1 /*
2  * isp.c
3  *
4  * TI OMAP3 ISP - Core
5  *
6  * Copyright (C) 2006-2010 Nokia Corporation
7  * Copyright (C) 2007-2009 Texas Instruments, Inc.
8  *
9  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *	     Sakari Ailus <sakari.ailus@iki.fi>
11  *
12  * Contributors:
13  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
14  *	Sakari Ailus <sakari.ailus@iki.fi>
15  *	David Cohen <dacohen@gmail.com>
16  *	Stanimir Varbanov <svarbanov@mm-sol.com>
17  *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
18  *	Tuukka Toivonen <tuukkat76@gmail.com>
19  *	Sergio Aguirre <saaguirre@ti.com>
20  *	Antti Koskipaa <akoskipa@gmail.com>
21  *	Ivan T. Ivanov <iivanov@mm-sol.com>
22  *	RaniSuneela <r-m@ti.com>
23  *	Atanas Filipov <afilipov@mm-sol.com>
24  *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
25  *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
26  *	Nayden Kanchev <nkanchev@mm-sol.com>
27  *	Phil Carmody <ext-phil.2.carmody@nokia.com>
28  *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
29  *	Dominic Curran <dcurran@ti.com>
30  *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
31  *	Pallavi Kulkarni <p-kulkarni@ti.com>
32  *	Vaibhav Hiremath <hvaibhav@ti.com>
33  *	Mohit Jalori <mjalori@ti.com>
34  *	Sameer Venkatraman <sameerv@ti.com>
35  *	Senthilvadivu Guruswamy <svadivu@ti.com>
36  *	Thara Gopinath <thara@ti.com>
37  *	Toni Leinonen <toni.leinonen@nokia.com>
38  *	Troy Laramy <t-laramy@ti.com>
39  *
40  * This program is free software; you can redistribute it and/or modify
41  * it under the terms of the GNU General Public License version 2 as
42  * published by the Free Software Foundation.
43  */
44 
45 #include <asm/cacheflush.h>
46 
47 #include <linux/clk.h>
48 #include <linux/clkdev.h>
49 #include <linux/delay.h>
50 #include <linux/device.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/i2c.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/module.h>
56 #include <linux/omap-iommu.h>
57 #include <linux/platform_device.h>
58 #include <linux/property.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/slab.h>
61 #include <linux/sched.h>
62 #include <linux/vmalloc.h>
63 
64 #ifdef CONFIG_ARM_DMA_USE_IOMMU
65 #include <asm/dma-iommu.h>
66 #endif
67 
68 #include <media/v4l2-common.h>
69 #include <media/v4l2-fwnode.h>
70 #include <media/v4l2-device.h>
71 #include <media/v4l2-mc.h>
72 
73 #include "isp.h"
74 #include "ispreg.h"
75 #include "ispccdc.h"
76 #include "isppreview.h"
77 #include "ispresizer.h"
78 #include "ispcsi2.h"
79 #include "ispccp2.h"
80 #include "isph3a.h"
81 #include "isphist.h"
82 
83 static unsigned int autoidle;
84 module_param(autoidle, int, 0444);
85 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
86 
87 static void isp_save_ctx(struct isp_device *isp);
88 
89 static void isp_restore_ctx(struct isp_device *isp);
90 
91 static const struct isp_res_mapping isp_res_maps[] = {
92 	{
93 		.isp_rev = ISP_REVISION_2_0,
94 		.offset = {
95 			/* first MMIO area */
96 			0x0000, /* base, len 0x0070 */
97 			0x0400, /* ccp2, len 0x01f0 */
98 			0x0600, /* ccdc, len 0x00a8 */
99 			0x0a00, /* hist, len 0x0048 */
100 			0x0c00, /* h3a, len 0x0060 */
101 			0x0e00, /* preview, len 0x00a0 */
102 			0x1000, /* resizer, len 0x00ac */
103 			0x1200, /* sbl, len 0x00fc */
104 			/* second MMIO area */
105 			0x0000, /* csi2a, len 0x0170 */
106 			0x0170, /* csiphy2, len 0x000c */
107 		},
108 		.phy_type = ISP_PHY_TYPE_3430,
109 	},
110 	{
111 		.isp_rev = ISP_REVISION_15_0,
112 		.offset = {
113 			/* first MMIO area */
114 			0x0000, /* base, len 0x0070 */
115 			0x0400, /* ccp2, len 0x01f0 */
116 			0x0600, /* ccdc, len 0x00a8 */
117 			0x0a00, /* hist, len 0x0048 */
118 			0x0c00, /* h3a, len 0x0060 */
119 			0x0e00, /* preview, len 0x00a0 */
120 			0x1000, /* resizer, len 0x00ac */
121 			0x1200, /* sbl, len 0x00fc */
122 			/* second MMIO area */
123 			0x0000, /* csi2a, len 0x0170 (1st area) */
124 			0x0170, /* csiphy2, len 0x000c */
125 			0x01c0, /* csi2a, len 0x0040 (2nd area) */
126 			0x0400, /* csi2c, len 0x0170 (1st area) */
127 			0x0570, /* csiphy1, len 0x000c */
128 			0x05c0, /* csi2c, len 0x0040 (2nd area) */
129 		},
130 		.phy_type = ISP_PHY_TYPE_3630,
131 	},
132 };
133 
134 /* Structure for saving/restoring ISP module registers */
135 static struct isp_reg isp_reg_list[] = {
136 	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
137 	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
138 	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
139 	{0, ISP_TOK_TERM, 0}
140 };
141 
142 /*
143  * omap3isp_flush - Post pending L3 bus writes by doing a register readback
144  * @isp: OMAP3 ISP device
145  *
146  * In order to force posting of pending writes, we need to write and
147  * readback the same register, in this case the revision register.
148  *
149  * See this link for reference:
150  *   http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
151  */
omap3isp_flush(struct isp_device * isp)152 void omap3isp_flush(struct isp_device *isp)
153 {
154 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
155 	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
156 }
157 
158 /* -----------------------------------------------------------------------------
159  * XCLK
160  */
161 
162 #define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
163 
isp_xclk_update(struct isp_xclk * xclk,u32 divider)164 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
165 {
166 	switch (xclk->id) {
167 	case ISP_XCLK_A:
168 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
169 				ISPTCTRL_CTRL_DIVA_MASK,
170 				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
171 		break;
172 	case ISP_XCLK_B:
173 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
174 				ISPTCTRL_CTRL_DIVB_MASK,
175 				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
176 		break;
177 	}
178 }
179 
isp_xclk_prepare(struct clk_hw * hw)180 static int isp_xclk_prepare(struct clk_hw *hw)
181 {
182 	struct isp_xclk *xclk = to_isp_xclk(hw);
183 
184 	omap3isp_get(xclk->isp);
185 
186 	return 0;
187 }
188 
isp_xclk_unprepare(struct clk_hw * hw)189 static void isp_xclk_unprepare(struct clk_hw *hw)
190 {
191 	struct isp_xclk *xclk = to_isp_xclk(hw);
192 
193 	omap3isp_put(xclk->isp);
194 }
195 
isp_xclk_enable(struct clk_hw * hw)196 static int isp_xclk_enable(struct clk_hw *hw)
197 {
198 	struct isp_xclk *xclk = to_isp_xclk(hw);
199 	unsigned long flags;
200 
201 	spin_lock_irqsave(&xclk->lock, flags);
202 	isp_xclk_update(xclk, xclk->divider);
203 	xclk->enabled = true;
204 	spin_unlock_irqrestore(&xclk->lock, flags);
205 
206 	return 0;
207 }
208 
isp_xclk_disable(struct clk_hw * hw)209 static void isp_xclk_disable(struct clk_hw *hw)
210 {
211 	struct isp_xclk *xclk = to_isp_xclk(hw);
212 	unsigned long flags;
213 
214 	spin_lock_irqsave(&xclk->lock, flags);
215 	isp_xclk_update(xclk, 0);
216 	xclk->enabled = false;
217 	spin_unlock_irqrestore(&xclk->lock, flags);
218 }
219 
isp_xclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)220 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
221 					  unsigned long parent_rate)
222 {
223 	struct isp_xclk *xclk = to_isp_xclk(hw);
224 
225 	return parent_rate / xclk->divider;
226 }
227 
isp_xclk_calc_divider(unsigned long * rate,unsigned long parent_rate)228 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
229 {
230 	u32 divider;
231 
232 	if (*rate >= parent_rate) {
233 		*rate = parent_rate;
234 		return ISPTCTRL_CTRL_DIV_BYPASS;
235 	}
236 
237 	if (*rate == 0)
238 		*rate = 1;
239 
240 	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
241 	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
242 		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
243 
244 	*rate = parent_rate / divider;
245 	return divider;
246 }
247 
isp_xclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)248 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
249 				unsigned long *parent_rate)
250 {
251 	isp_xclk_calc_divider(&rate, *parent_rate);
252 	return rate;
253 }
254 
isp_xclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)255 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
256 			     unsigned long parent_rate)
257 {
258 	struct isp_xclk *xclk = to_isp_xclk(hw);
259 	unsigned long flags;
260 	u32 divider;
261 
262 	divider = isp_xclk_calc_divider(&rate, parent_rate);
263 
264 	spin_lock_irqsave(&xclk->lock, flags);
265 
266 	xclk->divider = divider;
267 	if (xclk->enabled)
268 		isp_xclk_update(xclk, divider);
269 
270 	spin_unlock_irqrestore(&xclk->lock, flags);
271 
272 	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
273 		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
274 	return 0;
275 }
276 
277 static const struct clk_ops isp_xclk_ops = {
278 	.prepare = isp_xclk_prepare,
279 	.unprepare = isp_xclk_unprepare,
280 	.enable = isp_xclk_enable,
281 	.disable = isp_xclk_disable,
282 	.recalc_rate = isp_xclk_recalc_rate,
283 	.round_rate = isp_xclk_round_rate,
284 	.set_rate = isp_xclk_set_rate,
285 };
286 
287 static const char *isp_xclk_parent_name = "cam_mclk";
288 
isp_xclk_src_get(struct of_phandle_args * clkspec,void * data)289 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
290 {
291 	unsigned int idx = clkspec->args[0];
292 	struct isp_device *isp = data;
293 
294 	if (idx >= ARRAY_SIZE(isp->xclks))
295 		return ERR_PTR(-ENOENT);
296 
297 	return isp->xclks[idx].clk;
298 }
299 
isp_xclk_init(struct isp_device * isp)300 static int isp_xclk_init(struct isp_device *isp)
301 {
302 	struct device_node *np = isp->dev->of_node;
303 	struct clk_init_data init = {};
304 	unsigned int i;
305 
306 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
307 		isp->xclks[i].clk = ERR_PTR(-EINVAL);
308 
309 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
310 		struct isp_xclk *xclk = &isp->xclks[i];
311 
312 		xclk->isp = isp;
313 		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
314 		xclk->divider = 1;
315 		spin_lock_init(&xclk->lock);
316 
317 		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
318 		init.ops = &isp_xclk_ops;
319 		init.parent_names = &isp_xclk_parent_name;
320 		init.num_parents = 1;
321 
322 		xclk->hw.init = &init;
323 		/*
324 		 * The first argument is NULL in order to avoid circular
325 		 * reference, as this driver takes reference on the
326 		 * sensor subdevice modules and the sensors would take
327 		 * reference on this module through clk_get().
328 		 */
329 		xclk->clk = clk_register(NULL, &xclk->hw);
330 		if (IS_ERR(xclk->clk))
331 			return PTR_ERR(xclk->clk);
332 	}
333 
334 	if (np)
335 		of_clk_add_provider(np, isp_xclk_src_get, isp);
336 
337 	return 0;
338 }
339 
isp_xclk_cleanup(struct isp_device * isp)340 static void isp_xclk_cleanup(struct isp_device *isp)
341 {
342 	struct device_node *np = isp->dev->of_node;
343 	unsigned int i;
344 
345 	if (np)
346 		of_clk_del_provider(np);
347 
348 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
349 		struct isp_xclk *xclk = &isp->xclks[i];
350 
351 		if (!IS_ERR(xclk->clk))
352 			clk_unregister(xclk->clk);
353 	}
354 }
355 
356 /* -----------------------------------------------------------------------------
357  * Interrupts
358  */
359 
360 /*
361  * isp_enable_interrupts - Enable ISP interrupts.
362  * @isp: OMAP3 ISP device
363  */
isp_enable_interrupts(struct isp_device * isp)364 static void isp_enable_interrupts(struct isp_device *isp)
365 {
366 	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
367 			     | IRQ0ENABLE_CSIB_IRQ
368 			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
369 			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
370 			     | IRQ0ENABLE_CCDC_VD0_IRQ
371 			     | IRQ0ENABLE_CCDC_VD1_IRQ
372 			     | IRQ0ENABLE_HS_VS_IRQ
373 			     | IRQ0ENABLE_HIST_DONE_IRQ
374 			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
375 			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
376 			     | IRQ0ENABLE_PRV_DONE_IRQ
377 			     | IRQ0ENABLE_RSZ_DONE_IRQ;
378 
379 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
380 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
381 }
382 
383 /*
384  * isp_disable_interrupts - Disable ISP interrupts.
385  * @isp: OMAP3 ISP device
386  */
isp_disable_interrupts(struct isp_device * isp)387 static void isp_disable_interrupts(struct isp_device *isp)
388 {
389 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
390 }
391 
392 /*
393  * isp_core_init - ISP core settings
394  * @isp: OMAP3 ISP device
395  * @idle: Consider idle state.
396  *
397  * Set the power settings for the ISP and SBL bus and configure the HS/VS
398  * interrupt source.
399  *
400  * We need to configure the HS/VS interrupt source before interrupts get
401  * enabled, as the sensor might be free-running and the ISP default setting
402  * (HS edge) would put an unnecessary burden on the CPU.
403  */
isp_core_init(struct isp_device * isp,int idle)404 static void isp_core_init(struct isp_device *isp, int idle)
405 {
406 	isp_reg_writel(isp,
407 		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
408 				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
409 			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
410 			((isp->revision == ISP_REVISION_15_0) ?
411 			  ISP_SYSCONFIG_AUTOIDLE : 0),
412 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
413 
414 	isp_reg_writel(isp,
415 		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
416 		       ISPCTRL_SYNC_DETECT_VSRISE,
417 		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
418 }
419 
420 /*
421  * Configure the bridge and lane shifter. Valid inputs are
422  *
423  * CCDC_INPUT_PARALLEL: Parallel interface
424  * CCDC_INPUT_CSI2A: CSI2a receiver
425  * CCDC_INPUT_CCP2B: CCP2b receiver
426  * CCDC_INPUT_CSI2C: CSI2c receiver
427  *
428  * The bridge and lane shifter are configured according to the selected input
429  * and the ISP platform data.
430  */
omap3isp_configure_bridge(struct isp_device * isp,enum ccdc_input_entity input,const struct isp_parallel_cfg * parcfg,unsigned int shift,unsigned int bridge)431 void omap3isp_configure_bridge(struct isp_device *isp,
432 			       enum ccdc_input_entity input,
433 			       const struct isp_parallel_cfg *parcfg,
434 			       unsigned int shift, unsigned int bridge)
435 {
436 	u32 ispctrl_val;
437 
438 	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
439 	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
440 	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
441 	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
442 	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
443 	ispctrl_val |= bridge;
444 
445 	switch (input) {
446 	case CCDC_INPUT_PARALLEL:
447 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
448 		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
449 		shift += parcfg->data_lane_shift;
450 		break;
451 
452 	case CCDC_INPUT_CSI2A:
453 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
454 		break;
455 
456 	case CCDC_INPUT_CCP2B:
457 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
458 		break;
459 
460 	case CCDC_INPUT_CSI2C:
461 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
462 		break;
463 
464 	default:
465 		return;
466 	}
467 
468 	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
469 
470 	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
471 }
472 
omap3isp_hist_dma_done(struct isp_device * isp)473 void omap3isp_hist_dma_done(struct isp_device *isp)
474 {
475 	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
476 	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
477 		/* Histogram cannot be enabled in this frame anymore */
478 		atomic_set(&isp->isp_hist.buf_err, 1);
479 		dev_dbg(isp->dev,
480 			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
481 	}
482 }
483 
isp_isr_dbg(struct isp_device * isp,u32 irqstatus)484 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
485 {
486 	static const char *name[] = {
487 		"CSIA_IRQ",
488 		"res1",
489 		"res2",
490 		"CSIB_LCM_IRQ",
491 		"CSIB_IRQ",
492 		"res5",
493 		"res6",
494 		"res7",
495 		"CCDC_VD0_IRQ",
496 		"CCDC_VD1_IRQ",
497 		"CCDC_VD2_IRQ",
498 		"CCDC_ERR_IRQ",
499 		"H3A_AF_DONE_IRQ",
500 		"H3A_AWB_DONE_IRQ",
501 		"res14",
502 		"res15",
503 		"HIST_DONE_IRQ",
504 		"CCDC_LSC_DONE",
505 		"CCDC_LSC_PREFETCH_COMPLETED",
506 		"CCDC_LSC_PREFETCH_ERROR",
507 		"PRV_DONE_IRQ",
508 		"CBUFF_IRQ",
509 		"res22",
510 		"res23",
511 		"RSZ_DONE_IRQ",
512 		"OVF_IRQ",
513 		"res26",
514 		"res27",
515 		"MMU_ERR_IRQ",
516 		"OCP_ERR_IRQ",
517 		"SEC_ERR_IRQ",
518 		"HS_VS_IRQ",
519 	};
520 	int i;
521 
522 	dev_dbg(isp->dev, "ISP IRQ: ");
523 
524 	for (i = 0; i < ARRAY_SIZE(name); i++) {
525 		if ((1 << i) & irqstatus)
526 			printk(KERN_CONT "%s ", name[i]);
527 	}
528 	printk(KERN_CONT "\n");
529 }
530 
isp_isr_sbl(struct isp_device * isp)531 static void isp_isr_sbl(struct isp_device *isp)
532 {
533 	struct device *dev = isp->dev;
534 	struct isp_pipeline *pipe;
535 	u32 sbl_pcr;
536 
537 	/*
538 	 * Handle shared buffer logic overflows for video buffers.
539 	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
540 	 */
541 	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
542 	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
543 	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
544 
545 	if (sbl_pcr)
546 		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
547 
548 	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
549 		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
550 		if (pipe != NULL)
551 			pipe->error = true;
552 	}
553 
554 	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
555 		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
556 		if (pipe != NULL)
557 			pipe->error = true;
558 	}
559 
560 	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
561 		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
562 		if (pipe != NULL)
563 			pipe->error = true;
564 	}
565 
566 	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
567 		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
568 		if (pipe != NULL)
569 			pipe->error = true;
570 	}
571 
572 	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
573 		       | ISPSBL_PCR_RSZ2_WBL_OVF
574 		       | ISPSBL_PCR_RSZ3_WBL_OVF
575 		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
576 		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
577 		if (pipe != NULL)
578 			pipe->error = true;
579 	}
580 
581 	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
582 		omap3isp_stat_sbl_overflow(&isp->isp_af);
583 
584 	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
585 		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
586 }
587 
588 /*
589  * isp_isr - Interrupt Service Routine for Camera ISP module.
590  * @irq: Not used currently.
591  * @_isp: Pointer to the OMAP3 ISP device
592  *
593  * Handles the corresponding callback if plugged in.
594  */
isp_isr(int irq,void * _isp)595 static irqreturn_t isp_isr(int irq, void *_isp)
596 {
597 	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
598 				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
599 				       IRQ0STATUS_CCDC_VD0_IRQ |
600 				       IRQ0STATUS_CCDC_VD1_IRQ |
601 				       IRQ0STATUS_HS_VS_IRQ;
602 	struct isp_device *isp = _isp;
603 	u32 irqstatus;
604 
605 	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
606 	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
607 
608 	isp_isr_sbl(isp);
609 
610 	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
611 		omap3isp_csi2_isr(&isp->isp_csi2a);
612 
613 	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
614 		omap3isp_ccp2_isr(&isp->isp_ccp2);
615 
616 	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
617 		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
618 			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
619 		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
620 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
621 		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
622 		omap3isp_stat_isr_frame_sync(&isp->isp_af);
623 		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
624 	}
625 
626 	if (irqstatus & ccdc_events)
627 		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
628 
629 	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
630 		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
631 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
632 		omap3isp_preview_isr(&isp->isp_prev);
633 	}
634 
635 	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
636 		omap3isp_resizer_isr(&isp->isp_res);
637 
638 	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
639 		omap3isp_stat_isr(&isp->isp_aewb);
640 
641 	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
642 		omap3isp_stat_isr(&isp->isp_af);
643 
644 	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
645 		omap3isp_stat_isr(&isp->isp_hist);
646 
647 	omap3isp_flush(isp);
648 
649 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
650 	isp_isr_dbg(isp, irqstatus);
651 #endif
652 
653 	return IRQ_HANDLED;
654 }
655 
656 static const struct media_device_ops isp_media_ops = {
657 	.link_notify = v4l2_pipeline_link_notify,
658 };
659 
660 /* -----------------------------------------------------------------------------
661  * Pipeline stream management
662  */
663 
664 /*
665  * isp_pipeline_enable - Enable streaming on a pipeline
666  * @pipe: ISP pipeline
667  * @mode: Stream mode (single shot or continuous)
668  *
669  * Walk the entities chain starting at the pipeline output video node and start
670  * all modules in the chain in the given mode.
671  *
672  * Return 0 if successful, or the return value of the failed video::s_stream
673  * operation otherwise.
674  */
isp_pipeline_enable(struct isp_pipeline * pipe,enum isp_pipeline_stream_state mode)675 static int isp_pipeline_enable(struct isp_pipeline *pipe,
676 			       enum isp_pipeline_stream_state mode)
677 {
678 	struct isp_device *isp = pipe->output->isp;
679 	struct media_entity *entity;
680 	struct media_pad *pad;
681 	struct v4l2_subdev *subdev;
682 	unsigned long flags;
683 	int ret;
684 
685 	/* Refuse to start streaming if an entity included in the pipeline has
686 	 * crashed. This check must be performed before the loop below to avoid
687 	 * starting entities if the pipeline won't start anyway (those entities
688 	 * would then likely fail to stop, making the problem worse).
689 	 */
690 	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
691 		return -EIO;
692 
693 	spin_lock_irqsave(&pipe->lock, flags);
694 	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
695 	spin_unlock_irqrestore(&pipe->lock, flags);
696 
697 	pipe->do_propagation = false;
698 
699 	entity = &pipe->output->video.entity;
700 	while (1) {
701 		pad = &entity->pads[0];
702 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
703 			break;
704 
705 		pad = media_entity_remote_pad(pad);
706 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
707 			break;
708 
709 		entity = pad->entity;
710 		subdev = media_entity_to_v4l2_subdev(entity);
711 
712 		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
713 		if (ret < 0 && ret != -ENOIOCTLCMD)
714 			return ret;
715 
716 		if (subdev == &isp->isp_ccdc.subdev) {
717 			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
718 					s_stream, mode);
719 			v4l2_subdev_call(&isp->isp_af.subdev, video,
720 					s_stream, mode);
721 			v4l2_subdev_call(&isp->isp_hist.subdev, video,
722 					s_stream, mode);
723 			pipe->do_propagation = true;
724 		}
725 	}
726 
727 	return 0;
728 }
729 
isp_pipeline_wait_resizer(struct isp_device * isp)730 static int isp_pipeline_wait_resizer(struct isp_device *isp)
731 {
732 	return omap3isp_resizer_busy(&isp->isp_res);
733 }
734 
isp_pipeline_wait_preview(struct isp_device * isp)735 static int isp_pipeline_wait_preview(struct isp_device *isp)
736 {
737 	return omap3isp_preview_busy(&isp->isp_prev);
738 }
739 
isp_pipeline_wait_ccdc(struct isp_device * isp)740 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
741 {
742 	return omap3isp_stat_busy(&isp->isp_af)
743 	    || omap3isp_stat_busy(&isp->isp_aewb)
744 	    || omap3isp_stat_busy(&isp->isp_hist)
745 	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
746 }
747 
748 #define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
749 
isp_pipeline_wait(struct isp_device * isp,int (* busy)(struct isp_device * isp))750 static int isp_pipeline_wait(struct isp_device *isp,
751 			     int(*busy)(struct isp_device *isp))
752 {
753 	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
754 
755 	while (!time_after(jiffies, timeout)) {
756 		if (!busy(isp))
757 			return 0;
758 	}
759 
760 	return 1;
761 }
762 
763 /*
764  * isp_pipeline_disable - Disable streaming on a pipeline
765  * @pipe: ISP pipeline
766  *
767  * Walk the entities chain starting at the pipeline output video node and stop
768  * all modules in the chain. Wait synchronously for the modules to be stopped if
769  * necessary.
770  *
771  * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
772  * can't be stopped (in which case a software reset of the ISP is probably
773  * necessary).
774  */
isp_pipeline_disable(struct isp_pipeline * pipe)775 static int isp_pipeline_disable(struct isp_pipeline *pipe)
776 {
777 	struct isp_device *isp = pipe->output->isp;
778 	struct media_entity *entity;
779 	struct media_pad *pad;
780 	struct v4l2_subdev *subdev;
781 	int failure = 0;
782 	int ret;
783 
784 	/*
785 	 * We need to stop all the modules after CCDC first or they'll
786 	 * never stop since they may not get a full frame from CCDC.
787 	 */
788 	entity = &pipe->output->video.entity;
789 	while (1) {
790 		pad = &entity->pads[0];
791 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
792 			break;
793 
794 		pad = media_entity_remote_pad(pad);
795 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
796 			break;
797 
798 		entity = pad->entity;
799 		subdev = media_entity_to_v4l2_subdev(entity);
800 
801 		if (subdev == &isp->isp_ccdc.subdev) {
802 			v4l2_subdev_call(&isp->isp_aewb.subdev,
803 					 video, s_stream, 0);
804 			v4l2_subdev_call(&isp->isp_af.subdev,
805 					 video, s_stream, 0);
806 			v4l2_subdev_call(&isp->isp_hist.subdev,
807 					 video, s_stream, 0);
808 		}
809 
810 		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
811 
812 		if (subdev == &isp->isp_res.subdev)
813 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
814 		else if (subdev == &isp->isp_prev.subdev)
815 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
816 		else if (subdev == &isp->isp_ccdc.subdev)
817 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
818 
819 		/* Handle stop failures. An entity that fails to stop can
820 		 * usually just be restarted. Flag the stop failure nonetheless
821 		 * to trigger an ISP reset the next time the device is released,
822 		 * just in case.
823 		 *
824 		 * The preview engine is a special case. A failure to stop can
825 		 * mean a hardware crash. When that happens the preview engine
826 		 * won't respond to read/write operations on the L4 bus anymore,
827 		 * resulting in a bus fault and a kernel oops next time it gets
828 		 * accessed. Mark it as crashed to prevent pipelines including
829 		 * it from being started.
830 		 */
831 		if (ret) {
832 			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
833 			isp->stop_failure = true;
834 			if (subdev == &isp->isp_prev.subdev)
835 				media_entity_enum_set(&isp->crashed,
836 						      &subdev->entity);
837 			failure = -ETIMEDOUT;
838 		}
839 	}
840 
841 	return failure;
842 }
843 
844 /*
845  * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
846  * @pipe: ISP pipeline
847  * @state: Stream state (stopped, single shot or continuous)
848  *
849  * Set the pipeline to the given stream state. Pipelines can be started in
850  * single-shot or continuous mode.
851  *
852  * Return 0 if successful, or the return value of the failed video::s_stream
853  * operation otherwise. The pipeline state is not updated when the operation
854  * fails, except when stopping the pipeline.
855  */
omap3isp_pipeline_set_stream(struct isp_pipeline * pipe,enum isp_pipeline_stream_state state)856 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
857 				 enum isp_pipeline_stream_state state)
858 {
859 	int ret;
860 
861 	if (state == ISP_PIPELINE_STREAM_STOPPED)
862 		ret = isp_pipeline_disable(pipe);
863 	else
864 		ret = isp_pipeline_enable(pipe, state);
865 
866 	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
867 		pipe->stream_state = state;
868 
869 	return ret;
870 }
871 
872 /*
873  * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
874  * @pipe: ISP pipeline
875  *
876  * Cancelling a stream mark all buffers on all video nodes in the pipeline as
877  * erroneous and makes sure no new buffer can be queued. This function is called
878  * when a fatal error that prevents any further operation on the pipeline
879  * occurs.
880  */
omap3isp_pipeline_cancel_stream(struct isp_pipeline * pipe)881 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
882 {
883 	if (pipe->input)
884 		omap3isp_video_cancel_stream(pipe->input);
885 	if (pipe->output)
886 		omap3isp_video_cancel_stream(pipe->output);
887 }
888 
889 /*
890  * isp_pipeline_resume - Resume streaming on a pipeline
891  * @pipe: ISP pipeline
892  *
893  * Resume video output and input and re-enable pipeline.
894  */
isp_pipeline_resume(struct isp_pipeline * pipe)895 static void isp_pipeline_resume(struct isp_pipeline *pipe)
896 {
897 	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
898 
899 	omap3isp_video_resume(pipe->output, !singleshot);
900 	if (singleshot)
901 		omap3isp_video_resume(pipe->input, 0);
902 	isp_pipeline_enable(pipe, pipe->stream_state);
903 }
904 
905 /*
906  * isp_pipeline_suspend - Suspend streaming on a pipeline
907  * @pipe: ISP pipeline
908  *
909  * Suspend pipeline.
910  */
isp_pipeline_suspend(struct isp_pipeline * pipe)911 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
912 {
913 	isp_pipeline_disable(pipe);
914 }
915 
916 /*
917  * isp_pipeline_is_last - Verify if entity has an enabled link to the output
918  *			  video node
919  * @me: ISP module's media entity
920  *
921  * Returns 1 if the entity has an enabled link to the output video node or 0
922  * otherwise. It's true only while pipeline can have no more than one output
923  * node.
924  */
isp_pipeline_is_last(struct media_entity * me)925 static int isp_pipeline_is_last(struct media_entity *me)
926 {
927 	struct isp_pipeline *pipe;
928 	struct media_pad *pad;
929 
930 	if (!me->pipe)
931 		return 0;
932 	pipe = to_isp_pipeline(me);
933 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
934 		return 0;
935 	pad = media_entity_remote_pad(&pipe->output->pad);
936 	return pad->entity == me;
937 }
938 
939 /*
940  * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
941  * @me: ISP module's media entity
942  *
943  * Suspend the whole pipeline if module's entity has an enabled link to the
944  * output video node. It works only while pipeline can have no more than one
945  * output node.
946  */
isp_suspend_module_pipeline(struct media_entity * me)947 static void isp_suspend_module_pipeline(struct media_entity *me)
948 {
949 	if (isp_pipeline_is_last(me))
950 		isp_pipeline_suspend(to_isp_pipeline(me));
951 }
952 
953 /*
954  * isp_resume_module_pipeline - Resume pipeline to which belongs the module
955  * @me: ISP module's media entity
956  *
957  * Resume the whole pipeline if module's entity has an enabled link to the
958  * output video node. It works only while pipeline can have no more than one
959  * output node.
960  */
isp_resume_module_pipeline(struct media_entity * me)961 static void isp_resume_module_pipeline(struct media_entity *me)
962 {
963 	if (isp_pipeline_is_last(me))
964 		isp_pipeline_resume(to_isp_pipeline(me));
965 }
966 
967 /*
968  * isp_suspend_modules - Suspend ISP submodules.
969  * @isp: OMAP3 ISP device
970  *
971  * Returns 0 if suspend left in idle state all the submodules properly,
972  * or returns 1 if a general Reset is required to suspend the submodules.
973  */
isp_suspend_modules(struct isp_device * isp)974 static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
975 {
976 	unsigned long timeout;
977 
978 	omap3isp_stat_suspend(&isp->isp_aewb);
979 	omap3isp_stat_suspend(&isp->isp_af);
980 	omap3isp_stat_suspend(&isp->isp_hist);
981 	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
982 	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
983 	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
984 	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
985 	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
986 
987 	timeout = jiffies + ISP_STOP_TIMEOUT;
988 	while (omap3isp_stat_busy(&isp->isp_af)
989 	    || omap3isp_stat_busy(&isp->isp_aewb)
990 	    || omap3isp_stat_busy(&isp->isp_hist)
991 	    || omap3isp_preview_busy(&isp->isp_prev)
992 	    || omap3isp_resizer_busy(&isp->isp_res)
993 	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
994 		if (time_after(jiffies, timeout)) {
995 			dev_info(isp->dev, "can't stop modules.\n");
996 			return 1;
997 		}
998 		msleep(1);
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * isp_resume_modules - Resume ISP submodules.
1006  * @isp: OMAP3 ISP device
1007  */
isp_resume_modules(struct isp_device * isp)1008 static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1009 {
1010 	omap3isp_stat_resume(&isp->isp_aewb);
1011 	omap3isp_stat_resume(&isp->isp_af);
1012 	omap3isp_stat_resume(&isp->isp_hist);
1013 	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1014 	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1015 	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1016 	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1017 	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1018 }
1019 
1020 /*
1021  * isp_reset - Reset ISP with a timeout wait for idle.
1022  * @isp: OMAP3 ISP device
1023  */
isp_reset(struct isp_device * isp)1024 static int isp_reset(struct isp_device *isp)
1025 {
1026 	unsigned long timeout = 0;
1027 
1028 	isp_reg_writel(isp,
1029 		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1030 		       | ISP_SYSCONFIG_SOFTRESET,
1031 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1032 	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1033 			       ISP_SYSSTATUS) & 0x1)) {
1034 		if (timeout++ > 10000) {
1035 			dev_alert(isp->dev, "cannot reset ISP\n");
1036 			return -ETIMEDOUT;
1037 		}
1038 		udelay(1);
1039 	}
1040 
1041 	isp->stop_failure = false;
1042 	media_entity_enum_zero(&isp->crashed);
1043 	return 0;
1044 }
1045 
1046 /*
1047  * isp_save_context - Saves the values of the ISP module registers.
1048  * @isp: OMAP3 ISP device
1049  * @reg_list: Structure containing pairs of register address and value to
1050  *            modify on OMAP.
1051  */
1052 static void
isp_save_context(struct isp_device * isp,struct isp_reg * reg_list)1053 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1054 {
1055 	struct isp_reg *next = reg_list;
1056 
1057 	for (; next->reg != ISP_TOK_TERM; next++)
1058 		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1059 }
1060 
1061 /*
1062  * isp_restore_context - Restores the values of the ISP module registers.
1063  * @isp: OMAP3 ISP device
1064  * @reg_list: Structure containing pairs of register address and value to
1065  *            modify on OMAP.
1066  */
1067 static void
isp_restore_context(struct isp_device * isp,struct isp_reg * reg_list)1068 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1069 {
1070 	struct isp_reg *next = reg_list;
1071 
1072 	for (; next->reg != ISP_TOK_TERM; next++)
1073 		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1074 }
1075 
1076 /*
1077  * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1078  * @isp: OMAP3 ISP device
1079  *
1080  * Routine for saving the context of each module in the ISP.
1081  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1082  */
isp_save_ctx(struct isp_device * isp)1083 static void isp_save_ctx(struct isp_device *isp)
1084 {
1085 	isp_save_context(isp, isp_reg_list);
1086 	omap_iommu_save_ctx(isp->dev);
1087 }
1088 
1089 /*
1090  * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1091  * @isp: OMAP3 ISP device
1092  *
1093  * Routine for restoring the context of each module in the ISP.
1094  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1095  */
isp_restore_ctx(struct isp_device * isp)1096 static void isp_restore_ctx(struct isp_device *isp)
1097 {
1098 	isp_restore_context(isp, isp_reg_list);
1099 	omap_iommu_restore_ctx(isp->dev);
1100 	omap3isp_ccdc_restore_context(isp);
1101 	omap3isp_preview_restore_context(isp);
1102 }
1103 
1104 /* -----------------------------------------------------------------------------
1105  * SBL resources management
1106  */
1107 #define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1108 				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1109 				 OMAP3_ISP_SBL_PREVIEW_READ | \
1110 				 OMAP3_ISP_SBL_RESIZER_READ)
1111 #define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1112 				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1113 				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1114 				 OMAP3_ISP_SBL_CCDC_WRITE | \
1115 				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1116 
omap3isp_sbl_enable(struct isp_device * isp,enum isp_sbl_resource res)1117 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1118 {
1119 	u32 sbl = 0;
1120 
1121 	isp->sbl_resources |= res;
1122 
1123 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1124 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1125 
1126 	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1127 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1128 
1129 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1130 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1131 
1132 	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1133 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1134 
1135 	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1136 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1137 
1138 	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1139 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1140 
1141 	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1142 }
1143 
omap3isp_sbl_disable(struct isp_device * isp,enum isp_sbl_resource res)1144 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1145 {
1146 	u32 sbl = 0;
1147 
1148 	isp->sbl_resources &= ~res;
1149 
1150 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1151 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1152 
1153 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1154 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1155 
1156 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1157 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1158 
1159 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1160 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1161 
1162 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1163 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1164 
1165 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1166 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1167 
1168 	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1169 }
1170 
1171 /*
1172  * isp_module_sync_idle - Helper to sync module with its idle state
1173  * @me: ISP submodule's media entity
1174  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1175  * @stopping: flag which tells module wants to stop
1176  *
1177  * This function checks if ISP submodule needs to wait for next interrupt. If
1178  * yes, makes the caller to sleep while waiting for such event.
1179  */
omap3isp_module_sync_idle(struct media_entity * me,wait_queue_head_t * wait,atomic_t * stopping)1180 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1181 			      atomic_t *stopping)
1182 {
1183 	struct isp_pipeline *pipe = to_isp_pipeline(me);
1184 
1185 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1186 	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1187 	     !isp_pipeline_ready(pipe)))
1188 		return 0;
1189 
1190 	/*
1191 	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1192 	 * scenario. We'll call it here to avoid race conditions.
1193 	 */
1194 	atomic_set(stopping, 1);
1195 	smp_mb();
1196 
1197 	/*
1198 	 * If module is the last one, it's writing to memory. In this case,
1199 	 * it's necessary to check if the module is already paused due to
1200 	 * DMA queue underrun or if it has to wait for next interrupt to be
1201 	 * idle.
1202 	 * If it isn't the last one, the function won't sleep but *stopping
1203 	 * will still be set to warn next submodule caller's interrupt the
1204 	 * module wants to be idle.
1205 	 */
1206 	if (isp_pipeline_is_last(me)) {
1207 		struct isp_video *video = pipe->output;
1208 		unsigned long flags;
1209 		spin_lock_irqsave(&video->irqlock, flags);
1210 		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1211 			spin_unlock_irqrestore(&video->irqlock, flags);
1212 			atomic_set(stopping, 0);
1213 			smp_mb();
1214 			return 0;
1215 		}
1216 		spin_unlock_irqrestore(&video->irqlock, flags);
1217 		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1218 					msecs_to_jiffies(1000))) {
1219 			atomic_set(stopping, 0);
1220 			smp_mb();
1221 			return -ETIMEDOUT;
1222 		}
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1230  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1231  * @stopping: flag which tells module wants to stop
1232  *
1233  * This function checks if ISP submodule was stopping. In case of yes, it
1234  * notices the caller by setting stopping to 0 and waking up the wait queue.
1235  * Returns 1 if it was stopping or 0 otherwise.
1236  */
omap3isp_module_sync_is_stopping(wait_queue_head_t * wait,atomic_t * stopping)1237 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1238 				     atomic_t *stopping)
1239 {
1240 	if (atomic_cmpxchg(stopping, 1, 0)) {
1241 		wake_up(wait);
1242 		return 1;
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 /* --------------------------------------------------------------------------
1249  * Clock management
1250  */
1251 
1252 #define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1253 				 ISPCTRL_HIST_CLK_EN | \
1254 				 ISPCTRL_RSZ_CLK_EN | \
1255 				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1256 				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1257 
__isp_subclk_update(struct isp_device * isp)1258 static void __isp_subclk_update(struct isp_device *isp)
1259 {
1260 	u32 clk = 0;
1261 
1262 	/* AEWB and AF share the same clock. */
1263 	if (isp->subclk_resources &
1264 	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1265 		clk |= ISPCTRL_H3A_CLK_EN;
1266 
1267 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1268 		clk |= ISPCTRL_HIST_CLK_EN;
1269 
1270 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1271 		clk |= ISPCTRL_RSZ_CLK_EN;
1272 
1273 	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1274 	 *       RAM as well.
1275 	 */
1276 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1277 		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1278 
1279 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1280 		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1281 
1282 	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1283 			ISPCTRL_CLKS_MASK, clk);
1284 }
1285 
omap3isp_subclk_enable(struct isp_device * isp,enum isp_subclk_resource res)1286 void omap3isp_subclk_enable(struct isp_device *isp,
1287 			    enum isp_subclk_resource res)
1288 {
1289 	isp->subclk_resources |= res;
1290 
1291 	__isp_subclk_update(isp);
1292 }
1293 
omap3isp_subclk_disable(struct isp_device * isp,enum isp_subclk_resource res)1294 void omap3isp_subclk_disable(struct isp_device *isp,
1295 			     enum isp_subclk_resource res)
1296 {
1297 	isp->subclk_resources &= ~res;
1298 
1299 	__isp_subclk_update(isp);
1300 }
1301 
1302 /*
1303  * isp_enable_clocks - Enable ISP clocks
1304  * @isp: OMAP3 ISP device
1305  *
1306  * Return 0 if successful, or clk_prepare_enable return value if any of them
1307  * fails.
1308  */
isp_enable_clocks(struct isp_device * isp)1309 static int isp_enable_clocks(struct isp_device *isp)
1310 {
1311 	int r;
1312 	unsigned long rate;
1313 
1314 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1315 	if (r) {
1316 		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1317 		goto out_clk_enable_ick;
1318 	}
1319 	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1320 	if (r) {
1321 		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1322 		goto out_clk_enable_mclk;
1323 	}
1324 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1325 	if (r) {
1326 		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1327 		goto out_clk_enable_mclk;
1328 	}
1329 	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1330 	if (rate != CM_CAM_MCLK_HZ)
1331 		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1332 				   " expected : %d\n"
1333 				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1334 	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1335 	if (r) {
1336 		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1337 		goto out_clk_enable_csi2_fclk;
1338 	}
1339 	return 0;
1340 
1341 out_clk_enable_csi2_fclk:
1342 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1343 out_clk_enable_mclk:
1344 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1345 out_clk_enable_ick:
1346 	return r;
1347 }
1348 
1349 /*
1350  * isp_disable_clocks - Disable ISP clocks
1351  * @isp: OMAP3 ISP device
1352  */
isp_disable_clocks(struct isp_device * isp)1353 static void isp_disable_clocks(struct isp_device *isp)
1354 {
1355 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1356 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1357 	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1358 }
1359 
1360 static const char *isp_clocks[] = {
1361 	"cam_ick",
1362 	"cam_mclk",
1363 	"csi2_96m_fck",
1364 	"l3_ick",
1365 };
1366 
isp_get_clocks(struct isp_device * isp)1367 static int isp_get_clocks(struct isp_device *isp)
1368 {
1369 	struct clk *clk;
1370 	unsigned int i;
1371 
1372 	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1373 		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1374 		if (IS_ERR(clk)) {
1375 			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1376 			return PTR_ERR(clk);
1377 		}
1378 
1379 		isp->clock[i] = clk;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 /*
1386  * omap3isp_get - Acquire the ISP resource.
1387  *
1388  * Initializes the clocks for the first acquire.
1389  *
1390  * Increment the reference count on the ISP. If the first reference is taken,
1391  * enable clocks and power-up all submodules.
1392  *
1393  * Return a pointer to the ISP device structure, or NULL if an error occurred.
1394  */
__omap3isp_get(struct isp_device * isp,bool irq)1395 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1396 {
1397 	struct isp_device *__isp = isp;
1398 
1399 	if (isp == NULL)
1400 		return NULL;
1401 
1402 	mutex_lock(&isp->isp_mutex);
1403 	if (isp->ref_count > 0)
1404 		goto out;
1405 
1406 	if (isp_enable_clocks(isp) < 0) {
1407 		__isp = NULL;
1408 		goto out;
1409 	}
1410 
1411 	/* We don't want to restore context before saving it! */
1412 	if (isp->has_context)
1413 		isp_restore_ctx(isp);
1414 
1415 	if (irq)
1416 		isp_enable_interrupts(isp);
1417 
1418 out:
1419 	if (__isp != NULL)
1420 		isp->ref_count++;
1421 	mutex_unlock(&isp->isp_mutex);
1422 
1423 	return __isp;
1424 }
1425 
omap3isp_get(struct isp_device * isp)1426 struct isp_device *omap3isp_get(struct isp_device *isp)
1427 {
1428 	return __omap3isp_get(isp, true);
1429 }
1430 
1431 /*
1432  * omap3isp_put - Release the ISP
1433  *
1434  * Decrement the reference count on the ISP. If the last reference is released,
1435  * power-down all submodules, disable clocks and free temporary buffers.
1436  */
__omap3isp_put(struct isp_device * isp,bool save_ctx)1437 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1438 {
1439 	if (isp == NULL)
1440 		return;
1441 
1442 	mutex_lock(&isp->isp_mutex);
1443 	BUG_ON(isp->ref_count == 0);
1444 	if (--isp->ref_count == 0) {
1445 		isp_disable_interrupts(isp);
1446 		if (save_ctx) {
1447 			isp_save_ctx(isp);
1448 			isp->has_context = 1;
1449 		}
1450 		/* Reset the ISP if an entity has failed to stop. This is the
1451 		 * only way to recover from such conditions.
1452 		 */
1453 		if (!media_entity_enum_empty(&isp->crashed) ||
1454 		    isp->stop_failure)
1455 			isp_reset(isp);
1456 		isp_disable_clocks(isp);
1457 	}
1458 	mutex_unlock(&isp->isp_mutex);
1459 }
1460 
omap3isp_put(struct isp_device * isp)1461 void omap3isp_put(struct isp_device *isp)
1462 {
1463 	__omap3isp_put(isp, true);
1464 }
1465 
1466 /* --------------------------------------------------------------------------
1467  * Platform device driver
1468  */
1469 
1470 /*
1471  * omap3isp_print_status - Prints the values of the ISP Control Module registers
1472  * @isp: OMAP3 ISP device
1473  */
1474 #define ISP_PRINT_REGISTER(isp, name)\
1475 	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1476 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1477 #define SBL_PRINT_REGISTER(isp, name)\
1478 	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1479 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1480 
omap3isp_print_status(struct isp_device * isp)1481 void omap3isp_print_status(struct isp_device *isp)
1482 {
1483 	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1484 
1485 	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1486 	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1487 	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1488 	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1489 	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1490 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1491 	ISP_PRINT_REGISTER(isp, CTRL);
1492 	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1493 	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1494 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1495 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1496 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1497 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1498 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1499 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1500 
1501 	SBL_PRINT_REGISTER(isp, PCR);
1502 	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1503 
1504 	dev_dbg(isp->dev, "--------------------------------------------\n");
1505 }
1506 
1507 #ifdef CONFIG_PM
1508 
1509 /*
1510  * Power management support.
1511  *
1512  * As the ISP can't properly handle an input video stream interruption on a non
1513  * frame boundary, the ISP pipelines need to be stopped before sensors get
1514  * suspended. However, as suspending the sensors can require a running clock,
1515  * which can be provided by the ISP, the ISP can't be completely suspended
1516  * before the sensor.
1517  *
1518  * To solve this problem power management support is split into prepare/complete
1519  * and suspend/resume operations. The pipelines are stopped in prepare() and the
1520  * ISP clocks get disabled in suspend(). Similarly, the clocks are reenabled in
1521  * resume(), and the the pipelines are restarted in complete().
1522  *
1523  * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1524  * yet.
1525  */
isp_pm_prepare(struct device * dev)1526 static int isp_pm_prepare(struct device *dev)
1527 {
1528 	struct isp_device *isp = dev_get_drvdata(dev);
1529 	int reset;
1530 
1531 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1532 
1533 	if (isp->ref_count == 0)
1534 		return 0;
1535 
1536 	reset = isp_suspend_modules(isp);
1537 	isp_disable_interrupts(isp);
1538 	isp_save_ctx(isp);
1539 	if (reset)
1540 		isp_reset(isp);
1541 
1542 	return 0;
1543 }
1544 
isp_pm_suspend(struct device * dev)1545 static int isp_pm_suspend(struct device *dev)
1546 {
1547 	struct isp_device *isp = dev_get_drvdata(dev);
1548 
1549 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1550 
1551 	if (isp->ref_count)
1552 		isp_disable_clocks(isp);
1553 
1554 	return 0;
1555 }
1556 
isp_pm_resume(struct device * dev)1557 static int isp_pm_resume(struct device *dev)
1558 {
1559 	struct isp_device *isp = dev_get_drvdata(dev);
1560 
1561 	if (isp->ref_count == 0)
1562 		return 0;
1563 
1564 	return isp_enable_clocks(isp);
1565 }
1566 
isp_pm_complete(struct device * dev)1567 static void isp_pm_complete(struct device *dev)
1568 {
1569 	struct isp_device *isp = dev_get_drvdata(dev);
1570 
1571 	if (isp->ref_count == 0)
1572 		return;
1573 
1574 	isp_restore_ctx(isp);
1575 	isp_enable_interrupts(isp);
1576 	isp_resume_modules(isp);
1577 }
1578 
1579 #else
1580 
1581 #define isp_pm_prepare	NULL
1582 #define isp_pm_suspend	NULL
1583 #define isp_pm_resume	NULL
1584 #define isp_pm_complete	NULL
1585 
1586 #endif /* CONFIG_PM */
1587 
isp_unregister_entities(struct isp_device * isp)1588 static void isp_unregister_entities(struct isp_device *isp)
1589 {
1590 	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1591 	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1592 	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1593 	omap3isp_preview_unregister_entities(&isp->isp_prev);
1594 	omap3isp_resizer_unregister_entities(&isp->isp_res);
1595 	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1596 	omap3isp_stat_unregister_entities(&isp->isp_af);
1597 	omap3isp_stat_unregister_entities(&isp->isp_hist);
1598 
1599 	v4l2_device_unregister(&isp->v4l2_dev);
1600 	media_device_unregister(&isp->media_dev);
1601 	media_device_cleanup(&isp->media_dev);
1602 }
1603 
isp_link_entity(struct isp_device * isp,struct media_entity * entity,enum isp_interface_type interface)1604 static int isp_link_entity(
1605 	struct isp_device *isp, struct media_entity *entity,
1606 	enum isp_interface_type interface)
1607 {
1608 	struct media_entity *input;
1609 	unsigned int flags;
1610 	unsigned int pad;
1611 	unsigned int i;
1612 
1613 	/* Connect the sensor to the correct interface module.
1614 	 * Parallel sensors are connected directly to the CCDC, while
1615 	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1616 	 * receiver through CSIPHY1 or CSIPHY2.
1617 	 */
1618 	switch (interface) {
1619 	case ISP_INTERFACE_PARALLEL:
1620 		input = &isp->isp_ccdc.subdev.entity;
1621 		pad = CCDC_PAD_SINK;
1622 		flags = 0;
1623 		break;
1624 
1625 	case ISP_INTERFACE_CSI2A_PHY2:
1626 		input = &isp->isp_csi2a.subdev.entity;
1627 		pad = CSI2_PAD_SINK;
1628 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1629 		break;
1630 
1631 	case ISP_INTERFACE_CCP2B_PHY1:
1632 	case ISP_INTERFACE_CCP2B_PHY2:
1633 		input = &isp->isp_ccp2.subdev.entity;
1634 		pad = CCP2_PAD_SINK;
1635 		flags = 0;
1636 		break;
1637 
1638 	case ISP_INTERFACE_CSI2C_PHY1:
1639 		input = &isp->isp_csi2c.subdev.entity;
1640 		pad = CSI2_PAD_SINK;
1641 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1642 		break;
1643 
1644 	default:
1645 		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1646 			interface);
1647 		return -EINVAL;
1648 	}
1649 
1650 	/*
1651 	 * Not all interfaces are available on all revisions of the
1652 	 * ISP. The sub-devices of those interfaces aren't initialised
1653 	 * in such a case. Check this by ensuring the num_pads is
1654 	 * non-zero.
1655 	 */
1656 	if (!input->num_pads) {
1657 		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1658 			interface);
1659 		return -EINVAL;
1660 	}
1661 
1662 	for (i = 0; i < entity->num_pads; i++) {
1663 		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1664 			break;
1665 	}
1666 	if (i == entity->num_pads) {
1667 		dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1668 			__func__, entity->name);
1669 		return -EINVAL;
1670 	}
1671 
1672 	return media_create_pad_link(entity, i, input, pad, flags);
1673 }
1674 
isp_register_entities(struct isp_device * isp)1675 static int isp_register_entities(struct isp_device *isp)
1676 {
1677 	int ret;
1678 
1679 	isp->media_dev.dev = isp->dev;
1680 	strlcpy(isp->media_dev.model, "TI OMAP3 ISP",
1681 		sizeof(isp->media_dev.model));
1682 	isp->media_dev.hw_revision = isp->revision;
1683 	isp->media_dev.ops = &isp_media_ops;
1684 	media_device_init(&isp->media_dev);
1685 
1686 	isp->v4l2_dev.mdev = &isp->media_dev;
1687 	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1688 	if (ret < 0) {
1689 		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1690 			__func__, ret);
1691 		goto done;
1692 	}
1693 
1694 	/* Register internal entities */
1695 	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1696 	if (ret < 0)
1697 		goto done;
1698 
1699 	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1700 	if (ret < 0)
1701 		goto done;
1702 
1703 	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1704 	if (ret < 0)
1705 		goto done;
1706 
1707 	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1708 						 &isp->v4l2_dev);
1709 	if (ret < 0)
1710 		goto done;
1711 
1712 	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1713 	if (ret < 0)
1714 		goto done;
1715 
1716 	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1717 	if (ret < 0)
1718 		goto done;
1719 
1720 	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1721 	if (ret < 0)
1722 		goto done;
1723 
1724 	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1725 	if (ret < 0)
1726 		goto done;
1727 
1728 done:
1729 	if (ret < 0)
1730 		isp_unregister_entities(isp);
1731 
1732 	return ret;
1733 }
1734 
1735 /*
1736  * isp_create_links() - Create links for internal and external ISP entities
1737  * @isp : Pointer to ISP device
1738  *
1739  * This function creates all links between ISP internal and external entities.
1740  *
1741  * Return: A negative error code on failure or zero on success. Possible error
1742  * codes are those returned by media_create_pad_link().
1743  */
isp_create_links(struct isp_device * isp)1744 static int isp_create_links(struct isp_device *isp)
1745 {
1746 	int ret;
1747 
1748 	/* Create links between entities and video nodes. */
1749 	ret = media_create_pad_link(
1750 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1751 			&isp->isp_csi2a.video_out.video.entity, 0, 0);
1752 	if (ret < 0)
1753 		return ret;
1754 
1755 	ret = media_create_pad_link(
1756 			&isp->isp_ccp2.video_in.video.entity, 0,
1757 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1758 	if (ret < 0)
1759 		return ret;
1760 
1761 	ret = media_create_pad_link(
1762 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1763 			&isp->isp_ccdc.video_out.video.entity, 0, 0);
1764 	if (ret < 0)
1765 		return ret;
1766 
1767 	ret = media_create_pad_link(
1768 			&isp->isp_prev.video_in.video.entity, 0,
1769 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1770 	if (ret < 0)
1771 		return ret;
1772 
1773 	ret = media_create_pad_link(
1774 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1775 			&isp->isp_prev.video_out.video.entity, 0, 0);
1776 	if (ret < 0)
1777 		return ret;
1778 
1779 	ret = media_create_pad_link(
1780 			&isp->isp_res.video_in.video.entity, 0,
1781 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1782 	if (ret < 0)
1783 		return ret;
1784 
1785 	ret = media_create_pad_link(
1786 			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1787 			&isp->isp_res.video_out.video.entity, 0, 0);
1788 
1789 	if (ret < 0)
1790 		return ret;
1791 
1792 	/* Create links between entities. */
1793 	ret = media_create_pad_link(
1794 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1795 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1796 	if (ret < 0)
1797 		return ret;
1798 
1799 	ret = media_create_pad_link(
1800 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1801 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1802 	if (ret < 0)
1803 		return ret;
1804 
1805 	ret = media_create_pad_link(
1806 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1807 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1808 	if (ret < 0)
1809 		return ret;
1810 
1811 	ret = media_create_pad_link(
1812 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1813 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1814 	if (ret < 0)
1815 		return ret;
1816 
1817 	ret = media_create_pad_link(
1818 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1819 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1820 	if (ret < 0)
1821 		return ret;
1822 
1823 	ret = media_create_pad_link(
1824 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1825 			&isp->isp_aewb.subdev.entity, 0,
1826 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1827 	if (ret < 0)
1828 		return ret;
1829 
1830 	ret = media_create_pad_link(
1831 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1832 			&isp->isp_af.subdev.entity, 0,
1833 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1834 	if (ret < 0)
1835 		return ret;
1836 
1837 	ret = media_create_pad_link(
1838 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1839 			&isp->isp_hist.subdev.entity, 0,
1840 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1841 	if (ret < 0)
1842 		return ret;
1843 
1844 	return 0;
1845 }
1846 
isp_cleanup_modules(struct isp_device * isp)1847 static void isp_cleanup_modules(struct isp_device *isp)
1848 {
1849 	omap3isp_h3a_aewb_cleanup(isp);
1850 	omap3isp_h3a_af_cleanup(isp);
1851 	omap3isp_hist_cleanup(isp);
1852 	omap3isp_resizer_cleanup(isp);
1853 	omap3isp_preview_cleanup(isp);
1854 	omap3isp_ccdc_cleanup(isp);
1855 	omap3isp_ccp2_cleanup(isp);
1856 	omap3isp_csi2_cleanup(isp);
1857 	omap3isp_csiphy_cleanup(isp);
1858 }
1859 
isp_initialize_modules(struct isp_device * isp)1860 static int isp_initialize_modules(struct isp_device *isp)
1861 {
1862 	int ret;
1863 
1864 	ret = omap3isp_csiphy_init(isp);
1865 	if (ret < 0) {
1866 		dev_err(isp->dev, "CSI PHY initialization failed\n");
1867 		return ret;
1868 	}
1869 
1870 	ret = omap3isp_csi2_init(isp);
1871 	if (ret < 0) {
1872 		dev_err(isp->dev, "CSI2 initialization failed\n");
1873 		goto error_csi2;
1874 	}
1875 
1876 	ret = omap3isp_ccp2_init(isp);
1877 	if (ret < 0) {
1878 		if (ret != -EPROBE_DEFER)
1879 			dev_err(isp->dev, "CCP2 initialization failed\n");
1880 		goto error_ccp2;
1881 	}
1882 
1883 	ret = omap3isp_ccdc_init(isp);
1884 	if (ret < 0) {
1885 		dev_err(isp->dev, "CCDC initialization failed\n");
1886 		goto error_ccdc;
1887 	}
1888 
1889 	ret = omap3isp_preview_init(isp);
1890 	if (ret < 0) {
1891 		dev_err(isp->dev, "Preview initialization failed\n");
1892 		goto error_preview;
1893 	}
1894 
1895 	ret = omap3isp_resizer_init(isp);
1896 	if (ret < 0) {
1897 		dev_err(isp->dev, "Resizer initialization failed\n");
1898 		goto error_resizer;
1899 	}
1900 
1901 	ret = omap3isp_hist_init(isp);
1902 	if (ret < 0) {
1903 		dev_err(isp->dev, "Histogram initialization failed\n");
1904 		goto error_hist;
1905 	}
1906 
1907 	ret = omap3isp_h3a_aewb_init(isp);
1908 	if (ret < 0) {
1909 		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1910 		goto error_h3a_aewb;
1911 	}
1912 
1913 	ret = omap3isp_h3a_af_init(isp);
1914 	if (ret < 0) {
1915 		dev_err(isp->dev, "H3A AF initialization failed\n");
1916 		goto error_h3a_af;
1917 	}
1918 
1919 	return 0;
1920 
1921 error_h3a_af:
1922 	omap3isp_h3a_aewb_cleanup(isp);
1923 error_h3a_aewb:
1924 	omap3isp_hist_cleanup(isp);
1925 error_hist:
1926 	omap3isp_resizer_cleanup(isp);
1927 error_resizer:
1928 	omap3isp_preview_cleanup(isp);
1929 error_preview:
1930 	omap3isp_ccdc_cleanup(isp);
1931 error_ccdc:
1932 	omap3isp_ccp2_cleanup(isp);
1933 error_ccp2:
1934 	omap3isp_csi2_cleanup(isp);
1935 error_csi2:
1936 	omap3isp_csiphy_cleanup(isp);
1937 
1938 	return ret;
1939 }
1940 
isp_detach_iommu(struct isp_device * isp)1941 static void isp_detach_iommu(struct isp_device *isp)
1942 {
1943 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1944 	arm_iommu_detach_device(isp->dev);
1945 	arm_iommu_release_mapping(isp->mapping);
1946 	isp->mapping = NULL;
1947 #endif
1948 }
1949 
isp_attach_iommu(struct isp_device * isp)1950 static int isp_attach_iommu(struct isp_device *isp)
1951 {
1952 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1953 	struct dma_iommu_mapping *mapping;
1954 	int ret;
1955 
1956 	/*
1957 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1958 	 * VAs. This will allocate a corresponding IOMMU domain.
1959 	 */
1960 	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1961 	if (IS_ERR(mapping)) {
1962 		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1963 		return PTR_ERR(mapping);
1964 	}
1965 
1966 	isp->mapping = mapping;
1967 
1968 	/* Attach the ARM VA mapping to the device. */
1969 	ret = arm_iommu_attach_device(isp->dev, mapping);
1970 	if (ret < 0) {
1971 		dev_err(isp->dev, "failed to attach device to VA mapping\n");
1972 		goto error;
1973 	}
1974 
1975 	return 0;
1976 
1977 error:
1978 	arm_iommu_release_mapping(isp->mapping);
1979 	isp->mapping = NULL;
1980 	return ret;
1981 #else
1982 	return -ENODEV;
1983 #endif
1984 }
1985 
1986 /*
1987  * isp_remove - Remove ISP platform device
1988  * @pdev: Pointer to ISP platform device
1989  *
1990  * Always returns 0.
1991  */
isp_remove(struct platform_device * pdev)1992 static int isp_remove(struct platform_device *pdev)
1993 {
1994 	struct isp_device *isp = platform_get_drvdata(pdev);
1995 
1996 	v4l2_async_notifier_unregister(&isp->notifier);
1997 	isp_unregister_entities(isp);
1998 	isp_cleanup_modules(isp);
1999 	isp_xclk_cleanup(isp);
2000 
2001 	__omap3isp_get(isp, false);
2002 	isp_detach_iommu(isp);
2003 	__omap3isp_put(isp, false);
2004 
2005 	media_entity_enum_cleanup(&isp->crashed);
2006 	v4l2_async_notifier_cleanup(&isp->notifier);
2007 
2008 	return 0;
2009 }
2010 
2011 enum isp_of_phy {
2012 	ISP_OF_PHY_PARALLEL = 0,
2013 	ISP_OF_PHY_CSIPHY1,
2014 	ISP_OF_PHY_CSIPHY2,
2015 };
2016 
isp_fwnode_parse(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct v4l2_async_subdev * asd)2017 static int isp_fwnode_parse(struct device *dev,
2018 			    struct v4l2_fwnode_endpoint *vep,
2019 			    struct v4l2_async_subdev *asd)
2020 {
2021 	struct isp_async_subdev *isd =
2022 		container_of(asd, struct isp_async_subdev, asd);
2023 	struct isp_bus_cfg *buscfg = &isd->bus;
2024 	bool csi1 = false;
2025 	unsigned int i;
2026 
2027 	dev_dbg(dev, "parsing endpoint %pOF, interface %u\n",
2028 		to_of_node(vep->base.local_fwnode), vep->base.port);
2029 
2030 	switch (vep->base.port) {
2031 	case ISP_OF_PHY_PARALLEL:
2032 		buscfg->interface = ISP_INTERFACE_PARALLEL;
2033 		buscfg->bus.parallel.data_lane_shift =
2034 			vep->bus.parallel.data_shift;
2035 		buscfg->bus.parallel.clk_pol =
2036 			!!(vep->bus.parallel.flags
2037 			   & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2038 		buscfg->bus.parallel.hs_pol =
2039 			!!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2040 		buscfg->bus.parallel.vs_pol =
2041 			!!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2042 		buscfg->bus.parallel.fld_pol =
2043 			!!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2044 		buscfg->bus.parallel.data_pol =
2045 			!!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2046 		buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2047 		break;
2048 
2049 	case ISP_OF_PHY_CSIPHY1:
2050 	case ISP_OF_PHY_CSIPHY2:
2051 		switch (vep->bus_type) {
2052 		case V4L2_MBUS_CCP2:
2053 		case V4L2_MBUS_CSI1:
2054 			dev_dbg(dev, "CSI-1/CCP-2 configuration\n");
2055 			csi1 = true;
2056 			break;
2057 		case V4L2_MBUS_CSI2:
2058 			dev_dbg(dev, "CSI-2 configuration\n");
2059 			csi1 = false;
2060 			break;
2061 		default:
2062 			dev_err(dev, "unsupported bus type %u\n",
2063 				vep->bus_type);
2064 			return -EINVAL;
2065 		}
2066 
2067 		switch (vep->base.port) {
2068 		case ISP_OF_PHY_CSIPHY1:
2069 			if (csi1)
2070 				buscfg->interface = ISP_INTERFACE_CCP2B_PHY1;
2071 			else
2072 				buscfg->interface = ISP_INTERFACE_CSI2C_PHY1;
2073 			break;
2074 		case ISP_OF_PHY_CSIPHY2:
2075 			if (csi1)
2076 				buscfg->interface = ISP_INTERFACE_CCP2B_PHY2;
2077 			else
2078 				buscfg->interface = ISP_INTERFACE_CSI2A_PHY2;
2079 			break;
2080 		}
2081 		if (csi1) {
2082 			buscfg->bus.ccp2.lanecfg.clk.pos =
2083 				vep->bus.mipi_csi1.clock_lane;
2084 			buscfg->bus.ccp2.lanecfg.clk.pol =
2085 				vep->bus.mipi_csi1.lane_polarity[0];
2086 			dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2087 				buscfg->bus.ccp2.lanecfg.clk.pol,
2088 				buscfg->bus.ccp2.lanecfg.clk.pos);
2089 
2090 			buscfg->bus.ccp2.lanecfg.data[0].pos =
2091 				vep->bus.mipi_csi1.data_lane;
2092 			buscfg->bus.ccp2.lanecfg.data[0].pol =
2093 				vep->bus.mipi_csi1.lane_polarity[1];
2094 
2095 			dev_dbg(dev, "data lane polarity %u, pos %u\n",
2096 				buscfg->bus.ccp2.lanecfg.data[0].pol,
2097 				buscfg->bus.ccp2.lanecfg.data[0].pos);
2098 
2099 			buscfg->bus.ccp2.strobe_clk_pol =
2100 				vep->bus.mipi_csi1.clock_inv;
2101 			buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2102 			buscfg->bus.ccp2.ccp2_mode =
2103 				vep->bus_type == V4L2_MBUS_CCP2;
2104 			buscfg->bus.ccp2.vp_clk_pol = 1;
2105 
2106 			buscfg->bus.ccp2.crc = 1;
2107 		} else {
2108 			buscfg->bus.csi2.lanecfg.clk.pos =
2109 				vep->bus.mipi_csi2.clock_lane;
2110 			buscfg->bus.csi2.lanecfg.clk.pol =
2111 				vep->bus.mipi_csi2.lane_polarities[0];
2112 			dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2113 				buscfg->bus.csi2.lanecfg.clk.pol,
2114 				buscfg->bus.csi2.lanecfg.clk.pos);
2115 
2116 			buscfg->bus.csi2.num_data_lanes =
2117 				vep->bus.mipi_csi2.num_data_lanes;
2118 
2119 			for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2120 				buscfg->bus.csi2.lanecfg.data[i].pos =
2121 					vep->bus.mipi_csi2.data_lanes[i];
2122 				buscfg->bus.csi2.lanecfg.data[i].pol =
2123 					vep->bus.mipi_csi2.lane_polarities[i + 1];
2124 				dev_dbg(dev,
2125 					"data lane %u polarity %u, pos %u\n", i,
2126 					buscfg->bus.csi2.lanecfg.data[i].pol,
2127 					buscfg->bus.csi2.lanecfg.data[i].pos);
2128 			}
2129 			/*
2130 			 * FIXME: now we assume the CRC is always there.
2131 			 * Implement a way to obtain this information from the
2132 			 * sensor. Frame descriptors, perhaps?
2133 			 */
2134 			buscfg->bus.csi2.crc = 1;
2135 		}
2136 		break;
2137 
2138 	default:
2139 		dev_warn(dev, "%pOF: invalid interface %u\n",
2140 			 to_of_node(vep->base.local_fwnode), vep->base.port);
2141 		return -EINVAL;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
isp_subdev_notifier_complete(struct v4l2_async_notifier * async)2147 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2148 {
2149 	struct isp_device *isp = container_of(async, struct isp_device,
2150 					      notifier);
2151 	struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2152 	struct v4l2_subdev *sd;
2153 	int ret;
2154 
2155 	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2156 	if (ret)
2157 		return ret;
2158 
2159 	list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2160 		if (sd->notifier != &isp->notifier)
2161 			continue;
2162 
2163 		ret = isp_link_entity(isp, &sd->entity,
2164 				      v4l2_subdev_to_bus_cfg(sd)->interface);
2165 		if (ret < 0)
2166 			return ret;
2167 	}
2168 
2169 	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2170 	if (ret < 0)
2171 		return ret;
2172 
2173 	return media_device_register(&isp->media_dev);
2174 }
2175 
2176 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2177 	.complete = isp_subdev_notifier_complete,
2178 };
2179 
2180 /*
2181  * isp_probe - Probe ISP platform device
2182  * @pdev: Pointer to ISP platform device
2183  *
2184  * Returns 0 if successful,
2185  *   -ENOMEM if no memory available,
2186  *   -ENODEV if no platform device resources found
2187  *     or no space for remapping registers,
2188  *   -EINVAL if couldn't install ISR,
2189  *   or clk_get return error value.
2190  */
isp_probe(struct platform_device * pdev)2191 static int isp_probe(struct platform_device *pdev)
2192 {
2193 	struct isp_device *isp;
2194 	struct resource *mem;
2195 	int ret;
2196 	int i, m;
2197 
2198 	isp = devm_kzalloc(&pdev->dev, sizeof(*isp), GFP_KERNEL);
2199 	if (!isp) {
2200 		dev_err(&pdev->dev, "could not allocate memory\n");
2201 		return -ENOMEM;
2202 	}
2203 
2204 	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2205 				       "ti,phy-type", &isp->phy_type);
2206 	if (ret)
2207 		return ret;
2208 
2209 	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2210 						      "syscon");
2211 	if (IS_ERR(isp->syscon))
2212 		return PTR_ERR(isp->syscon);
2213 
2214 	ret = of_property_read_u32_index(pdev->dev.of_node,
2215 					 "syscon", 1, &isp->syscon_offset);
2216 	if (ret)
2217 		return ret;
2218 
2219 	isp->autoidle = autoidle;
2220 
2221 	mutex_init(&isp->isp_mutex);
2222 	spin_lock_init(&isp->stat_lock);
2223 
2224 	ret = v4l2_async_notifier_parse_fwnode_endpoints(
2225 		&pdev->dev, &isp->notifier, sizeof(struct isp_async_subdev),
2226 		isp_fwnode_parse);
2227 	if (ret < 0)
2228 		goto error;
2229 
2230 	isp->dev = &pdev->dev;
2231 	isp->ref_count = 0;
2232 
2233 	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2234 	if (ret)
2235 		goto error;
2236 
2237 	platform_set_drvdata(pdev, isp);
2238 
2239 	/* Regulators */
2240 	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2241 	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2242 
2243 	/* Clocks
2244 	 *
2245 	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2246 	 * manually to read the revision before calling __omap3isp_get().
2247 	 *
2248 	 * Start by mapping the ISP MMIO area, which is in two pieces.
2249 	 * The ISP IOMMU is in between. Map both now, and fill in the
2250 	 * ISP revision specific portions a little later in the
2251 	 * function.
2252 	 */
2253 	for (i = 0; i < 2; i++) {
2254 		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2255 
2256 		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2257 		isp->mmio_base[map_idx] =
2258 			devm_ioremap_resource(isp->dev, mem);
2259 		if (IS_ERR(isp->mmio_base[map_idx]))
2260 			return PTR_ERR(isp->mmio_base[map_idx]);
2261 	}
2262 
2263 	ret = isp_get_clocks(isp);
2264 	if (ret < 0)
2265 		goto error;
2266 
2267 	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2268 	if (ret < 0)
2269 		goto error;
2270 
2271 	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2272 	dev_info(isp->dev, "Revision %d.%d found\n",
2273 		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2274 
2275 	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2276 
2277 	if (__omap3isp_get(isp, false) == NULL) {
2278 		ret = -ENODEV;
2279 		goto error;
2280 	}
2281 
2282 	ret = isp_reset(isp);
2283 	if (ret < 0)
2284 		goto error_isp;
2285 
2286 	ret = isp_xclk_init(isp);
2287 	if (ret < 0)
2288 		goto error_isp;
2289 
2290 	/* Memory resources */
2291 	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2292 		if (isp->revision == isp_res_maps[m].isp_rev)
2293 			break;
2294 
2295 	if (m == ARRAY_SIZE(isp_res_maps)) {
2296 		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2297 			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2298 		ret = -ENODEV;
2299 		goto error_isp;
2300 	}
2301 
2302 	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2303 		isp->mmio_base[i] =
2304 			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2305 
2306 	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2307 		isp->mmio_base[i] =
2308 			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2309 			+ isp_res_maps[m].offset[i];
2310 
2311 	isp->mmio_hist_base_phys =
2312 		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2313 
2314 	/* IOMMU */
2315 	ret = isp_attach_iommu(isp);
2316 	if (ret < 0) {
2317 		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2318 		goto error_isp;
2319 	}
2320 
2321 	/* Interrupt */
2322 	ret = platform_get_irq(pdev, 0);
2323 	if (ret <= 0) {
2324 		dev_err(isp->dev, "No IRQ resource\n");
2325 		ret = -ENODEV;
2326 		goto error_iommu;
2327 	}
2328 	isp->irq_num = ret;
2329 
2330 	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2331 			     "OMAP3 ISP", isp)) {
2332 		dev_err(isp->dev, "Unable to request IRQ\n");
2333 		ret = -EINVAL;
2334 		goto error_iommu;
2335 	}
2336 
2337 	/* Entities */
2338 	ret = isp_initialize_modules(isp);
2339 	if (ret < 0)
2340 		goto error_iommu;
2341 
2342 	ret = isp_register_entities(isp);
2343 	if (ret < 0)
2344 		goto error_modules;
2345 
2346 	ret = isp_create_links(isp);
2347 	if (ret < 0)
2348 		goto error_register_entities;
2349 
2350 	isp->notifier.ops = &isp_subdev_notifier_ops;
2351 
2352 	ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2353 	if (ret)
2354 		goto error_register_entities;
2355 
2356 	isp_core_init(isp, 1);
2357 	omap3isp_put(isp);
2358 
2359 	return 0;
2360 
2361 error_register_entities:
2362 	isp_unregister_entities(isp);
2363 error_modules:
2364 	isp_cleanup_modules(isp);
2365 error_iommu:
2366 	isp_detach_iommu(isp);
2367 error_isp:
2368 	isp_xclk_cleanup(isp);
2369 	__omap3isp_put(isp, false);
2370 error:
2371 	v4l2_async_notifier_cleanup(&isp->notifier);
2372 	mutex_destroy(&isp->isp_mutex);
2373 
2374 	return ret;
2375 }
2376 
2377 static const struct dev_pm_ops omap3isp_pm_ops = {
2378 	.prepare = isp_pm_prepare,
2379 	.suspend = isp_pm_suspend,
2380 	.resume = isp_pm_resume,
2381 	.complete = isp_pm_complete,
2382 };
2383 
2384 static struct platform_device_id omap3isp_id_table[] = {
2385 	{ "omap3isp", 0 },
2386 	{ },
2387 };
2388 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2389 
2390 static const struct of_device_id omap3isp_of_table[] = {
2391 	{ .compatible = "ti,omap3-isp" },
2392 	{ },
2393 };
2394 MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2395 
2396 static struct platform_driver omap3isp_driver = {
2397 	.probe = isp_probe,
2398 	.remove = isp_remove,
2399 	.id_table = omap3isp_id_table,
2400 	.driver = {
2401 		.name = "omap3isp",
2402 		.pm	= &omap3isp_pm_ops,
2403 		.of_match_table = omap3isp_of_table,
2404 	},
2405 };
2406 
2407 module_platform_driver(omap3isp_driver);
2408 
2409 MODULE_AUTHOR("Nokia Corporation");
2410 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2411 MODULE_LICENSE("GPL");
2412 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2413