1 /*
2 * Copyright © 2014-2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "intel_guc.h"
26 #include "intel_guc_ads.h"
27 #include "intel_guc_submission.h"
28 #include "i915_drv.h"
29
30 static void guc_init_ggtt_pin_bias(struct intel_guc *guc);
31
gen8_guc_raise_irq(struct intel_guc * guc)32 static void gen8_guc_raise_irq(struct intel_guc *guc)
33 {
34 struct drm_i915_private *dev_priv = guc_to_i915(guc);
35
36 I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
37 }
38
guc_send_reg(struct intel_guc * guc,u32 i)39 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
40 {
41 GEM_BUG_ON(!guc->send_regs.base);
42 GEM_BUG_ON(!guc->send_regs.count);
43 GEM_BUG_ON(i >= guc->send_regs.count);
44
45 return _MMIO(guc->send_regs.base + 4 * i);
46 }
47
intel_guc_init_send_regs(struct intel_guc * guc)48 void intel_guc_init_send_regs(struct intel_guc *guc)
49 {
50 struct drm_i915_private *dev_priv = guc_to_i915(guc);
51 enum forcewake_domains fw_domains = 0;
52 unsigned int i;
53
54 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
55 guc->send_regs.count = SOFT_SCRATCH_COUNT - 1;
56
57 for (i = 0; i < guc->send_regs.count; i++) {
58 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
59 guc_send_reg(guc, i),
60 FW_REG_READ | FW_REG_WRITE);
61 }
62 guc->send_regs.fw_domains = fw_domains;
63 }
64
intel_guc_init_early(struct intel_guc * guc)65 void intel_guc_init_early(struct intel_guc *guc)
66 {
67 intel_guc_fw_init_early(guc);
68 intel_guc_ct_init_early(&guc->ct);
69 intel_guc_log_init_early(&guc->log);
70
71 mutex_init(&guc->send_mutex);
72 spin_lock_init(&guc->irq_lock);
73 guc->send = intel_guc_send_nop;
74 guc->handler = intel_guc_to_host_event_handler_nop;
75 guc->notify = gen8_guc_raise_irq;
76 }
77
guc_init_wq(struct intel_guc * guc)78 static int guc_init_wq(struct intel_guc *guc)
79 {
80 struct drm_i915_private *dev_priv = guc_to_i915(guc);
81
82 /*
83 * GuC log buffer flush work item has to do register access to
84 * send the ack to GuC and this work item, if not synced before
85 * suspend, can potentially get executed after the GFX device is
86 * suspended.
87 * By marking the WQ as freezable, we don't have to bother about
88 * flushing of this work item from the suspend hooks, the pending
89 * work item if any will be either executed before the suspend
90 * or scheduled later on resume. This way the handling of work
91 * item can be kept same between system suspend & rpm suspend.
92 */
93 guc->log.relay.flush_wq =
94 alloc_ordered_workqueue("i915-guc_log",
95 WQ_HIGHPRI | WQ_FREEZABLE);
96 if (!guc->log.relay.flush_wq) {
97 DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
98 return -ENOMEM;
99 }
100
101 /*
102 * Even though both sending GuC action, and adding a new workitem to
103 * GuC workqueue are serialized (each with its own locking), since
104 * we're using mutliple engines, it's possible that we're going to
105 * issue a preempt request with two (or more - each for different
106 * engine) workitems in GuC queue. In this situation, GuC may submit
107 * all of them, which will make us very confused.
108 * Our preemption contexts may even already be complete - before we
109 * even had the chance to sent the preempt action to GuC!. Rather
110 * than introducing yet another lock, we can just use ordered workqueue
111 * to make sure we're always sending a single preemption request with a
112 * single workitem.
113 */
114 if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
115 USES_GUC_SUBMISSION(dev_priv)) {
116 guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
117 WQ_HIGHPRI);
118 if (!guc->preempt_wq) {
119 destroy_workqueue(guc->log.relay.flush_wq);
120 DRM_ERROR("Couldn't allocate workqueue for GuC "
121 "preemption\n");
122 return -ENOMEM;
123 }
124 }
125
126 return 0;
127 }
128
guc_fini_wq(struct intel_guc * guc)129 static void guc_fini_wq(struct intel_guc *guc)
130 {
131 struct drm_i915_private *dev_priv = guc_to_i915(guc);
132
133 if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
134 USES_GUC_SUBMISSION(dev_priv))
135 destroy_workqueue(guc->preempt_wq);
136
137 destroy_workqueue(guc->log.relay.flush_wq);
138 }
139
intel_guc_init_misc(struct intel_guc * guc)140 int intel_guc_init_misc(struct intel_guc *guc)
141 {
142 struct drm_i915_private *i915 = guc_to_i915(guc);
143 int ret;
144
145 guc_init_ggtt_pin_bias(guc);
146
147 ret = guc_init_wq(guc);
148 if (ret)
149 return ret;
150
151 intel_uc_fw_fetch(i915, &guc->fw);
152
153 return 0;
154 }
155
intel_guc_fini_misc(struct intel_guc * guc)156 void intel_guc_fini_misc(struct intel_guc *guc)
157 {
158 intel_uc_fw_fini(&guc->fw);
159 guc_fini_wq(guc);
160 }
161
guc_shared_data_create(struct intel_guc * guc)162 static int guc_shared_data_create(struct intel_guc *guc)
163 {
164 struct i915_vma *vma;
165 void *vaddr;
166
167 vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
168 if (IS_ERR(vma))
169 return PTR_ERR(vma);
170
171 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
172 if (IS_ERR(vaddr)) {
173 i915_vma_unpin_and_release(&vma);
174 return PTR_ERR(vaddr);
175 }
176
177 guc->shared_data = vma;
178 guc->shared_data_vaddr = vaddr;
179
180 return 0;
181 }
182
guc_shared_data_destroy(struct intel_guc * guc)183 static void guc_shared_data_destroy(struct intel_guc *guc)
184 {
185 i915_gem_object_unpin_map(guc->shared_data->obj);
186 i915_vma_unpin_and_release(&guc->shared_data);
187 }
188
intel_guc_init(struct intel_guc * guc)189 int intel_guc_init(struct intel_guc *guc)
190 {
191 struct drm_i915_private *dev_priv = guc_to_i915(guc);
192 int ret;
193
194 ret = guc_shared_data_create(guc);
195 if (ret)
196 goto err_fetch;
197 GEM_BUG_ON(!guc->shared_data);
198
199 ret = intel_guc_log_create(&guc->log);
200 if (ret)
201 goto err_shared;
202
203 ret = intel_guc_ads_create(guc);
204 if (ret)
205 goto err_log;
206 GEM_BUG_ON(!guc->ads_vma);
207
208 /* We need to notify the guc whenever we change the GGTT */
209 i915_ggtt_enable_guc(dev_priv);
210
211 return 0;
212
213 err_log:
214 intel_guc_log_destroy(&guc->log);
215 err_shared:
216 guc_shared_data_destroy(guc);
217 err_fetch:
218 intel_uc_fw_fini(&guc->fw);
219 return ret;
220 }
221
intel_guc_fini(struct intel_guc * guc)222 void intel_guc_fini(struct intel_guc *guc)
223 {
224 struct drm_i915_private *dev_priv = guc_to_i915(guc);
225
226 i915_ggtt_disable_guc(dev_priv);
227 intel_guc_ads_destroy(guc);
228 intel_guc_log_destroy(&guc->log);
229 guc_shared_data_destroy(guc);
230 intel_uc_fw_fini(&guc->fw);
231 }
232
guc_ctl_debug_flags(struct intel_guc * guc)233 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
234 {
235 u32 level = intel_guc_log_get_level(&guc->log);
236 u32 flags;
237 u32 ads;
238
239 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
240 flags = ads << GUC_ADS_ADDR_SHIFT | GUC_ADS_ENABLED;
241
242 if (!GUC_LOG_LEVEL_IS_ENABLED(level))
243 flags |= GUC_LOG_DEFAULT_DISABLED;
244
245 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
246 flags |= GUC_LOG_DISABLED;
247 else
248 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
249 GUC_LOG_VERBOSITY_SHIFT;
250
251 return flags;
252 }
253
guc_ctl_feature_flags(struct intel_guc * guc)254 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
255 {
256 u32 flags = 0;
257
258 flags |= GUC_CTL_VCS2_ENABLED;
259
260 if (USES_GUC_SUBMISSION(guc_to_i915(guc)))
261 flags |= GUC_CTL_KERNEL_SUBMISSIONS;
262 else
263 flags |= GUC_CTL_DISABLE_SCHEDULER;
264
265 return flags;
266 }
267
guc_ctl_ctxinfo_flags(struct intel_guc * guc)268 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
269 {
270 u32 flags = 0;
271
272 if (USES_GUC_SUBMISSION(guc_to_i915(guc))) {
273 u32 ctxnum, base;
274
275 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
276 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
277
278 base >>= PAGE_SHIFT;
279 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
280 (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
281 }
282 return flags;
283 }
284
guc_ctl_log_params_flags(struct intel_guc * guc)285 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
286 {
287 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
288 u32 flags;
289
290 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
291 #define UNIT SZ_1M
292 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
293 #else
294 #define UNIT SZ_4K
295 #define FLAG 0
296 #endif
297
298 BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
299 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
300 BUILD_BUG_ON(!DPC_BUFFER_SIZE);
301 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
302 BUILD_BUG_ON(!ISR_BUFFER_SIZE);
303 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
304
305 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
306 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
307 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
308 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
309 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
310 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
311
312 flags = GUC_LOG_VALID |
313 GUC_LOG_NOTIFY_ON_HALF_FULL |
314 FLAG |
315 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
316 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
317 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
318 (offset << GUC_LOG_BUF_ADDR_SHIFT);
319
320 #undef UNIT
321 #undef FLAG
322
323 return flags;
324 }
325
326 /*
327 * Initialise the GuC parameter block before starting the firmware
328 * transfer. These parameters are read by the firmware on startup
329 * and cannot be changed thereafter.
330 */
intel_guc_init_params(struct intel_guc * guc)331 void intel_guc_init_params(struct intel_guc *guc)
332 {
333 struct drm_i915_private *dev_priv = guc_to_i915(guc);
334 u32 params[GUC_CTL_MAX_DWORDS];
335 int i;
336
337 memset(params, 0, sizeof(params));
338
339 /*
340 * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
341 * second. This ARAR is calculated by:
342 * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
343 */
344 params[GUC_CTL_ARAT_HIGH] = 0;
345 params[GUC_CTL_ARAT_LOW] = 100000000;
346
347 params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;
348
349 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
350 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
351 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
352 params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
353
354 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
355 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
356
357 /*
358 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
359 * they are power context saved so it's ok to release forcewake
360 * when we are done here and take it again at xfer time.
361 */
362 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER);
363
364 I915_WRITE(SOFT_SCRATCH(0), 0);
365
366 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
367 I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);
368
369 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER);
370 }
371
intel_guc_send_nop(struct intel_guc * guc,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size)372 int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
373 u32 *response_buf, u32 response_buf_size)
374 {
375 WARN(1, "Unexpected send: action=%#x\n", *action);
376 return -ENODEV;
377 }
378
intel_guc_to_host_event_handler_nop(struct intel_guc * guc)379 void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
380 {
381 WARN(1, "Unexpected event: no suitable handler\n");
382 }
383
384 /*
385 * This function implements the MMIO based host to GuC interface.
386 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size)387 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
388 u32 *response_buf, u32 response_buf_size)
389 {
390 struct drm_i915_private *dev_priv = guc_to_i915(guc);
391 u32 status;
392 int i;
393 int ret;
394
395 GEM_BUG_ON(!len);
396 GEM_BUG_ON(len > guc->send_regs.count);
397
398 /* We expect only action code */
399 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
400
401 /* If CT is available, we expect to use MMIO only during init/fini */
402 GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
403 *action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
404 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
405
406 mutex_lock(&guc->send_mutex);
407 intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains);
408
409 for (i = 0; i < len; i++)
410 I915_WRITE(guc_send_reg(guc, i), action[i]);
411
412 POSTING_READ(guc_send_reg(guc, i - 1));
413
414 intel_guc_notify(guc);
415
416 /*
417 * No GuC command should ever take longer than 10ms.
418 * Fast commands should still complete in 10us.
419 */
420 ret = __intel_wait_for_register_fw(dev_priv,
421 guc_send_reg(guc, 0),
422 INTEL_GUC_MSG_TYPE_MASK,
423 INTEL_GUC_MSG_TYPE_RESPONSE <<
424 INTEL_GUC_MSG_TYPE_SHIFT,
425 10, 10, &status);
426 /* If GuC explicitly returned an error, convert it to -EIO */
427 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
428 ret = -EIO;
429
430 if (ret) {
431 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
432 action[0], ret, status);
433 goto out;
434 }
435
436 if (response_buf) {
437 int count = min(response_buf_size, guc->send_regs.count - 1);
438
439 for (i = 0; i < count; i++)
440 response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
441 }
442
443 /* Use data from the GuC response as our return value */
444 ret = INTEL_GUC_MSG_TO_DATA(status);
445
446 out:
447 intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains);
448 mutex_unlock(&guc->send_mutex);
449
450 return ret;
451 }
452
intel_guc_to_host_event_handler_mmio(struct intel_guc * guc)453 void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc)
454 {
455 struct drm_i915_private *dev_priv = guc_to_i915(guc);
456 u32 msg, val;
457
458 /*
459 * Sample the log buffer flush related bits & clear them out now
460 * itself from the message identity register to minimize the
461 * probability of losing a flush interrupt, when there are back
462 * to back flush interrupts.
463 * There can be a new flush interrupt, for different log buffer
464 * type (like for ISR), whilst Host is handling one (for DPC).
465 * Since same bit is used in message register for ISR & DPC, it
466 * could happen that GuC sets the bit for 2nd interrupt but Host
467 * clears out the bit on handling the 1st interrupt.
468 */
469 disable_rpm_wakeref_asserts(dev_priv);
470 spin_lock(&guc->irq_lock);
471 val = I915_READ(SOFT_SCRATCH(15));
472 msg = val & guc->msg_enabled_mask;
473 I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
474 spin_unlock(&guc->irq_lock);
475 enable_rpm_wakeref_asserts(dev_priv);
476
477 intel_guc_to_host_process_recv_msg(guc, msg);
478 }
479
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,u32 msg)480 void intel_guc_to_host_process_recv_msg(struct intel_guc *guc, u32 msg)
481 {
482 /* Make sure to handle only enabled messages */
483 msg &= guc->msg_enabled_mask;
484
485 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
486 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
487 intel_guc_log_handle_flush_event(&guc->log);
488 }
489
intel_guc_sample_forcewake(struct intel_guc * guc)490 int intel_guc_sample_forcewake(struct intel_guc *guc)
491 {
492 struct drm_i915_private *dev_priv = guc_to_i915(guc);
493 u32 action[2];
494
495 action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
496 /* WaRsDisableCoarsePowerGating:skl,cnl */
497 if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
498 action[1] = 0;
499 else
500 /* bit 0 and 1 are for Render and Media domain separately */
501 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
502
503 return intel_guc_send(guc, action, ARRAY_SIZE(action));
504 }
505
506 /**
507 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
508 * @guc: intel_guc structure
509 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
510 *
511 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
512 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
513 * intel_huc_auth().
514 *
515 * Return: non-zero code on error
516 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)517 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
518 {
519 u32 action[] = {
520 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
521 rsa_offset
522 };
523
524 return intel_guc_send(guc, action, ARRAY_SIZE(action));
525 }
526
527 /**
528 * intel_guc_suspend() - notify GuC entering suspend state
529 * @guc: the guc
530 */
intel_guc_suspend(struct intel_guc * guc)531 int intel_guc_suspend(struct intel_guc *guc)
532 {
533 u32 data[] = {
534 INTEL_GUC_ACTION_ENTER_S_STATE,
535 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
536 intel_guc_ggtt_offset(guc, guc->shared_data)
537 };
538
539 return intel_guc_send(guc, data, ARRAY_SIZE(data));
540 }
541
542 /**
543 * intel_guc_reset_engine() - ask GuC to reset an engine
544 * @guc: intel_guc structure
545 * @engine: engine to be reset
546 */
intel_guc_reset_engine(struct intel_guc * guc,struct intel_engine_cs * engine)547 int intel_guc_reset_engine(struct intel_guc *guc,
548 struct intel_engine_cs *engine)
549 {
550 u32 data[7];
551
552 GEM_BUG_ON(!guc->execbuf_client);
553
554 data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
555 data[1] = engine->guc_id;
556 data[2] = 0;
557 data[3] = 0;
558 data[4] = 0;
559 data[5] = guc->execbuf_client->stage_id;
560 data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
561
562 return intel_guc_send(guc, data, ARRAY_SIZE(data));
563 }
564
565 /**
566 * intel_guc_resume() - notify GuC resuming from suspend state
567 * @guc: the guc
568 */
intel_guc_resume(struct intel_guc * guc)569 int intel_guc_resume(struct intel_guc *guc)
570 {
571 u32 data[] = {
572 INTEL_GUC_ACTION_EXIT_S_STATE,
573 GUC_POWER_D0,
574 intel_guc_ggtt_offset(guc, guc->shared_data)
575 };
576
577 return intel_guc_send(guc, data, ARRAY_SIZE(data));
578 }
579
580 /**
581 * DOC: GuC Address Space
582 *
583 * The layout of GuC address space is shown below:
584 *
585 * ::
586 *
587 * +==============> +====================+ <== GUC_GGTT_TOP
588 * ^ | |
589 * | | |
590 * | | DRAM |
591 * | | Memory |
592 * | | |
593 * GuC | |
594 * Address +========> +====================+ <== WOPCM Top
595 * Space ^ | HW contexts RSVD |
596 * | | | WOPCM |
597 * | | +==> +--------------------+ <== GuC WOPCM Top
598 * | GuC ^ | |
599 * | GGTT | | |
600 * | Pin GuC | GuC |
601 * | Bias WOPCM | WOPCM |
602 * | | Size | |
603 * | | | | |
604 * v v v | |
605 * +=====+=====+==> +====================+ <== GuC WOPCM Base
606 * | Non-GuC WOPCM |
607 * | (HuC/Reserved) |
608 * +====================+ <== WOPCM Base
609 *
610 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to WOPCM
611 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
612 * to DRAM. The value of the GuC ggtt_pin_bias is determined by WOPCM size and
613 * actual GuC WOPCM size.
614 */
615
616 /**
617 * guc_init_ggtt_pin_bias() - Initialize the GuC ggtt_pin_bias value.
618 * @guc: intel_guc structure.
619 *
620 * This function will calculate and initialize the ggtt_pin_bias value based on
621 * overall WOPCM size and GuC WOPCM size.
622 */
guc_init_ggtt_pin_bias(struct intel_guc * guc)623 static void guc_init_ggtt_pin_bias(struct intel_guc *guc)
624 {
625 struct drm_i915_private *i915 = guc_to_i915(guc);
626
627 GEM_BUG_ON(!i915->wopcm.size);
628 GEM_BUG_ON(i915->wopcm.size < i915->wopcm.guc.base);
629
630 guc->ggtt_pin_bias = i915->wopcm.size - i915->wopcm.guc.base;
631 }
632
633 /**
634 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
635 * @guc: the guc
636 * @size: size of area to allocate (both virtual space and memory)
637 *
638 * This is a wrapper to create an object for use with the GuC. In order to
639 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
640 * both some backing storage and a range inside the Global GTT. We must pin
641 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
642 * range is reserved inside GuC.
643 *
644 * Return: A i915_vma if successful, otherwise an ERR_PTR.
645 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)646 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
647 {
648 struct drm_i915_private *dev_priv = guc_to_i915(guc);
649 struct drm_i915_gem_object *obj;
650 struct i915_vma *vma;
651 int ret;
652
653 obj = i915_gem_object_create(dev_priv, size);
654 if (IS_ERR(obj))
655 return ERR_CAST(obj);
656
657 vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL);
658 if (IS_ERR(vma))
659 goto err;
660
661 ret = i915_vma_pin(vma, 0, PAGE_SIZE,
662 PIN_GLOBAL | PIN_OFFSET_BIAS | guc->ggtt_pin_bias);
663 if (ret) {
664 vma = ERR_PTR(ret);
665 goto err;
666 }
667
668 return vma;
669
670 err:
671 i915_gem_object_put(obj);
672 return vma;
673 }
674