1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144 
145 #define RING_EXECLIST_QFULL		(1 << 0x2)
146 #define RING_EXECLIST1_VALID		(1 << 0x3)
147 #define RING_EXECLIST0_VALID		(1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
151 
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161 
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166 
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 					    struct intel_engine_cs *engine,
169 					    struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171 				     struct i915_gem_context *ctx,
172 				     struct intel_engine_cs *engine,
173 				     struct intel_ring *ring);
174 
to_priolist(struct rb_node * rb)175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177 	return rb_entry(rb, struct i915_priolist, node);
178 }
179 
rq_prio(const struct i915_request * rq)180 static inline int rq_prio(const struct i915_request *rq)
181 {
182 	return rq->sched.attr.priority;
183 }
184 
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * last,int prio)185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186 				const struct i915_request *last,
187 				int prio)
188 {
189 	return (intel_engine_has_preemption(engine) &&
190 		__execlists_need_preempt(prio, rq_prio(last)) &&
191 		!i915_request_completed(last));
192 }
193 
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
intel_lr_context_descriptor_update(struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct intel_context * ce)221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 				   struct intel_engine_cs *engine,
223 				   struct intel_context *ce)
224 {
225 	u64 desc;
226 
227 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228 	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229 
230 	desc = ctx->desc_template;				/* bits  0-11 */
231 	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232 
233 	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234 								/* bits 12-31 */
235 	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236 
237 	/*
238 	 * The following 32bits are copied into the OA reports (dword 2).
239 	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240 	 * anything below.
241 	 */
242 	if (INTEL_GEN(ctx->i915) >= 11) {
243 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244 		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245 								/* bits 37-47 */
246 
247 		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248 								/* bits 48-53 */
249 
250 		/* TODO: decide what to do with SW counter (bits 55-60) */
251 
252 		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253 								/* bits 61-63 */
254 	} else {
255 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256 		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
257 	}
258 
259 	ce->lrc_desc = desc;
260 }
261 
262 static struct i915_priolist *
lookup_priolist(struct intel_engine_cs * engine,int prio)263 lookup_priolist(struct intel_engine_cs *engine, int prio)
264 {
265 	struct intel_engine_execlists * const execlists = &engine->execlists;
266 	struct i915_priolist *p;
267 	struct rb_node **parent, *rb;
268 	bool first = true;
269 
270 	if (unlikely(execlists->no_priolist))
271 		prio = I915_PRIORITY_NORMAL;
272 
273 find_priolist:
274 	/* most positive priority is scheduled first, equal priorities fifo */
275 	rb = NULL;
276 	parent = &execlists->queue.rb_root.rb_node;
277 	while (*parent) {
278 		rb = *parent;
279 		p = to_priolist(rb);
280 		if (prio > p->priority) {
281 			parent = &rb->rb_left;
282 		} else if (prio < p->priority) {
283 			parent = &rb->rb_right;
284 			first = false;
285 		} else {
286 			return p;
287 		}
288 	}
289 
290 	if (prio == I915_PRIORITY_NORMAL) {
291 		p = &execlists->default_priolist;
292 	} else {
293 		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
294 		/* Convert an allocation failure to a priority bump */
295 		if (unlikely(!p)) {
296 			prio = I915_PRIORITY_NORMAL; /* recurses just once */
297 
298 			/* To maintain ordering with all rendering, after an
299 			 * allocation failure we have to disable all scheduling.
300 			 * Requests will then be executed in fifo, and schedule
301 			 * will ensure that dependencies are emitted in fifo.
302 			 * There will be still some reordering with existing
303 			 * requests, so if userspace lied about their
304 			 * dependencies that reordering may be visible.
305 			 */
306 			execlists->no_priolist = true;
307 			goto find_priolist;
308 		}
309 	}
310 
311 	p->priority = prio;
312 	INIT_LIST_HEAD(&p->requests);
313 	rb_link_node(&p->node, rb, parent);
314 	rb_insert_color_cached(&p->node, &execlists->queue, first);
315 
316 	return p;
317 }
318 
unwind_wa_tail(struct i915_request * rq)319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321 	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322 	assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324 
__unwind_incomplete_requests(struct intel_engine_cs * engine)325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327 	struct i915_request *rq, *rn;
328 	struct i915_priolist *uninitialized_var(p);
329 	int last_prio = I915_PRIORITY_INVALID;
330 
331 	lockdep_assert_held(&engine->timeline.lock);
332 
333 	list_for_each_entry_safe_reverse(rq, rn,
334 					 &engine->timeline.requests,
335 					 link) {
336 		if (i915_request_completed(rq))
337 			return;
338 
339 		__i915_request_unsubmit(rq);
340 		unwind_wa_tail(rq);
341 
342 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343 		if (rq_prio(rq) != last_prio) {
344 			last_prio = rq_prio(rq);
345 			p = lookup_priolist(engine, last_prio);
346 		}
347 
348 		GEM_BUG_ON(p->priority != rq_prio(rq));
349 		list_add(&rq->sched.link, &p->requests);
350 	}
351 }
352 
353 void
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)354 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
355 {
356 	struct intel_engine_cs *engine =
357 		container_of(execlists, typeof(*engine), execlists);
358 	unsigned long flags;
359 
360 	spin_lock_irqsave(&engine->timeline.lock, flags);
361 
362 	__unwind_incomplete_requests(engine);
363 
364 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 }
366 
367 static inline void
execlists_context_status_change(struct i915_request * rq,unsigned long status)368 execlists_context_status_change(struct i915_request *rq, unsigned long status)
369 {
370 	/*
371 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
372 	 * The compiler should eliminate this function as dead-code.
373 	 */
374 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
375 		return;
376 
377 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
378 				   status, rq);
379 }
380 
381 inline void
execlists_user_begin(struct intel_engine_execlists * execlists,const struct execlist_port * port)382 execlists_user_begin(struct intel_engine_execlists *execlists,
383 		     const struct execlist_port *port)
384 {
385 	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
386 }
387 
388 inline void
execlists_user_end(struct intel_engine_execlists * execlists)389 execlists_user_end(struct intel_engine_execlists *execlists)
390 {
391 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
392 }
393 
394 static inline void
execlists_context_schedule_in(struct i915_request * rq)395 execlists_context_schedule_in(struct i915_request *rq)
396 {
397 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398 	intel_engine_context_in(rq->engine);
399 }
400 
401 static inline void
execlists_context_schedule_out(struct i915_request * rq,unsigned long status)402 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403 {
404 	intel_engine_context_out(rq->engine);
405 	execlists_context_status_change(rq, status);
406 	trace_i915_request_out(rq);
407 }
408 
409 static void
execlists_update_context_pdps(struct i915_hw_ppgtt * ppgtt,u32 * reg_state)410 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
411 {
412 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
413 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
414 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
415 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
416 }
417 
execlists_update_context(struct i915_request * rq)418 static u64 execlists_update_context(struct i915_request *rq)
419 {
420 	struct intel_context *ce = rq->hw_context;
421 	struct i915_hw_ppgtt *ppgtt =
422 		rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423 	u32 *reg_state = ce->lrc_reg_state;
424 
425 	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426 
427 	/* True 32b PPGTT with dynamic page allocation: update PDP
428 	 * registers and point the unallocated PDPs to scratch page.
429 	 * PML4 is allocated during ppgtt init, so this is not needed
430 	 * in 48-bit mode.
431 	 */
432 	if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
433 		execlists_update_context_pdps(ppgtt, reg_state);
434 
435 	return ce->lrc_desc;
436 }
437 
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)438 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
439 {
440 	if (execlists->ctrl_reg) {
441 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
442 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
443 	} else {
444 		writel(upper_32_bits(desc), execlists->submit_reg);
445 		writel(lower_32_bits(desc), execlists->submit_reg);
446 	}
447 }
448 
execlists_submit_ports(struct intel_engine_cs * engine)449 static void execlists_submit_ports(struct intel_engine_cs *engine)
450 {
451 	struct intel_engine_execlists *execlists = &engine->execlists;
452 	struct execlist_port *port = execlists->port;
453 	unsigned int n;
454 
455 	/*
456 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
457 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
458 	 * not be relinquished until the device is idle (see
459 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
460 	 * that all ELSP are drained i.e. we have processed the CSB,
461 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
462 	 */
463 	GEM_BUG_ON(!engine->i915->gt.awake);
464 
465 	/*
466 	 * ELSQ note: the submit queue is not cleared after being submitted
467 	 * to the HW so we need to make sure we always clean it up. This is
468 	 * currently ensured by the fact that we always write the same number
469 	 * of elsq entries, keep this in mind before changing the loop below.
470 	 */
471 	for (n = execlists_num_ports(execlists); n--; ) {
472 		struct i915_request *rq;
473 		unsigned int count;
474 		u64 desc;
475 
476 		rq = port_unpack(&port[n], &count);
477 		if (rq) {
478 			GEM_BUG_ON(count > !n);
479 			if (!count++)
480 				execlists_context_schedule_in(rq);
481 			port_set(&port[n], port_pack(rq, count));
482 			desc = execlists_update_context(rq);
483 			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
484 
485 			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
486 				  engine->name, n,
487 				  port[n].context_id, count,
488 				  rq->global_seqno,
489 				  rq->fence.context, rq->fence.seqno,
490 				  intel_engine_get_seqno(engine),
491 				  rq_prio(rq));
492 		} else {
493 			GEM_BUG_ON(!n);
494 			desc = 0;
495 		}
496 
497 		write_desc(execlists, desc, n);
498 	}
499 
500 	/* we need to manually load the submit queue */
501 	if (execlists->ctrl_reg)
502 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
503 
504 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
505 }
506 
ctx_single_port_submission(const struct intel_context * ce)507 static bool ctx_single_port_submission(const struct intel_context *ce)
508 {
509 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
510 		i915_gem_context_force_single_submission(ce->gem_context));
511 }
512 
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)513 static bool can_merge_ctx(const struct intel_context *prev,
514 			  const struct intel_context *next)
515 {
516 	if (prev != next)
517 		return false;
518 
519 	if (ctx_single_port_submission(prev))
520 		return false;
521 
522 	return true;
523 }
524 
port_assign(struct execlist_port * port,struct i915_request * rq)525 static void port_assign(struct execlist_port *port, struct i915_request *rq)
526 {
527 	GEM_BUG_ON(rq == port_request(port));
528 
529 	if (port_isset(port))
530 		i915_request_put(port_request(port));
531 
532 	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
533 }
534 
inject_preempt_context(struct intel_engine_cs * engine)535 static void inject_preempt_context(struct intel_engine_cs *engine)
536 {
537 	struct intel_engine_execlists *execlists = &engine->execlists;
538 	struct intel_context *ce =
539 		to_intel_context(engine->i915->preempt_context, engine);
540 	unsigned int n;
541 
542 	GEM_BUG_ON(execlists->preempt_complete_status !=
543 		   upper_32_bits(ce->lrc_desc));
544 	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
545 		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
546 				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
547 		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
548 				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
549 
550 	/*
551 	 * Switch to our empty preempt context so
552 	 * the state of the GPU is known (idle).
553 	 */
554 	GEM_TRACE("%s\n", engine->name);
555 	for (n = execlists_num_ports(execlists); --n; )
556 		write_desc(execlists, 0, n);
557 
558 	write_desc(execlists, ce->lrc_desc, n);
559 
560 	/* we need to manually load the submit queue */
561 	if (execlists->ctrl_reg)
562 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
563 
564 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
565 	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
566 }
567 
complete_preempt_context(struct intel_engine_execlists * execlists)568 static void complete_preempt_context(struct intel_engine_execlists *execlists)
569 {
570 	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
571 
572 	if (inject_preempt_hang(execlists))
573 		return;
574 
575 	execlists_cancel_port_requests(execlists);
576 	__unwind_incomplete_requests(container_of(execlists,
577 						  struct intel_engine_cs,
578 						  execlists));
579 }
580 
execlists_dequeue(struct intel_engine_cs * engine)581 static void execlists_dequeue(struct intel_engine_cs *engine)
582 {
583 	struct intel_engine_execlists * const execlists = &engine->execlists;
584 	struct execlist_port *port = execlists->port;
585 	const struct execlist_port * const last_port =
586 		&execlists->port[execlists->port_mask];
587 	struct i915_request *last = port_request(port);
588 	struct rb_node *rb;
589 	bool submit = false;
590 
591 	/*
592 	 * Hardware submission is through 2 ports. Conceptually each port
593 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
594 	 * static for a context, and unique to each, so we only execute
595 	 * requests belonging to a single context from each ring. RING_HEAD
596 	 * is maintained by the CS in the context image, it marks the place
597 	 * where it got up to last time, and through RING_TAIL we tell the CS
598 	 * where we want to execute up to this time.
599 	 *
600 	 * In this list the requests are in order of execution. Consecutive
601 	 * requests from the same context are adjacent in the ringbuffer. We
602 	 * can combine these requests into a single RING_TAIL update:
603 	 *
604 	 *              RING_HEAD...req1...req2
605 	 *                                    ^- RING_TAIL
606 	 * since to execute req2 the CS must first execute req1.
607 	 *
608 	 * Our goal then is to point each port to the end of a consecutive
609 	 * sequence of requests as being the most optimal (fewest wake ups
610 	 * and context switches) submission.
611 	 */
612 
613 	if (last) {
614 		/*
615 		 * Don't resubmit or switch until all outstanding
616 		 * preemptions (lite-restore) are seen. Then we
617 		 * know the next preemption status we see corresponds
618 		 * to this ELSP update.
619 		 */
620 		GEM_BUG_ON(!execlists_is_active(execlists,
621 						EXECLISTS_ACTIVE_USER));
622 		GEM_BUG_ON(!port_count(&port[0]));
623 
624 		/*
625 		 * If we write to ELSP a second time before the HW has had
626 		 * a chance to respond to the previous write, we can confuse
627 		 * the HW and hit "undefined behaviour". After writing to ELSP,
628 		 * we must then wait until we see a context-switch event from
629 		 * the HW to indicate that it has had a chance to respond.
630 		 */
631 		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
632 			return;
633 
634 		if (need_preempt(engine, last, execlists->queue_priority)) {
635 			inject_preempt_context(engine);
636 			return;
637 		}
638 
639 		/*
640 		 * In theory, we could coalesce more requests onto
641 		 * the second port (the first port is active, with
642 		 * no preemptions pending). However, that means we
643 		 * then have to deal with the possible lite-restore
644 		 * of the second port (as we submit the ELSP, there
645 		 * may be a context-switch) but also we may complete
646 		 * the resubmission before the context-switch. Ergo,
647 		 * coalescing onto the second port will cause a
648 		 * preemption event, but we cannot predict whether
649 		 * that will affect port[0] or port[1].
650 		 *
651 		 * If the second port is already active, we can wait
652 		 * until the next context-switch before contemplating
653 		 * new requests. The GPU will be busy and we should be
654 		 * able to resubmit the new ELSP before it idles,
655 		 * avoiding pipeline bubbles (momentary pauses where
656 		 * the driver is unable to keep up the supply of new
657 		 * work). However, we have to double check that the
658 		 * priorities of the ports haven't been switch.
659 		 */
660 		if (port_count(&port[1]))
661 			return;
662 
663 		/*
664 		 * WaIdleLiteRestore:bdw,skl
665 		 * Apply the wa NOOPs to prevent
666 		 * ring:HEAD == rq:TAIL as we resubmit the
667 		 * request. See gen8_emit_breadcrumb() for
668 		 * where we prepare the padding after the
669 		 * end of the request.
670 		 */
671 		last->tail = last->wa_tail;
672 	}
673 
674 	while ((rb = rb_first_cached(&execlists->queue))) {
675 		struct i915_priolist *p = to_priolist(rb);
676 		struct i915_request *rq, *rn;
677 
678 		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
679 			/*
680 			 * Can we combine this request with the current port?
681 			 * It has to be the same context/ringbuffer and not
682 			 * have any exceptions (e.g. GVT saying never to
683 			 * combine contexts).
684 			 *
685 			 * If we can combine the requests, we can execute both
686 			 * by updating the RING_TAIL to point to the end of the
687 			 * second request, and so we never need to tell the
688 			 * hardware about the first.
689 			 */
690 			if (last &&
691 			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
692 				/*
693 				 * If we are on the second port and cannot
694 				 * combine this request with the last, then we
695 				 * are done.
696 				 */
697 				if (port == last_port) {
698 					__list_del_many(&p->requests,
699 							&rq->sched.link);
700 					goto done;
701 				}
702 
703 				/*
704 				 * If GVT overrides us we only ever submit
705 				 * port[0], leaving port[1] empty. Note that we
706 				 * also have to be careful that we don't queue
707 				 * the same context (even though a different
708 				 * request) to the second port.
709 				 */
710 				if (ctx_single_port_submission(last->hw_context) ||
711 				    ctx_single_port_submission(rq->hw_context)) {
712 					__list_del_many(&p->requests,
713 							&rq->sched.link);
714 					goto done;
715 				}
716 
717 				GEM_BUG_ON(last->hw_context == rq->hw_context);
718 
719 				if (submit)
720 					port_assign(port, last);
721 				port++;
722 
723 				GEM_BUG_ON(port_isset(port));
724 			}
725 
726 			INIT_LIST_HEAD(&rq->sched.link);
727 			__i915_request_submit(rq);
728 			trace_i915_request_in(rq, port_index(port, execlists));
729 			last = rq;
730 			submit = true;
731 		}
732 
733 		rb_erase_cached(&p->node, &execlists->queue);
734 		INIT_LIST_HEAD(&p->requests);
735 		if (p->priority != I915_PRIORITY_NORMAL)
736 			kmem_cache_free(engine->i915->priorities, p);
737 	}
738 
739 done:
740 	/*
741 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
742 	 *
743 	 * We choose queue_priority such that if we add a request of greater
744 	 * priority than this, we kick the submission tasklet to decide on
745 	 * the right order of submitting the requests to hardware. We must
746 	 * also be prepared to reorder requests as they are in-flight on the
747 	 * HW. We derive the queue_priority then as the first "hole" in
748 	 * the HW submission ports and if there are no available slots,
749 	 * the priority of the lowest executing request, i.e. last.
750 	 *
751 	 * When we do receive a higher priority request ready to run from the
752 	 * user, see queue_request(), the queue_priority is bumped to that
753 	 * request triggering preemption on the next dequeue (or subsequent
754 	 * interrupt for secondary ports).
755 	 */
756 	execlists->queue_priority =
757 		port != execlists->port ? rq_prio(last) : INT_MIN;
758 
759 	if (submit) {
760 		port_assign(port, last);
761 		execlists_submit_ports(engine);
762 	}
763 
764 	/* We must always keep the beast fed if we have work piled up */
765 	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
766 		   !port_isset(execlists->port));
767 
768 	/* Re-evaluate the executing context setup after each preemptive kick */
769 	if (last)
770 		execlists_user_begin(execlists, execlists->port);
771 
772 	/* If the engine is now idle, so should be the flag; and vice versa. */
773 	GEM_BUG_ON(execlists_is_active(&engine->execlists,
774 				       EXECLISTS_ACTIVE_USER) ==
775 		   !port_isset(engine->execlists.port));
776 }
777 
778 void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)779 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
780 {
781 	struct execlist_port *port = execlists->port;
782 	unsigned int num_ports = execlists_num_ports(execlists);
783 
784 	while (num_ports-- && port_isset(port)) {
785 		struct i915_request *rq = port_request(port);
786 
787 		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
788 			  rq->engine->name,
789 			  (unsigned int)(port - execlists->port),
790 			  rq->global_seqno,
791 			  rq->fence.context, rq->fence.seqno,
792 			  intel_engine_get_seqno(rq->engine));
793 
794 		GEM_BUG_ON(!execlists->active);
795 		execlists_context_schedule_out(rq,
796 					       i915_request_completed(rq) ?
797 					       INTEL_CONTEXT_SCHEDULE_OUT :
798 					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
799 
800 		i915_request_put(rq);
801 
802 		memset(port, 0, sizeof(*port));
803 		port++;
804 	}
805 
806 	execlists_clear_all_active(execlists);
807 }
808 
reset_csb_pointers(struct intel_engine_execlists * execlists)809 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
810 {
811 	/*
812 	 * After a reset, the HW starts writing into CSB entry [0]. We
813 	 * therefore have to set our HEAD pointer back one entry so that
814 	 * the *first* entry we check is entry 0. To complicate this further,
815 	 * as we don't wait for the first interrupt after reset, we have to
816 	 * fake the HW write to point back to the last entry so that our
817 	 * inline comparison of our cached head position against the last HW
818 	 * write works even before the first interrupt.
819 	 */
820 	execlists->csb_head = execlists->csb_write_reset;
821 	WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
822 }
823 
nop_submission_tasklet(unsigned long data)824 static void nop_submission_tasklet(unsigned long data)
825 {
826 	/* The driver is wedged; don't process any more events. */
827 }
828 
execlists_cancel_requests(struct intel_engine_cs * engine)829 static void execlists_cancel_requests(struct intel_engine_cs *engine)
830 {
831 	struct intel_engine_execlists * const execlists = &engine->execlists;
832 	struct i915_request *rq, *rn;
833 	struct rb_node *rb;
834 	unsigned long flags;
835 
836 	GEM_TRACE("%s current %d\n",
837 		  engine->name, intel_engine_get_seqno(engine));
838 
839 	/*
840 	 * Before we call engine->cancel_requests(), we should have exclusive
841 	 * access to the submission state. This is arranged for us by the
842 	 * caller disabling the interrupt generation, the tasklet and other
843 	 * threads that may then access the same state, giving us a free hand
844 	 * to reset state. However, we still need to let lockdep be aware that
845 	 * we know this state may be accessed in hardirq context, so we
846 	 * disable the irq around this manipulation and we want to keep
847 	 * the spinlock focused on its duties and not accidentally conflate
848 	 * coverage to the submission's irq state. (Similarly, although we
849 	 * shouldn't need to disable irq around the manipulation of the
850 	 * submission's irq state, we also wish to remind ourselves that
851 	 * it is irq state.)
852 	 */
853 	spin_lock_irqsave(&engine->timeline.lock, flags);
854 
855 	/* Cancel the requests on the HW and clear the ELSP tracker. */
856 	execlists_cancel_port_requests(execlists);
857 	execlists_user_end(execlists);
858 
859 	/* Mark all executing requests as skipped. */
860 	list_for_each_entry(rq, &engine->timeline.requests, link) {
861 		GEM_BUG_ON(!rq->global_seqno);
862 		if (!i915_request_completed(rq))
863 			dma_fence_set_error(&rq->fence, -EIO);
864 	}
865 
866 	/* Flush the queued requests to the timeline list (for retiring). */
867 	while ((rb = rb_first_cached(&execlists->queue))) {
868 		struct i915_priolist *p = to_priolist(rb);
869 
870 		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
871 			INIT_LIST_HEAD(&rq->sched.link);
872 
873 			dma_fence_set_error(&rq->fence, -EIO);
874 			__i915_request_submit(rq);
875 		}
876 
877 		rb_erase_cached(&p->node, &execlists->queue);
878 		INIT_LIST_HEAD(&p->requests);
879 		if (p->priority != I915_PRIORITY_NORMAL)
880 			kmem_cache_free(engine->i915->priorities, p);
881 	}
882 
883 	/* Remaining _unready_ requests will be nop'ed when submitted */
884 
885 	execlists->queue_priority = INT_MIN;
886 	execlists->queue = RB_ROOT_CACHED;
887 	GEM_BUG_ON(port_isset(execlists->port));
888 
889 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
890 	execlists->tasklet.func = nop_submission_tasklet;
891 
892 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
893 }
894 
895 static inline bool
reset_in_progress(const struct intel_engine_execlists * execlists)896 reset_in_progress(const struct intel_engine_execlists *execlists)
897 {
898 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
899 }
900 
process_csb(struct intel_engine_cs * engine)901 static void process_csb(struct intel_engine_cs *engine)
902 {
903 	struct intel_engine_execlists * const execlists = &engine->execlists;
904 	struct execlist_port *port = execlists->port;
905 	const u32 * const buf = execlists->csb_status;
906 	u8 head, tail;
907 
908 	/*
909 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
910 	 * When reading from the csb_write mmio register, we have to be
911 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
912 	 * the low 4bits. As it happens we know the next 4bits are always
913 	 * zero and so we can simply masked off the low u8 of the register
914 	 * and treat it identically to reading from the HWSP (without having
915 	 * to use explicit shifting and masking, and probably bifurcating
916 	 * the code to handle the legacy mmio read).
917 	 */
918 	head = execlists->csb_head;
919 	tail = READ_ONCE(*execlists->csb_write);
920 	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
921 	if (unlikely(head == tail))
922 		return;
923 
924 	/*
925 	 * Hopefully paired with a wmb() in HW!
926 	 *
927 	 * We must complete the read of the write pointer before any reads
928 	 * from the CSB, so that we do not see stale values. Without an rmb
929 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
930 	 * we perform the READ_ONCE(*csb_write).
931 	 */
932 	rmb();
933 
934 	do {
935 		struct i915_request *rq;
936 		unsigned int status;
937 		unsigned int count;
938 
939 		if (++head == GEN8_CSB_ENTRIES)
940 			head = 0;
941 
942 		/*
943 		 * We are flying near dragons again.
944 		 *
945 		 * We hold a reference to the request in execlist_port[]
946 		 * but no more than that. We are operating in softirq
947 		 * context and so cannot hold any mutex or sleep. That
948 		 * prevents us stopping the requests we are processing
949 		 * in port[] from being retired simultaneously (the
950 		 * breadcrumb will be complete before we see the
951 		 * context-switch). As we only hold the reference to the
952 		 * request, any pointer chasing underneath the request
953 		 * is subject to a potential use-after-free. Thus we
954 		 * store all of the bookkeeping within port[] as
955 		 * required, and avoid using unguarded pointers beneath
956 		 * request itself. The same applies to the atomic
957 		 * status notifier.
958 		 */
959 
960 		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
961 			  engine->name, head,
962 			  buf[2 * head + 0], buf[2 * head + 1],
963 			  execlists->active);
964 
965 		status = buf[2 * head];
966 		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
967 			      GEN8_CTX_STATUS_PREEMPTED))
968 			execlists_set_active(execlists,
969 					     EXECLISTS_ACTIVE_HWACK);
970 		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
971 			execlists_clear_active(execlists,
972 					       EXECLISTS_ACTIVE_HWACK);
973 
974 		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
975 			continue;
976 
977 		/* We should never get a COMPLETED | IDLE_ACTIVE! */
978 		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
979 
980 		if (status & GEN8_CTX_STATUS_COMPLETE &&
981 		    buf[2*head + 1] == execlists->preempt_complete_status) {
982 			GEM_TRACE("%s preempt-idle\n", engine->name);
983 			complete_preempt_context(execlists);
984 			continue;
985 		}
986 
987 		if (status & GEN8_CTX_STATUS_PREEMPTED &&
988 		    execlists_is_active(execlists,
989 					EXECLISTS_ACTIVE_PREEMPT))
990 			continue;
991 
992 		GEM_BUG_ON(!execlists_is_active(execlists,
993 						EXECLISTS_ACTIVE_USER));
994 
995 		rq = port_unpack(port, &count);
996 		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
997 			  engine->name,
998 			  port->context_id, count,
999 			  rq ? rq->global_seqno : 0,
1000 			  rq ? rq->fence.context : 0,
1001 			  rq ? rq->fence.seqno : 0,
1002 			  intel_engine_get_seqno(engine),
1003 			  rq ? rq_prio(rq) : 0);
1004 
1005 		/* Check the context/desc id for this event matches */
1006 		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1007 
1008 		GEM_BUG_ON(count == 0);
1009 		if (--count == 0) {
1010 			/*
1011 			 * On the final event corresponding to the
1012 			 * submission of this context, we expect either
1013 			 * an element-switch event or a completion
1014 			 * event (and on completion, the active-idle
1015 			 * marker). No more preemptions, lite-restore
1016 			 * or otherwise.
1017 			 */
1018 			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1019 			GEM_BUG_ON(port_isset(&port[1]) &&
1020 				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1021 			GEM_BUG_ON(!port_isset(&port[1]) &&
1022 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1023 
1024 			/*
1025 			 * We rely on the hardware being strongly
1026 			 * ordered, that the breadcrumb write is
1027 			 * coherent (visible from the CPU) before the
1028 			 * user interrupt and CSB is processed.
1029 			 */
1030 			GEM_BUG_ON(!i915_request_completed(rq));
1031 
1032 			execlists_context_schedule_out(rq,
1033 						       INTEL_CONTEXT_SCHEDULE_OUT);
1034 			i915_request_put(rq);
1035 
1036 			GEM_TRACE("%s completed ctx=%d\n",
1037 				  engine->name, port->context_id);
1038 
1039 			port = execlists_port_complete(execlists, port);
1040 			if (port_isset(port))
1041 				execlists_user_begin(execlists, port);
1042 			else
1043 				execlists_user_end(execlists);
1044 		} else {
1045 			port_set(port, port_pack(rq, count));
1046 		}
1047 	} while (head != tail);
1048 
1049 	execlists->csb_head = head;
1050 }
1051 
__execlists_submission_tasklet(struct intel_engine_cs * const engine)1052 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1053 {
1054 	lockdep_assert_held(&engine->timeline.lock);
1055 
1056 	process_csb(engine);
1057 	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1058 		execlists_dequeue(engine);
1059 }
1060 
1061 /*
1062  * Check the unread Context Status Buffers and manage the submission of new
1063  * contexts to the ELSP accordingly.
1064  */
execlists_submission_tasklet(unsigned long data)1065 static void execlists_submission_tasklet(unsigned long data)
1066 {
1067 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1068 	unsigned long flags;
1069 
1070 	GEM_TRACE("%s awake?=%d, active=%x\n",
1071 		  engine->name,
1072 		  engine->i915->gt.awake,
1073 		  engine->execlists.active);
1074 
1075 	spin_lock_irqsave(&engine->timeline.lock, flags);
1076 	__execlists_submission_tasklet(engine);
1077 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1078 }
1079 
queue_request(struct intel_engine_cs * engine,struct i915_sched_node * node,int prio)1080 static void queue_request(struct intel_engine_cs *engine,
1081 			  struct i915_sched_node *node,
1082 			  int prio)
1083 {
1084 	list_add_tail(&node->link,
1085 		      &lookup_priolist(engine, prio)->requests);
1086 }
1087 
__update_queue(struct intel_engine_cs * engine,int prio)1088 static void __update_queue(struct intel_engine_cs *engine, int prio)
1089 {
1090 	engine->execlists.queue_priority = prio;
1091 }
1092 
__submit_queue_imm(struct intel_engine_cs * engine)1093 static void __submit_queue_imm(struct intel_engine_cs *engine)
1094 {
1095 	struct intel_engine_execlists * const execlists = &engine->execlists;
1096 
1097 	if (reset_in_progress(execlists))
1098 		return; /* defer until we restart the engine following reset */
1099 
1100 	if (execlists->tasklet.func == execlists_submission_tasklet)
1101 		__execlists_submission_tasklet(engine);
1102 	else
1103 		tasklet_hi_schedule(&execlists->tasklet);
1104 }
1105 
submit_queue(struct intel_engine_cs * engine,int prio)1106 static void submit_queue(struct intel_engine_cs *engine, int prio)
1107 {
1108 	if (prio > engine->execlists.queue_priority) {
1109 		__update_queue(engine, prio);
1110 		__submit_queue_imm(engine);
1111 	}
1112 }
1113 
execlists_submit_request(struct i915_request * request)1114 static void execlists_submit_request(struct i915_request *request)
1115 {
1116 	struct intel_engine_cs *engine = request->engine;
1117 	unsigned long flags;
1118 
1119 	/* Will be called from irq-context when using foreign fences. */
1120 	spin_lock_irqsave(&engine->timeline.lock, flags);
1121 
1122 	queue_request(engine, &request->sched, rq_prio(request));
1123 
1124 	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1125 	GEM_BUG_ON(list_empty(&request->sched.link));
1126 
1127 	submit_queue(engine, rq_prio(request));
1128 
1129 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1130 }
1131 
sched_to_request(struct i915_sched_node * node)1132 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1133 {
1134 	return container_of(node, struct i915_request, sched);
1135 }
1136 
1137 static struct intel_engine_cs *
sched_lock_engine(struct i915_sched_node * node,struct intel_engine_cs * locked)1138 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1139 {
1140 	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1141 
1142 	GEM_BUG_ON(!locked);
1143 
1144 	if (engine != locked) {
1145 		spin_unlock(&locked->timeline.lock);
1146 		spin_lock(&engine->timeline.lock);
1147 	}
1148 
1149 	return engine;
1150 }
1151 
execlists_schedule(struct i915_request * request,const struct i915_sched_attr * attr)1152 static void execlists_schedule(struct i915_request *request,
1153 			       const struct i915_sched_attr *attr)
1154 {
1155 	struct i915_priolist *uninitialized_var(pl);
1156 	struct intel_engine_cs *engine, *last;
1157 	struct i915_dependency *dep, *p;
1158 	struct i915_dependency stack;
1159 	const int prio = attr->priority;
1160 	LIST_HEAD(dfs);
1161 
1162 	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1163 
1164 	if (i915_request_completed(request))
1165 		return;
1166 
1167 	if (prio <= READ_ONCE(request->sched.attr.priority))
1168 		return;
1169 
1170 	/* Need BKL in order to use the temporary link inside i915_dependency */
1171 	lockdep_assert_held(&request->i915->drm.struct_mutex);
1172 
1173 	stack.signaler = &request->sched;
1174 	list_add(&stack.dfs_link, &dfs);
1175 
1176 	/*
1177 	 * Recursively bump all dependent priorities to match the new request.
1178 	 *
1179 	 * A naive approach would be to use recursion:
1180 	 * static void update_priorities(struct i915_sched_node *node, prio) {
1181 	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1182 	 *		update_priorities(dep->signal, prio)
1183 	 *	queue_request(node);
1184 	 * }
1185 	 * but that may have unlimited recursion depth and so runs a very
1186 	 * real risk of overunning the kernel stack. Instead, we build
1187 	 * a flat list of all dependencies starting with the current request.
1188 	 * As we walk the list of dependencies, we add all of its dependencies
1189 	 * to the end of the list (this may include an already visited
1190 	 * request) and continue to walk onwards onto the new dependencies. The
1191 	 * end result is a topological list of requests in reverse order, the
1192 	 * last element in the list is the request we must execute first.
1193 	 */
1194 	list_for_each_entry(dep, &dfs, dfs_link) {
1195 		struct i915_sched_node *node = dep->signaler;
1196 
1197 		/*
1198 		 * Within an engine, there can be no cycle, but we may
1199 		 * refer to the same dependency chain multiple times
1200 		 * (redundant dependencies are not eliminated) and across
1201 		 * engines.
1202 		 */
1203 		list_for_each_entry(p, &node->signalers_list, signal_link) {
1204 			GEM_BUG_ON(p == dep); /* no cycles! */
1205 
1206 			if (i915_sched_node_signaled(p->signaler))
1207 				continue;
1208 
1209 			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1210 			if (prio > READ_ONCE(p->signaler->attr.priority))
1211 				list_move_tail(&p->dfs_link, &dfs);
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * If we didn't need to bump any existing priorities, and we haven't
1217 	 * yet submitted this request (i.e. there is no potential race with
1218 	 * execlists_submit_request()), we can set our own priority and skip
1219 	 * acquiring the engine locks.
1220 	 */
1221 	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1222 		GEM_BUG_ON(!list_empty(&request->sched.link));
1223 		request->sched.attr = *attr;
1224 		if (stack.dfs_link.next == stack.dfs_link.prev)
1225 			return;
1226 		__list_del_entry(&stack.dfs_link);
1227 	}
1228 
1229 	last = NULL;
1230 	engine = request->engine;
1231 	spin_lock_irq(&engine->timeline.lock);
1232 
1233 	/* Fifo and depth-first replacement ensure our deps execute before us */
1234 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1235 		struct i915_sched_node *node = dep->signaler;
1236 
1237 		INIT_LIST_HEAD(&dep->dfs_link);
1238 
1239 		engine = sched_lock_engine(node, engine);
1240 
1241 		if (prio <= node->attr.priority)
1242 			continue;
1243 
1244 		node->attr.priority = prio;
1245 		if (!list_empty(&node->link)) {
1246 			if (last != engine) {
1247 				pl = lookup_priolist(engine, prio);
1248 				last = engine;
1249 			}
1250 			GEM_BUG_ON(pl->priority != prio);
1251 			list_move_tail(&node->link, &pl->requests);
1252 		}
1253 
1254 		if (prio > engine->execlists.queue_priority &&
1255 		    i915_sw_fence_done(&sched_to_request(node)->submit)) {
1256 			/* defer submission until after all of our updates */
1257 			__update_queue(engine, prio);
1258 			tasklet_hi_schedule(&engine->execlists.tasklet);
1259 		}
1260 	}
1261 
1262 	spin_unlock_irq(&engine->timeline.lock);
1263 }
1264 
execlists_context_destroy(struct intel_context * ce)1265 static void execlists_context_destroy(struct intel_context *ce)
1266 {
1267 	GEM_BUG_ON(ce->pin_count);
1268 
1269 	if (!ce->state)
1270 		return;
1271 
1272 	intel_ring_free(ce->ring);
1273 
1274 	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1275 	i915_gem_object_put(ce->state->obj);
1276 }
1277 
execlists_context_unpin(struct intel_context * ce)1278 static void execlists_context_unpin(struct intel_context *ce)
1279 {
1280 	intel_ring_unpin(ce->ring);
1281 
1282 	ce->state->obj->pin_global--;
1283 	i915_gem_object_unpin_map(ce->state->obj);
1284 	i915_vma_unpin(ce->state);
1285 
1286 	i915_gem_context_put(ce->gem_context);
1287 }
1288 
__context_pin(struct i915_gem_context * ctx,struct i915_vma * vma)1289 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1290 {
1291 	unsigned int flags;
1292 	int err;
1293 
1294 	/*
1295 	 * Clear this page out of any CPU caches for coherent swap-in/out.
1296 	 * We only want to do this on the first bind so that we do not stall
1297 	 * on an active context (which by nature is already on the GPU).
1298 	 */
1299 	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1300 		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1301 		if (err)
1302 			return err;
1303 	}
1304 
1305 	flags = PIN_GLOBAL | PIN_HIGH;
1306 	if (ctx->ggtt_offset_bias)
1307 		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1308 
1309 	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1310 }
1311 
1312 static struct intel_context *
__execlists_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx,struct intel_context * ce)1313 __execlists_context_pin(struct intel_engine_cs *engine,
1314 			struct i915_gem_context *ctx,
1315 			struct intel_context *ce)
1316 {
1317 	void *vaddr;
1318 	int ret;
1319 
1320 	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1321 	if (ret)
1322 		goto err;
1323 	GEM_BUG_ON(!ce->state);
1324 
1325 	ret = __context_pin(ctx, ce->state);
1326 	if (ret)
1327 		goto err;
1328 
1329 	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1330 	if (IS_ERR(vaddr)) {
1331 		ret = PTR_ERR(vaddr);
1332 		goto unpin_vma;
1333 	}
1334 
1335 	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1336 	if (ret)
1337 		goto unpin_map;
1338 
1339 	intel_lr_context_descriptor_update(ctx, engine, ce);
1340 
1341 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1342 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1343 		i915_ggtt_offset(ce->ring->vma);
1344 	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1345 	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1346 
1347 	ce->state->obj->pin_global++;
1348 	i915_gem_context_get(ctx);
1349 	return ce;
1350 
1351 unpin_map:
1352 	i915_gem_object_unpin_map(ce->state->obj);
1353 unpin_vma:
1354 	__i915_vma_unpin(ce->state);
1355 err:
1356 	ce->pin_count = 0;
1357 	return ERR_PTR(ret);
1358 }
1359 
1360 static const struct intel_context_ops execlists_context_ops = {
1361 	.unpin = execlists_context_unpin,
1362 	.destroy = execlists_context_destroy,
1363 };
1364 
1365 static struct intel_context *
execlists_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)1366 execlists_context_pin(struct intel_engine_cs *engine,
1367 		      struct i915_gem_context *ctx)
1368 {
1369 	struct intel_context *ce = to_intel_context(ctx, engine);
1370 
1371 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1372 
1373 	if (likely(ce->pin_count++))
1374 		return ce;
1375 	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1376 
1377 	ce->ops = &execlists_context_ops;
1378 
1379 	return __execlists_context_pin(engine, ctx, ce);
1380 }
1381 
execlists_request_alloc(struct i915_request * request)1382 static int execlists_request_alloc(struct i915_request *request)
1383 {
1384 	int ret;
1385 
1386 	GEM_BUG_ON(!request->hw_context->pin_count);
1387 
1388 	/* Flush enough space to reduce the likelihood of waiting after
1389 	 * we start building the request - in which case we will just
1390 	 * have to repeat work.
1391 	 */
1392 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1393 
1394 	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1395 	if (ret)
1396 		return ret;
1397 
1398 	/* Note that after this point, we have committed to using
1399 	 * this request as it is being used to both track the
1400 	 * state of engine initialisation and liveness of the
1401 	 * golden renderstate above. Think twice before you try
1402 	 * to cancel/unwind this request now.
1403 	 */
1404 
1405 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1406 	return 0;
1407 }
1408 
1409 /*
1410  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1411  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1412  * but there is a slight complication as this is applied in WA batch where the
1413  * values are only initialized once so we cannot take register value at the
1414  * beginning and reuse it further; hence we save its value to memory, upload a
1415  * constant value with bit21 set and then we restore it back with the saved value.
1416  * To simplify the WA, a constant value is formed by using the default value
1417  * of this register. This shouldn't be a problem because we are only modifying
1418  * it for a short period and this batch in non-premptible. We can ofcourse
1419  * use additional instructions that read the actual value of the register
1420  * at that time and set our bit of interest but it makes the WA complicated.
1421  *
1422  * This WA is also required for Gen9 so extracting as a function avoids
1423  * code duplication.
1424  */
1425 static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * engine,u32 * batch)1426 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1427 {
1428 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1429 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1430 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1431 	*batch++ = 0;
1432 
1433 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1434 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1435 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1436 
1437 	batch = gen8_emit_pipe_control(batch,
1438 				       PIPE_CONTROL_CS_STALL |
1439 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1440 				       0);
1441 
1442 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1443 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1444 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1445 	*batch++ = 0;
1446 
1447 	return batch;
1448 }
1449 
1450 /*
1451  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1452  * initialized at the beginning and shared across all contexts but this field
1453  * helps us to have multiple batches at different offsets and select them based
1454  * on a criteria. At the moment this batch always start at the beginning of the page
1455  * and at this point we don't have multiple wa_ctx batch buffers.
1456  *
1457  * The number of WA applied are not known at the beginning; we use this field
1458  * to return the no of DWORDS written.
1459  *
1460  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1461  * so it adds NOOPs as padding to make it cacheline aligned.
1462  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1463  * makes a complete batch buffer.
1464  */
gen8_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1465 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1466 {
1467 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1468 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1469 
1470 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1471 	if (IS_BROADWELL(engine->i915))
1472 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1473 
1474 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1475 	/* Actual scratch location is at 128 bytes offset */
1476 	batch = gen8_emit_pipe_control(batch,
1477 				       PIPE_CONTROL_FLUSH_L3 |
1478 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1479 				       PIPE_CONTROL_CS_STALL |
1480 				       PIPE_CONTROL_QW_WRITE,
1481 				       i915_ggtt_offset(engine->scratch) +
1482 				       2 * CACHELINE_BYTES);
1483 
1484 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1485 
1486 	/* Pad to end of cacheline */
1487 	while ((unsigned long)batch % CACHELINE_BYTES)
1488 		*batch++ = MI_NOOP;
1489 
1490 	/*
1491 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1492 	 * execution depends on the length specified in terms of cache lines
1493 	 * in the register CTX_RCS_INDIRECT_CTX
1494 	 */
1495 
1496 	return batch;
1497 }
1498 
1499 struct lri {
1500 	i915_reg_t reg;
1501 	u32 value;
1502 };
1503 
emit_lri(u32 * batch,const struct lri * lri,unsigned int count)1504 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1505 {
1506 	GEM_BUG_ON(!count || count > 63);
1507 
1508 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1509 	do {
1510 		*batch++ = i915_mmio_reg_offset(lri->reg);
1511 		*batch++ = lri->value;
1512 	} while (lri++, --count);
1513 	*batch++ = MI_NOOP;
1514 
1515 	return batch;
1516 }
1517 
gen9_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1518 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1519 {
1520 	static const struct lri lri[] = {
1521 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1522 		{
1523 			COMMON_SLICE_CHICKEN2,
1524 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1525 				       0),
1526 		},
1527 
1528 		/* BSpec: 11391 */
1529 		{
1530 			FF_SLICE_CHICKEN,
1531 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1532 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1533 		},
1534 
1535 		/* BSpec: 11299 */
1536 		{
1537 			_3D_CHICKEN3,
1538 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1539 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1540 		}
1541 	};
1542 
1543 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1544 
1545 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1546 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1547 
1548 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1549 
1550 	/* WaClearSlmSpaceAtContextSwitch:kbl */
1551 	/* Actual scratch location is at 128 bytes offset */
1552 	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1553 		batch = gen8_emit_pipe_control(batch,
1554 					       PIPE_CONTROL_FLUSH_L3 |
1555 					       PIPE_CONTROL_GLOBAL_GTT_IVB |
1556 					       PIPE_CONTROL_CS_STALL |
1557 					       PIPE_CONTROL_QW_WRITE,
1558 					       i915_ggtt_offset(engine->scratch)
1559 					       + 2 * CACHELINE_BYTES);
1560 	}
1561 
1562 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1563 	if (HAS_POOLED_EU(engine->i915)) {
1564 		/*
1565 		 * EU pool configuration is setup along with golden context
1566 		 * during context initialization. This value depends on
1567 		 * device type (2x6 or 3x6) and needs to be updated based
1568 		 * on which subslice is disabled especially for 2x6
1569 		 * devices, however it is safe to load default
1570 		 * configuration of 3x6 device instead of masking off
1571 		 * corresponding bits because HW ignores bits of a disabled
1572 		 * subslice and drops down to appropriate config. Please
1573 		 * see render_state_setup() in i915_gem_render_state.c for
1574 		 * possible configurations, to avoid duplication they are
1575 		 * not shown here again.
1576 		 */
1577 		*batch++ = GEN9_MEDIA_POOL_STATE;
1578 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1579 		*batch++ = 0x00777000;
1580 		*batch++ = 0;
1581 		*batch++ = 0;
1582 		*batch++ = 0;
1583 	}
1584 
1585 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1586 
1587 	/* Pad to end of cacheline */
1588 	while ((unsigned long)batch % CACHELINE_BYTES)
1589 		*batch++ = MI_NOOP;
1590 
1591 	return batch;
1592 }
1593 
1594 static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1595 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1596 {
1597 	int i;
1598 
1599 	/*
1600 	 * WaPipeControlBefore3DStateSamplePattern: cnl
1601 	 *
1602 	 * Ensure the engine is idle prior to programming a
1603 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1604 	 */
1605 	batch = gen8_emit_pipe_control(batch,
1606 				       PIPE_CONTROL_CS_STALL,
1607 				       0);
1608 	/*
1609 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1610 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1611 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1612 	 * confusing. Since gen8_emit_pipe_control() already advances the
1613 	 * batch by 6 dwords, we advance the other 10 here, completing a
1614 	 * cacheline. It's not clear if the workaround requires this padding
1615 	 * before other commands, or if it's just the regular padding we would
1616 	 * already have for the workaround bb, so leave it here for now.
1617 	 */
1618 	for (i = 0; i < 10; i++)
1619 		*batch++ = MI_NOOP;
1620 
1621 	/* Pad to end of cacheline */
1622 	while ((unsigned long)batch % CACHELINE_BYTES)
1623 		*batch++ = MI_NOOP;
1624 
1625 	return batch;
1626 }
1627 
1628 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1629 
lrc_setup_wa_ctx(struct intel_engine_cs * engine)1630 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1631 {
1632 	struct drm_i915_gem_object *obj;
1633 	struct i915_vma *vma;
1634 	int err;
1635 
1636 	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1637 	if (IS_ERR(obj))
1638 		return PTR_ERR(obj);
1639 
1640 	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1641 	if (IS_ERR(vma)) {
1642 		err = PTR_ERR(vma);
1643 		goto err;
1644 	}
1645 
1646 	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1647 	if (err)
1648 		goto err;
1649 
1650 	engine->wa_ctx.vma = vma;
1651 	return 0;
1652 
1653 err:
1654 	i915_gem_object_put(obj);
1655 	return err;
1656 }
1657 
lrc_destroy_wa_ctx(struct intel_engine_cs * engine)1658 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1659 {
1660 	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1661 }
1662 
1663 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1664 
intel_init_workaround_bb(struct intel_engine_cs * engine)1665 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1666 {
1667 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1668 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1669 					    &wa_ctx->per_ctx };
1670 	wa_bb_func_t wa_bb_fn[2];
1671 	struct page *page;
1672 	void *batch, *batch_ptr;
1673 	unsigned int i;
1674 	int ret;
1675 
1676 	if (GEM_WARN_ON(engine->id != RCS))
1677 		return -EINVAL;
1678 
1679 	switch (INTEL_GEN(engine->i915)) {
1680 	case 11:
1681 		return 0;
1682 	case 10:
1683 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
1684 		wa_bb_fn[1] = NULL;
1685 		break;
1686 	case 9:
1687 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1688 		wa_bb_fn[1] = NULL;
1689 		break;
1690 	case 8:
1691 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1692 		wa_bb_fn[1] = NULL;
1693 		break;
1694 	default:
1695 		MISSING_CASE(INTEL_GEN(engine->i915));
1696 		return 0;
1697 	}
1698 
1699 	ret = lrc_setup_wa_ctx(engine);
1700 	if (ret) {
1701 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1702 		return ret;
1703 	}
1704 
1705 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1706 	batch = batch_ptr = kmap_atomic(page);
1707 
1708 	/*
1709 	 * Emit the two workaround batch buffers, recording the offset from the
1710 	 * start of the workaround batch buffer object for each and their
1711 	 * respective sizes.
1712 	 */
1713 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1714 		wa_bb[i]->offset = batch_ptr - batch;
1715 		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1716 					    CACHELINE_BYTES))) {
1717 			ret = -EINVAL;
1718 			break;
1719 		}
1720 		if (wa_bb_fn[i])
1721 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1722 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1723 	}
1724 
1725 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1726 
1727 	kunmap_atomic(batch);
1728 	if (ret)
1729 		lrc_destroy_wa_ctx(engine);
1730 
1731 	return ret;
1732 }
1733 
enable_execlists(struct intel_engine_cs * engine)1734 static void enable_execlists(struct intel_engine_cs *engine)
1735 {
1736 	struct drm_i915_private *dev_priv = engine->i915;
1737 
1738 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1739 
1740 	/*
1741 	 * Make sure we're not enabling the new 12-deep CSB
1742 	 * FIFO as that requires a slightly updated handling
1743 	 * in the ctx switch irq. Since we're currently only
1744 	 * using only 2 elements of the enhanced execlists the
1745 	 * deeper FIFO it's not needed and it's not worth adding
1746 	 * more statements to the irq handler to support it.
1747 	 */
1748 	if (INTEL_GEN(dev_priv) >= 11)
1749 		I915_WRITE(RING_MODE_GEN7(engine),
1750 			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1751 	else
1752 		I915_WRITE(RING_MODE_GEN7(engine),
1753 			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1754 
1755 	I915_WRITE(RING_MI_MODE(engine->mmio_base),
1756 		   _MASKED_BIT_DISABLE(STOP_RING));
1757 
1758 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1759 		   engine->status_page.ggtt_offset);
1760 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1761 }
1762 
unexpected_starting_state(struct intel_engine_cs * engine)1763 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1764 {
1765 	struct drm_i915_private *dev_priv = engine->i915;
1766 	bool unexpected = false;
1767 
1768 	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1769 		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1770 		unexpected = true;
1771 	}
1772 
1773 	return unexpected;
1774 }
1775 
gen8_init_common_ring(struct intel_engine_cs * engine)1776 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1777 {
1778 	int ret;
1779 
1780 	ret = intel_mocs_init_engine(engine);
1781 	if (ret)
1782 		return ret;
1783 
1784 	intel_engine_reset_breadcrumbs(engine);
1785 
1786 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1787 		struct drm_printer p = drm_debug_printer(__func__);
1788 
1789 		intel_engine_dump(engine, &p, NULL);
1790 	}
1791 
1792 	enable_execlists(engine);
1793 
1794 	return 0;
1795 }
1796 
gen8_init_render_ring(struct intel_engine_cs * engine)1797 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1798 {
1799 	struct drm_i915_private *dev_priv = engine->i915;
1800 	int ret;
1801 
1802 	ret = gen8_init_common_ring(engine);
1803 	if (ret)
1804 		return ret;
1805 
1806 	intel_whitelist_workarounds_apply(engine);
1807 
1808 	/* We need to disable the AsyncFlip performance optimisations in order
1809 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1810 	 * programmed to '1' on all products.
1811 	 *
1812 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1813 	 */
1814 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1815 
1816 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1817 
1818 	return 0;
1819 }
1820 
gen9_init_render_ring(struct intel_engine_cs * engine)1821 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1822 {
1823 	int ret;
1824 
1825 	ret = gen8_init_common_ring(engine);
1826 	if (ret)
1827 		return ret;
1828 
1829 	intel_whitelist_workarounds_apply(engine);
1830 
1831 	return 0;
1832 }
1833 
1834 static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs * engine)1835 execlists_reset_prepare(struct intel_engine_cs *engine)
1836 {
1837 	struct intel_engine_execlists * const execlists = &engine->execlists;
1838 	struct i915_request *request, *active;
1839 	unsigned long flags;
1840 
1841 	GEM_TRACE("%s\n", engine->name);
1842 
1843 	/*
1844 	 * Prevent request submission to the hardware until we have
1845 	 * completed the reset in i915_gem_reset_finish(). If a request
1846 	 * is completed by one engine, it may then queue a request
1847 	 * to a second via its execlists->tasklet *just* as we are
1848 	 * calling engine->init_hw() and also writing the ELSP.
1849 	 * Turning off the execlists->tasklet until the reset is over
1850 	 * prevents the race.
1851 	 */
1852 	__tasklet_disable_sync_once(&execlists->tasklet);
1853 
1854 	spin_lock_irqsave(&engine->timeline.lock, flags);
1855 
1856 	/*
1857 	 * We want to flush the pending context switches, having disabled
1858 	 * the tasklet above, we can assume exclusive access to the execlists.
1859 	 * For this allows us to catch up with an inflight preemption event,
1860 	 * and avoid blaming an innocent request if the stall was due to the
1861 	 * preemption itself.
1862 	 */
1863 	process_csb(engine);
1864 
1865 	/*
1866 	 * The last active request can then be no later than the last request
1867 	 * now in ELSP[0]. So search backwards from there, so that if the GPU
1868 	 * has advanced beyond the last CSB update, it will be pardoned.
1869 	 */
1870 	active = NULL;
1871 	request = port_request(execlists->port);
1872 	if (request) {
1873 		/*
1874 		 * Prevent the breadcrumb from advancing before we decide
1875 		 * which request is currently active.
1876 		 */
1877 		intel_engine_stop_cs(engine);
1878 
1879 		list_for_each_entry_from_reverse(request,
1880 						 &engine->timeline.requests,
1881 						 link) {
1882 			if (__i915_request_completed(request,
1883 						     request->global_seqno))
1884 				break;
1885 
1886 			active = request;
1887 		}
1888 	}
1889 
1890 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1891 
1892 	return active;
1893 }
1894 
execlists_reset(struct intel_engine_cs * engine,struct i915_request * request)1895 static void execlists_reset(struct intel_engine_cs *engine,
1896 			    struct i915_request *request)
1897 {
1898 	struct intel_engine_execlists * const execlists = &engine->execlists;
1899 	unsigned long flags;
1900 	u32 *regs;
1901 
1902 	GEM_TRACE("%s request global=%x, current=%d\n",
1903 		  engine->name, request ? request->global_seqno : 0,
1904 		  intel_engine_get_seqno(engine));
1905 
1906 	spin_lock_irqsave(&engine->timeline.lock, flags);
1907 
1908 	/*
1909 	 * Catch up with any missed context-switch interrupts.
1910 	 *
1911 	 * Ideally we would just read the remaining CSB entries now that we
1912 	 * know the gpu is idle. However, the CSB registers are sometimes^W
1913 	 * often trashed across a GPU reset! Instead we have to rely on
1914 	 * guessing the missed context-switch events by looking at what
1915 	 * requests were completed.
1916 	 */
1917 	execlists_cancel_port_requests(execlists);
1918 
1919 	/* Push back any incomplete requests for replay after the reset. */
1920 	__unwind_incomplete_requests(engine);
1921 
1922 	/* Following the reset, we need to reload the CSB read/write pointers */
1923 	reset_csb_pointers(&engine->execlists);
1924 
1925 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1926 
1927 	/*
1928 	 * If the request was innocent, we leave the request in the ELSP
1929 	 * and will try to replay it on restarting. The context image may
1930 	 * have been corrupted by the reset, in which case we may have
1931 	 * to service a new GPU hang, but more likely we can continue on
1932 	 * without impact.
1933 	 *
1934 	 * If the request was guilty, we presume the context is corrupt
1935 	 * and have to at least restore the RING register in the context
1936 	 * image back to the expected values to skip over the guilty request.
1937 	 */
1938 	if (!request || request->fence.error != -EIO)
1939 		return;
1940 
1941 	/*
1942 	 * We want a simple context + ring to execute the breadcrumb update.
1943 	 * We cannot rely on the context being intact across the GPU hang,
1944 	 * so clear it and rebuild just what we need for the breadcrumb.
1945 	 * All pending requests for this context will be zapped, and any
1946 	 * future request will be after userspace has had the opportunity
1947 	 * to recreate its own state.
1948 	 */
1949 	regs = request->hw_context->lrc_reg_state;
1950 	if (engine->pinned_default_state) {
1951 		memcpy(regs, /* skip restoring the vanilla PPHWSP */
1952 		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1953 		       engine->context_size - PAGE_SIZE);
1954 	}
1955 	execlists_init_reg_state(regs,
1956 				 request->gem_context, engine, request->ring);
1957 
1958 	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1959 	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1960 
1961 	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1962 	regs[CTX_RING_HEAD + 1] = request->ring->head;
1963 
1964 	intel_ring_update_space(request->ring);
1965 
1966 	/* Reset WaIdleLiteRestore:bdw,skl as well */
1967 	unwind_wa_tail(request);
1968 }
1969 
execlists_reset_finish(struct intel_engine_cs * engine)1970 static void execlists_reset_finish(struct intel_engine_cs *engine)
1971 {
1972 	struct intel_engine_execlists * const execlists = &engine->execlists;
1973 
1974 	/* After a GPU reset, we may have requests to replay */
1975 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1976 		tasklet_schedule(&execlists->tasklet);
1977 
1978 	/*
1979 	 * Flush the tasklet while we still have the forcewake to be sure
1980 	 * that it is not allowed to sleep before we restart and reload a
1981 	 * context.
1982 	 *
1983 	 * As before (with execlists_reset_prepare) we rely on the caller
1984 	 * serialising multiple attempts to reset so that we know that we
1985 	 * are the only one manipulating tasklet state.
1986 	 */
1987 	__tasklet_enable_sync_once(&execlists->tasklet);
1988 
1989 	GEM_TRACE("%s\n", engine->name);
1990 }
1991 
intel_logical_ring_emit_pdps(struct i915_request * rq)1992 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1993 {
1994 	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1995 	struct intel_engine_cs *engine = rq->engine;
1996 	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1997 	u32 *cs;
1998 	int i;
1999 
2000 	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2001 	if (IS_ERR(cs))
2002 		return PTR_ERR(cs);
2003 
2004 	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2005 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2006 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2007 
2008 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
2009 		*cs++ = upper_32_bits(pd_daddr);
2010 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
2011 		*cs++ = lower_32_bits(pd_daddr);
2012 	}
2013 
2014 	*cs++ = MI_NOOP;
2015 	intel_ring_advance(rq, cs);
2016 
2017 	return 0;
2018 }
2019 
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)2020 static int gen8_emit_bb_start(struct i915_request *rq,
2021 			      u64 offset, u32 len,
2022 			      const unsigned int flags)
2023 {
2024 	u32 *cs;
2025 	int ret;
2026 
2027 	/* Don't rely in hw updating PDPs, specially in lite-restore.
2028 	 * Ideally, we should set Force PD Restore in ctx descriptor,
2029 	 * but we can't. Force Restore would be a second option, but
2030 	 * it is unsafe in case of lite-restore (because the ctx is
2031 	 * not idle). PML4 is allocated during ppgtt init so this is
2032 	 * not needed in 48-bit.*/
2033 	if (rq->gem_context->ppgtt &&
2034 	    (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2035 	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2036 	    !intel_vgpu_active(rq->i915)) {
2037 		ret = intel_logical_ring_emit_pdps(rq);
2038 		if (ret)
2039 			return ret;
2040 
2041 		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2042 	}
2043 
2044 	cs = intel_ring_begin(rq, 6);
2045 	if (IS_ERR(cs))
2046 		return PTR_ERR(cs);
2047 
2048 	/*
2049 	 * WaDisableCtxRestoreArbitration:bdw,chv
2050 	 *
2051 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
2052 	 * particular all the gen that do not need the w/a at all!), if we
2053 	 * took care to make sure that on every switch into this context
2054 	 * (both ordinary and for preemption) that arbitrartion was enabled
2055 	 * we would be fine. However, there doesn't seem to be a downside to
2056 	 * being paranoid and making sure it is set before each batch and
2057 	 * every context-switch.
2058 	 *
2059 	 * Note that if we fail to enable arbitration before the request
2060 	 * is complete, then we do not see the context-switch interrupt and
2061 	 * the engine hangs (with RING_HEAD == RING_TAIL).
2062 	 *
2063 	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2064 	 */
2065 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2066 
2067 	/* FIXME(BDW): Address space and security selectors. */
2068 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2069 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
2070 		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2071 	*cs++ = lower_32_bits(offset);
2072 	*cs++ = upper_32_bits(offset);
2073 
2074 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2075 	*cs++ = MI_NOOP;
2076 	intel_ring_advance(rq, cs);
2077 
2078 	return 0;
2079 }
2080 
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)2081 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2082 {
2083 	struct drm_i915_private *dev_priv = engine->i915;
2084 	I915_WRITE_IMR(engine,
2085 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
2086 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2087 }
2088 
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)2089 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2090 {
2091 	struct drm_i915_private *dev_priv = engine->i915;
2092 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2093 }
2094 
gen8_emit_flush(struct i915_request * request,u32 mode)2095 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2096 {
2097 	u32 cmd, *cs;
2098 
2099 	cs = intel_ring_begin(request, 4);
2100 	if (IS_ERR(cs))
2101 		return PTR_ERR(cs);
2102 
2103 	cmd = MI_FLUSH_DW + 1;
2104 
2105 	/* We always require a command barrier so that subsequent
2106 	 * commands, such as breadcrumb interrupts, are strictly ordered
2107 	 * wrt the contents of the write cache being flushed to memory
2108 	 * (and thus being coherent from the CPU).
2109 	 */
2110 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2111 
2112 	if (mode & EMIT_INVALIDATE) {
2113 		cmd |= MI_INVALIDATE_TLB;
2114 		if (request->engine->id == VCS)
2115 			cmd |= MI_INVALIDATE_BSD;
2116 	}
2117 
2118 	*cs++ = cmd;
2119 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2120 	*cs++ = 0; /* upper addr */
2121 	*cs++ = 0; /* value */
2122 	intel_ring_advance(request, cs);
2123 
2124 	return 0;
2125 }
2126 
gen8_emit_flush_render(struct i915_request * request,u32 mode)2127 static int gen8_emit_flush_render(struct i915_request *request,
2128 				  u32 mode)
2129 {
2130 	struct intel_engine_cs *engine = request->engine;
2131 	u32 scratch_addr =
2132 		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2133 	bool vf_flush_wa = false, dc_flush_wa = false;
2134 	u32 *cs, flags = 0;
2135 	int len;
2136 
2137 	flags |= PIPE_CONTROL_CS_STALL;
2138 
2139 	if (mode & EMIT_FLUSH) {
2140 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2141 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2142 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2143 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2144 	}
2145 
2146 	if (mode & EMIT_INVALIDATE) {
2147 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2148 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2149 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2150 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2151 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2152 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2153 		flags |= PIPE_CONTROL_QW_WRITE;
2154 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2155 
2156 		/*
2157 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2158 		 * pipe control.
2159 		 */
2160 		if (IS_GEN9(request->i915))
2161 			vf_flush_wa = true;
2162 
2163 		/* WaForGAMHang:kbl */
2164 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2165 			dc_flush_wa = true;
2166 	}
2167 
2168 	len = 6;
2169 
2170 	if (vf_flush_wa)
2171 		len += 6;
2172 
2173 	if (dc_flush_wa)
2174 		len += 12;
2175 
2176 	cs = intel_ring_begin(request, len);
2177 	if (IS_ERR(cs))
2178 		return PTR_ERR(cs);
2179 
2180 	if (vf_flush_wa)
2181 		cs = gen8_emit_pipe_control(cs, 0, 0);
2182 
2183 	if (dc_flush_wa)
2184 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2185 					    0);
2186 
2187 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2188 
2189 	if (dc_flush_wa)
2190 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2191 
2192 	intel_ring_advance(request, cs);
2193 
2194 	return 0;
2195 }
2196 
2197 /*
2198  * Reserve space for 2 NOOPs at the end of each request to be
2199  * used as a workaround for not being allowed to do lite
2200  * restore with HEAD==TAIL (WaIdleLiteRestore).
2201  */
gen8_emit_wa_tail(struct i915_request * request,u32 * cs)2202 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2203 {
2204 	/* Ensure there's always at least one preemption point per-request. */
2205 	*cs++ = MI_ARB_CHECK;
2206 	*cs++ = MI_NOOP;
2207 	request->wa_tail = intel_ring_offset(request, cs);
2208 }
2209 
gen8_emit_breadcrumb(struct i915_request * request,u32 * cs)2210 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2211 {
2212 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2213 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2214 
2215 	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2216 				  intel_hws_seqno_address(request->engine));
2217 	*cs++ = MI_USER_INTERRUPT;
2218 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2219 	request->tail = intel_ring_offset(request, cs);
2220 	assert_ring_tail_valid(request->ring, request->tail);
2221 
2222 	gen8_emit_wa_tail(request, cs);
2223 }
2224 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2225 
gen8_emit_breadcrumb_rcs(struct i915_request * request,u32 * cs)2226 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2227 {
2228 	/* We're using qword write, seqno should be aligned to 8 bytes. */
2229 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2230 
2231 	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2232 				      intel_hws_seqno_address(request->engine));
2233 	*cs++ = MI_USER_INTERRUPT;
2234 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2235 	request->tail = intel_ring_offset(request, cs);
2236 	assert_ring_tail_valid(request->ring, request->tail);
2237 
2238 	gen8_emit_wa_tail(request, cs);
2239 }
2240 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2241 
gen8_init_rcs_context(struct i915_request * rq)2242 static int gen8_init_rcs_context(struct i915_request *rq)
2243 {
2244 	int ret;
2245 
2246 	ret = intel_ctx_workarounds_emit(rq);
2247 	if (ret)
2248 		return ret;
2249 
2250 	ret = intel_rcs_context_init_mocs(rq);
2251 	/*
2252 	 * Failing to program the MOCS is non-fatal.The system will not
2253 	 * run at peak performance. So generate an error and carry on.
2254 	 */
2255 	if (ret)
2256 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2257 
2258 	return i915_gem_render_state_emit(rq);
2259 }
2260 
2261 /**
2262  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2263  * @engine: Engine Command Streamer.
2264  */
intel_logical_ring_cleanup(struct intel_engine_cs * engine)2265 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2266 {
2267 	struct drm_i915_private *dev_priv;
2268 
2269 	/*
2270 	 * Tasklet cannot be active at this point due intel_mark_active/idle
2271 	 * so this is just for documentation.
2272 	 */
2273 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2274 			     &engine->execlists.tasklet.state)))
2275 		tasklet_kill(&engine->execlists.tasklet);
2276 
2277 	dev_priv = engine->i915;
2278 
2279 	if (engine->buffer) {
2280 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2281 	}
2282 
2283 	if (engine->cleanup)
2284 		engine->cleanup(engine);
2285 
2286 	intel_engine_cleanup_common(engine);
2287 
2288 	lrc_destroy_wa_ctx(engine);
2289 
2290 	engine->i915 = NULL;
2291 	dev_priv->engine[engine->id] = NULL;
2292 	kfree(engine);
2293 }
2294 
intel_execlists_set_default_submission(struct intel_engine_cs * engine)2295 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2296 {
2297 	engine->submit_request = execlists_submit_request;
2298 	engine->cancel_requests = execlists_cancel_requests;
2299 	engine->schedule = execlists_schedule;
2300 	engine->execlists.tasklet.func = execlists_submission_tasklet;
2301 
2302 	engine->reset.prepare = execlists_reset_prepare;
2303 
2304 	engine->park = NULL;
2305 	engine->unpark = NULL;
2306 
2307 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2308 	if (engine->i915->preempt_context)
2309 		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2310 
2311 	engine->i915->caps.scheduler =
2312 		I915_SCHEDULER_CAP_ENABLED |
2313 		I915_SCHEDULER_CAP_PRIORITY;
2314 	if (intel_engine_has_preemption(engine))
2315 		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2316 }
2317 
2318 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)2319 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2320 {
2321 	/* Default vfuncs which can be overriden by each engine. */
2322 	engine->init_hw = gen8_init_common_ring;
2323 
2324 	engine->reset.prepare = execlists_reset_prepare;
2325 	engine->reset.reset = execlists_reset;
2326 	engine->reset.finish = execlists_reset_finish;
2327 
2328 	engine->context_pin = execlists_context_pin;
2329 	engine->request_alloc = execlists_request_alloc;
2330 
2331 	engine->emit_flush = gen8_emit_flush;
2332 	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2333 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2334 
2335 	engine->set_default_submission = intel_execlists_set_default_submission;
2336 
2337 	if (INTEL_GEN(engine->i915) < 11) {
2338 		engine->irq_enable = gen8_logical_ring_enable_irq;
2339 		engine->irq_disable = gen8_logical_ring_disable_irq;
2340 	} else {
2341 		/*
2342 		 * TODO: On Gen11 interrupt masks need to be clear
2343 		 * to allow C6 entry. Keep interrupts enabled at
2344 		 * and take the hit of generating extra interrupts
2345 		 * until a more refined solution exists.
2346 		 */
2347 	}
2348 	engine->emit_bb_start = gen8_emit_bb_start;
2349 }
2350 
2351 static inline void
logical_ring_default_irqs(struct intel_engine_cs * engine)2352 logical_ring_default_irqs(struct intel_engine_cs *engine)
2353 {
2354 	unsigned int shift = 0;
2355 
2356 	if (INTEL_GEN(engine->i915) < 11) {
2357 		const u8 irq_shifts[] = {
2358 			[RCS]  = GEN8_RCS_IRQ_SHIFT,
2359 			[BCS]  = GEN8_BCS_IRQ_SHIFT,
2360 			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
2361 			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
2362 			[VECS] = GEN8_VECS_IRQ_SHIFT,
2363 		};
2364 
2365 		shift = irq_shifts[engine->id];
2366 	}
2367 
2368 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2369 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2370 }
2371 
2372 static void
logical_ring_setup(struct intel_engine_cs * engine)2373 logical_ring_setup(struct intel_engine_cs *engine)
2374 {
2375 	intel_engine_setup_common(engine);
2376 
2377 	/* Intentionally left blank. */
2378 	engine->buffer = NULL;
2379 
2380 	tasklet_init(&engine->execlists.tasklet,
2381 		     execlists_submission_tasklet, (unsigned long)engine);
2382 
2383 	logical_ring_default_vfuncs(engine);
2384 	logical_ring_default_irqs(engine);
2385 }
2386 
csb_force_mmio(struct drm_i915_private * i915)2387 static bool csb_force_mmio(struct drm_i915_private *i915)
2388 {
2389 	/* Older GVT emulation depends upon intercepting CSB mmio */
2390 	return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
2391 }
2392 
logical_ring_init(struct intel_engine_cs * engine)2393 static int logical_ring_init(struct intel_engine_cs *engine)
2394 {
2395 	struct drm_i915_private *i915 = engine->i915;
2396 	struct intel_engine_execlists * const execlists = &engine->execlists;
2397 	int ret;
2398 
2399 	ret = intel_engine_init_common(engine);
2400 	if (ret)
2401 		goto error;
2402 
2403 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2404 		execlists->submit_reg = i915->regs +
2405 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2406 		execlists->ctrl_reg = i915->regs +
2407 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2408 	} else {
2409 		execlists->submit_reg = i915->regs +
2410 			i915_mmio_reg_offset(RING_ELSP(engine));
2411 	}
2412 
2413 	execlists->preempt_complete_status = ~0u;
2414 	if (i915->preempt_context) {
2415 		struct intel_context *ce =
2416 			to_intel_context(i915->preempt_context, engine);
2417 
2418 		execlists->preempt_complete_status =
2419 			upper_32_bits(ce->lrc_desc);
2420 	}
2421 
2422 	execlists->csb_read =
2423 		i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
2424 	if (csb_force_mmio(i915)) {
2425 		execlists->csb_status = (u32 __force *)
2426 			(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
2427 
2428 		execlists->csb_write = (u32 __force *)execlists->csb_read;
2429 		execlists->csb_write_reset =
2430 			_MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
2431 				      GEN8_CSB_ENTRIES - 1);
2432 	} else {
2433 		execlists->csb_status =
2434 			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2435 
2436 		execlists->csb_write =
2437 			&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2438 		execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2439 	}
2440 	reset_csb_pointers(execlists);
2441 
2442 	return 0;
2443 
2444 error:
2445 	intel_logical_ring_cleanup(engine);
2446 	return ret;
2447 }
2448 
logical_render_ring_init(struct intel_engine_cs * engine)2449 int logical_render_ring_init(struct intel_engine_cs *engine)
2450 {
2451 	struct drm_i915_private *dev_priv = engine->i915;
2452 	int ret;
2453 
2454 	logical_ring_setup(engine);
2455 
2456 	if (HAS_L3_DPF(dev_priv))
2457 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2458 
2459 	/* Override some for render ring. */
2460 	if (INTEL_GEN(dev_priv) >= 9)
2461 		engine->init_hw = gen9_init_render_ring;
2462 	else
2463 		engine->init_hw = gen8_init_render_ring;
2464 	engine->init_context = gen8_init_rcs_context;
2465 	engine->emit_flush = gen8_emit_flush_render;
2466 	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2467 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2468 
2469 	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2470 	if (ret)
2471 		return ret;
2472 
2473 	ret = intel_init_workaround_bb(engine);
2474 	if (ret) {
2475 		/*
2476 		 * We continue even if we fail to initialize WA batch
2477 		 * because we only expect rare glitches but nothing
2478 		 * critical to prevent us from using GPU
2479 		 */
2480 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2481 			  ret);
2482 	}
2483 
2484 	return logical_ring_init(engine);
2485 }
2486 
logical_xcs_ring_init(struct intel_engine_cs * engine)2487 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2488 {
2489 	logical_ring_setup(engine);
2490 
2491 	return logical_ring_init(engine);
2492 }
2493 
2494 static u32
make_rpcs(struct drm_i915_private * dev_priv)2495 make_rpcs(struct drm_i915_private *dev_priv)
2496 {
2497 	u32 rpcs = 0;
2498 
2499 	/*
2500 	 * No explicit RPCS request is needed to ensure full
2501 	 * slice/subslice/EU enablement prior to Gen9.
2502 	*/
2503 	if (INTEL_GEN(dev_priv) < 9)
2504 		return 0;
2505 
2506 	/*
2507 	 * Starting in Gen9, render power gating can leave
2508 	 * slice/subslice/EU in a partially enabled state. We
2509 	 * must make an explicit request through RPCS for full
2510 	 * enablement.
2511 	*/
2512 	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2513 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2514 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2515 			GEN8_RPCS_S_CNT_SHIFT;
2516 		rpcs |= GEN8_RPCS_ENABLE;
2517 	}
2518 
2519 	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2520 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2521 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2522 			GEN8_RPCS_SS_CNT_SHIFT;
2523 		rpcs |= GEN8_RPCS_ENABLE;
2524 	}
2525 
2526 	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2527 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2528 			GEN8_RPCS_EU_MIN_SHIFT;
2529 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2530 			GEN8_RPCS_EU_MAX_SHIFT;
2531 		rpcs |= GEN8_RPCS_ENABLE;
2532 	}
2533 
2534 	return rpcs;
2535 }
2536 
intel_lr_indirect_ctx_offset(struct intel_engine_cs * engine)2537 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2538 {
2539 	u32 indirect_ctx_offset;
2540 
2541 	switch (INTEL_GEN(engine->i915)) {
2542 	default:
2543 		MISSING_CASE(INTEL_GEN(engine->i915));
2544 		/* fall through */
2545 	case 11:
2546 		indirect_ctx_offset =
2547 			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2548 		break;
2549 	case 10:
2550 		indirect_ctx_offset =
2551 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2552 		break;
2553 	case 9:
2554 		indirect_ctx_offset =
2555 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2556 		break;
2557 	case 8:
2558 		indirect_ctx_offset =
2559 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2560 		break;
2561 	}
2562 
2563 	return indirect_ctx_offset;
2564 }
2565 
execlists_init_reg_state(u32 * regs,struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct intel_ring * ring)2566 static void execlists_init_reg_state(u32 *regs,
2567 				     struct i915_gem_context *ctx,
2568 				     struct intel_engine_cs *engine,
2569 				     struct intel_ring *ring)
2570 {
2571 	struct drm_i915_private *dev_priv = engine->i915;
2572 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2573 	u32 base = engine->mmio_base;
2574 	bool rcs = engine->class == RENDER_CLASS;
2575 
2576 	/* A context is actually a big batch buffer with several
2577 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2578 	 * values we are setting here are only for the first context restore:
2579 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
2580 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2581 	 * we are not initializing here).
2582 	 */
2583 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2584 				 MI_LRI_FORCE_POSTED;
2585 
2586 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2587 		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2588 				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2589 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2590 				   (HAS_RESOURCE_STREAMER(dev_priv) ?
2591 				   CTX_CTRL_RS_CTX_ENABLE : 0)));
2592 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2593 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2594 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2595 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2596 		RING_CTL_SIZE(ring->size) | RING_VALID);
2597 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2598 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2599 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2600 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2601 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2602 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2603 	if (rcs) {
2604 		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2605 
2606 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2607 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2608 			RING_INDIRECT_CTX_OFFSET(base), 0);
2609 		if (wa_ctx->indirect_ctx.size) {
2610 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2611 
2612 			regs[CTX_RCS_INDIRECT_CTX + 1] =
2613 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
2614 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2615 
2616 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2617 				intel_lr_indirect_ctx_offset(engine) << 6;
2618 		}
2619 
2620 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2621 		if (wa_ctx->per_ctx.size) {
2622 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2623 
2624 			regs[CTX_BB_PER_CTX_PTR + 1] =
2625 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2626 		}
2627 	}
2628 
2629 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2630 
2631 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2632 	/* PDP values well be assigned later if needed */
2633 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2634 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2635 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2636 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2637 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2638 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2639 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2640 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2641 
2642 	if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2643 		/* 64b PPGTT (48bit canonical)
2644 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2645 		 * other PDP Descriptors are ignored.
2646 		 */
2647 		ASSIGN_CTX_PML4(ppgtt, regs);
2648 	}
2649 
2650 	if (rcs) {
2651 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2652 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2653 			make_rpcs(dev_priv));
2654 
2655 		i915_oa_init_reg_state(engine, ctx, regs);
2656 	}
2657 }
2658 
2659 static int
populate_lr_context(struct i915_gem_context * ctx,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * engine,struct intel_ring * ring)2660 populate_lr_context(struct i915_gem_context *ctx,
2661 		    struct drm_i915_gem_object *ctx_obj,
2662 		    struct intel_engine_cs *engine,
2663 		    struct intel_ring *ring)
2664 {
2665 	void *vaddr;
2666 	u32 *regs;
2667 	int ret;
2668 
2669 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2670 	if (ret) {
2671 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2672 		return ret;
2673 	}
2674 
2675 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2676 	if (IS_ERR(vaddr)) {
2677 		ret = PTR_ERR(vaddr);
2678 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2679 		return ret;
2680 	}
2681 	ctx_obj->mm.dirty = true;
2682 
2683 	if (engine->default_state) {
2684 		/*
2685 		 * We only want to copy over the template context state;
2686 		 * skipping over the headers reserved for GuC communication,
2687 		 * leaving those as zero.
2688 		 */
2689 		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2690 		void *defaults;
2691 
2692 		defaults = i915_gem_object_pin_map(engine->default_state,
2693 						   I915_MAP_WB);
2694 		if (IS_ERR(defaults)) {
2695 			ret = PTR_ERR(defaults);
2696 			goto err_unpin_ctx;
2697 		}
2698 
2699 		memcpy(vaddr + start, defaults + start, engine->context_size);
2700 		i915_gem_object_unpin_map(engine->default_state);
2701 	}
2702 
2703 	/* The second page of the context object contains some fields which must
2704 	 * be set up prior to the first execution. */
2705 	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2706 	execlists_init_reg_state(regs, ctx, engine, ring);
2707 	if (!engine->default_state)
2708 		regs[CTX_CONTEXT_CONTROL + 1] |=
2709 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2710 	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2711 		regs[CTX_CONTEXT_CONTROL + 1] |=
2712 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2713 					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2714 
2715 err_unpin_ctx:
2716 	i915_gem_object_unpin_map(ctx_obj);
2717 	return ret;
2718 }
2719 
execlists_context_deferred_alloc(struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct intel_context * ce)2720 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2721 					    struct intel_engine_cs *engine,
2722 					    struct intel_context *ce)
2723 {
2724 	struct drm_i915_gem_object *ctx_obj;
2725 	struct i915_vma *vma;
2726 	uint32_t context_size;
2727 	struct intel_ring *ring;
2728 	struct i915_timeline *timeline;
2729 	int ret;
2730 
2731 	if (ce->state)
2732 		return 0;
2733 
2734 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2735 
2736 	/*
2737 	 * Before the actual start of the context image, we insert a few pages
2738 	 * for our own use and for sharing with the GuC.
2739 	 */
2740 	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2741 
2742 	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2743 	if (IS_ERR(ctx_obj))
2744 		return PTR_ERR(ctx_obj);
2745 
2746 	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2747 	if (IS_ERR(vma)) {
2748 		ret = PTR_ERR(vma);
2749 		goto error_deref_obj;
2750 	}
2751 
2752 	timeline = i915_timeline_create(ctx->i915, ctx->name);
2753 	if (IS_ERR(timeline)) {
2754 		ret = PTR_ERR(timeline);
2755 		goto error_deref_obj;
2756 	}
2757 
2758 	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2759 	i915_timeline_put(timeline);
2760 	if (IS_ERR(ring)) {
2761 		ret = PTR_ERR(ring);
2762 		goto error_deref_obj;
2763 	}
2764 
2765 	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2766 	if (ret) {
2767 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2768 		goto error_ring_free;
2769 	}
2770 
2771 	ce->ring = ring;
2772 	ce->state = vma;
2773 
2774 	return 0;
2775 
2776 error_ring_free:
2777 	intel_ring_free(ring);
2778 error_deref_obj:
2779 	i915_gem_object_put(ctx_obj);
2780 	return ret;
2781 }
2782 
intel_lr_context_resume(struct drm_i915_private * dev_priv)2783 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2784 {
2785 	struct intel_engine_cs *engine;
2786 	struct i915_gem_context *ctx;
2787 	enum intel_engine_id id;
2788 
2789 	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2790 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2791 	 * that stored in context. As we only write new commands from
2792 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2793 	 * starts reading from its RING_HEAD from the context, it may try to
2794 	 * execute that junk and die.
2795 	 *
2796 	 * So to avoid that we reset the context images upon resume. For
2797 	 * simplicity, we just zero everything out.
2798 	 */
2799 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2800 		for_each_engine(engine, dev_priv, id) {
2801 			struct intel_context *ce =
2802 				to_intel_context(ctx, engine);
2803 			u32 *reg;
2804 
2805 			if (!ce->state)
2806 				continue;
2807 
2808 			reg = i915_gem_object_pin_map(ce->state->obj,
2809 						      I915_MAP_WB);
2810 			if (WARN_ON(IS_ERR(reg)))
2811 				continue;
2812 
2813 			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2814 			reg[CTX_RING_HEAD+1] = 0;
2815 			reg[CTX_RING_TAIL+1] = 0;
2816 
2817 			ce->state->obj->mm.dirty = true;
2818 			i915_gem_object_unpin_map(ce->state->obj);
2819 
2820 			intel_ring_reset(ce->ring, 0);
2821 		}
2822 	}
2823 }
2824 
2825 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2826 #include "selftests/intel_lrc.c"
2827 #endif
2828