1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51
52 #include "hfi.h"
53 #include "affinity.h"
54 #include "sdma.h"
55 #include "trace.h"
56
57 struct hfi1_affinity_node_list node_affinity = {
58 .list = LIST_HEAD_INIT(node_affinity.list),
59 .lock = __MUTEX_INITIALIZER(node_affinity.lock)
60 };
61
62 /* Name of IRQ types, indexed by enum irq_type */
63 static const char * const irq_type_names[] = {
64 "SDMA",
65 "RCVCTXT",
66 "GENERAL",
67 "OTHER",
68 };
69
70 /* Per NUMA node count of HFI devices */
71 static unsigned int *hfi1_per_node_cntr;
72
init_cpu_mask_set(struct cpu_mask_set * set)73 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
74 {
75 cpumask_clear(&set->mask);
76 cpumask_clear(&set->used);
77 set->gen = 0;
78 }
79
80 /* Increment generation of CPU set if needed */
_cpu_mask_set_gen_inc(struct cpu_mask_set * set)81 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
82 {
83 if (cpumask_equal(&set->mask, &set->used)) {
84 /*
85 * We've used up all the CPUs, bump up the generation
86 * and reset the 'used' map
87 */
88 set->gen++;
89 cpumask_clear(&set->used);
90 }
91 }
92
_cpu_mask_set_gen_dec(struct cpu_mask_set * set)93 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
94 {
95 if (cpumask_empty(&set->used) && set->gen) {
96 set->gen--;
97 cpumask_copy(&set->used, &set->mask);
98 }
99 }
100
101 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
cpu_mask_set_get_first(struct cpu_mask_set * set,cpumask_var_t diff)102 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
103 {
104 int cpu;
105
106 if (!diff || !set)
107 return -EINVAL;
108
109 _cpu_mask_set_gen_inc(set);
110
111 /* Find out CPUs left in CPU mask */
112 cpumask_andnot(diff, &set->mask, &set->used);
113
114 cpu = cpumask_first(diff);
115 if (cpu >= nr_cpu_ids) /* empty */
116 cpu = -EINVAL;
117 else
118 cpumask_set_cpu(cpu, &set->used);
119
120 return cpu;
121 }
122
cpu_mask_set_put(struct cpu_mask_set * set,int cpu)123 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
124 {
125 if (!set)
126 return;
127
128 cpumask_clear_cpu(cpu, &set->used);
129 _cpu_mask_set_gen_dec(set);
130 }
131
132 /* Initialize non-HT cpu cores mask */
init_real_cpu_mask(void)133 void init_real_cpu_mask(void)
134 {
135 int possible, curr_cpu, i, ht;
136
137 cpumask_clear(&node_affinity.real_cpu_mask);
138
139 /* Start with cpu online mask as the real cpu mask */
140 cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
141
142 /*
143 * Remove HT cores from the real cpu mask. Do this in two steps below.
144 */
145 possible = cpumask_weight(&node_affinity.real_cpu_mask);
146 ht = cpumask_weight(topology_sibling_cpumask(
147 cpumask_first(&node_affinity.real_cpu_mask)));
148 /*
149 * Step 1. Skip over the first N HT siblings and use them as the
150 * "real" cores. Assumes that HT cores are not enumerated in
151 * succession (except in the single core case).
152 */
153 curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
154 for (i = 0; i < possible / ht; i++)
155 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
156 /*
157 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to
158 * skip any gaps.
159 */
160 for (; i < possible; i++) {
161 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
162 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
163 }
164 }
165
node_affinity_init(void)166 int node_affinity_init(void)
167 {
168 int node;
169 struct pci_dev *dev = NULL;
170 const struct pci_device_id *ids = hfi1_pci_tbl;
171
172 cpumask_clear(&node_affinity.proc.used);
173 cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
174
175 node_affinity.proc.gen = 0;
176 node_affinity.num_core_siblings =
177 cpumask_weight(topology_sibling_cpumask(
178 cpumask_first(&node_affinity.proc.mask)
179 ));
180 node_affinity.num_possible_nodes = num_possible_nodes();
181 node_affinity.num_online_nodes = num_online_nodes();
182 node_affinity.num_online_cpus = num_online_cpus();
183
184 /*
185 * The real cpu mask is part of the affinity struct but it has to be
186 * initialized early. It is needed to calculate the number of user
187 * contexts in set_up_context_variables().
188 */
189 init_real_cpu_mask();
190
191 hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
192 sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
193 if (!hfi1_per_node_cntr)
194 return -ENOMEM;
195
196 while (ids->vendor) {
197 dev = NULL;
198 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
199 node = pcibus_to_node(dev->bus);
200 if (node < 0)
201 goto out;
202
203 hfi1_per_node_cntr[node]++;
204 }
205 ids++;
206 }
207
208 return 0;
209
210 out:
211 /*
212 * Invalid PCI NUMA node information found, note it, and populate
213 * our database 1:1.
214 */
215 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
216 pr_err("HFI: System BIOS may need to be upgraded\n");
217 for (node = 0; node < node_affinity.num_possible_nodes; node++)
218 hfi1_per_node_cntr[node] = 1;
219
220 return 0;
221 }
222
node_affinity_destroy(struct hfi1_affinity_node * entry)223 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
224 {
225 free_percpu(entry->comp_vect_affinity);
226 kfree(entry);
227 }
228
node_affinity_destroy_all(void)229 void node_affinity_destroy_all(void)
230 {
231 struct list_head *pos, *q;
232 struct hfi1_affinity_node *entry;
233
234 mutex_lock(&node_affinity.lock);
235 list_for_each_safe(pos, q, &node_affinity.list) {
236 entry = list_entry(pos, struct hfi1_affinity_node,
237 list);
238 list_del(pos);
239 node_affinity_destroy(entry);
240 }
241 mutex_unlock(&node_affinity.lock);
242 kfree(hfi1_per_node_cntr);
243 }
244
node_affinity_allocate(int node)245 static struct hfi1_affinity_node *node_affinity_allocate(int node)
246 {
247 struct hfi1_affinity_node *entry;
248
249 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
250 if (!entry)
251 return NULL;
252 entry->node = node;
253 entry->comp_vect_affinity = alloc_percpu(u16);
254 INIT_LIST_HEAD(&entry->list);
255
256 return entry;
257 }
258
259 /*
260 * It appends an entry to the list.
261 * It *must* be called with node_affinity.lock held.
262 */
node_affinity_add_tail(struct hfi1_affinity_node * entry)263 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
264 {
265 list_add_tail(&entry->list, &node_affinity.list);
266 }
267
268 /* It must be called with node_affinity.lock held */
node_affinity_lookup(int node)269 static struct hfi1_affinity_node *node_affinity_lookup(int node)
270 {
271 struct list_head *pos;
272 struct hfi1_affinity_node *entry;
273
274 list_for_each(pos, &node_affinity.list) {
275 entry = list_entry(pos, struct hfi1_affinity_node, list);
276 if (entry->node == node)
277 return entry;
278 }
279
280 return NULL;
281 }
282
per_cpu_affinity_get(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)283 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
284 u16 __percpu *comp_vect_affinity)
285 {
286 int curr_cpu;
287 u16 cntr;
288 u16 prev_cntr;
289 int ret_cpu;
290
291 if (!possible_cpumask) {
292 ret_cpu = -EINVAL;
293 goto fail;
294 }
295
296 if (!comp_vect_affinity) {
297 ret_cpu = -EINVAL;
298 goto fail;
299 }
300
301 ret_cpu = cpumask_first(possible_cpumask);
302 if (ret_cpu >= nr_cpu_ids) {
303 ret_cpu = -EINVAL;
304 goto fail;
305 }
306
307 prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
308 for_each_cpu(curr_cpu, possible_cpumask) {
309 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
310
311 if (cntr < prev_cntr) {
312 ret_cpu = curr_cpu;
313 prev_cntr = cntr;
314 }
315 }
316
317 *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
318
319 fail:
320 return ret_cpu;
321 }
322
per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)323 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
324 u16 __percpu *comp_vect_affinity)
325 {
326 int curr_cpu;
327 int max_cpu;
328 u16 cntr;
329 u16 prev_cntr;
330
331 if (!possible_cpumask)
332 return -EINVAL;
333
334 if (!comp_vect_affinity)
335 return -EINVAL;
336
337 max_cpu = cpumask_first(possible_cpumask);
338 if (max_cpu >= nr_cpu_ids)
339 return -EINVAL;
340
341 prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
342 for_each_cpu(curr_cpu, possible_cpumask) {
343 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
344
345 if (cntr > prev_cntr) {
346 max_cpu = curr_cpu;
347 prev_cntr = cntr;
348 }
349 }
350
351 *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
352
353 return max_cpu;
354 }
355
356 /*
357 * Non-interrupt CPUs are used first, then interrupt CPUs.
358 * Two already allocated cpu masks must be passed.
359 */
_dev_comp_vect_cpu_get(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,cpumask_var_t non_intr_cpus,cpumask_var_t available_cpus)360 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
361 struct hfi1_affinity_node *entry,
362 cpumask_var_t non_intr_cpus,
363 cpumask_var_t available_cpus)
364 __must_hold(&node_affinity.lock)
365 {
366 int cpu;
367 struct cpu_mask_set *set = dd->comp_vect;
368
369 lockdep_assert_held(&node_affinity.lock);
370 if (!non_intr_cpus) {
371 cpu = -1;
372 goto fail;
373 }
374
375 if (!available_cpus) {
376 cpu = -1;
377 goto fail;
378 }
379
380 /* Available CPUs for pinning completion vectors */
381 _cpu_mask_set_gen_inc(set);
382 cpumask_andnot(available_cpus, &set->mask, &set->used);
383
384 /* Available CPUs without SDMA engine interrupts */
385 cpumask_andnot(non_intr_cpus, available_cpus,
386 &entry->def_intr.used);
387
388 /* If there are non-interrupt CPUs available, use them first */
389 if (!cpumask_empty(non_intr_cpus))
390 cpu = cpumask_first(non_intr_cpus);
391 else /* Otherwise, use interrupt CPUs */
392 cpu = cpumask_first(available_cpus);
393
394 if (cpu >= nr_cpu_ids) { /* empty */
395 cpu = -1;
396 goto fail;
397 }
398 cpumask_set_cpu(cpu, &set->used);
399
400 fail:
401 return cpu;
402 }
403
_dev_comp_vect_cpu_put(struct hfi1_devdata * dd,int cpu)404 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
405 {
406 struct cpu_mask_set *set = dd->comp_vect;
407
408 if (cpu < 0)
409 return;
410
411 cpu_mask_set_put(set, cpu);
412 }
413
414 /* _dev_comp_vect_mappings_destroy() is reentrant */
_dev_comp_vect_mappings_destroy(struct hfi1_devdata * dd)415 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
416 {
417 int i, cpu;
418
419 if (!dd->comp_vect_mappings)
420 return;
421
422 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
423 cpu = dd->comp_vect_mappings[i];
424 _dev_comp_vect_cpu_put(dd, cpu);
425 dd->comp_vect_mappings[i] = -1;
426 hfi1_cdbg(AFFINITY,
427 "[%s] Release CPU %d from completion vector %d",
428 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
429 }
430
431 kfree(dd->comp_vect_mappings);
432 dd->comp_vect_mappings = NULL;
433 }
434
435 /*
436 * This function creates the table for looking up CPUs for completion vectors.
437 * num_comp_vectors needs to have been initilized before calling this function.
438 */
_dev_comp_vect_mappings_create(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)439 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
440 struct hfi1_affinity_node *entry)
441 __must_hold(&node_affinity.lock)
442 {
443 int i, cpu, ret;
444 cpumask_var_t non_intr_cpus;
445 cpumask_var_t available_cpus;
446
447 lockdep_assert_held(&node_affinity.lock);
448
449 if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
450 return -ENOMEM;
451
452 if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
453 free_cpumask_var(non_intr_cpus);
454 return -ENOMEM;
455 }
456
457 dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
458 sizeof(*dd->comp_vect_mappings),
459 GFP_KERNEL);
460 if (!dd->comp_vect_mappings) {
461 ret = -ENOMEM;
462 goto fail;
463 }
464 for (i = 0; i < dd->comp_vect_possible_cpus; i++)
465 dd->comp_vect_mappings[i] = -1;
466
467 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
468 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
469 available_cpus);
470 if (cpu < 0) {
471 ret = -EINVAL;
472 goto fail;
473 }
474
475 dd->comp_vect_mappings[i] = cpu;
476 hfi1_cdbg(AFFINITY,
477 "[%s] Completion Vector %d -> CPU %d",
478 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
479 }
480
481 return 0;
482
483 fail:
484 free_cpumask_var(available_cpus);
485 free_cpumask_var(non_intr_cpus);
486 _dev_comp_vect_mappings_destroy(dd);
487
488 return ret;
489 }
490
hfi1_comp_vectors_set_up(struct hfi1_devdata * dd)491 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
492 {
493 int ret;
494 struct hfi1_affinity_node *entry;
495
496 mutex_lock(&node_affinity.lock);
497 entry = node_affinity_lookup(dd->node);
498 if (!entry) {
499 ret = -EINVAL;
500 goto unlock;
501 }
502 ret = _dev_comp_vect_mappings_create(dd, entry);
503 unlock:
504 mutex_unlock(&node_affinity.lock);
505
506 return ret;
507 }
508
hfi1_comp_vectors_clean_up(struct hfi1_devdata * dd)509 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
510 {
511 _dev_comp_vect_mappings_destroy(dd);
512 }
513
hfi1_comp_vect_mappings_lookup(struct rvt_dev_info * rdi,int comp_vect)514 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
515 {
516 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
517 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
518
519 if (!dd->comp_vect_mappings)
520 return -EINVAL;
521 if (comp_vect >= dd->comp_vect_possible_cpus)
522 return -EINVAL;
523
524 return dd->comp_vect_mappings[comp_vect];
525 }
526
527 /*
528 * It assumes dd->comp_vect_possible_cpus is available.
529 */
_dev_comp_vect_cpu_mask_init(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,bool first_dev_init)530 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
531 struct hfi1_affinity_node *entry,
532 bool first_dev_init)
533 __must_hold(&node_affinity.lock)
534 {
535 int i, j, curr_cpu;
536 int possible_cpus_comp_vect = 0;
537 struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
538
539 lockdep_assert_held(&node_affinity.lock);
540 /*
541 * If there's only one CPU available for completion vectors, then
542 * there will only be one completion vector available. Othewise,
543 * the number of completion vector available will be the number of
544 * available CPUs divide it by the number of devices in the
545 * local NUMA node.
546 */
547 if (cpumask_weight(&entry->comp_vect_mask) == 1) {
548 possible_cpus_comp_vect = 1;
549 dd_dev_warn(dd,
550 "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
551 } else {
552 possible_cpus_comp_vect +=
553 cpumask_weight(&entry->comp_vect_mask) /
554 hfi1_per_node_cntr[dd->node];
555
556 /*
557 * If the completion vector CPUs available doesn't divide
558 * evenly among devices, then the first device device to be
559 * initialized gets an extra CPU.
560 */
561 if (first_dev_init &&
562 cpumask_weight(&entry->comp_vect_mask) %
563 hfi1_per_node_cntr[dd->node] != 0)
564 possible_cpus_comp_vect++;
565 }
566
567 dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
568
569 /* Reserving CPUs for device completion vector */
570 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
571 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
572 entry->comp_vect_affinity);
573 if (curr_cpu < 0)
574 goto fail;
575
576 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
577 }
578
579 hfi1_cdbg(AFFINITY,
580 "[%s] Completion vector affinity CPU set(s) %*pbl",
581 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
582 cpumask_pr_args(dev_comp_vect_mask));
583
584 return 0;
585
586 fail:
587 for (j = 0; j < i; j++)
588 per_cpu_affinity_put_max(&entry->comp_vect_mask,
589 entry->comp_vect_affinity);
590
591 return curr_cpu;
592 }
593
594 /*
595 * It assumes dd->comp_vect_possible_cpus is available.
596 */
_dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)597 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
598 struct hfi1_affinity_node *entry)
599 __must_hold(&node_affinity.lock)
600 {
601 int i, cpu;
602
603 lockdep_assert_held(&node_affinity.lock);
604 if (!dd->comp_vect_possible_cpus)
605 return;
606
607 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
608 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
609 entry->comp_vect_affinity);
610 /* Clearing CPU in device completion vector cpu mask */
611 if (cpu >= 0)
612 cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
613 }
614
615 dd->comp_vect_possible_cpus = 0;
616 }
617
618 /*
619 * Interrupt affinity.
620 *
621 * non-rcv avail gets a default mask that
622 * starts as possible cpus with threads reset
623 * and each rcv avail reset.
624 *
625 * rcv avail gets node relative 1 wrapping back
626 * to the node relative 1 as necessary.
627 *
628 */
hfi1_dev_affinity_init(struct hfi1_devdata * dd)629 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
630 {
631 int node = pcibus_to_node(dd->pcidev->bus);
632 struct hfi1_affinity_node *entry;
633 const struct cpumask *local_mask;
634 int curr_cpu, possible, i, ret;
635 bool new_entry = false;
636
637 /*
638 * If the BIOS does not have the NUMA node information set, select
639 * NUMA 0 so we get consistent performance.
640 */
641 if (node < 0) {
642 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
643 node = 0;
644 }
645 dd->node = node;
646
647 local_mask = cpumask_of_node(dd->node);
648 if (cpumask_first(local_mask) >= nr_cpu_ids)
649 local_mask = topology_core_cpumask(0);
650
651 mutex_lock(&node_affinity.lock);
652 entry = node_affinity_lookup(dd->node);
653
654 /*
655 * If this is the first time this NUMA node's affinity is used,
656 * create an entry in the global affinity structure and initialize it.
657 */
658 if (!entry) {
659 entry = node_affinity_allocate(node);
660 if (!entry) {
661 dd_dev_err(dd,
662 "Unable to allocate global affinity node\n");
663 ret = -ENOMEM;
664 goto fail;
665 }
666 new_entry = true;
667
668 init_cpu_mask_set(&entry->def_intr);
669 init_cpu_mask_set(&entry->rcv_intr);
670 cpumask_clear(&entry->comp_vect_mask);
671 cpumask_clear(&entry->general_intr_mask);
672 /* Use the "real" cpu mask of this node as the default */
673 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
674 local_mask);
675
676 /* fill in the receive list */
677 possible = cpumask_weight(&entry->def_intr.mask);
678 curr_cpu = cpumask_first(&entry->def_intr.mask);
679
680 if (possible == 1) {
681 /* only one CPU, everyone will use it */
682 cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
683 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
684 } else {
685 /*
686 * The general/control context will be the first CPU in
687 * the default list, so it is removed from the default
688 * list and added to the general interrupt list.
689 */
690 cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
691 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
692 curr_cpu = cpumask_next(curr_cpu,
693 &entry->def_intr.mask);
694
695 /*
696 * Remove the remaining kernel receive queues from
697 * the default list and add them to the receive list.
698 */
699 for (i = 0;
700 i < (dd->n_krcv_queues - 1) *
701 hfi1_per_node_cntr[dd->node];
702 i++) {
703 cpumask_clear_cpu(curr_cpu,
704 &entry->def_intr.mask);
705 cpumask_set_cpu(curr_cpu,
706 &entry->rcv_intr.mask);
707 curr_cpu = cpumask_next(curr_cpu,
708 &entry->def_intr.mask);
709 if (curr_cpu >= nr_cpu_ids)
710 break;
711 }
712
713 /*
714 * If there ends up being 0 CPU cores leftover for SDMA
715 * engines, use the same CPU cores as general/control
716 * context.
717 */
718 if (cpumask_weight(&entry->def_intr.mask) == 0)
719 cpumask_copy(&entry->def_intr.mask,
720 &entry->general_intr_mask);
721 }
722
723 /* Determine completion vector CPUs for the entire node */
724 cpumask_and(&entry->comp_vect_mask,
725 &node_affinity.real_cpu_mask, local_mask);
726 cpumask_andnot(&entry->comp_vect_mask,
727 &entry->comp_vect_mask,
728 &entry->rcv_intr.mask);
729 cpumask_andnot(&entry->comp_vect_mask,
730 &entry->comp_vect_mask,
731 &entry->general_intr_mask);
732
733 /*
734 * If there ends up being 0 CPU cores leftover for completion
735 * vectors, use the same CPU core as the general/control
736 * context.
737 */
738 if (cpumask_weight(&entry->comp_vect_mask) == 0)
739 cpumask_copy(&entry->comp_vect_mask,
740 &entry->general_intr_mask);
741 }
742
743 ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
744 if (ret < 0)
745 goto fail;
746
747 if (new_entry)
748 node_affinity_add_tail(entry);
749
750 mutex_unlock(&node_affinity.lock);
751
752 return 0;
753
754 fail:
755 if (new_entry)
756 node_affinity_destroy(entry);
757 mutex_unlock(&node_affinity.lock);
758 return ret;
759 }
760
hfi1_dev_affinity_clean_up(struct hfi1_devdata * dd)761 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
762 {
763 struct hfi1_affinity_node *entry;
764
765 if (dd->node < 0)
766 return;
767
768 mutex_lock(&node_affinity.lock);
769 entry = node_affinity_lookup(dd->node);
770 if (!entry)
771 goto unlock;
772
773 /*
774 * Free device completion vector CPUs to be used by future
775 * completion vectors
776 */
777 _dev_comp_vect_cpu_mask_clean_up(dd, entry);
778 unlock:
779 mutex_unlock(&node_affinity.lock);
780 dd->node = -1;
781 }
782
783 /*
784 * Function updates the irq affinity hint for msix after it has been changed
785 * by the user using the /proc/irq interface. This function only accepts
786 * one cpu in the mask.
787 */
hfi1_update_sdma_affinity(struct hfi1_msix_entry * msix,int cpu)788 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
789 {
790 struct sdma_engine *sde = msix->arg;
791 struct hfi1_devdata *dd = sde->dd;
792 struct hfi1_affinity_node *entry;
793 struct cpu_mask_set *set;
794 int i, old_cpu;
795
796 if (cpu > num_online_cpus() || cpu == sde->cpu)
797 return;
798
799 mutex_lock(&node_affinity.lock);
800 entry = node_affinity_lookup(dd->node);
801 if (!entry)
802 goto unlock;
803
804 old_cpu = sde->cpu;
805 sde->cpu = cpu;
806 cpumask_clear(&msix->mask);
807 cpumask_set_cpu(cpu, &msix->mask);
808 dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
809 msix->irq, irq_type_names[msix->type],
810 sde->this_idx, cpu);
811 irq_set_affinity_hint(msix->irq, &msix->mask);
812
813 /*
814 * Set the new cpu in the hfi1_affinity_node and clean
815 * the old cpu if it is not used by any other IRQ
816 */
817 set = &entry->def_intr;
818 cpumask_set_cpu(cpu, &set->mask);
819 cpumask_set_cpu(cpu, &set->used);
820 for (i = 0; i < dd->num_msix_entries; i++) {
821 struct hfi1_msix_entry *other_msix;
822
823 other_msix = &dd->msix_entries[i];
824 if (other_msix->type != IRQ_SDMA || other_msix == msix)
825 continue;
826
827 if (cpumask_test_cpu(old_cpu, &other_msix->mask))
828 goto unlock;
829 }
830 cpumask_clear_cpu(old_cpu, &set->mask);
831 cpumask_clear_cpu(old_cpu, &set->used);
832 unlock:
833 mutex_unlock(&node_affinity.lock);
834 }
835
hfi1_irq_notifier_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)836 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
837 const cpumask_t *mask)
838 {
839 int cpu = cpumask_first(mask);
840 struct hfi1_msix_entry *msix = container_of(notify,
841 struct hfi1_msix_entry,
842 notify);
843
844 /* Only one CPU configuration supported currently */
845 hfi1_update_sdma_affinity(msix, cpu);
846 }
847
hfi1_irq_notifier_release(struct kref * ref)848 static void hfi1_irq_notifier_release(struct kref *ref)
849 {
850 /*
851 * This is required by affinity notifier. We don't have anything to
852 * free here.
853 */
854 }
855
hfi1_setup_sdma_notifier(struct hfi1_msix_entry * msix)856 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
857 {
858 struct irq_affinity_notify *notify = &msix->notify;
859
860 notify->irq = msix->irq;
861 notify->notify = hfi1_irq_notifier_notify;
862 notify->release = hfi1_irq_notifier_release;
863
864 if (irq_set_affinity_notifier(notify->irq, notify))
865 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
866 notify->irq);
867 }
868
hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry * msix)869 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
870 {
871 struct irq_affinity_notify *notify = &msix->notify;
872
873 if (irq_set_affinity_notifier(notify->irq, NULL))
874 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
875 notify->irq);
876 }
877
878 /*
879 * Function sets the irq affinity for msix.
880 * It *must* be called with node_affinity.lock held.
881 */
get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)882 static int get_irq_affinity(struct hfi1_devdata *dd,
883 struct hfi1_msix_entry *msix)
884 {
885 cpumask_var_t diff;
886 struct hfi1_affinity_node *entry;
887 struct cpu_mask_set *set = NULL;
888 struct sdma_engine *sde = NULL;
889 struct hfi1_ctxtdata *rcd = NULL;
890 char extra[64];
891 int cpu = -1;
892
893 extra[0] = '\0';
894 cpumask_clear(&msix->mask);
895
896 entry = node_affinity_lookup(dd->node);
897
898 switch (msix->type) {
899 case IRQ_SDMA:
900 sde = (struct sdma_engine *)msix->arg;
901 scnprintf(extra, 64, "engine %u", sde->this_idx);
902 set = &entry->def_intr;
903 break;
904 case IRQ_GENERAL:
905 cpu = cpumask_first(&entry->general_intr_mask);
906 break;
907 case IRQ_RCVCTXT:
908 rcd = (struct hfi1_ctxtdata *)msix->arg;
909 if (rcd->ctxt == HFI1_CTRL_CTXT)
910 cpu = cpumask_first(&entry->general_intr_mask);
911 else
912 set = &entry->rcv_intr;
913 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
914 break;
915 default:
916 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
917 return -EINVAL;
918 }
919
920 /*
921 * The general and control contexts are placed on a particular
922 * CPU, which is set above. Skip accounting for it. Everything else
923 * finds its CPU here.
924 */
925 if (cpu == -1 && set) {
926 if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
927 return -ENOMEM;
928
929 cpu = cpu_mask_set_get_first(set, diff);
930 if (cpu < 0) {
931 free_cpumask_var(diff);
932 dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
933 return cpu;
934 }
935
936 free_cpumask_var(diff);
937 }
938
939 cpumask_set_cpu(cpu, &msix->mask);
940 dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
941 msix->irq, irq_type_names[msix->type],
942 extra, cpu);
943 irq_set_affinity_hint(msix->irq, &msix->mask);
944
945 if (msix->type == IRQ_SDMA) {
946 sde->cpu = cpu;
947 hfi1_setup_sdma_notifier(msix);
948 }
949
950 return 0;
951 }
952
hfi1_get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)953 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
954 {
955 int ret;
956
957 mutex_lock(&node_affinity.lock);
958 ret = get_irq_affinity(dd, msix);
959 mutex_unlock(&node_affinity.lock);
960 return ret;
961 }
962
hfi1_put_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)963 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
964 struct hfi1_msix_entry *msix)
965 {
966 struct cpu_mask_set *set = NULL;
967 struct hfi1_ctxtdata *rcd;
968 struct hfi1_affinity_node *entry;
969
970 mutex_lock(&node_affinity.lock);
971 entry = node_affinity_lookup(dd->node);
972
973 switch (msix->type) {
974 case IRQ_SDMA:
975 set = &entry->def_intr;
976 hfi1_cleanup_sdma_notifier(msix);
977 break;
978 case IRQ_GENERAL:
979 /* Don't do accounting for general contexts */
980 break;
981 case IRQ_RCVCTXT:
982 rcd = (struct hfi1_ctxtdata *)msix->arg;
983 /* Don't do accounting for control contexts */
984 if (rcd->ctxt != HFI1_CTRL_CTXT)
985 set = &entry->rcv_intr;
986 break;
987 default:
988 mutex_unlock(&node_affinity.lock);
989 return;
990 }
991
992 if (set) {
993 cpumask_andnot(&set->used, &set->used, &msix->mask);
994 _cpu_mask_set_gen_dec(set);
995 }
996
997 irq_set_affinity_hint(msix->irq, NULL);
998 cpumask_clear(&msix->mask);
999 mutex_unlock(&node_affinity.lock);
1000 }
1001
1002 /* This should be called with node_affinity.lock held */
find_hw_thread_mask(uint hw_thread_no,cpumask_var_t hw_thread_mask,struct hfi1_affinity_node_list * affinity)1003 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
1004 struct hfi1_affinity_node_list *affinity)
1005 {
1006 int possible, curr_cpu, i;
1007 uint num_cores_per_socket = node_affinity.num_online_cpus /
1008 affinity->num_core_siblings /
1009 node_affinity.num_online_nodes;
1010
1011 cpumask_copy(hw_thread_mask, &affinity->proc.mask);
1012 if (affinity->num_core_siblings > 0) {
1013 /* Removing other siblings not needed for now */
1014 possible = cpumask_weight(hw_thread_mask);
1015 curr_cpu = cpumask_first(hw_thread_mask);
1016 for (i = 0;
1017 i < num_cores_per_socket * node_affinity.num_online_nodes;
1018 i++)
1019 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1020
1021 for (; i < possible; i++) {
1022 cpumask_clear_cpu(curr_cpu, hw_thread_mask);
1023 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1024 }
1025
1026 /* Identifying correct HW threads within physical cores */
1027 cpumask_shift_left(hw_thread_mask, hw_thread_mask,
1028 num_cores_per_socket *
1029 node_affinity.num_online_nodes *
1030 hw_thread_no);
1031 }
1032 }
1033
hfi1_get_proc_affinity(int node)1034 int hfi1_get_proc_affinity(int node)
1035 {
1036 int cpu = -1, ret, i;
1037 struct hfi1_affinity_node *entry;
1038 cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1039 const struct cpumask *node_mask,
1040 *proc_mask = ¤t->cpus_allowed;
1041 struct hfi1_affinity_node_list *affinity = &node_affinity;
1042 struct cpu_mask_set *set = &affinity->proc;
1043
1044 /*
1045 * check whether process/context affinity has already
1046 * been set
1047 */
1048 if (cpumask_weight(proc_mask) == 1) {
1049 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1050 current->pid, current->comm,
1051 cpumask_pr_args(proc_mask));
1052 /*
1053 * Mark the pre-set CPU as used. This is atomic so we don't
1054 * need the lock
1055 */
1056 cpu = cpumask_first(proc_mask);
1057 cpumask_set_cpu(cpu, &set->used);
1058 goto done;
1059 } else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
1060 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1061 current->pid, current->comm,
1062 cpumask_pr_args(proc_mask));
1063 goto done;
1064 }
1065
1066 /*
1067 * The process does not have a preset CPU affinity so find one to
1068 * recommend using the following algorithm:
1069 *
1070 * For each user process that is opening a context on HFI Y:
1071 * a) If all cores are filled, reinitialize the bitmask
1072 * b) Fill real cores first, then HT cores (First set of HT
1073 * cores on all physical cores, then second set of HT core,
1074 * and, so on) in the following order:
1075 *
1076 * 1. Same NUMA node as HFI Y and not running an IRQ
1077 * handler
1078 * 2. Same NUMA node as HFI Y and running an IRQ handler
1079 * 3. Different NUMA node to HFI Y and not running an IRQ
1080 * handler
1081 * 4. Different NUMA node to HFI Y and running an IRQ
1082 * handler
1083 * c) Mark core as filled in the bitmask. As user processes are
1084 * done, clear cores from the bitmask.
1085 */
1086
1087 ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1088 if (!ret)
1089 goto done;
1090 ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1091 if (!ret)
1092 goto free_diff;
1093 ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1094 if (!ret)
1095 goto free_hw_thread_mask;
1096 ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1097 if (!ret)
1098 goto free_available_mask;
1099
1100 mutex_lock(&affinity->lock);
1101 /*
1102 * If we've used all available HW threads, clear the mask and start
1103 * overloading.
1104 */
1105 _cpu_mask_set_gen_inc(set);
1106
1107 /*
1108 * If NUMA node has CPUs used by interrupt handlers, include them in the
1109 * interrupt handler mask.
1110 */
1111 entry = node_affinity_lookup(node);
1112 if (entry) {
1113 cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1114 &entry->def_intr.mask :
1115 &entry->def_intr.used));
1116 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1117 &entry->rcv_intr.mask :
1118 &entry->rcv_intr.used));
1119 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1120 }
1121 hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1122 cpumask_pr_args(intrs_mask));
1123
1124 cpumask_copy(hw_thread_mask, &set->mask);
1125
1126 /*
1127 * If HT cores are enabled, identify which HW threads within the
1128 * physical cores should be used.
1129 */
1130 if (affinity->num_core_siblings > 0) {
1131 for (i = 0; i < affinity->num_core_siblings; i++) {
1132 find_hw_thread_mask(i, hw_thread_mask, affinity);
1133
1134 /*
1135 * If there's at least one available core for this HW
1136 * thread number, stop looking for a core.
1137 *
1138 * diff will always be not empty at least once in this
1139 * loop as the used mask gets reset when
1140 * (set->mask == set->used) before this loop.
1141 */
1142 cpumask_andnot(diff, hw_thread_mask, &set->used);
1143 if (!cpumask_empty(diff))
1144 break;
1145 }
1146 }
1147 hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1148 cpumask_pr_args(hw_thread_mask));
1149
1150 node_mask = cpumask_of_node(node);
1151 hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1152 cpumask_pr_args(node_mask));
1153
1154 /* Get cpumask of available CPUs on preferred NUMA */
1155 cpumask_and(available_mask, hw_thread_mask, node_mask);
1156 cpumask_andnot(available_mask, available_mask, &set->used);
1157 hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1158 cpumask_pr_args(available_mask));
1159
1160 /*
1161 * At first, we don't want to place processes on the same
1162 * CPUs as interrupt handlers. Then, CPUs running interrupt
1163 * handlers are used.
1164 *
1165 * 1) If diff is not empty, then there are CPUs not running
1166 * non-interrupt handlers available, so diff gets copied
1167 * over to available_mask.
1168 * 2) If diff is empty, then all CPUs not running interrupt
1169 * handlers are taken, so available_mask contains all
1170 * available CPUs running interrupt handlers.
1171 * 3) If available_mask is empty, then all CPUs on the
1172 * preferred NUMA node are taken, so other NUMA nodes are
1173 * used for process assignments using the same method as
1174 * the preferred NUMA node.
1175 */
1176 cpumask_andnot(diff, available_mask, intrs_mask);
1177 if (!cpumask_empty(diff))
1178 cpumask_copy(available_mask, diff);
1179
1180 /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1181 if (cpumask_empty(available_mask)) {
1182 cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1183 /* Excluding preferred NUMA cores */
1184 cpumask_andnot(available_mask, available_mask, node_mask);
1185 hfi1_cdbg(PROC,
1186 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1187 cpumask_pr_args(available_mask));
1188
1189 /*
1190 * At first, we don't want to place processes on the same
1191 * CPUs as interrupt handlers.
1192 */
1193 cpumask_andnot(diff, available_mask, intrs_mask);
1194 if (!cpumask_empty(diff))
1195 cpumask_copy(available_mask, diff);
1196 }
1197 hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1198 cpumask_pr_args(available_mask));
1199
1200 cpu = cpumask_first(available_mask);
1201 if (cpu >= nr_cpu_ids) /* empty */
1202 cpu = -1;
1203 else
1204 cpumask_set_cpu(cpu, &set->used);
1205
1206 mutex_unlock(&affinity->lock);
1207 hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1208
1209 free_cpumask_var(intrs_mask);
1210 free_available_mask:
1211 free_cpumask_var(available_mask);
1212 free_hw_thread_mask:
1213 free_cpumask_var(hw_thread_mask);
1214 free_diff:
1215 free_cpumask_var(diff);
1216 done:
1217 return cpu;
1218 }
1219
hfi1_put_proc_affinity(int cpu)1220 void hfi1_put_proc_affinity(int cpu)
1221 {
1222 struct hfi1_affinity_node_list *affinity = &node_affinity;
1223 struct cpu_mask_set *set = &affinity->proc;
1224
1225 if (cpu < 0)
1226 return;
1227
1228 mutex_lock(&affinity->lock);
1229 cpu_mask_set_put(set, cpu);
1230 hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1231 mutex_unlock(&affinity->lock);
1232 }
1233