1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * FPU register's regset abstraction, for ptrace, core dumps, etc.
4 */
5 #include <asm/fpu/internal.h>
6 #include <asm/fpu/signal.h>
7 #include <asm/fpu/regset.h>
8 #include <asm/fpu/xstate.h>
9 #include <linux/sched/task_stack.h>
10
11 /*
12 * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
13 * as the "regset->n" for the xstate regset will be updated based on the feature
14 * capabilities supported by the xsave.
15 */
regset_fpregs_active(struct task_struct * target,const struct user_regset * regset)16 int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
17 {
18 struct fpu *target_fpu = &target->thread.fpu;
19
20 return target_fpu->initialized ? regset->n : 0;
21 }
22
regset_xregset_fpregs_active(struct task_struct * target,const struct user_regset * regset)23 int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
24 {
25 struct fpu *target_fpu = &target->thread.fpu;
26
27 if (boot_cpu_has(X86_FEATURE_FXSR) && target_fpu->initialized)
28 return regset->n;
29 else
30 return 0;
31 }
32
xfpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)33 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
34 unsigned int pos, unsigned int count,
35 void *kbuf, void __user *ubuf)
36 {
37 struct fpu *fpu = &target->thread.fpu;
38
39 if (!boot_cpu_has(X86_FEATURE_FXSR))
40 return -ENODEV;
41
42 fpu__prepare_read(fpu);
43 fpstate_sanitize_xstate(fpu);
44
45 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
46 &fpu->state.fxsave, 0, -1);
47 }
48
xfpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)49 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
50 unsigned int pos, unsigned int count,
51 const void *kbuf, const void __user *ubuf)
52 {
53 struct fpu *fpu = &target->thread.fpu;
54 int ret;
55
56 if (!boot_cpu_has(X86_FEATURE_FXSR))
57 return -ENODEV;
58
59 fpu__prepare_write(fpu);
60 fpstate_sanitize_xstate(fpu);
61
62 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
63 &fpu->state.fxsave, 0, -1);
64
65 /*
66 * mxcsr reserved bits must be masked to zero for security reasons.
67 */
68 fpu->state.fxsave.mxcsr &= mxcsr_feature_mask;
69
70 /*
71 * update the header bits in the xsave header, indicating the
72 * presence of FP and SSE state.
73 */
74 if (boot_cpu_has(X86_FEATURE_XSAVE))
75 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
76
77 return ret;
78 }
79
xstateregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)80 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
81 unsigned int pos, unsigned int count,
82 void *kbuf, void __user *ubuf)
83 {
84 struct fpu *fpu = &target->thread.fpu;
85 struct xregs_state *xsave;
86 int ret;
87
88 if (!boot_cpu_has(X86_FEATURE_XSAVE))
89 return -ENODEV;
90
91 xsave = &fpu->state.xsave;
92
93 fpu__prepare_read(fpu);
94
95 if (using_compacted_format()) {
96 if (kbuf)
97 ret = copy_xstate_to_kernel(kbuf, xsave, pos, count);
98 else
99 ret = copy_xstate_to_user(ubuf, xsave, pos, count);
100 } else {
101 fpstate_sanitize_xstate(fpu);
102 /*
103 * Copy the 48 bytes defined by the software into the xsave
104 * area in the thread struct, so that we can copy the whole
105 * area to user using one user_regset_copyout().
106 */
107 memcpy(&xsave->i387.sw_reserved, xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
108
109 /*
110 * Copy the xstate memory layout.
111 */
112 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
113 }
114 return ret;
115 }
116
xstateregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)117 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
118 unsigned int pos, unsigned int count,
119 const void *kbuf, const void __user *ubuf)
120 {
121 struct fpu *fpu = &target->thread.fpu;
122 struct xregs_state *xsave;
123 int ret;
124
125 if (!boot_cpu_has(X86_FEATURE_XSAVE))
126 return -ENODEV;
127
128 /*
129 * A whole standard-format XSAVE buffer is needed:
130 */
131 if ((pos != 0) || (count < fpu_user_xstate_size))
132 return -EFAULT;
133
134 xsave = &fpu->state.xsave;
135
136 fpu__prepare_write(fpu);
137
138 if (using_compacted_format()) {
139 if (kbuf)
140 ret = copy_kernel_to_xstate(xsave, kbuf);
141 else
142 ret = copy_user_to_xstate(xsave, ubuf);
143 } else {
144 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
145 if (!ret)
146 ret = validate_xstate_header(&xsave->header);
147 }
148
149 /*
150 * mxcsr reserved bits must be masked to zero for security reasons.
151 */
152 xsave->i387.mxcsr &= mxcsr_feature_mask;
153
154 /*
155 * In case of failure, mark all states as init:
156 */
157 if (ret)
158 fpstate_init(&fpu->state);
159
160 return ret;
161 }
162
163 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
164
165 /*
166 * FPU tag word conversions.
167 */
168
twd_i387_to_fxsr(unsigned short twd)169 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
170 {
171 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
172
173 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
174 tmp = ~twd;
175 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
176 /* and move the valid bits to the lower byte. */
177 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
178 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
179 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
180
181 return tmp;
182 }
183
184 #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
185 #define FP_EXP_TAG_VALID 0
186 #define FP_EXP_TAG_ZERO 1
187 #define FP_EXP_TAG_SPECIAL 2
188 #define FP_EXP_TAG_EMPTY 3
189
twd_fxsr_to_i387(struct fxregs_state * fxsave)190 static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
191 {
192 struct _fpxreg *st;
193 u32 tos = (fxsave->swd >> 11) & 7;
194 u32 twd = (unsigned long) fxsave->twd;
195 u32 tag;
196 u32 ret = 0xffff0000u;
197 int i;
198
199 for (i = 0; i < 8; i++, twd >>= 1) {
200 if (twd & 0x1) {
201 st = FPREG_ADDR(fxsave, (i - tos) & 7);
202
203 switch (st->exponent & 0x7fff) {
204 case 0x7fff:
205 tag = FP_EXP_TAG_SPECIAL;
206 break;
207 case 0x0000:
208 if (!st->significand[0] &&
209 !st->significand[1] &&
210 !st->significand[2] &&
211 !st->significand[3])
212 tag = FP_EXP_TAG_ZERO;
213 else
214 tag = FP_EXP_TAG_SPECIAL;
215 break;
216 default:
217 if (st->significand[3] & 0x8000)
218 tag = FP_EXP_TAG_VALID;
219 else
220 tag = FP_EXP_TAG_SPECIAL;
221 break;
222 }
223 } else {
224 tag = FP_EXP_TAG_EMPTY;
225 }
226 ret |= tag << (2 * i);
227 }
228 return ret;
229 }
230
231 /*
232 * FXSR floating point environment conversions.
233 */
234
235 void
convert_from_fxsr(struct user_i387_ia32_struct * env,struct task_struct * tsk)236 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
237 {
238 struct fxregs_state *fxsave = &tsk->thread.fpu.state.fxsave;
239 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
240 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
241 int i;
242
243 env->cwd = fxsave->cwd | 0xffff0000u;
244 env->swd = fxsave->swd | 0xffff0000u;
245 env->twd = twd_fxsr_to_i387(fxsave);
246
247 #ifdef CONFIG_X86_64
248 env->fip = fxsave->rip;
249 env->foo = fxsave->rdp;
250 /*
251 * should be actually ds/cs at fpu exception time, but
252 * that information is not available in 64bit mode.
253 */
254 env->fcs = task_pt_regs(tsk)->cs;
255 if (tsk == current) {
256 savesegment(ds, env->fos);
257 } else {
258 env->fos = tsk->thread.ds;
259 }
260 env->fos |= 0xffff0000;
261 #else
262 env->fip = fxsave->fip;
263 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
264 env->foo = fxsave->foo;
265 env->fos = fxsave->fos;
266 #endif
267
268 for (i = 0; i < 8; ++i)
269 memcpy(&to[i], &from[i], sizeof(to[0]));
270 }
271
convert_to_fxsr(struct task_struct * tsk,const struct user_i387_ia32_struct * env)272 void convert_to_fxsr(struct task_struct *tsk,
273 const struct user_i387_ia32_struct *env)
274
275 {
276 struct fxregs_state *fxsave = &tsk->thread.fpu.state.fxsave;
277 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
278 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
279 int i;
280
281 fxsave->cwd = env->cwd;
282 fxsave->swd = env->swd;
283 fxsave->twd = twd_i387_to_fxsr(env->twd);
284 fxsave->fop = (u16) ((u32) env->fcs >> 16);
285 #ifdef CONFIG_X86_64
286 fxsave->rip = env->fip;
287 fxsave->rdp = env->foo;
288 /* cs and ds ignored */
289 #else
290 fxsave->fip = env->fip;
291 fxsave->fcs = (env->fcs & 0xffff);
292 fxsave->foo = env->foo;
293 fxsave->fos = env->fos;
294 #endif
295
296 for (i = 0; i < 8; ++i)
297 memcpy(&to[i], &from[i], sizeof(from[0]));
298 }
299
fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)300 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
301 unsigned int pos, unsigned int count,
302 void *kbuf, void __user *ubuf)
303 {
304 struct fpu *fpu = &target->thread.fpu;
305 struct user_i387_ia32_struct env;
306
307 fpu__prepare_read(fpu);
308
309 if (!boot_cpu_has(X86_FEATURE_FPU))
310 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
311
312 if (!boot_cpu_has(X86_FEATURE_FXSR))
313 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
314 &fpu->state.fsave, 0,
315 -1);
316
317 fpstate_sanitize_xstate(fpu);
318
319 if (kbuf && pos == 0 && count == sizeof(env)) {
320 convert_from_fxsr(kbuf, target);
321 return 0;
322 }
323
324 convert_from_fxsr(&env, target);
325
326 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
327 }
328
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)329 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
330 unsigned int pos, unsigned int count,
331 const void *kbuf, const void __user *ubuf)
332 {
333 struct fpu *fpu = &target->thread.fpu;
334 struct user_i387_ia32_struct env;
335 int ret;
336
337 fpu__prepare_write(fpu);
338 fpstate_sanitize_xstate(fpu);
339
340 if (!boot_cpu_has(X86_FEATURE_FPU))
341 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
342
343 if (!boot_cpu_has(X86_FEATURE_FXSR))
344 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
345 &fpu->state.fsave, 0,
346 -1);
347
348 if (pos > 0 || count < sizeof(env))
349 convert_from_fxsr(&env, target);
350
351 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
352 if (!ret)
353 convert_to_fxsr(target, &env);
354
355 /*
356 * update the header bit in the xsave header, indicating the
357 * presence of FP.
358 */
359 if (boot_cpu_has(X86_FEATURE_XSAVE))
360 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FP;
361 return ret;
362 }
363
364 /*
365 * FPU state for core dumps.
366 * This is only used for a.out dumps now.
367 * It is declared generically using elf_fpregset_t (which is
368 * struct user_i387_struct) but is in fact only used for 32-bit
369 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
370 */
dump_fpu(struct pt_regs * regs,struct user_i387_struct * ufpu)371 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu)
372 {
373 struct task_struct *tsk = current;
374 struct fpu *fpu = &tsk->thread.fpu;
375 int fpvalid;
376
377 fpvalid = fpu->initialized;
378 if (fpvalid)
379 fpvalid = !fpregs_get(tsk, NULL,
380 0, sizeof(struct user_i387_ia32_struct),
381 ufpu, NULL);
382
383 return fpvalid;
384 }
385 EXPORT_SYMBOL(dump_fpu);
386
387 #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
388