1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 #include <asm/irq_regs.h>
14
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
17
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
20
21 /*
22 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23 * depending on the FPU hardware format:
24 */
25 union fpregs_state init_fpstate __read_mostly;
26
27 /*
28 * Track whether the kernel is using the FPU state
29 * currently.
30 *
31 * This flag is used:
32 *
33 * - by IRQ context code to potentially use the FPU
34 * if it's unused.
35 *
36 * - to debug kernel_fpu_begin()/end() correctness
37 */
38 static DEFINE_PER_CPU(bool, in_kernel_fpu);
39
40 /*
41 * Track which context is using the FPU on the CPU:
42 */
43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
44
kernel_fpu_disable(void)45 static void kernel_fpu_disable(void)
46 {
47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
48 this_cpu_write(in_kernel_fpu, true);
49 }
50
kernel_fpu_enable(void)51 static void kernel_fpu_enable(void)
52 {
53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
54 this_cpu_write(in_kernel_fpu, false);
55 }
56
kernel_fpu_disabled(void)57 static bool kernel_fpu_disabled(void)
58 {
59 return this_cpu_read(in_kernel_fpu);
60 }
61
interrupted_kernel_fpu_idle(void)62 static bool interrupted_kernel_fpu_idle(void)
63 {
64 return !kernel_fpu_disabled();
65 }
66
67 /*
68 * Were we in user mode (or vm86 mode) when we were
69 * interrupted?
70 *
71 * Doing kernel_fpu_begin/end() is ok if we are running
72 * in an interrupt context from user mode - we'll just
73 * save the FPU state as required.
74 */
interrupted_user_mode(void)75 static bool interrupted_user_mode(void)
76 {
77 struct pt_regs *regs = get_irq_regs();
78 return regs && user_mode(regs);
79 }
80
81 /*
82 * Can we use the FPU in kernel mode with the
83 * whole "kernel_fpu_begin/end()" sequence?
84 *
85 * It's always ok in process context (ie "not interrupt")
86 * but it is sometimes ok even from an irq.
87 */
irq_fpu_usable(void)88 bool irq_fpu_usable(void)
89 {
90 return !in_interrupt() ||
91 interrupted_user_mode() ||
92 interrupted_kernel_fpu_idle();
93 }
94 EXPORT_SYMBOL(irq_fpu_usable);
95
__kernel_fpu_begin(void)96 void __kernel_fpu_begin(void)
97 {
98 struct fpu *fpu = ¤t->thread.fpu;
99
100 WARN_ON_FPU(!irq_fpu_usable());
101
102 kernel_fpu_disable();
103
104 if (fpu->initialized) {
105 /*
106 * Ignore return value -- we don't care if reg state
107 * is clobbered.
108 */
109 copy_fpregs_to_fpstate(fpu);
110 } else {
111 __cpu_invalidate_fpregs_state();
112 }
113 }
114 EXPORT_SYMBOL(__kernel_fpu_begin);
115
__kernel_fpu_end(void)116 void __kernel_fpu_end(void)
117 {
118 struct fpu *fpu = ¤t->thread.fpu;
119
120 if (fpu->initialized)
121 copy_kernel_to_fpregs(&fpu->state);
122
123 kernel_fpu_enable();
124 }
125 EXPORT_SYMBOL(__kernel_fpu_end);
126
kernel_fpu_begin(void)127 void kernel_fpu_begin(void)
128 {
129 preempt_disable();
130 __kernel_fpu_begin();
131 }
132 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
133
kernel_fpu_end(void)134 void kernel_fpu_end(void)
135 {
136 __kernel_fpu_end();
137 preempt_enable();
138 }
139 EXPORT_SYMBOL_GPL(kernel_fpu_end);
140
141 /*
142 * Save the FPU state (mark it for reload if necessary):
143 *
144 * This only ever gets called for the current task.
145 */
fpu__save(struct fpu * fpu)146 void fpu__save(struct fpu *fpu)
147 {
148 WARN_ON_FPU(fpu != ¤t->thread.fpu);
149
150 preempt_disable();
151 trace_x86_fpu_before_save(fpu);
152 if (fpu->initialized) {
153 if (!copy_fpregs_to_fpstate(fpu)) {
154 copy_kernel_to_fpregs(&fpu->state);
155 }
156 }
157 trace_x86_fpu_after_save(fpu);
158 preempt_enable();
159 }
160 EXPORT_SYMBOL_GPL(fpu__save);
161
162 /*
163 * Legacy x87 fpstate state init:
164 */
fpstate_init_fstate(struct fregs_state * fp)165 static inline void fpstate_init_fstate(struct fregs_state *fp)
166 {
167 fp->cwd = 0xffff037fu;
168 fp->swd = 0xffff0000u;
169 fp->twd = 0xffffffffu;
170 fp->fos = 0xffff0000u;
171 }
172
fpstate_init(union fpregs_state * state)173 void fpstate_init(union fpregs_state *state)
174 {
175 if (!static_cpu_has(X86_FEATURE_FPU)) {
176 fpstate_init_soft(&state->soft);
177 return;
178 }
179
180 memset(state, 0, fpu_kernel_xstate_size);
181
182 if (static_cpu_has(X86_FEATURE_XSAVES))
183 fpstate_init_xstate(&state->xsave);
184 if (static_cpu_has(X86_FEATURE_FXSR))
185 fpstate_init_fxstate(&state->fxsave);
186 else
187 fpstate_init_fstate(&state->fsave);
188 }
189 EXPORT_SYMBOL_GPL(fpstate_init);
190
fpu__copy(struct fpu * dst_fpu,struct fpu * src_fpu)191 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
192 {
193 dst_fpu->last_cpu = -1;
194
195 if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
196 return 0;
197
198 WARN_ON_FPU(src_fpu != ¤t->thread.fpu);
199
200 /*
201 * Don't let 'init optimized' areas of the XSAVE area
202 * leak into the child task:
203 */
204 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
205
206 /*
207 * Save current FPU registers directly into the child
208 * FPU context, without any memory-to-memory copying.
209 *
210 * ( The function 'fails' in the FNSAVE case, which destroys
211 * register contents so we have to copy them back. )
212 */
213 if (!copy_fpregs_to_fpstate(dst_fpu)) {
214 memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
215 copy_kernel_to_fpregs(&src_fpu->state);
216 }
217
218 trace_x86_fpu_copy_src(src_fpu);
219 trace_x86_fpu_copy_dst(dst_fpu);
220
221 return 0;
222 }
223
224 /*
225 * Activate the current task's in-memory FPU context,
226 * if it has not been used before:
227 */
fpu__initialize(struct fpu * fpu)228 void fpu__initialize(struct fpu *fpu)
229 {
230 WARN_ON_FPU(fpu != ¤t->thread.fpu);
231
232 if (!fpu->initialized) {
233 fpstate_init(&fpu->state);
234 trace_x86_fpu_init_state(fpu);
235
236 trace_x86_fpu_activate_state(fpu);
237 /* Safe to do for the current task: */
238 fpu->initialized = 1;
239 }
240 }
241 EXPORT_SYMBOL_GPL(fpu__initialize);
242
243 /*
244 * This function must be called before we read a task's fpstate.
245 *
246 * There's two cases where this gets called:
247 *
248 * - for the current task (when coredumping), in which case we have
249 * to save the latest FPU registers into the fpstate,
250 *
251 * - or it's called for stopped tasks (ptrace), in which case the
252 * registers were already saved by the context-switch code when
253 * the task scheduled out - we only have to initialize the registers
254 * if they've never been initialized.
255 *
256 * If the task has used the FPU before then save it.
257 */
fpu__prepare_read(struct fpu * fpu)258 void fpu__prepare_read(struct fpu *fpu)
259 {
260 if (fpu == ¤t->thread.fpu) {
261 fpu__save(fpu);
262 } else {
263 if (!fpu->initialized) {
264 fpstate_init(&fpu->state);
265 trace_x86_fpu_init_state(fpu);
266
267 trace_x86_fpu_activate_state(fpu);
268 /* Safe to do for current and for stopped child tasks: */
269 fpu->initialized = 1;
270 }
271 }
272 }
273
274 /*
275 * This function must be called before we write a task's fpstate.
276 *
277 * If the task has used the FPU before then invalidate any cached FPU registers.
278 * If the task has not used the FPU before then initialize its fpstate.
279 *
280 * After this function call, after registers in the fpstate are
281 * modified and the child task has woken up, the child task will
282 * restore the modified FPU state from the modified context. If we
283 * didn't clear its cached status here then the cached in-registers
284 * state pending on its former CPU could be restored, corrupting
285 * the modifications.
286 */
fpu__prepare_write(struct fpu * fpu)287 void fpu__prepare_write(struct fpu *fpu)
288 {
289 /*
290 * Only stopped child tasks can be used to modify the FPU
291 * state in the fpstate buffer:
292 */
293 WARN_ON_FPU(fpu == ¤t->thread.fpu);
294
295 if (fpu->initialized) {
296 /* Invalidate any cached state: */
297 __fpu_invalidate_fpregs_state(fpu);
298 } else {
299 fpstate_init(&fpu->state);
300 trace_x86_fpu_init_state(fpu);
301
302 trace_x86_fpu_activate_state(fpu);
303 /* Safe to do for stopped child tasks: */
304 fpu->initialized = 1;
305 }
306 }
307
308 /*
309 * 'fpu__restore()' is called to copy FPU registers from
310 * the FPU fpstate to the live hw registers and to activate
311 * access to the hardware registers, so that FPU instructions
312 * can be used afterwards.
313 *
314 * Must be called with kernel preemption disabled (for example
315 * with local interrupts disabled, as it is in the case of
316 * do_device_not_available()).
317 */
fpu__restore(struct fpu * fpu)318 void fpu__restore(struct fpu *fpu)
319 {
320 fpu__initialize(fpu);
321
322 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
323 kernel_fpu_disable();
324 trace_x86_fpu_before_restore(fpu);
325 fpregs_activate(fpu);
326 copy_kernel_to_fpregs(&fpu->state);
327 trace_x86_fpu_after_restore(fpu);
328 kernel_fpu_enable();
329 }
330 EXPORT_SYMBOL_GPL(fpu__restore);
331
332 /*
333 * Drops current FPU state: deactivates the fpregs and
334 * the fpstate. NOTE: it still leaves previous contents
335 * in the fpregs in the eager-FPU case.
336 *
337 * This function can be used in cases where we know that
338 * a state-restore is coming: either an explicit one,
339 * or a reschedule.
340 */
fpu__drop(struct fpu * fpu)341 void fpu__drop(struct fpu *fpu)
342 {
343 preempt_disable();
344
345 if (fpu == ¤t->thread.fpu) {
346 if (fpu->initialized) {
347 /* Ignore delayed exceptions from user space */
348 asm volatile("1: fwait\n"
349 "2:\n"
350 _ASM_EXTABLE(1b, 2b));
351 fpregs_deactivate(fpu);
352 }
353 }
354
355 fpu->initialized = 0;
356
357 trace_x86_fpu_dropped(fpu);
358
359 preempt_enable();
360 }
361
362 /*
363 * Clear FPU registers by setting them up from
364 * the init fpstate:
365 */
copy_init_fpstate_to_fpregs(void)366 static inline void copy_init_fpstate_to_fpregs(void)
367 {
368 if (use_xsave())
369 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
370 else if (static_cpu_has(X86_FEATURE_FXSR))
371 copy_kernel_to_fxregs(&init_fpstate.fxsave);
372 else
373 copy_kernel_to_fregs(&init_fpstate.fsave);
374
375 if (boot_cpu_has(X86_FEATURE_OSPKE))
376 copy_init_pkru_to_fpregs();
377 }
378
379 /*
380 * Clear the FPU state back to init state.
381 *
382 * Called by sys_execve(), by the signal handler code and by various
383 * error paths.
384 */
fpu__clear(struct fpu * fpu)385 void fpu__clear(struct fpu *fpu)
386 {
387 WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */
388
389 fpu__drop(fpu);
390
391 /*
392 * Make sure fpstate is cleared and initialized.
393 */
394 if (static_cpu_has(X86_FEATURE_FPU)) {
395 preempt_disable();
396 fpu__initialize(fpu);
397 user_fpu_begin();
398 copy_init_fpstate_to_fpregs();
399 preempt_enable();
400 }
401 }
402
403 /*
404 * x87 math exception handling:
405 */
406
fpu__exception_code(struct fpu * fpu,int trap_nr)407 int fpu__exception_code(struct fpu *fpu, int trap_nr)
408 {
409 int err;
410
411 if (trap_nr == X86_TRAP_MF) {
412 unsigned short cwd, swd;
413 /*
414 * (~cwd & swd) will mask out exceptions that are not set to unmasked
415 * status. 0x3f is the exception bits in these regs, 0x200 is the
416 * C1 reg you need in case of a stack fault, 0x040 is the stack
417 * fault bit. We should only be taking one exception at a time,
418 * so if this combination doesn't produce any single exception,
419 * then we have a bad program that isn't synchronizing its FPU usage
420 * and it will suffer the consequences since we won't be able to
421 * fully reproduce the context of the exception.
422 */
423 if (boot_cpu_has(X86_FEATURE_FXSR)) {
424 cwd = fpu->state.fxsave.cwd;
425 swd = fpu->state.fxsave.swd;
426 } else {
427 cwd = (unsigned short)fpu->state.fsave.cwd;
428 swd = (unsigned short)fpu->state.fsave.swd;
429 }
430
431 err = swd & ~cwd;
432 } else {
433 /*
434 * The SIMD FPU exceptions are handled a little differently, as there
435 * is only a single status/control register. Thus, to determine which
436 * unmasked exception was caught we must mask the exception mask bits
437 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
438 */
439 unsigned short mxcsr = MXCSR_DEFAULT;
440
441 if (boot_cpu_has(X86_FEATURE_XMM))
442 mxcsr = fpu->state.fxsave.mxcsr;
443
444 err = ~(mxcsr >> 7) & mxcsr;
445 }
446
447 if (err & 0x001) { /* Invalid op */
448 /*
449 * swd & 0x240 == 0x040: Stack Underflow
450 * swd & 0x240 == 0x240: Stack Overflow
451 * User must clear the SF bit (0x40) if set
452 */
453 return FPE_FLTINV;
454 } else if (err & 0x004) { /* Divide by Zero */
455 return FPE_FLTDIV;
456 } else if (err & 0x008) { /* Overflow */
457 return FPE_FLTOVF;
458 } else if (err & 0x012) { /* Denormal, Underflow */
459 return FPE_FLTUND;
460 } else if (err & 0x020) { /* Precision */
461 return FPE_FLTRES;
462 }
463
464 /*
465 * If we're using IRQ 13, or supposedly even some trap
466 * X86_TRAP_MF implementations, it's possible
467 * we get a spurious trap, which is not an error.
468 */
469 return 0;
470 }
471