx queues according to available
1694 * MSI-X vectors
1695 */
1696 if (rc == -ENOSPC) {
1697 /* Get by with single vector */
1698 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1699 if (rc < 0) {
1700 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1701 rc);
1702 goto no_msix;
1703 }
1704
1705 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1706 bp->flags |= USING_SINGLE_MSIX_FLAG;
1707
1708 BNX2X_DEV_INFO("set number of queues to 1\n");
1709 bp->num_ethernet_queues = 1;
1710 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1711 } else if (rc < 0) {
1712 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1713 goto no_msix;
1714 } else if (rc < msix_vec) {
1715 /* how less vectors we will have? */
1716 int diff = msix_vec - rc;
1717
1718 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1719
1720 /*
1721 * decrease number of queues by number of unallocated entries
1722 */
1723 bp->num_ethernet_queues -= diff;
1724 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1725
1726 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1727 bp->num_queues);
1728 }
1729
1730 bp->flags |= USING_MSIX_FLAG;
1731
1732 return 0;
1733
1734 no_msix:
1735 /* fall to INTx if not enough memory */
1736 if (rc == -ENOMEM)
1737 bp->flags |= DISABLE_MSI_FLAG;
1738
1739 return rc;
1740 }
1741
bnx2x_req_msix_irqs(struct bnx2x * bp)1742 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1743 {
1744 int i, rc, offset = 0;
1745
1746 /* no default status block for vf */
1747 if (IS_PF(bp)) {
1748 rc = request_irq(bp->msix_table[offset++].vector,
1749 bnx2x_msix_sp_int, 0,
1750 bp->dev->name, bp->dev);
1751 if (rc) {
1752 BNX2X_ERR("request sp irq failed\n");
1753 return -EBUSY;
1754 }
1755 }
1756
1757 if (CNIC_SUPPORT(bp))
1758 offset++;
1759
1760 for_each_eth_queue(bp, i) {
1761 struct bnx2x_fastpath *fp = &bp->fp[i];
1762 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1763 bp->dev->name, i);
1764
1765 rc = request_irq(bp->msix_table[offset].vector,
1766 bnx2x_msix_fp_int, 0, fp->name, fp);
1767 if (rc) {
1768 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1769 bp->msix_table[offset].vector, rc);
1770 bnx2x_free_msix_irqs(bp, offset);
1771 return -EBUSY;
1772 }
1773
1774 offset++;
1775 }
1776
1777 i = BNX2X_NUM_ETH_QUEUES(bp);
1778 if (IS_PF(bp)) {
1779 offset = 1 + CNIC_SUPPORT(bp);
1780 netdev_info(bp->dev,
1781 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1782 bp->msix_table[0].vector,
1783 0, bp->msix_table[offset].vector,
1784 i - 1, bp->msix_table[offset + i - 1].vector);
1785 } else {
1786 offset = CNIC_SUPPORT(bp);
1787 netdev_info(bp->dev,
1788 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1789 0, bp->msix_table[offset].vector,
1790 i - 1, bp->msix_table[offset + i - 1].vector);
1791 }
1792 return 0;
1793 }
1794
bnx2x_enable_msi(struct bnx2x * bp)1795 int bnx2x_enable_msi(struct bnx2x *bp)
1796 {
1797 int rc;
1798
1799 rc = pci_enable_msi(bp->pdev);
1800 if (rc) {
1801 BNX2X_DEV_INFO("MSI is not attainable\n");
1802 return -1;
1803 }
1804 bp->flags |= USING_MSI_FLAG;
1805
1806 return 0;
1807 }
1808
bnx2x_req_irq(struct bnx2x * bp)1809 static int bnx2x_req_irq(struct bnx2x *bp)
1810 {
1811 unsigned long flags;
1812 unsigned int irq;
1813
1814 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1815 flags = 0;
1816 else
1817 flags = IRQF_SHARED;
1818
1819 if (bp->flags & USING_MSIX_FLAG)
1820 irq = bp->msix_table[0].vector;
1821 else
1822 irq = bp->pdev->irq;
1823
1824 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1825 }
1826
bnx2x_setup_irqs(struct bnx2x * bp)1827 static int bnx2x_setup_irqs(struct bnx2x *bp)
1828 {
1829 int rc = 0;
1830 if (bp->flags & USING_MSIX_FLAG &&
1831 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1832 rc = bnx2x_req_msix_irqs(bp);
1833 if (rc)
1834 return rc;
1835 } else {
1836 rc = bnx2x_req_irq(bp);
1837 if (rc) {
1838 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1839 return rc;
1840 }
1841 if (bp->flags & USING_MSI_FLAG) {
1842 bp->dev->irq = bp->pdev->irq;
1843 netdev_info(bp->dev, "using MSI IRQ %d\n",
1844 bp->dev->irq);
1845 }
1846 if (bp->flags & USING_MSIX_FLAG) {
1847 bp->dev->irq = bp->msix_table[0].vector;
1848 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1849 bp->dev->irq);
1850 }
1851 }
1852
1853 return 0;
1854 }
1855
bnx2x_napi_enable_cnic(struct bnx2x * bp)1856 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1857 {
1858 int i;
1859
1860 for_each_rx_queue_cnic(bp, i) {
1861 napi_enable(&bnx2x_fp(bp, i, napi));
1862 }
1863 }
1864
bnx2x_napi_enable(struct bnx2x * bp)1865 static void bnx2x_napi_enable(struct bnx2x *bp)
1866 {
1867 int i;
1868
1869 for_each_eth_queue(bp, i) {
1870 napi_enable(&bnx2x_fp(bp, i, napi));
1871 }
1872 }
1873
bnx2x_napi_disable_cnic(struct bnx2x * bp)1874 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1875 {
1876 int i;
1877
1878 for_each_rx_queue_cnic(bp, i) {
1879 napi_disable(&bnx2x_fp(bp, i, napi));
1880 }
1881 }
1882
bnx2x_napi_disable(struct bnx2x * bp)1883 static void bnx2x_napi_disable(struct bnx2x *bp)
1884 {
1885 int i;
1886
1887 for_each_eth_queue(bp, i) {
1888 napi_disable(&bnx2x_fp(bp, i, napi));
1889 }
1890 }
1891
bnx2x_netif_start(struct bnx2x * bp)1892 void bnx2x_netif_start(struct bnx2x *bp)
1893 {
1894 if (netif_running(bp->dev)) {
1895 bnx2x_napi_enable(bp);
1896 if (CNIC_LOADED(bp))
1897 bnx2x_napi_enable_cnic(bp);
1898 bnx2x_int_enable(bp);
1899 if (bp->state == BNX2X_STATE_OPEN)
1900 netif_tx_wake_all_queues(bp->dev);
1901 }
1902 }
1903
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1904 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1905 {
1906 bnx2x_int_disable_sync(bp, disable_hw);
1907 bnx2x_napi_disable(bp);
1908 if (CNIC_LOADED(bp))
1909 bnx2x_napi_disable_cnic(bp);
1910 }
1911
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)1912 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1913 struct net_device *sb_dev,
1914 select_queue_fallback_t fallback)
1915 {
1916 struct bnx2x *bp = netdev_priv(dev);
1917
1918 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1919 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1920 u16 ether_type = ntohs(hdr->h_proto);
1921
1922 /* Skip VLAN tag if present */
1923 if (ether_type == ETH_P_8021Q) {
1924 struct vlan_ethhdr *vhdr =
1925 (struct vlan_ethhdr *)skb->data;
1926
1927 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1928 }
1929
1930 /* If ethertype is FCoE or FIP - use FCoE ring */
1931 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1932 return bnx2x_fcoe_tx(bp, txq_index);
1933 }
1934
1935 /* select a non-FCoE queue */
1936 return fallback(dev, skb, NULL) %
1937 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1938 }
1939
bnx2x_set_num_queues(struct bnx2x * bp)1940 void bnx2x_set_num_queues(struct bnx2x *bp)
1941 {
1942 /* RSS queues */
1943 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1944
1945 /* override in STORAGE SD modes */
1946 if (IS_MF_STORAGE_ONLY(bp))
1947 bp->num_ethernet_queues = 1;
1948
1949 /* Add special queues */
1950 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1951 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1952
1953 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1954 }
1955
1956 /**
1957 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1958 *
1959 * @bp: Driver handle
1960 *
1961 * We currently support for at most 16 Tx queues for each CoS thus we will
1962 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1963 * bp->max_cos.
1964 *
1965 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1966 * index after all ETH L2 indices.
1967 *
1968 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1969 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1970 * 16..31,...) with indices that are not coupled with any real Tx queue.
1971 *
1972 * The proper configuration of skb->queue_mapping is handled by
1973 * bnx2x_select_queue() and __skb_tx_hash().
1974 *
1975 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1976 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1977 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1978 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1979 {
1980 int rc, tx, rx;
1981
1982 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1983 rx = BNX2X_NUM_ETH_QUEUES(bp);
1984
1985 /* account for fcoe queue */
1986 if (include_cnic && !NO_FCOE(bp)) {
1987 rx++;
1988 tx++;
1989 }
1990
1991 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1992 if (rc) {
1993 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1994 return rc;
1995 }
1996 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1997 if (rc) {
1998 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1999 return rc;
2000 }
2001
2002 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2003 tx, rx);
2004
2005 return rc;
2006 }
2007
bnx2x_set_rx_buf_size(struct bnx2x * bp)2008 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2009 {
2010 int i;
2011
2012 for_each_queue(bp, i) {
2013 struct bnx2x_fastpath *fp = &bp->fp[i];
2014 u32 mtu;
2015
2016 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2017 if (IS_FCOE_IDX(i))
2018 /*
2019 * Although there are no IP frames expected to arrive to
2020 * this ring we still want to add an
2021 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2022 * overrun attack.
2023 */
2024 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2025 else
2026 mtu = bp->dev->mtu;
2027 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2028 IP_HEADER_ALIGNMENT_PADDING +
2029 ETH_OVERHEAD +
2030 mtu +
2031 BNX2X_FW_RX_ALIGN_END;
2032 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2033 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2034 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2035 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2036 else
2037 fp->rx_frag_size = 0;
2038 }
2039 }
2040
bnx2x_init_rss(struct bnx2x * bp)2041 static int bnx2x_init_rss(struct bnx2x *bp)
2042 {
2043 int i;
2044 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2045
2046 /* Prepare the initial contents for the indirection table if RSS is
2047 * enabled
2048 */
2049 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2050 bp->rss_conf_obj.ind_table[i] =
2051 bp->fp->cl_id +
2052 ethtool_rxfh_indir_default(i, num_eth_queues);
2053
2054 /*
2055 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2056 * per-port, so if explicit configuration is needed , do it only
2057 * for a PMF.
2058 *
2059 * For 57712 and newer on the other hand it's a per-function
2060 * configuration.
2061 */
2062 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2063 }
2064
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2065 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2066 bool config_hash, bool enable)
2067 {
2068 struct bnx2x_config_rss_params params = {NULL};
2069
2070 /* Although RSS is meaningless when there is a single HW queue we
2071 * still need it enabled in order to have HW Rx hash generated.
2072 *
2073 * if (!is_eth_multi(bp))
2074 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2075 */
2076
2077 params.rss_obj = rss_obj;
2078
2079 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2080
2081 if (enable) {
2082 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2083
2084 /* RSS configuration */
2085 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2086 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2087 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2088 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2089 if (rss_obj->udp_rss_v4)
2090 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2091 if (rss_obj->udp_rss_v6)
2092 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2093
2094 if (!CHIP_IS_E1x(bp)) {
2095 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2096 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2097 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2098
2099 /* valid only for TUNN_MODE_GRE tunnel mode */
2100 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2101 }
2102 } else {
2103 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2104 }
2105
2106 /* Hash bits */
2107 params.rss_result_mask = MULTI_MASK;
2108
2109 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2110
2111 if (config_hash) {
2112 /* RSS keys */
2113 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2114 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2115 }
2116
2117 if (IS_PF(bp))
2118 return bnx2x_config_rss(bp, ¶ms);
2119 else
2120 return bnx2x_vfpf_config_rss(bp, ¶ms);
2121 }
2122
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2123 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2124 {
2125 struct bnx2x_func_state_params func_params = {NULL};
2126
2127 /* Prepare parameters for function state transitions */
2128 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2129
2130 func_params.f_obj = &bp->func_obj;
2131 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2132
2133 func_params.params.hw_init.load_phase = load_code;
2134
2135 return bnx2x_func_state_change(bp, &func_params);
2136 }
2137
2138 /*
2139 * Cleans the object that have internal lists without sending
2140 * ramrods. Should be run when interrupts are disabled.
2141 */
bnx2x_squeeze_objects(struct bnx2x * bp)2142 void bnx2x_squeeze_objects(struct bnx2x *bp)
2143 {
2144 int rc;
2145 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2146 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2147 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2148
2149 /***************** Cleanup MACs' object first *************************/
2150
2151 /* Wait for completion of requested */
2152 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2153 /* Perform a dry cleanup */
2154 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2155
2156 /* Clean ETH primary MAC */
2157 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2158 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2159 &ramrod_flags);
2160 if (rc != 0)
2161 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2162
2163 /* Cleanup UC list */
2164 vlan_mac_flags = 0;
2165 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2166 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2167 &ramrod_flags);
2168 if (rc != 0)
2169 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2170
2171 /***************** Now clean mcast object *****************************/
2172 rparam.mcast_obj = &bp->mcast_obj;
2173 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2174
2175 /* Add a DEL command... - Since we're doing a driver cleanup only,
2176 * we take a lock surrounding both the initial send and the CONTs,
2177 * as we don't want a true completion to disrupt us in the middle.
2178 */
2179 netif_addr_lock_bh(bp->dev);
2180 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2181 if (rc < 0)
2182 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2183 rc);
2184
2185 /* ...and wait until all pending commands are cleared */
2186 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2187 while (rc != 0) {
2188 if (rc < 0) {
2189 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2190 rc);
2191 netif_addr_unlock_bh(bp->dev);
2192 return;
2193 }
2194
2195 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2196 }
2197 netif_addr_unlock_bh(bp->dev);
2198 }
2199
2200 #ifndef BNX2X_STOP_ON_ERROR
2201 #define LOAD_ERROR_EXIT(bp, label) \
2202 do { \
2203 (bp)->state = BNX2X_STATE_ERROR; \
2204 goto label; \
2205 } while (0)
2206
2207 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2208 do { \
2209 bp->cnic_loaded = false; \
2210 goto label; \
2211 } while (0)
2212 #else /*BNX2X_STOP_ON_ERROR*/
2213 #define LOAD_ERROR_EXIT(bp, label) \
2214 do { \
2215 (bp)->state = BNX2X_STATE_ERROR; \
2216 (bp)->panic = 1; \
2217 return -EBUSY; \
2218 } while (0)
2219 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2220 do { \
2221 bp->cnic_loaded = false; \
2222 (bp)->panic = 1; \
2223 return -EBUSY; \
2224 } while (0)
2225 #endif /*BNX2X_STOP_ON_ERROR*/
2226
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2227 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2228 {
2229 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2230 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2231 return;
2232 }
2233
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2234 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2235 {
2236 int num_groups, vf_headroom = 0;
2237 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2238
2239 /* number of queues for statistics is number of eth queues + FCoE */
2240 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2241
2242 /* Total number of FW statistics requests =
2243 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2244 * and fcoe l2 queue) stats + num of queues (which includes another 1
2245 * for fcoe l2 queue if applicable)
2246 */
2247 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2248
2249 /* vf stats appear in the request list, but their data is allocated by
2250 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2251 * it is used to determine where to place the vf stats queries in the
2252 * request struct
2253 */
2254 if (IS_SRIOV(bp))
2255 vf_headroom = bnx2x_vf_headroom(bp);
2256
2257 /* Request is built from stats_query_header and an array of
2258 * stats_query_cmd_group each of which contains
2259 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2260 * configured in the stats_query_header.
2261 */
2262 num_groups =
2263 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2264 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2265 1 : 0));
2266
2267 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2268 bp->fw_stats_num, vf_headroom, num_groups);
2269 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2270 num_groups * sizeof(struct stats_query_cmd_group);
2271
2272 /* Data for statistics requests + stats_counter
2273 * stats_counter holds per-STORM counters that are incremented
2274 * when STORM has finished with the current request.
2275 * memory for FCoE offloaded statistics are counted anyway,
2276 * even if they will not be sent.
2277 * VF stats are not accounted for here as the data of VF stats is stored
2278 * in memory allocated by the VF, not here.
2279 */
2280 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2281 sizeof(struct per_pf_stats) +
2282 sizeof(struct fcoe_statistics_params) +
2283 sizeof(struct per_queue_stats) * num_queue_stats +
2284 sizeof(struct stats_counter);
2285
2286 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2287 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2288 if (!bp->fw_stats)
2289 goto alloc_mem_err;
2290
2291 /* Set shortcuts */
2292 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2293 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2294 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2295 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2296 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2297 bp->fw_stats_req_sz;
2298
2299 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2300 U64_HI(bp->fw_stats_req_mapping),
2301 U64_LO(bp->fw_stats_req_mapping));
2302 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2303 U64_HI(bp->fw_stats_data_mapping),
2304 U64_LO(bp->fw_stats_data_mapping));
2305 return 0;
2306
2307 alloc_mem_err:
2308 bnx2x_free_fw_stats_mem(bp);
2309 BNX2X_ERR("Can't allocate FW stats memory\n");
2310 return -ENOMEM;
2311 }
2312
2313 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2314 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2315 {
2316 u32 param;
2317
2318 /* init fw_seq */
2319 bp->fw_seq =
2320 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2321 DRV_MSG_SEQ_NUMBER_MASK);
2322 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2323
2324 /* Get current FW pulse sequence */
2325 bp->fw_drv_pulse_wr_seq =
2326 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2327 DRV_PULSE_SEQ_MASK);
2328 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2329
2330 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2331
2332 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2333 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2334
2335 /* load request */
2336 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2337
2338 /* if mcp fails to respond we must abort */
2339 if (!(*load_code)) {
2340 BNX2X_ERR("MCP response failure, aborting\n");
2341 return -EBUSY;
2342 }
2343
2344 /* If mcp refused (e.g. other port is in diagnostic mode) we
2345 * must abort
2346 */
2347 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2348 BNX2X_ERR("MCP refused load request, aborting\n");
2349 return -EBUSY;
2350 }
2351 return 0;
2352 }
2353
2354 /* check whether another PF has already loaded FW to chip. In
2355 * virtualized environments a pf from another VM may have already
2356 * initialized the device including loading FW
2357 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2358 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2359 {
2360 /* is another pf loaded on this engine? */
2361 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2362 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2363 /* build my FW version dword */
2364 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2365 (BCM_5710_FW_MINOR_VERSION << 8) +
2366 (BCM_5710_FW_REVISION_VERSION << 16) +
2367 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2368
2369 /* read loaded FW from chip */
2370 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2371
2372 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2373 loaded_fw, my_fw);
2374
2375 /* abort nic load if version mismatch */
2376 if (my_fw != loaded_fw) {
2377 if (print_err)
2378 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2379 loaded_fw, my_fw);
2380 else
2381 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2382 loaded_fw, my_fw);
2383 return -EBUSY;
2384 }
2385 }
2386 return 0;
2387 }
2388
2389 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2390 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2391 {
2392 int path = BP_PATH(bp);
2393
2394 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2395 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2396 bnx2x_load_count[path][2]);
2397 bnx2x_load_count[path][0]++;
2398 bnx2x_load_count[path][1 + port]++;
2399 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2400 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2401 bnx2x_load_count[path][2]);
2402 if (bnx2x_load_count[path][0] == 1)
2403 return FW_MSG_CODE_DRV_LOAD_COMMON;
2404 else if (bnx2x_load_count[path][1 + port] == 1)
2405 return FW_MSG_CODE_DRV_LOAD_PORT;
2406 else
2407 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2408 }
2409
2410 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2411 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2412 {
2413 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2414 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2415 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2416 bp->port.pmf = 1;
2417 /* We need the barrier to ensure the ordering between the
2418 * writing to bp->port.pmf here and reading it from the
2419 * bnx2x_periodic_task().
2420 */
2421 smp_mb();
2422 } else {
2423 bp->port.pmf = 0;
2424 }
2425
2426 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2427 }
2428
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2429 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2430 {
2431 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2432 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2433 (bp->common.shmem2_base)) {
2434 if (SHMEM2_HAS(bp, dcc_support))
2435 SHMEM2_WR(bp, dcc_support,
2436 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2437 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2438 if (SHMEM2_HAS(bp, afex_driver_support))
2439 SHMEM2_WR(bp, afex_driver_support,
2440 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2441 }
2442
2443 /* Set AFEX default VLAN tag to an invalid value */
2444 bp->afex_def_vlan_tag = -1;
2445 }
2446
2447 /**
2448 * bnx2x_bz_fp - zero content of the fastpath structure.
2449 *
2450 * @bp: driver handle
2451 * @index: fastpath index to be zeroed
2452 *
2453 * Makes sure the contents of the bp->fp[index].napi is kept
2454 * intact.
2455 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2456 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2457 {
2458 struct bnx2x_fastpath *fp = &bp->fp[index];
2459 int cos;
2460 struct napi_struct orig_napi = fp->napi;
2461 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2462
2463 /* bzero bnx2x_fastpath contents */
2464 if (fp->tpa_info)
2465 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2466 sizeof(struct bnx2x_agg_info));
2467 memset(fp, 0, sizeof(*fp));
2468
2469 /* Restore the NAPI object as it has been already initialized */
2470 fp->napi = orig_napi;
2471 fp->tpa_info = orig_tpa_info;
2472 fp->bp = bp;
2473 fp->index = index;
2474 if (IS_ETH_FP(fp))
2475 fp->max_cos = bp->max_cos;
2476 else
2477 /* Special queues support only one CoS */
2478 fp->max_cos = 1;
2479
2480 /* Init txdata pointers */
2481 if (IS_FCOE_FP(fp))
2482 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2483 if (IS_ETH_FP(fp))
2484 for_each_cos_in_tx_queue(fp, cos)
2485 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2486 BNX2X_NUM_ETH_QUEUES(bp) + index];
2487
2488 /* set the tpa flag for each queue. The tpa flag determines the queue
2489 * minimal size so it must be set prior to queue memory allocation
2490 */
2491 if (bp->dev->features & NETIF_F_LRO)
2492 fp->mode = TPA_MODE_LRO;
2493 else if (bp->dev->features & NETIF_F_GRO_HW)
2494 fp->mode = TPA_MODE_GRO;
2495 else
2496 fp->mode = TPA_MODE_DISABLED;
2497
2498 /* We don't want TPA if it's disabled in bp
2499 * or if this is an FCoE L2 ring.
2500 */
2501 if (bp->disable_tpa || IS_FCOE_FP(fp))
2502 fp->mode = TPA_MODE_DISABLED;
2503 }
2504
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2505 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2506 {
2507 u32 cur;
2508
2509 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2510 return;
2511
2512 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2513 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2514 cur, state);
2515
2516 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2517 }
2518
bnx2x_load_cnic(struct bnx2x * bp)2519 int bnx2x_load_cnic(struct bnx2x *bp)
2520 {
2521 int i, rc, port = BP_PORT(bp);
2522
2523 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2524
2525 mutex_init(&bp->cnic_mutex);
2526
2527 if (IS_PF(bp)) {
2528 rc = bnx2x_alloc_mem_cnic(bp);
2529 if (rc) {
2530 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2531 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2532 }
2533 }
2534
2535 rc = bnx2x_alloc_fp_mem_cnic(bp);
2536 if (rc) {
2537 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2538 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2539 }
2540
2541 /* Update the number of queues with the cnic queues */
2542 rc = bnx2x_set_real_num_queues(bp, 1);
2543 if (rc) {
2544 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2545 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2546 }
2547
2548 /* Add all CNIC NAPI objects */
2549 bnx2x_add_all_napi_cnic(bp);
2550 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2551 bnx2x_napi_enable_cnic(bp);
2552
2553 rc = bnx2x_init_hw_func_cnic(bp);
2554 if (rc)
2555 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2556
2557 bnx2x_nic_init_cnic(bp);
2558
2559 if (IS_PF(bp)) {
2560 /* Enable Timer scan */
2561 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2562
2563 /* setup cnic queues */
2564 for_each_cnic_queue(bp, i) {
2565 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2566 if (rc) {
2567 BNX2X_ERR("Queue setup failed\n");
2568 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2569 }
2570 }
2571 }
2572
2573 /* Initialize Rx filter. */
2574 bnx2x_set_rx_mode_inner(bp);
2575
2576 /* re-read iscsi info */
2577 bnx2x_get_iscsi_info(bp);
2578 bnx2x_setup_cnic_irq_info(bp);
2579 bnx2x_setup_cnic_info(bp);
2580 bp->cnic_loaded = true;
2581 if (bp->state == BNX2X_STATE_OPEN)
2582 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2583
2584 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2585
2586 return 0;
2587
2588 #ifndef BNX2X_STOP_ON_ERROR
2589 load_error_cnic2:
2590 /* Disable Timer scan */
2591 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2592
2593 load_error_cnic1:
2594 bnx2x_napi_disable_cnic(bp);
2595 /* Update the number of queues without the cnic queues */
2596 if (bnx2x_set_real_num_queues(bp, 0))
2597 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2598 load_error_cnic0:
2599 BNX2X_ERR("CNIC-related load failed\n");
2600 bnx2x_free_fp_mem_cnic(bp);
2601 bnx2x_free_mem_cnic(bp);
2602 return rc;
2603 #endif /* ! BNX2X_STOP_ON_ERROR */
2604 }
2605
2606 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2607 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2608 {
2609 int port = BP_PORT(bp);
2610 int i, rc = 0, load_code = 0;
2611
2612 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2613 DP(NETIF_MSG_IFUP,
2614 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2615
2616 #ifdef BNX2X_STOP_ON_ERROR
2617 if (unlikely(bp->panic)) {
2618 BNX2X_ERR("Can't load NIC when there is panic\n");
2619 return -EPERM;
2620 }
2621 #endif
2622
2623 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2624
2625 /* zero the structure w/o any lock, before SP handler is initialized */
2626 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2627 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2628 &bp->last_reported_link.link_report_flags);
2629
2630 if (IS_PF(bp))
2631 /* must be called before memory allocation and HW init */
2632 bnx2x_ilt_set_info(bp);
2633
2634 /*
2635 * Zero fastpath structures preserving invariants like napi, which are
2636 * allocated only once, fp index, max_cos, bp pointer.
2637 * Also set fp->mode and txdata_ptr.
2638 */
2639 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2640 for_each_queue(bp, i)
2641 bnx2x_bz_fp(bp, i);
2642 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2643 bp->num_cnic_queues) *
2644 sizeof(struct bnx2x_fp_txdata));
2645
2646 bp->fcoe_init = false;
2647
2648 /* Set the receive queues buffer size */
2649 bnx2x_set_rx_buf_size(bp);
2650
2651 if (IS_PF(bp)) {
2652 rc = bnx2x_alloc_mem(bp);
2653 if (rc) {
2654 BNX2X_ERR("Unable to allocate bp memory\n");
2655 return rc;
2656 }
2657 }
2658
2659 /* need to be done after alloc mem, since it's self adjusting to amount
2660 * of memory available for RSS queues
2661 */
2662 rc = bnx2x_alloc_fp_mem(bp);
2663 if (rc) {
2664 BNX2X_ERR("Unable to allocate memory for fps\n");
2665 LOAD_ERROR_EXIT(bp, load_error0);
2666 }
2667
2668 /* Allocated memory for FW statistics */
2669 if (bnx2x_alloc_fw_stats_mem(bp))
2670 LOAD_ERROR_EXIT(bp, load_error0);
2671
2672 /* request pf to initialize status blocks */
2673 if (IS_VF(bp)) {
2674 rc = bnx2x_vfpf_init(bp);
2675 if (rc)
2676 LOAD_ERROR_EXIT(bp, load_error0);
2677 }
2678
2679 /* As long as bnx2x_alloc_mem() may possibly update
2680 * bp->num_queues, bnx2x_set_real_num_queues() should always
2681 * come after it. At this stage cnic queues are not counted.
2682 */
2683 rc = bnx2x_set_real_num_queues(bp, 0);
2684 if (rc) {
2685 BNX2X_ERR("Unable to set real_num_queues\n");
2686 LOAD_ERROR_EXIT(bp, load_error0);
2687 }
2688
2689 /* configure multi cos mappings in kernel.
2690 * this configuration may be overridden by a multi class queue
2691 * discipline or by a dcbx negotiation result.
2692 */
2693 bnx2x_setup_tc(bp->dev, bp->max_cos);
2694
2695 /* Add all NAPI objects */
2696 bnx2x_add_all_napi(bp);
2697 DP(NETIF_MSG_IFUP, "napi added\n");
2698 bnx2x_napi_enable(bp);
2699
2700 if (IS_PF(bp)) {
2701 /* set pf load just before approaching the MCP */
2702 bnx2x_set_pf_load(bp);
2703
2704 /* if mcp exists send load request and analyze response */
2705 if (!BP_NOMCP(bp)) {
2706 /* attempt to load pf */
2707 rc = bnx2x_nic_load_request(bp, &load_code);
2708 if (rc)
2709 LOAD_ERROR_EXIT(bp, load_error1);
2710
2711 /* what did mcp say? */
2712 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2713 if (rc) {
2714 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2715 LOAD_ERROR_EXIT(bp, load_error2);
2716 }
2717 } else {
2718 load_code = bnx2x_nic_load_no_mcp(bp, port);
2719 }
2720
2721 /* mark pmf if applicable */
2722 bnx2x_nic_load_pmf(bp, load_code);
2723
2724 /* Init Function state controlling object */
2725 bnx2x__init_func_obj(bp);
2726
2727 /* Initialize HW */
2728 rc = bnx2x_init_hw(bp, load_code);
2729 if (rc) {
2730 BNX2X_ERR("HW init failed, aborting\n");
2731 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2732 LOAD_ERROR_EXIT(bp, load_error2);
2733 }
2734 }
2735
2736 bnx2x_pre_irq_nic_init(bp);
2737
2738 /* Connect to IRQs */
2739 rc = bnx2x_setup_irqs(bp);
2740 if (rc) {
2741 BNX2X_ERR("setup irqs failed\n");
2742 if (IS_PF(bp))
2743 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2744 LOAD_ERROR_EXIT(bp, load_error2);
2745 }
2746
2747 /* Init per-function objects */
2748 if (IS_PF(bp)) {
2749 /* Setup NIC internals and enable interrupts */
2750 bnx2x_post_irq_nic_init(bp, load_code);
2751
2752 bnx2x_init_bp_objs(bp);
2753 bnx2x_iov_nic_init(bp);
2754
2755 /* Set AFEX default VLAN tag to an invalid value */
2756 bp->afex_def_vlan_tag = -1;
2757 bnx2x_nic_load_afex_dcc(bp, load_code);
2758 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2759 rc = bnx2x_func_start(bp);
2760 if (rc) {
2761 BNX2X_ERR("Function start failed!\n");
2762 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2763
2764 LOAD_ERROR_EXIT(bp, load_error3);
2765 }
2766
2767 /* Send LOAD_DONE command to MCP */
2768 if (!BP_NOMCP(bp)) {
2769 load_code = bnx2x_fw_command(bp,
2770 DRV_MSG_CODE_LOAD_DONE, 0);
2771 if (!load_code) {
2772 BNX2X_ERR("MCP response failure, aborting\n");
2773 rc = -EBUSY;
2774 LOAD_ERROR_EXIT(bp, load_error3);
2775 }
2776 }
2777
2778 /* initialize FW coalescing state machines in RAM */
2779 bnx2x_update_coalesce(bp);
2780 }
2781
2782 /* setup the leading queue */
2783 rc = bnx2x_setup_leading(bp);
2784 if (rc) {
2785 BNX2X_ERR("Setup leading failed!\n");
2786 LOAD_ERROR_EXIT(bp, load_error3);
2787 }
2788
2789 /* set up the rest of the queues */
2790 for_each_nondefault_eth_queue(bp, i) {
2791 if (IS_PF(bp))
2792 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2793 else /* VF */
2794 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2795 if (rc) {
2796 BNX2X_ERR("Queue %d setup failed\n", i);
2797 LOAD_ERROR_EXIT(bp, load_error3);
2798 }
2799 }
2800
2801 /* setup rss */
2802 rc = bnx2x_init_rss(bp);
2803 if (rc) {
2804 BNX2X_ERR("PF RSS init failed\n");
2805 LOAD_ERROR_EXIT(bp, load_error3);
2806 }
2807
2808 /* Now when Clients are configured we are ready to work */
2809 bp->state = BNX2X_STATE_OPEN;
2810
2811 /* Configure a ucast MAC */
2812 if (IS_PF(bp))
2813 rc = bnx2x_set_eth_mac(bp, true);
2814 else /* vf */
2815 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2816 true);
2817 if (rc) {
2818 BNX2X_ERR("Setting Ethernet MAC failed\n");
2819 LOAD_ERROR_EXIT(bp, load_error3);
2820 }
2821
2822 if (IS_PF(bp) && bp->pending_max) {
2823 bnx2x_update_max_mf_config(bp, bp->pending_max);
2824 bp->pending_max = 0;
2825 }
2826
2827 bp->force_link_down = false;
2828 if (bp->port.pmf) {
2829 rc = bnx2x_initial_phy_init(bp, load_mode);
2830 if (rc)
2831 LOAD_ERROR_EXIT(bp, load_error3);
2832 }
2833 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2834
2835 /* Start fast path */
2836
2837 /* Re-configure vlan filters */
2838 rc = bnx2x_vlan_reconfigure_vid(bp);
2839 if (rc)
2840 LOAD_ERROR_EXIT(bp, load_error3);
2841
2842 /* Initialize Rx filter. */
2843 bnx2x_set_rx_mode_inner(bp);
2844
2845 if (bp->flags & PTP_SUPPORTED) {
2846 bnx2x_init_ptp(bp);
2847 bnx2x_configure_ptp_filters(bp);
2848 }
2849 /* Start Tx */
2850 switch (load_mode) {
2851 case LOAD_NORMAL:
2852 /* Tx queue should be only re-enabled */
2853 netif_tx_wake_all_queues(bp->dev);
2854 break;
2855
2856 case LOAD_OPEN:
2857 netif_tx_start_all_queues(bp->dev);
2858 smp_mb__after_atomic();
2859 break;
2860
2861 case LOAD_DIAG:
2862 case LOAD_LOOPBACK_EXT:
2863 bp->state = BNX2X_STATE_DIAG;
2864 break;
2865
2866 default:
2867 break;
2868 }
2869
2870 if (bp->port.pmf)
2871 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2872 else
2873 bnx2x__link_status_update(bp);
2874
2875 /* start the timer */
2876 mod_timer(&bp->timer, jiffies + bp->current_interval);
2877
2878 if (CNIC_ENABLED(bp))
2879 bnx2x_load_cnic(bp);
2880
2881 if (IS_PF(bp))
2882 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2883
2884 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2885 /* mark driver is loaded in shmem2 */
2886 u32 val;
2887 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2888 val &= ~DRV_FLAGS_MTU_MASK;
2889 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2890 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2891 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2892 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2893 }
2894
2895 /* Wait for all pending SP commands to complete */
2896 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2897 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2898 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2899 return -EBUSY;
2900 }
2901
2902 /* Update driver data for On-Chip MFW dump. */
2903 if (IS_PF(bp))
2904 bnx2x_update_mfw_dump(bp);
2905
2906 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2907 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2908 bnx2x_dcbx_init(bp, false);
2909
2910 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2911 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2912
2913 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2914
2915 return 0;
2916
2917 #ifndef BNX2X_STOP_ON_ERROR
2918 load_error3:
2919 if (IS_PF(bp)) {
2920 bnx2x_int_disable_sync(bp, 1);
2921
2922 /* Clean queueable objects */
2923 bnx2x_squeeze_objects(bp);
2924 }
2925
2926 /* Free SKBs, SGEs, TPA pool and driver internals */
2927 bnx2x_free_skbs(bp);
2928 for_each_rx_queue(bp, i)
2929 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2930
2931 /* Release IRQs */
2932 bnx2x_free_irq(bp);
2933 load_error2:
2934 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2935 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2936 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2937 }
2938
2939 bp->port.pmf = 0;
2940 load_error1:
2941 bnx2x_napi_disable(bp);
2942 bnx2x_del_all_napi(bp);
2943
2944 /* clear pf_load status, as it was already set */
2945 if (IS_PF(bp))
2946 bnx2x_clear_pf_load(bp);
2947 load_error0:
2948 bnx2x_free_fw_stats_mem(bp);
2949 bnx2x_free_fp_mem(bp);
2950 bnx2x_free_mem(bp);
2951
2952 return rc;
2953 #endif /* ! BNX2X_STOP_ON_ERROR */
2954 }
2955
bnx2x_drain_tx_queues(struct bnx2x * bp)2956 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2957 {
2958 u8 rc = 0, cos, i;
2959
2960 /* Wait until tx fastpath tasks complete */
2961 for_each_tx_queue(bp, i) {
2962 struct bnx2x_fastpath *fp = &bp->fp[i];
2963
2964 for_each_cos_in_tx_queue(fp, cos)
2965 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2966 if (rc)
2967 return rc;
2968 }
2969 return 0;
2970 }
2971
2972 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2973 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2974 {
2975 int i;
2976 bool global = false;
2977
2978 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2979
2980 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2981 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2982
2983 /* mark driver is unloaded in shmem2 */
2984 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2985 u32 val;
2986 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2987 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2988 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2989 }
2990
2991 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2992 (bp->state == BNX2X_STATE_CLOSED ||
2993 bp->state == BNX2X_STATE_ERROR)) {
2994 /* We can get here if the driver has been unloaded
2995 * during parity error recovery and is either waiting for a
2996 * leader to complete or for other functions to unload and
2997 * then ifdown has been issued. In this case we want to
2998 * unload and let other functions to complete a recovery
2999 * process.
3000 */
3001 bp->recovery_state = BNX2X_RECOVERY_DONE;
3002 bp->is_leader = 0;
3003 bnx2x_release_leader_lock(bp);
3004 smp_mb();
3005
3006 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3007 BNX2X_ERR("Can't unload in closed or error state\n");
3008 return -EINVAL;
3009 }
3010
3011 /* Nothing to do during unload if previous bnx2x_nic_load()
3012 * have not completed successfully - all resources are released.
3013 *
3014 * we can get here only after unsuccessful ndo_* callback, during which
3015 * dev->IFF_UP flag is still on.
3016 */
3017 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3018 return 0;
3019
3020 /* It's important to set the bp->state to the value different from
3021 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3022 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3023 */
3024 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3025 smp_mb();
3026
3027 /* indicate to VFs that the PF is going down */
3028 bnx2x_iov_channel_down(bp);
3029
3030 if (CNIC_LOADED(bp))
3031 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3032
3033 /* Stop Tx */
3034 bnx2x_tx_disable(bp);
3035 netdev_reset_tc(bp->dev);
3036
3037 bp->rx_mode = BNX2X_RX_MODE_NONE;
3038
3039 del_timer_sync(&bp->timer);
3040
3041 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3042 /* Set ALWAYS_ALIVE bit in shmem */
3043 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3044 bnx2x_drv_pulse(bp);
3045 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3046 bnx2x_save_statistics(bp);
3047 }
3048
3049 /* wait till consumers catch up with producers in all queues.
3050 * If we're recovering, FW can't write to host so no reason
3051 * to wait for the queues to complete all Tx.
3052 */
3053 if (unload_mode != UNLOAD_RECOVERY)
3054 bnx2x_drain_tx_queues(bp);
3055
3056 /* if VF indicate to PF this function is going down (PF will delete sp
3057 * elements and clear initializations
3058 */
3059 if (IS_VF(bp))
3060 bnx2x_vfpf_close_vf(bp);
3061 else if (unload_mode != UNLOAD_RECOVERY)
3062 /* if this is a normal/close unload need to clean up chip*/
3063 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3064 else {
3065 /* Send the UNLOAD_REQUEST to the MCP */
3066 bnx2x_send_unload_req(bp, unload_mode);
3067
3068 /* Prevent transactions to host from the functions on the
3069 * engine that doesn't reset global blocks in case of global
3070 * attention once global blocks are reset and gates are opened
3071 * (the engine which leader will perform the recovery
3072 * last).
3073 */
3074 if (!CHIP_IS_E1x(bp))
3075 bnx2x_pf_disable(bp);
3076
3077 /* Disable HW interrupts, NAPI */
3078 bnx2x_netif_stop(bp, 1);
3079 /* Delete all NAPI objects */
3080 bnx2x_del_all_napi(bp);
3081 if (CNIC_LOADED(bp))
3082 bnx2x_del_all_napi_cnic(bp);
3083 /* Release IRQs */
3084 bnx2x_free_irq(bp);
3085
3086 /* Report UNLOAD_DONE to MCP */
3087 bnx2x_send_unload_done(bp, false);
3088 }
3089
3090 /*
3091 * At this stage no more interrupts will arrive so we may safely clean
3092 * the queueable objects here in case they failed to get cleaned so far.
3093 */
3094 if (IS_PF(bp))
3095 bnx2x_squeeze_objects(bp);
3096
3097 /* There should be no more pending SP commands at this stage */
3098 bp->sp_state = 0;
3099
3100 bp->port.pmf = 0;
3101
3102 /* clear pending work in rtnl task */
3103 bp->sp_rtnl_state = 0;
3104 smp_mb();
3105
3106 /* Free SKBs, SGEs, TPA pool and driver internals */
3107 bnx2x_free_skbs(bp);
3108 if (CNIC_LOADED(bp))
3109 bnx2x_free_skbs_cnic(bp);
3110 for_each_rx_queue(bp, i)
3111 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3112
3113 bnx2x_free_fp_mem(bp);
3114 if (CNIC_LOADED(bp))
3115 bnx2x_free_fp_mem_cnic(bp);
3116
3117 if (IS_PF(bp)) {
3118 if (CNIC_LOADED(bp))
3119 bnx2x_free_mem_cnic(bp);
3120 }
3121 bnx2x_free_mem(bp);
3122
3123 bp->state = BNX2X_STATE_CLOSED;
3124 bp->cnic_loaded = false;
3125
3126 /* Clear driver version indication in shmem */
3127 if (IS_PF(bp) && !BP_NOMCP(bp))
3128 bnx2x_update_mng_version(bp);
3129
3130 /* Check if there are pending parity attentions. If there are - set
3131 * RECOVERY_IN_PROGRESS.
3132 */
3133 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3134 bnx2x_set_reset_in_progress(bp);
3135
3136 /* Set RESET_IS_GLOBAL if needed */
3137 if (global)
3138 bnx2x_set_reset_global(bp);
3139 }
3140
3141 /* The last driver must disable a "close the gate" if there is no
3142 * parity attention or "process kill" pending.
3143 */
3144 if (IS_PF(bp) &&
3145 !bnx2x_clear_pf_load(bp) &&
3146 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3147 bnx2x_disable_close_the_gate(bp);
3148
3149 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3150
3151 return 0;
3152 }
3153
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3154 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3155 {
3156 u16 pmcsr;
3157
3158 /* If there is no power capability, silently succeed */
3159 if (!bp->pdev->pm_cap) {
3160 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3161 return 0;
3162 }
3163
3164 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3165
3166 switch (state) {
3167 case PCI_D0:
3168 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3169 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3170 PCI_PM_CTRL_PME_STATUS));
3171
3172 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3173 /* delay required during transition out of D3hot */
3174 msleep(20);
3175 break;
3176
3177 case PCI_D3hot:
3178 /* If there are other clients above don't
3179 shut down the power */
3180 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3181 return 0;
3182 /* Don't shut down the power for emulation and FPGA */
3183 if (CHIP_REV_IS_SLOW(bp))
3184 return 0;
3185
3186 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3187 pmcsr |= 3;
3188
3189 if (bp->wol)
3190 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3191
3192 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3193 pmcsr);
3194
3195 /* No more memory access after this point until
3196 * device is brought back to D0.
3197 */
3198 break;
3199
3200 default:
3201 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3202 return -EINVAL;
3203 }
3204 return 0;
3205 }
3206
3207 /*
3208 * net_device service functions
3209 */
bnx2x_poll(struct napi_struct * napi,int budget)3210 static int bnx2x_poll(struct napi_struct *napi, int budget)
3211 {
3212 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3213 napi);
3214 struct bnx2x *bp = fp->bp;
3215 int rx_work_done;
3216 u8 cos;
3217
3218 #ifdef BNX2X_STOP_ON_ERROR
3219 if (unlikely(bp->panic)) {
3220 napi_complete(napi);
3221 return 0;
3222 }
3223 #endif
3224 for_each_cos_in_tx_queue(fp, cos)
3225 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3226 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3227
3228 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3229
3230 if (rx_work_done < budget) {
3231 /* No need to update SB for FCoE L2 ring as long as
3232 * it's connected to the default SB and the SB
3233 * has been updated when NAPI was scheduled.
3234 */
3235 if (IS_FCOE_FP(fp)) {
3236 napi_complete_done(napi, rx_work_done);
3237 } else {
3238 bnx2x_update_fpsb_idx(fp);
3239 /* bnx2x_has_rx_work() reads the status block,
3240 * thus we need to ensure that status block indices
3241 * have been actually read (bnx2x_update_fpsb_idx)
3242 * prior to this check (bnx2x_has_rx_work) so that
3243 * we won't write the "newer" value of the status block
3244 * to IGU (if there was a DMA right after
3245 * bnx2x_has_rx_work and if there is no rmb, the memory
3246 * reading (bnx2x_update_fpsb_idx) may be postponed
3247 * to right before bnx2x_ack_sb). In this case there
3248 * will never be another interrupt until there is
3249 * another update of the status block, while there
3250 * is still unhandled work.
3251 */
3252 rmb();
3253
3254 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3255 if (napi_complete_done(napi, rx_work_done)) {
3256 /* Re-enable interrupts */
3257 DP(NETIF_MSG_RX_STATUS,
3258 "Update index to %d\n", fp->fp_hc_idx);
3259 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3260 le16_to_cpu(fp->fp_hc_idx),
3261 IGU_INT_ENABLE, 1);
3262 }
3263 } else {
3264 rx_work_done = budget;
3265 }
3266 }
3267 }
3268
3269 return rx_work_done;
3270 }
3271
3272 /* we split the first BD into headers and data BDs
3273 * to ease the pain of our fellow microcode engineers
3274 * we use one mapping for both BDs
3275 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3276 static u16 bnx2x_tx_split(struct bnx2x *bp,
3277 struct bnx2x_fp_txdata *txdata,
3278 struct sw_tx_bd *tx_buf,
3279 struct eth_tx_start_bd **tx_bd, u16 hlen,
3280 u16 bd_prod)
3281 {
3282 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3283 struct eth_tx_bd *d_tx_bd;
3284 dma_addr_t mapping;
3285 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3286
3287 /* first fix first BD */
3288 h_tx_bd->nbytes = cpu_to_le16(hlen);
3289
3290 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3291 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3292
3293 /* now get a new data BD
3294 * (after the pbd) and fill it */
3295 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3296 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3297
3298 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3299 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3300
3301 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3302 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3303 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3304
3305 /* this marks the BD as one that has no individual mapping */
3306 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3307
3308 DP(NETIF_MSG_TX_QUEUED,
3309 "TSO split data size is %d (%x:%x)\n",
3310 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3311
3312 /* update tx_bd */
3313 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3314
3315 return bd_prod;
3316 }
3317
3318 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3319 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3320 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3321 {
3322 __sum16 tsum = (__force __sum16) csum;
3323
3324 if (fix > 0)
3325 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3326 csum_partial(t_header - fix, fix, 0)));
3327
3328 else if (fix < 0)
3329 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3330 csum_partial(t_header, -fix, 0)));
3331
3332 return bswab16(tsum);
3333 }
3334
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3335 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3336 {
3337 u32 rc;
3338 __u8 prot = 0;
3339 __be16 protocol;
3340
3341 if (skb->ip_summed != CHECKSUM_PARTIAL)
3342 return XMIT_PLAIN;
3343
3344 protocol = vlan_get_protocol(skb);
3345 if (protocol == htons(ETH_P_IPV6)) {
3346 rc = XMIT_CSUM_V6;
3347 prot = ipv6_hdr(skb)->nexthdr;
3348 } else {
3349 rc = XMIT_CSUM_V4;
3350 prot = ip_hdr(skb)->protocol;
3351 }
3352
3353 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3354 if (inner_ip_hdr(skb)->version == 6) {
3355 rc |= XMIT_CSUM_ENC_V6;
3356 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3357 rc |= XMIT_CSUM_TCP;
3358 } else {
3359 rc |= XMIT_CSUM_ENC_V4;
3360 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3361 rc |= XMIT_CSUM_TCP;
3362 }
3363 }
3364 if (prot == IPPROTO_TCP)
3365 rc |= XMIT_CSUM_TCP;
3366
3367 if (skb_is_gso(skb)) {
3368 if (skb_is_gso_v6(skb)) {
3369 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3370 if (rc & XMIT_CSUM_ENC)
3371 rc |= XMIT_GSO_ENC_V6;
3372 } else {
3373 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3374 if (rc & XMIT_CSUM_ENC)
3375 rc |= XMIT_GSO_ENC_V4;
3376 }
3377 }
3378
3379 return rc;
3380 }
3381
3382 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3383 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3384
3385 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3386 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3387
3388 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3389 /* check if packet requires linearization (packet is too fragmented)
3390 no need to check fragmentation if page size > 8K (there will be no
3391 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3392 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3393 u32 xmit_type)
3394 {
3395 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3396 int to_copy = 0, hlen = 0;
3397
3398 if (xmit_type & XMIT_GSO_ENC)
3399 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3400
3401 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3402 if (xmit_type & XMIT_GSO) {
3403 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3404 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3405 /* Number of windows to check */
3406 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3407 int wnd_idx = 0;
3408 int frag_idx = 0;
3409 u32 wnd_sum = 0;
3410
3411 /* Headers length */
3412 if (xmit_type & XMIT_GSO_ENC)
3413 hlen = (int)(skb_inner_transport_header(skb) -
3414 skb->data) +
3415 inner_tcp_hdrlen(skb);
3416 else
3417 hlen = (int)(skb_transport_header(skb) -
3418 skb->data) + tcp_hdrlen(skb);
3419
3420 /* Amount of data (w/o headers) on linear part of SKB*/
3421 first_bd_sz = skb_headlen(skb) - hlen;
3422
3423 wnd_sum = first_bd_sz;
3424
3425 /* Calculate the first sum - it's special */
3426 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3427 wnd_sum +=
3428 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3429
3430 /* If there was data on linear skb data - check it */
3431 if (first_bd_sz > 0) {
3432 if (unlikely(wnd_sum < lso_mss)) {
3433 to_copy = 1;
3434 goto exit_lbl;
3435 }
3436
3437 wnd_sum -= first_bd_sz;
3438 }
3439
3440 /* Others are easier: run through the frag list and
3441 check all windows */
3442 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3443 wnd_sum +=
3444 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3445
3446 if (unlikely(wnd_sum < lso_mss)) {
3447 to_copy = 1;
3448 break;
3449 }
3450 wnd_sum -=
3451 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3452 }
3453 } else {
3454 /* in non-LSO too fragmented packet should always
3455 be linearized */
3456 to_copy = 1;
3457 }
3458 }
3459
3460 exit_lbl:
3461 if (unlikely(to_copy))
3462 DP(NETIF_MSG_TX_QUEUED,
3463 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3464 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3465 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3466
3467 return to_copy;
3468 }
3469 #endif
3470
3471 /**
3472 * bnx2x_set_pbd_gso - update PBD in GSO case.
3473 *
3474 * @skb: packet skb
3475 * @pbd: parse BD
3476 * @xmit_type: xmit flags
3477 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3478 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3479 struct eth_tx_parse_bd_e1x *pbd,
3480 u32 xmit_type)
3481 {
3482 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3483 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3484 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3485
3486 if (xmit_type & XMIT_GSO_V4) {
3487 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3488 pbd->tcp_pseudo_csum =
3489 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3490 ip_hdr(skb)->daddr,
3491 0, IPPROTO_TCP, 0));
3492 } else {
3493 pbd->tcp_pseudo_csum =
3494 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3495 &ipv6_hdr(skb)->daddr,
3496 0, IPPROTO_TCP, 0));
3497 }
3498
3499 pbd->global_data |=
3500 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3501 }
3502
3503 /**
3504 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3505 *
3506 * @bp: driver handle
3507 * @skb: packet skb
3508 * @parsing_data: data to be updated
3509 * @xmit_type: xmit flags
3510 *
3511 * 57712/578xx related, when skb has encapsulation
3512 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3513 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3514 u32 *parsing_data, u32 xmit_type)
3515 {
3516 *parsing_data |=
3517 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3518 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3519 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3520
3521 if (xmit_type & XMIT_CSUM_TCP) {
3522 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3523 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3524 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3525
3526 return skb_inner_transport_header(skb) +
3527 inner_tcp_hdrlen(skb) - skb->data;
3528 }
3529
3530 /* We support checksum offload for TCP and UDP only.
3531 * No need to pass the UDP header length - it's a constant.
3532 */
3533 return skb_inner_transport_header(skb) +
3534 sizeof(struct udphdr) - skb->data;
3535 }
3536
3537 /**
3538 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3539 *
3540 * @bp: driver handle
3541 * @skb: packet skb
3542 * @parsing_data: data to be updated
3543 * @xmit_type: xmit flags
3544 *
3545 * 57712/578xx related
3546 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3547 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3548 u32 *parsing_data, u32 xmit_type)
3549 {
3550 *parsing_data |=
3551 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3552 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3553 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3554
3555 if (xmit_type & XMIT_CSUM_TCP) {
3556 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3557 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3558 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3559
3560 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3561 }
3562 /* We support checksum offload for TCP and UDP only.
3563 * No need to pass the UDP header length - it's a constant.
3564 */
3565 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3566 }
3567
3568 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3569 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3570 struct eth_tx_start_bd *tx_start_bd,
3571 u32 xmit_type)
3572 {
3573 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3574
3575 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3576 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3577
3578 if (!(xmit_type & XMIT_CSUM_TCP))
3579 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3580 }
3581
3582 /**
3583 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3584 *
3585 * @bp: driver handle
3586 * @skb: packet skb
3587 * @pbd: parse BD to be updated
3588 * @xmit_type: xmit flags
3589 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3590 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3591 struct eth_tx_parse_bd_e1x *pbd,
3592 u32 xmit_type)
3593 {
3594 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3595
3596 /* for now NS flag is not used in Linux */
3597 pbd->global_data =
3598 cpu_to_le16(hlen |
3599 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3600 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3601
3602 pbd->ip_hlen_w = (skb_transport_header(skb) -
3603 skb_network_header(skb)) >> 1;
3604
3605 hlen += pbd->ip_hlen_w;
3606
3607 /* We support checksum offload for TCP and UDP only */
3608 if (xmit_type & XMIT_CSUM_TCP)
3609 hlen += tcp_hdrlen(skb) / 2;
3610 else
3611 hlen += sizeof(struct udphdr) / 2;
3612
3613 pbd->total_hlen_w = cpu_to_le16(hlen);
3614 hlen = hlen*2;
3615
3616 if (xmit_type & XMIT_CSUM_TCP) {
3617 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3618
3619 } else {
3620 s8 fix = SKB_CS_OFF(skb); /* signed! */
3621
3622 DP(NETIF_MSG_TX_QUEUED,
3623 "hlen %d fix %d csum before fix %x\n",
3624 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3625
3626 /* HW bug: fixup the CSUM */
3627 pbd->tcp_pseudo_csum =
3628 bnx2x_csum_fix(skb_transport_header(skb),
3629 SKB_CS(skb), fix);
3630
3631 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3632 pbd->tcp_pseudo_csum);
3633 }
3634
3635 return hlen;
3636 }
3637
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3638 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3639 struct eth_tx_parse_bd_e2 *pbd_e2,
3640 struct eth_tx_parse_2nd_bd *pbd2,
3641 u16 *global_data,
3642 u32 xmit_type)
3643 {
3644 u16 hlen_w = 0;
3645 u8 outerip_off, outerip_len = 0;
3646
3647 /* from outer IP to transport */
3648 hlen_w = (skb_inner_transport_header(skb) -
3649 skb_network_header(skb)) >> 1;
3650
3651 /* transport len */
3652 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3653
3654 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3655
3656 /* outer IP header info */
3657 if (xmit_type & XMIT_CSUM_V4) {
3658 struct iphdr *iph = ip_hdr(skb);
3659 u32 csum = (__force u32)(~iph->check) -
3660 (__force u32)iph->tot_len -
3661 (__force u32)iph->frag_off;
3662
3663 outerip_len = iph->ihl << 1;
3664
3665 pbd2->fw_ip_csum_wo_len_flags_frag =
3666 bswab16(csum_fold((__force __wsum)csum));
3667 } else {
3668 pbd2->fw_ip_hdr_to_payload_w =
3669 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3670 pbd_e2->data.tunnel_data.flags |=
3671 ETH_TUNNEL_DATA_IPV6_OUTER;
3672 }
3673
3674 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3675
3676 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3677
3678 /* inner IP header info */
3679 if (xmit_type & XMIT_CSUM_ENC_V4) {
3680 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3681
3682 pbd_e2->data.tunnel_data.pseudo_csum =
3683 bswab16(~csum_tcpudp_magic(
3684 inner_ip_hdr(skb)->saddr,
3685 inner_ip_hdr(skb)->daddr,
3686 0, IPPROTO_TCP, 0));
3687 } else {
3688 pbd_e2->data.tunnel_data.pseudo_csum =
3689 bswab16(~csum_ipv6_magic(
3690 &inner_ipv6_hdr(skb)->saddr,
3691 &inner_ipv6_hdr(skb)->daddr,
3692 0, IPPROTO_TCP, 0));
3693 }
3694
3695 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3696
3697 *global_data |=
3698 outerip_off |
3699 (outerip_len <<
3700 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3701 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3702 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3703
3704 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3705 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3706 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3707 }
3708 }
3709
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3710 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3711 u32 xmit_type)
3712 {
3713 struct ipv6hdr *ipv6;
3714
3715 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3716 return;
3717
3718 if (xmit_type & XMIT_GSO_ENC_V6)
3719 ipv6 = inner_ipv6_hdr(skb);
3720 else /* XMIT_GSO_V6 */
3721 ipv6 = ipv6_hdr(skb);
3722
3723 if (ipv6->nexthdr == NEXTHDR_IPV6)
3724 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3725 }
3726
3727 /* called with netif_tx_lock
3728 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3729 * netif_wake_queue()
3730 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3731 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3732 {
3733 struct bnx2x *bp = netdev_priv(dev);
3734
3735 struct netdev_queue *txq;
3736 struct bnx2x_fp_txdata *txdata;
3737 struct sw_tx_bd *tx_buf;
3738 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3739 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3740 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3741 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3742 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3743 u32 pbd_e2_parsing_data = 0;
3744 u16 pkt_prod, bd_prod;
3745 int nbd, txq_index;
3746 dma_addr_t mapping;
3747 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3748 int i;
3749 u8 hlen = 0;
3750 __le16 pkt_size = 0;
3751 struct ethhdr *eth;
3752 u8 mac_type = UNICAST_ADDRESS;
3753
3754 #ifdef BNX2X_STOP_ON_ERROR
3755 if (unlikely(bp->panic))
3756 return NETDEV_TX_BUSY;
3757 #endif
3758
3759 txq_index = skb_get_queue_mapping(skb);
3760 txq = netdev_get_tx_queue(dev, txq_index);
3761
3762 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3763
3764 txdata = &bp->bnx2x_txq[txq_index];
3765
3766 /* enable this debug print to view the transmission queue being used
3767 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3768 txq_index, fp_index, txdata_index); */
3769
3770 /* enable this debug print to view the transmission details
3771 DP(NETIF_MSG_TX_QUEUED,
3772 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3773 txdata->cid, fp_index, txdata_index, txdata, fp); */
3774
3775 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3776 skb_shinfo(skb)->nr_frags +
3777 BDS_PER_TX_PKT +
3778 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3779 /* Handle special storage cases separately */
3780 if (txdata->tx_ring_size == 0) {
3781 struct bnx2x_eth_q_stats *q_stats =
3782 bnx2x_fp_qstats(bp, txdata->parent_fp);
3783 q_stats->driver_filtered_tx_pkt++;
3784 dev_kfree_skb(skb);
3785 return NETDEV_TX_OK;
3786 }
3787 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3788 netif_tx_stop_queue(txq);
3789 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3790
3791 return NETDEV_TX_BUSY;
3792 }
3793
3794 DP(NETIF_MSG_TX_QUEUED,
3795 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3796 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3797 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3798 skb->len);
3799
3800 eth = (struct ethhdr *)skb->data;
3801
3802 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3803 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3804 if (is_broadcast_ether_addr(eth->h_dest))
3805 mac_type = BROADCAST_ADDRESS;
3806 else
3807 mac_type = MULTICAST_ADDRESS;
3808 }
3809
3810 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3811 /* First, check if we need to linearize the skb (due to FW
3812 restrictions). No need to check fragmentation if page size > 8K
3813 (there will be no violation to FW restrictions) */
3814 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3815 /* Statistics of linearization */
3816 bp->lin_cnt++;
3817 if (skb_linearize(skb) != 0) {
3818 DP(NETIF_MSG_TX_QUEUED,
3819 "SKB linearization failed - silently dropping this SKB\n");
3820 dev_kfree_skb_any(skb);
3821 return NETDEV_TX_OK;
3822 }
3823 }
3824 #endif
3825 /* Map skb linear data for DMA */
3826 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3827 skb_headlen(skb), DMA_TO_DEVICE);
3828 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3829 DP(NETIF_MSG_TX_QUEUED,
3830 "SKB mapping failed - silently dropping this SKB\n");
3831 dev_kfree_skb_any(skb);
3832 return NETDEV_TX_OK;
3833 }
3834 /*
3835 Please read carefully. First we use one BD which we mark as start,
3836 then we have a parsing info BD (used for TSO or xsum),
3837 and only then we have the rest of the TSO BDs.
3838 (don't forget to mark the last one as last,
3839 and to unmap only AFTER you write to the BD ...)
3840 And above all, all pdb sizes are in words - NOT DWORDS!
3841 */
3842
3843 /* get current pkt produced now - advance it just before sending packet
3844 * since mapping of pages may fail and cause packet to be dropped
3845 */
3846 pkt_prod = txdata->tx_pkt_prod;
3847 bd_prod = TX_BD(txdata->tx_bd_prod);
3848
3849 /* get a tx_buf and first BD
3850 * tx_start_bd may be changed during SPLIT,
3851 * but first_bd will always stay first
3852 */
3853 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3854 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3855 first_bd = tx_start_bd;
3856
3857 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3858
3859 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3860 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3861 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3862 } else if (bp->ptp_tx_skb) {
3863 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3864 } else {
3865 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3866 /* schedule check for Tx timestamp */
3867 bp->ptp_tx_skb = skb_get(skb);
3868 bp->ptp_tx_start = jiffies;
3869 schedule_work(&bp->ptp_task);
3870 }
3871 }
3872
3873 /* header nbd: indirectly zero other flags! */
3874 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3875
3876 /* remember the first BD of the packet */
3877 tx_buf->first_bd = txdata->tx_bd_prod;
3878 tx_buf->skb = skb;
3879 tx_buf->flags = 0;
3880
3881 DP(NETIF_MSG_TX_QUEUED,
3882 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3883 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3884
3885 if (skb_vlan_tag_present(skb)) {
3886 tx_start_bd->vlan_or_ethertype =
3887 cpu_to_le16(skb_vlan_tag_get(skb));
3888 tx_start_bd->bd_flags.as_bitfield |=
3889 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3890 } else {
3891 /* when transmitting in a vf, start bd must hold the ethertype
3892 * for fw to enforce it
3893 */
3894 u16 vlan_tci = 0;
3895 #ifndef BNX2X_STOP_ON_ERROR
3896 if (IS_VF(bp)) {
3897 #endif
3898 /* Still need to consider inband vlan for enforced */
3899 if (__vlan_get_tag(skb, &vlan_tci)) {
3900 tx_start_bd->vlan_or_ethertype =
3901 cpu_to_le16(ntohs(eth->h_proto));
3902 } else {
3903 tx_start_bd->bd_flags.as_bitfield |=
3904 (X_ETH_INBAND_VLAN <<
3905 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3906 tx_start_bd->vlan_or_ethertype =
3907 cpu_to_le16(vlan_tci);
3908 }
3909 #ifndef BNX2X_STOP_ON_ERROR
3910 } else {
3911 /* used by FW for packet accounting */
3912 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3913 }
3914 #endif
3915 }
3916
3917 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3918
3919 /* turn on parsing and get a BD */
3920 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3921
3922 if (xmit_type & XMIT_CSUM)
3923 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3924
3925 if (!CHIP_IS_E1x(bp)) {
3926 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3927 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3928
3929 if (xmit_type & XMIT_CSUM_ENC) {
3930 u16 global_data = 0;
3931
3932 /* Set PBD in enc checksum offload case */
3933 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3934 &pbd_e2_parsing_data,
3935 xmit_type);
3936
3937 /* turn on 2nd parsing and get a BD */
3938 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3939
3940 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3941
3942 memset(pbd2, 0, sizeof(*pbd2));
3943
3944 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3945 (skb_inner_network_header(skb) -
3946 skb->data) >> 1;
3947
3948 if (xmit_type & XMIT_GSO_ENC)
3949 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3950 &global_data,
3951 xmit_type);
3952
3953 pbd2->global_data = cpu_to_le16(global_data);
3954
3955 /* add addition parse BD indication to start BD */
3956 SET_FLAG(tx_start_bd->general_data,
3957 ETH_TX_START_BD_PARSE_NBDS, 1);
3958 /* set encapsulation flag in start BD */
3959 SET_FLAG(tx_start_bd->general_data,
3960 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3961
3962 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3963
3964 nbd++;
3965 } else if (xmit_type & XMIT_CSUM) {
3966 /* Set PBD in checksum offload case w/o encapsulation */
3967 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3968 &pbd_e2_parsing_data,
3969 xmit_type);
3970 }
3971
3972 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3973 /* Add the macs to the parsing BD if this is a vf or if
3974 * Tx Switching is enabled.
3975 */
3976 if (IS_VF(bp)) {
3977 /* override GRE parameters in BD */
3978 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3979 &pbd_e2->data.mac_addr.src_mid,
3980 &pbd_e2->data.mac_addr.src_lo,
3981 eth->h_source);
3982
3983 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3984 &pbd_e2->data.mac_addr.dst_mid,
3985 &pbd_e2->data.mac_addr.dst_lo,
3986 eth->h_dest);
3987 } else {
3988 if (bp->flags & TX_SWITCHING)
3989 bnx2x_set_fw_mac_addr(
3990 &pbd_e2->data.mac_addr.dst_hi,
3991 &pbd_e2->data.mac_addr.dst_mid,
3992 &pbd_e2->data.mac_addr.dst_lo,
3993 eth->h_dest);
3994 #ifdef BNX2X_STOP_ON_ERROR
3995 /* Enforce security is always set in Stop on Error -
3996 * source mac should be present in the parsing BD
3997 */
3998 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3999 &pbd_e2->data.mac_addr.src_mid,
4000 &pbd_e2->data.mac_addr.src_lo,
4001 eth->h_source);
4002 #endif
4003 }
4004
4005 SET_FLAG(pbd_e2_parsing_data,
4006 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4007 } else {
4008 u16 global_data = 0;
4009 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4010 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4011 /* Set PBD in checksum offload case */
4012 if (xmit_type & XMIT_CSUM)
4013 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4014
4015 SET_FLAG(global_data,
4016 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4017 pbd_e1x->global_data |= cpu_to_le16(global_data);
4018 }
4019
4020 /* Setup the data pointer of the first BD of the packet */
4021 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4022 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4023 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4024 pkt_size = tx_start_bd->nbytes;
4025
4026 DP(NETIF_MSG_TX_QUEUED,
4027 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4028 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4029 le16_to_cpu(tx_start_bd->nbytes),
4030 tx_start_bd->bd_flags.as_bitfield,
4031 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4032
4033 if (xmit_type & XMIT_GSO) {
4034
4035 DP(NETIF_MSG_TX_QUEUED,
4036 "TSO packet len %d hlen %d total len %d tso size %d\n",
4037 skb->len, hlen, skb_headlen(skb),
4038 skb_shinfo(skb)->gso_size);
4039
4040 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4041
4042 if (unlikely(skb_headlen(skb) > hlen)) {
4043 nbd++;
4044 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4045 &tx_start_bd, hlen,
4046 bd_prod);
4047 }
4048 if (!CHIP_IS_E1x(bp))
4049 pbd_e2_parsing_data |=
4050 (skb_shinfo(skb)->gso_size <<
4051 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4052 ETH_TX_PARSE_BD_E2_LSO_MSS;
4053 else
4054 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4055 }
4056
4057 /* Set the PBD's parsing_data field if not zero
4058 * (for the chips newer than 57711).
4059 */
4060 if (pbd_e2_parsing_data)
4061 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4062
4063 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4064
4065 /* Handle fragmented skb */
4066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4067 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4068
4069 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4070 skb_frag_size(frag), DMA_TO_DEVICE);
4071 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4072 unsigned int pkts_compl = 0, bytes_compl = 0;
4073
4074 DP(NETIF_MSG_TX_QUEUED,
4075 "Unable to map page - dropping packet...\n");
4076
4077 /* we need unmap all buffers already mapped
4078 * for this SKB;
4079 * first_bd->nbd need to be properly updated
4080 * before call to bnx2x_free_tx_pkt
4081 */
4082 first_bd->nbd = cpu_to_le16(nbd);
4083 bnx2x_free_tx_pkt(bp, txdata,
4084 TX_BD(txdata->tx_pkt_prod),
4085 &pkts_compl, &bytes_compl);
4086 return NETDEV_TX_OK;
4087 }
4088
4089 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4090 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4091 if (total_pkt_bd == NULL)
4092 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4093
4094 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4095 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4096 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4097 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4098 nbd++;
4099
4100 DP(NETIF_MSG_TX_QUEUED,
4101 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4102 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4103 le16_to_cpu(tx_data_bd->nbytes));
4104 }
4105
4106 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4107
4108 /* update with actual num BDs */
4109 first_bd->nbd = cpu_to_le16(nbd);
4110
4111 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4112
4113 /* now send a tx doorbell, counting the next BD
4114 * if the packet contains or ends with it
4115 */
4116 if (TX_BD_POFF(bd_prod) < nbd)
4117 nbd++;
4118
4119 /* total_pkt_bytes should be set on the first data BD if
4120 * it's not an LSO packet and there is more than one
4121 * data BD. In this case pkt_size is limited by an MTU value.
4122 * However we prefer to set it for an LSO packet (while we don't
4123 * have to) in order to save some CPU cycles in a none-LSO
4124 * case, when we much more care about them.
4125 */
4126 if (total_pkt_bd != NULL)
4127 total_pkt_bd->total_pkt_bytes = pkt_size;
4128
4129 if (pbd_e1x)
4130 DP(NETIF_MSG_TX_QUEUED,
4131 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4132 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4133 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4134 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4135 le16_to_cpu(pbd_e1x->total_hlen_w));
4136 if (pbd_e2)
4137 DP(NETIF_MSG_TX_QUEUED,
4138 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4139 pbd_e2,
4140 pbd_e2->data.mac_addr.dst_hi,
4141 pbd_e2->data.mac_addr.dst_mid,
4142 pbd_e2->data.mac_addr.dst_lo,
4143 pbd_e2->data.mac_addr.src_hi,
4144 pbd_e2->data.mac_addr.src_mid,
4145 pbd_e2->data.mac_addr.src_lo,
4146 pbd_e2->parsing_data);
4147 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4148
4149 netdev_tx_sent_queue(txq, skb->len);
4150
4151 skb_tx_timestamp(skb);
4152
4153 txdata->tx_pkt_prod++;
4154 /*
4155 * Make sure that the BD data is updated before updating the producer
4156 * since FW might read the BD right after the producer is updated.
4157 * This is only applicable for weak-ordered memory model archs such
4158 * as IA-64. The following barrier is also mandatory since FW will
4159 * assumes packets must have BDs.
4160 */
4161 wmb();
4162
4163 txdata->tx_db.data.prod += nbd;
4164 /* make sure descriptor update is observed by HW */
4165 wmb();
4166
4167 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4168
4169 mmiowb();
4170
4171 txdata->tx_bd_prod += nbd;
4172
4173 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4174 netif_tx_stop_queue(txq);
4175
4176 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4177 * ordering of set_bit() in netif_tx_stop_queue() and read of
4178 * fp->bd_tx_cons */
4179 smp_mb();
4180
4181 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4182 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4183 netif_tx_wake_queue(txq);
4184 }
4185 txdata->tx_pkt++;
4186
4187 return NETDEV_TX_OK;
4188 }
4189
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4190 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4191 {
4192 int mfw_vn = BP_FW_MB_IDX(bp);
4193 u32 tmp;
4194
4195 /* If the shmem shouldn't affect configuration, reflect */
4196 if (!IS_MF_BD(bp)) {
4197 int i;
4198
4199 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4200 c2s_map[i] = i;
4201 *c2s_default = 0;
4202
4203 return;
4204 }
4205
4206 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4207 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4208 c2s_map[0] = tmp & 0xff;
4209 c2s_map[1] = (tmp >> 8) & 0xff;
4210 c2s_map[2] = (tmp >> 16) & 0xff;
4211 c2s_map[3] = (tmp >> 24) & 0xff;
4212
4213 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4214 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4215 c2s_map[4] = tmp & 0xff;
4216 c2s_map[5] = (tmp >> 8) & 0xff;
4217 c2s_map[6] = (tmp >> 16) & 0xff;
4218 c2s_map[7] = (tmp >> 24) & 0xff;
4219
4220 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4221 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4222 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4223 }
4224
4225 /**
4226 * bnx2x_setup_tc - routine to configure net_device for multi tc
4227 *
4228 * @netdev: net device to configure
4229 * @tc: number of traffic classes to enable
4230 *
4231 * callback connected to the ndo_setup_tc function pointer
4232 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4233 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4234 {
4235 struct bnx2x *bp = netdev_priv(dev);
4236 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4237 int cos, prio, count, offset;
4238
4239 /* setup tc must be called under rtnl lock */
4240 ASSERT_RTNL();
4241
4242 /* no traffic classes requested. Aborting */
4243 if (!num_tc) {
4244 netdev_reset_tc(dev);
4245 return 0;
4246 }
4247
4248 /* requested to support too many traffic classes */
4249 if (num_tc > bp->max_cos) {
4250 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4251 num_tc, bp->max_cos);
4252 return -EINVAL;
4253 }
4254
4255 /* declare amount of supported traffic classes */
4256 if (netdev_set_num_tc(dev, num_tc)) {
4257 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4258 return -EINVAL;
4259 }
4260
4261 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4262
4263 /* configure priority to traffic class mapping */
4264 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4265 int outer_prio = c2s_map[prio];
4266
4267 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4268 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4269 "mapping priority %d to tc %d\n",
4270 outer_prio, bp->prio_to_cos[outer_prio]);
4271 }
4272
4273 /* Use this configuration to differentiate tc0 from other COSes
4274 This can be used for ets or pfc, and save the effort of setting
4275 up a multio class queue disc or negotiating DCBX with a switch
4276 netdev_set_prio_tc_map(dev, 0, 0);
4277 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4278 for (prio = 1; prio < 16; prio++) {
4279 netdev_set_prio_tc_map(dev, prio, 1);
4280 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4281 } */
4282
4283 /* configure traffic class to transmission queue mapping */
4284 for (cos = 0; cos < bp->max_cos; cos++) {
4285 count = BNX2X_NUM_ETH_QUEUES(bp);
4286 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4287 netdev_set_tc_queue(dev, cos, count, offset);
4288 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4289 "mapping tc %d to offset %d count %d\n",
4290 cos, offset, count);
4291 }
4292
4293 return 0;
4294 }
4295
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4296 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4297 void *type_data)
4298 {
4299 struct tc_mqprio_qopt *mqprio = type_data;
4300
4301 if (type != TC_SETUP_QDISC_MQPRIO)
4302 return -EOPNOTSUPP;
4303
4304 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4305
4306 return bnx2x_setup_tc(dev, mqprio->num_tc);
4307 }
4308
4309 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4310 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4311 {
4312 struct sockaddr *addr = p;
4313 struct bnx2x *bp = netdev_priv(dev);
4314 int rc = 0;
4315
4316 if (!is_valid_ether_addr(addr->sa_data)) {
4317 BNX2X_ERR("Requested MAC address is not valid\n");
4318 return -EINVAL;
4319 }
4320
4321 if (IS_MF_STORAGE_ONLY(bp)) {
4322 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4323 return -EINVAL;
4324 }
4325
4326 if (netif_running(dev)) {
4327 rc = bnx2x_set_eth_mac(bp, false);
4328 if (rc)
4329 return rc;
4330 }
4331
4332 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4333
4334 if (netif_running(dev))
4335 rc = bnx2x_set_eth_mac(bp, true);
4336
4337 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4338 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4339
4340 return rc;
4341 }
4342
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4343 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4344 {
4345 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4346 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4347 u8 cos;
4348
4349 /* Common */
4350
4351 if (IS_FCOE_IDX(fp_index)) {
4352 memset(sb, 0, sizeof(union host_hc_status_block));
4353 fp->status_blk_mapping = 0;
4354 } else {
4355 /* status blocks */
4356 if (!CHIP_IS_E1x(bp))
4357 BNX2X_PCI_FREE(sb->e2_sb,
4358 bnx2x_fp(bp, fp_index,
4359 status_blk_mapping),
4360 sizeof(struct host_hc_status_block_e2));
4361 else
4362 BNX2X_PCI_FREE(sb->e1x_sb,
4363 bnx2x_fp(bp, fp_index,
4364 status_blk_mapping),
4365 sizeof(struct host_hc_status_block_e1x));
4366 }
4367
4368 /* Rx */
4369 if (!skip_rx_queue(bp, fp_index)) {
4370 bnx2x_free_rx_bds(fp);
4371
4372 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4373 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4374 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4375 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4376 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4377
4378 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4379 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4380 sizeof(struct eth_fast_path_rx_cqe) *
4381 NUM_RCQ_BD);
4382
4383 /* SGE ring */
4384 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4385 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4386 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4387 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4388 }
4389
4390 /* Tx */
4391 if (!skip_tx_queue(bp, fp_index)) {
4392 /* fastpath tx rings: tx_buf tx_desc */
4393 for_each_cos_in_tx_queue(fp, cos) {
4394 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4395
4396 DP(NETIF_MSG_IFDOWN,
4397 "freeing tx memory of fp %d cos %d cid %d\n",
4398 fp_index, cos, txdata->cid);
4399
4400 BNX2X_FREE(txdata->tx_buf_ring);
4401 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4402 txdata->tx_desc_mapping,
4403 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4404 }
4405 }
4406 /* end of fastpath */
4407 }
4408
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4409 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4410 {
4411 int i;
4412 for_each_cnic_queue(bp, i)
4413 bnx2x_free_fp_mem_at(bp, i);
4414 }
4415
bnx2x_free_fp_mem(struct bnx2x * bp)4416 void bnx2x_free_fp_mem(struct bnx2x *bp)
4417 {
4418 int i;
4419 for_each_eth_queue(bp, i)
4420 bnx2x_free_fp_mem_at(bp, i);
4421 }
4422
set_sb_shortcuts(struct bnx2x * bp,int index)4423 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4424 {
4425 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4426 if (!CHIP_IS_E1x(bp)) {
4427 bnx2x_fp(bp, index, sb_index_values) =
4428 (__le16 *)status_blk.e2_sb->sb.index_values;
4429 bnx2x_fp(bp, index, sb_running_index) =
4430 (__le16 *)status_blk.e2_sb->sb.running_index;
4431 } else {
4432 bnx2x_fp(bp, index, sb_index_values) =
4433 (__le16 *)status_blk.e1x_sb->sb.index_values;
4434 bnx2x_fp(bp, index, sb_running_index) =
4435 (__le16 *)status_blk.e1x_sb->sb.running_index;
4436 }
4437 }
4438
4439 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4440 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4441 int rx_ring_size)
4442 {
4443 struct bnx2x *bp = fp->bp;
4444 u16 ring_prod, cqe_ring_prod;
4445 int i, failure_cnt = 0;
4446
4447 fp->rx_comp_cons = 0;
4448 cqe_ring_prod = ring_prod = 0;
4449
4450 /* This routine is called only during fo init so
4451 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4452 */
4453 for (i = 0; i < rx_ring_size; i++) {
4454 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4455 failure_cnt++;
4456 continue;
4457 }
4458 ring_prod = NEXT_RX_IDX(ring_prod);
4459 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4460 WARN_ON(ring_prod <= (i - failure_cnt));
4461 }
4462
4463 if (failure_cnt)
4464 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4465 i - failure_cnt, fp->index);
4466
4467 fp->rx_bd_prod = ring_prod;
4468 /* Limit the CQE producer by the CQE ring size */
4469 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4470 cqe_ring_prod);
4471
4472 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4473
4474 return i - failure_cnt;
4475 }
4476
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4477 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4478 {
4479 int i;
4480
4481 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4482 struct eth_rx_cqe_next_page *nextpg;
4483
4484 nextpg = (struct eth_rx_cqe_next_page *)
4485 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4486 nextpg->addr_hi =
4487 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4488 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4489 nextpg->addr_lo =
4490 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4491 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4492 }
4493 }
4494
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4495 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4496 {
4497 union host_hc_status_block *sb;
4498 struct bnx2x_fastpath *fp = &bp->fp[index];
4499 int ring_size = 0;
4500 u8 cos;
4501 int rx_ring_size = 0;
4502
4503 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4504 rx_ring_size = MIN_RX_SIZE_NONTPA;
4505 bp->rx_ring_size = rx_ring_size;
4506 } else if (!bp->rx_ring_size) {
4507 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4508
4509 if (CHIP_IS_E3(bp)) {
4510 u32 cfg = SHMEM_RD(bp,
4511 dev_info.port_hw_config[BP_PORT(bp)].
4512 default_cfg);
4513
4514 /* Decrease ring size for 1G functions */
4515 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4516 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4517 rx_ring_size /= 10;
4518 }
4519
4520 /* allocate at least number of buffers required by FW */
4521 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4522 MIN_RX_SIZE_TPA, rx_ring_size);
4523
4524 bp->rx_ring_size = rx_ring_size;
4525 } else /* if rx_ring_size specified - use it */
4526 rx_ring_size = bp->rx_ring_size;
4527
4528 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4529
4530 /* Common */
4531 sb = &bnx2x_fp(bp, index, status_blk);
4532
4533 if (!IS_FCOE_IDX(index)) {
4534 /* status blocks */
4535 if (!CHIP_IS_E1x(bp)) {
4536 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4537 sizeof(struct host_hc_status_block_e2));
4538 if (!sb->e2_sb)
4539 goto alloc_mem_err;
4540 } else {
4541 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4542 sizeof(struct host_hc_status_block_e1x));
4543 if (!sb->e1x_sb)
4544 goto alloc_mem_err;
4545 }
4546 }
4547
4548 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4549 * set shortcuts for it.
4550 */
4551 if (!IS_FCOE_IDX(index))
4552 set_sb_shortcuts(bp, index);
4553
4554 /* Tx */
4555 if (!skip_tx_queue(bp, index)) {
4556 /* fastpath tx rings: tx_buf tx_desc */
4557 for_each_cos_in_tx_queue(fp, cos) {
4558 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4559
4560 DP(NETIF_MSG_IFUP,
4561 "allocating tx memory of fp %d cos %d\n",
4562 index, cos);
4563
4564 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4565 sizeof(struct sw_tx_bd),
4566 GFP_KERNEL);
4567 if (!txdata->tx_buf_ring)
4568 goto alloc_mem_err;
4569 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4570 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4571 if (!txdata->tx_desc_ring)
4572 goto alloc_mem_err;
4573 }
4574 }
4575
4576 /* Rx */
4577 if (!skip_rx_queue(bp, index)) {
4578 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4579 bnx2x_fp(bp, index, rx_buf_ring) =
4580 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4581 if (!bnx2x_fp(bp, index, rx_buf_ring))
4582 goto alloc_mem_err;
4583 bnx2x_fp(bp, index, rx_desc_ring) =
4584 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4585 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4586 if (!bnx2x_fp(bp, index, rx_desc_ring))
4587 goto alloc_mem_err;
4588
4589 /* Seed all CQEs by 1s */
4590 bnx2x_fp(bp, index, rx_comp_ring) =
4591 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4592 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4593 if (!bnx2x_fp(bp, index, rx_comp_ring))
4594 goto alloc_mem_err;
4595
4596 /* SGE ring */
4597 bnx2x_fp(bp, index, rx_page_ring) =
4598 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4599 GFP_KERNEL);
4600 if (!bnx2x_fp(bp, index, rx_page_ring))
4601 goto alloc_mem_err;
4602 bnx2x_fp(bp, index, rx_sge_ring) =
4603 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4604 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4605 if (!bnx2x_fp(bp, index, rx_sge_ring))
4606 goto alloc_mem_err;
4607 /* RX BD ring */
4608 bnx2x_set_next_page_rx_bd(fp);
4609
4610 /* CQ ring */
4611 bnx2x_set_next_page_rx_cq(fp);
4612
4613 /* BDs */
4614 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4615 if (ring_size < rx_ring_size)
4616 goto alloc_mem_err;
4617 }
4618
4619 return 0;
4620
4621 /* handles low memory cases */
4622 alloc_mem_err:
4623 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4624 index, ring_size);
4625 /* FW will drop all packets if queue is not big enough,
4626 * In these cases we disable the queue
4627 * Min size is different for OOO, TPA and non-TPA queues
4628 */
4629 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4630 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4631 /* release memory allocated for this queue */
4632 bnx2x_free_fp_mem_at(bp, index);
4633 return -ENOMEM;
4634 }
4635 return 0;
4636 }
4637
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4638 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4639 {
4640 if (!NO_FCOE(bp))
4641 /* FCoE */
4642 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4643 /* we will fail load process instead of mark
4644 * NO_FCOE_FLAG
4645 */
4646 return -ENOMEM;
4647
4648 return 0;
4649 }
4650
bnx2x_alloc_fp_mem(struct bnx2x * bp)4651 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4652 {
4653 int i;
4654
4655 /* 1. Allocate FP for leading - fatal if error
4656 * 2. Allocate RSS - fix number of queues if error
4657 */
4658
4659 /* leading */
4660 if (bnx2x_alloc_fp_mem_at(bp, 0))
4661 return -ENOMEM;
4662
4663 /* RSS */
4664 for_each_nondefault_eth_queue(bp, i)
4665 if (bnx2x_alloc_fp_mem_at(bp, i))
4666 break;
4667
4668 /* handle memory failures */
4669 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4670 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4671
4672 WARN_ON(delta < 0);
4673 bnx2x_shrink_eth_fp(bp, delta);
4674 if (CNIC_SUPPORT(bp))
4675 /* move non eth FPs next to last eth FP
4676 * must be done in that order
4677 * FCOE_IDX < FWD_IDX < OOO_IDX
4678 */
4679
4680 /* move FCoE fp even NO_FCOE_FLAG is on */
4681 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4682 bp->num_ethernet_queues -= delta;
4683 bp->num_queues = bp->num_ethernet_queues +
4684 bp->num_cnic_queues;
4685 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4686 bp->num_queues + delta, bp->num_queues);
4687 }
4688
4689 return 0;
4690 }
4691
bnx2x_free_mem_bp(struct bnx2x * bp)4692 void bnx2x_free_mem_bp(struct bnx2x *bp)
4693 {
4694 int i;
4695
4696 for (i = 0; i < bp->fp_array_size; i++)
4697 kfree(bp->fp[i].tpa_info);
4698 kfree(bp->fp);
4699 kfree(bp->sp_objs);
4700 kfree(bp->fp_stats);
4701 kfree(bp->bnx2x_txq);
4702 kfree(bp->msix_table);
4703 kfree(bp->ilt);
4704 }
4705
bnx2x_alloc_mem_bp(struct bnx2x * bp)4706 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4707 {
4708 struct bnx2x_fastpath *fp;
4709 struct msix_entry *tbl;
4710 struct bnx2x_ilt *ilt;
4711 int msix_table_size = 0;
4712 int fp_array_size, txq_array_size;
4713 int i;
4714
4715 /*
4716 * The biggest MSI-X table we might need is as a maximum number of fast
4717 * path IGU SBs plus default SB (for PF only).
4718 */
4719 msix_table_size = bp->igu_sb_cnt;
4720 if (IS_PF(bp))
4721 msix_table_size++;
4722 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4723
4724 /* fp array: RSS plus CNIC related L2 queues */
4725 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4726 bp->fp_array_size = fp_array_size;
4727 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4728
4729 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4730 if (!fp)
4731 goto alloc_err;
4732 for (i = 0; i < bp->fp_array_size; i++) {
4733 fp[i].tpa_info =
4734 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4735 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4736 if (!(fp[i].tpa_info))
4737 goto alloc_err;
4738 }
4739
4740 bp->fp = fp;
4741
4742 /* allocate sp objs */
4743 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4744 GFP_KERNEL);
4745 if (!bp->sp_objs)
4746 goto alloc_err;
4747
4748 /* allocate fp_stats */
4749 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4750 GFP_KERNEL);
4751 if (!bp->fp_stats)
4752 goto alloc_err;
4753
4754 /* Allocate memory for the transmission queues array */
4755 txq_array_size =
4756 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4757 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4758
4759 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4760 GFP_KERNEL);
4761 if (!bp->bnx2x_txq)
4762 goto alloc_err;
4763
4764 /* msix table */
4765 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4766 if (!tbl)
4767 goto alloc_err;
4768 bp->msix_table = tbl;
4769
4770 /* ilt */
4771 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4772 if (!ilt)
4773 goto alloc_err;
4774 bp->ilt = ilt;
4775
4776 return 0;
4777 alloc_err:
4778 bnx2x_free_mem_bp(bp);
4779 return -ENOMEM;
4780 }
4781
bnx2x_reload_if_running(struct net_device * dev)4782 int bnx2x_reload_if_running(struct net_device *dev)
4783 {
4784 struct bnx2x *bp = netdev_priv(dev);
4785
4786 if (unlikely(!netif_running(dev)))
4787 return 0;
4788
4789 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4790 return bnx2x_nic_load(bp, LOAD_NORMAL);
4791 }
4792
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4793 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4794 {
4795 u32 sel_phy_idx = 0;
4796 if (bp->link_params.num_phys <= 1)
4797 return INT_PHY;
4798
4799 if (bp->link_vars.link_up) {
4800 sel_phy_idx = EXT_PHY1;
4801 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4802 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4803 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4804 sel_phy_idx = EXT_PHY2;
4805 } else {
4806
4807 switch (bnx2x_phy_selection(&bp->link_params)) {
4808 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4809 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4810 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4811 sel_phy_idx = EXT_PHY1;
4812 break;
4813 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4814 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4815 sel_phy_idx = EXT_PHY2;
4816 break;
4817 }
4818 }
4819
4820 return sel_phy_idx;
4821 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4822 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4823 {
4824 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4825 /*
4826 * The selected activated PHY is always after swapping (in case PHY
4827 * swapping is enabled). So when swapping is enabled, we need to reverse
4828 * the configuration
4829 */
4830
4831 if (bp->link_params.multi_phy_config &
4832 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4833 if (sel_phy_idx == EXT_PHY1)
4834 sel_phy_idx = EXT_PHY2;
4835 else if (sel_phy_idx == EXT_PHY2)
4836 sel_phy_idx = EXT_PHY1;
4837 }
4838 return LINK_CONFIG_IDX(sel_phy_idx);
4839 }
4840
4841 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4842 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4843 {
4844 struct bnx2x *bp = netdev_priv(dev);
4845 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4846
4847 switch (type) {
4848 case NETDEV_FCOE_WWNN:
4849 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4850 cp->fcoe_wwn_node_name_lo);
4851 break;
4852 case NETDEV_FCOE_WWPN:
4853 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4854 cp->fcoe_wwn_port_name_lo);
4855 break;
4856 default:
4857 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4858 return -EINVAL;
4859 }
4860
4861 return 0;
4862 }
4863 #endif
4864
4865 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4866 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4867 {
4868 struct bnx2x *bp = netdev_priv(dev);
4869
4870 if (pci_num_vf(bp->pdev)) {
4871 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4872 return -EPERM;
4873 }
4874
4875 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4876 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4877 return -EAGAIN;
4878 }
4879
4880 /* This does not race with packet allocation
4881 * because the actual alloc size is
4882 * only updated as part of load
4883 */
4884 dev->mtu = new_mtu;
4885
4886 if (!bnx2x_mtu_allows_gro(new_mtu))
4887 dev->features &= ~NETIF_F_GRO_HW;
4888
4889 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4890 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4891
4892 return bnx2x_reload_if_running(dev);
4893 }
4894
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4895 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4896 netdev_features_t features)
4897 {
4898 struct bnx2x *bp = netdev_priv(dev);
4899
4900 if (pci_num_vf(bp->pdev)) {
4901 netdev_features_t changed = dev->features ^ features;
4902
4903 /* Revert the requested changes in features if they
4904 * would require internal reload of PF in bnx2x_set_features().
4905 */
4906 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4907 features &= ~NETIF_F_RXCSUM;
4908 features |= dev->features & NETIF_F_RXCSUM;
4909 }
4910
4911 if (changed & NETIF_F_LOOPBACK) {
4912 features &= ~NETIF_F_LOOPBACK;
4913 features |= dev->features & NETIF_F_LOOPBACK;
4914 }
4915 }
4916
4917 /* TPA requires Rx CSUM offloading */
4918 if (!(features & NETIF_F_RXCSUM))
4919 features &= ~NETIF_F_LRO;
4920
4921 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4922 features &= ~NETIF_F_GRO_HW;
4923 if (features & NETIF_F_GRO_HW)
4924 features &= ~NETIF_F_LRO;
4925
4926 return features;
4927 }
4928
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4929 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4930 {
4931 struct bnx2x *bp = netdev_priv(dev);
4932 netdev_features_t changes = features ^ dev->features;
4933 bool bnx2x_reload = false;
4934 int rc;
4935
4936 /* VFs or non SRIOV PFs should be able to change loopback feature */
4937 if (!pci_num_vf(bp->pdev)) {
4938 if (features & NETIF_F_LOOPBACK) {
4939 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4940 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4941 bnx2x_reload = true;
4942 }
4943 } else {
4944 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4945 bp->link_params.loopback_mode = LOOPBACK_NONE;
4946 bnx2x_reload = true;
4947 }
4948 }
4949 }
4950
4951 /* Don't care about GRO changes */
4952 changes &= ~NETIF_F_GRO;
4953
4954 if (changes)
4955 bnx2x_reload = true;
4956
4957 if (bnx2x_reload) {
4958 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4959 dev->features = features;
4960 rc = bnx2x_reload_if_running(dev);
4961 return rc ? rc : 1;
4962 }
4963 /* else: bnx2x_nic_load() will be called at end of recovery */
4964 }
4965
4966 return 0;
4967 }
4968
bnx2x_tx_timeout(struct net_device * dev)4969 void bnx2x_tx_timeout(struct net_device *dev)
4970 {
4971 struct bnx2x *bp = netdev_priv(dev);
4972
4973 /* We want the information of the dump logged,
4974 * but calling bnx2x_panic() would kill all chances of recovery.
4975 */
4976 if (!bp->panic)
4977 #ifndef BNX2X_STOP_ON_ERROR
4978 bnx2x_panic_dump(bp, false);
4979 #else
4980 bnx2x_panic();
4981 #endif
4982
4983 /* This allows the netif to be shutdown gracefully before resetting */
4984 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4985 }
4986
bnx2x_suspend(struct pci_dev * pdev,pm_message_t state)4987 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4988 {
4989 struct net_device *dev = pci_get_drvdata(pdev);
4990 struct bnx2x *bp;
4991
4992 if (!dev) {
4993 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4994 return -ENODEV;
4995 }
4996 bp = netdev_priv(dev);
4997
4998 rtnl_lock();
4999
5000 pci_save_state(pdev);
5001
5002 if (!netif_running(dev)) {
5003 rtnl_unlock();
5004 return 0;
5005 }
5006
5007 netif_device_detach(dev);
5008
5009 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5010
5011 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5012
5013 rtnl_unlock();
5014
5015 return 0;
5016 }
5017
bnx2x_resume(struct pci_dev * pdev)5018 int bnx2x_resume(struct pci_dev *pdev)
5019 {
5020 struct net_device *dev = pci_get_drvdata(pdev);
5021 struct bnx2x *bp;
5022 int rc;
5023
5024 if (!dev) {
5025 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5026 return -ENODEV;
5027 }
5028 bp = netdev_priv(dev);
5029
5030 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5031 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5032 return -EAGAIN;
5033 }
5034
5035 rtnl_lock();
5036
5037 pci_restore_state(pdev);
5038
5039 if (!netif_running(dev)) {
5040 rtnl_unlock();
5041 return 0;
5042 }
5043
5044 bnx2x_set_power_state(bp, PCI_D0);
5045 netif_device_attach(dev);
5046
5047 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5048
5049 rtnl_unlock();
5050
5051 return rc;
5052 }
5053
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5054 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5055 u32 cid)
5056 {
5057 if (!cxt) {
5058 BNX2X_ERR("bad context pointer %p\n", cxt);
5059 return;
5060 }
5061
5062 /* ustorm cxt validation */
5063 cxt->ustorm_ag_context.cdu_usage =
5064 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5065 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5066 /* xcontext validation */
5067 cxt->xstorm_ag_context.cdu_reserved =
5068 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5069 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5070 }
5071
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5072 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5073 u8 fw_sb_id, u8 sb_index,
5074 u8 ticks)
5075 {
5076 u32 addr = BAR_CSTRORM_INTMEM +
5077 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5078 REG_WR8(bp, addr, ticks);
5079 DP(NETIF_MSG_IFUP,
5080 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5081 port, fw_sb_id, sb_index, ticks);
5082 }
5083
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5084 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5085 u16 fw_sb_id, u8 sb_index,
5086 u8 disable)
5087 {
5088 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5089 u32 addr = BAR_CSTRORM_INTMEM +
5090 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5091 u8 flags = REG_RD8(bp, addr);
5092 /* clear and set */
5093 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5094 flags |= enable_flag;
5095 REG_WR8(bp, addr, flags);
5096 DP(NETIF_MSG_IFUP,
5097 "port %x fw_sb_id %d sb_index %d disable %d\n",
5098 port, fw_sb_id, sb_index, disable);
5099 }
5100
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5101 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5102 u8 sb_index, u8 disable, u16 usec)
5103 {
5104 int port = BP_PORT(bp);
5105 u8 ticks = usec / BNX2X_BTR;
5106
5107 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5108
5109 disable = disable ? 1 : (usec ? 0 : 1);
5110 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5111 }
5112
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5113 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5114 u32 verbose)
5115 {
5116 smp_mb__before_atomic();
5117 set_bit(flag, &bp->sp_rtnl_state);
5118 smp_mb__after_atomic();
5119 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5120 flag);
5121 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5122 }
5123