1 /*
2 * arch/sh/mm/cache.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2002 - 2010 Paul Mundt
6 *
7 * Released under the terms of the GNU GPL v2.0.
8 */
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/mutex.h>
12 #include <linux/fs.h>
13 #include <linux/smp.h>
14 #include <linux/highmem.h>
15 #include <linux/module.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
18
19 void (*local_flush_cache_all)(void *args) = cache_noop;
20 void (*local_flush_cache_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22 void (*local_flush_cache_page)(void *args) = cache_noop;
23 void (*local_flush_cache_range)(void *args) = cache_noop;
24 void (*local_flush_dcache_page)(void *args) = cache_noop;
25 void (*local_flush_icache_range)(void *args) = cache_noop;
26 void (*local_flush_icache_page)(void *args) = cache_noop;
27 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
28
29 void (*__flush_wback_region)(void *start, int size);
30 EXPORT_SYMBOL(__flush_wback_region);
31 void (*__flush_purge_region)(void *start, int size);
32 EXPORT_SYMBOL(__flush_purge_region);
33 void (*__flush_invalidate_region)(void *start, int size);
34 EXPORT_SYMBOL(__flush_invalidate_region);
35
noop__flush_region(void * start,int size)36 static inline void noop__flush_region(void *start, int size)
37 {
38 }
39
cacheop_on_each_cpu(void (* func)(void * info),void * info,int wait)40 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41 int wait)
42 {
43 preempt_disable();
44
45 /* Needing IPI for cross-core flush is SHX3-specific. */
46 #ifdef CONFIG_CPU_SHX3
47 /*
48 * It's possible that this gets called early on when IRQs are
49 * still disabled due to ioremapping by the boot CPU, so don't
50 * even attempt IPIs unless there are other CPUs online.
51 */
52 if (num_online_cpus() > 1)
53 smp_call_function(func, info, wait);
54 #endif
55
56 func(info);
57
58 preempt_enable();
59 }
60
copy_to_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)61 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
62 unsigned long vaddr, void *dst, const void *src,
63 unsigned long len)
64 {
65 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
66 test_bit(PG_dcache_clean, &page->flags)) {
67 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
68 memcpy(vto, src, len);
69 kunmap_coherent(vto);
70 } else {
71 memcpy(dst, src, len);
72 if (boot_cpu_data.dcache.n_aliases)
73 clear_bit(PG_dcache_clean, &page->flags);
74 }
75
76 if (vma->vm_flags & VM_EXEC)
77 flush_cache_page(vma, vaddr, page_to_pfn(page));
78 }
79
copy_from_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)80 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
81 unsigned long vaddr, void *dst, const void *src,
82 unsigned long len)
83 {
84 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
85 test_bit(PG_dcache_clean, &page->flags)) {
86 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
87 memcpy(dst, vfrom, len);
88 kunmap_coherent(vfrom);
89 } else {
90 memcpy(dst, src, len);
91 if (boot_cpu_data.dcache.n_aliases)
92 clear_bit(PG_dcache_clean, &page->flags);
93 }
94 }
95
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)96 void copy_user_highpage(struct page *to, struct page *from,
97 unsigned long vaddr, struct vm_area_struct *vma)
98 {
99 void *vfrom, *vto;
100
101 vto = kmap_atomic(to);
102
103 if (boot_cpu_data.dcache.n_aliases && page_mapcount(from) &&
104 test_bit(PG_dcache_clean, &from->flags)) {
105 vfrom = kmap_coherent(from, vaddr);
106 copy_page(vto, vfrom);
107 kunmap_coherent(vfrom);
108 } else {
109 vfrom = kmap_atomic(from);
110 copy_page(vto, vfrom);
111 kunmap_atomic(vfrom);
112 }
113
114 if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
115 (vma->vm_flags & VM_EXEC))
116 __flush_purge_region(vto, PAGE_SIZE);
117
118 kunmap_atomic(vto);
119 /* Make sure this page is cleared on other CPU's too before using it */
120 smp_wmb();
121 }
122 EXPORT_SYMBOL(copy_user_highpage);
123
clear_user_highpage(struct page * page,unsigned long vaddr)124 void clear_user_highpage(struct page *page, unsigned long vaddr)
125 {
126 void *kaddr = kmap_atomic(page);
127
128 clear_page(kaddr);
129
130 if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
131 __flush_purge_region(kaddr, PAGE_SIZE);
132
133 kunmap_atomic(kaddr);
134 }
135 EXPORT_SYMBOL(clear_user_highpage);
136
__update_cache(struct vm_area_struct * vma,unsigned long address,pte_t pte)137 void __update_cache(struct vm_area_struct *vma,
138 unsigned long address, pte_t pte)
139 {
140 struct page *page;
141 unsigned long pfn = pte_pfn(pte);
142
143 if (!boot_cpu_data.dcache.n_aliases)
144 return;
145
146 page = pfn_to_page(pfn);
147 if (pfn_valid(pfn)) {
148 int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
149 if (dirty)
150 __flush_purge_region(page_address(page), PAGE_SIZE);
151 }
152 }
153
__flush_anon_page(struct page * page,unsigned long vmaddr)154 void __flush_anon_page(struct page *page, unsigned long vmaddr)
155 {
156 unsigned long addr = (unsigned long) page_address(page);
157
158 if (pages_do_alias(addr, vmaddr)) {
159 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
160 test_bit(PG_dcache_clean, &page->flags)) {
161 void *kaddr;
162
163 kaddr = kmap_coherent(page, vmaddr);
164 /* XXX.. For now kunmap_coherent() does a purge */
165 /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
166 kunmap_coherent(kaddr);
167 } else
168 __flush_purge_region((void *)addr, PAGE_SIZE);
169 }
170 }
171
flush_cache_all(void)172 void flush_cache_all(void)
173 {
174 cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
175 }
176 EXPORT_SYMBOL(flush_cache_all);
177
flush_cache_mm(struct mm_struct * mm)178 void flush_cache_mm(struct mm_struct *mm)
179 {
180 if (boot_cpu_data.dcache.n_aliases == 0)
181 return;
182
183 cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
184 }
185
flush_cache_dup_mm(struct mm_struct * mm)186 void flush_cache_dup_mm(struct mm_struct *mm)
187 {
188 if (boot_cpu_data.dcache.n_aliases == 0)
189 return;
190
191 cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
192 }
193
flush_cache_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)194 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
195 unsigned long pfn)
196 {
197 struct flusher_data data;
198
199 data.vma = vma;
200 data.addr1 = addr;
201 data.addr2 = pfn;
202
203 cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
204 }
205
flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)206 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
207 unsigned long end)
208 {
209 struct flusher_data data;
210
211 data.vma = vma;
212 data.addr1 = start;
213 data.addr2 = end;
214
215 cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
216 }
217 EXPORT_SYMBOL(flush_cache_range);
218
flush_dcache_page(struct page * page)219 void flush_dcache_page(struct page *page)
220 {
221 cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
222 }
223 EXPORT_SYMBOL(flush_dcache_page);
224
flush_icache_range(unsigned long start,unsigned long end)225 void flush_icache_range(unsigned long start, unsigned long end)
226 {
227 struct flusher_data data;
228
229 data.vma = NULL;
230 data.addr1 = start;
231 data.addr2 = end;
232
233 cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
234 }
235 EXPORT_SYMBOL(flush_icache_range);
236
flush_icache_page(struct vm_area_struct * vma,struct page * page)237 void flush_icache_page(struct vm_area_struct *vma, struct page *page)
238 {
239 /* Nothing uses the VMA, so just pass the struct page along */
240 cacheop_on_each_cpu(local_flush_icache_page, page, 1);
241 }
242
flush_cache_sigtramp(unsigned long address)243 void flush_cache_sigtramp(unsigned long address)
244 {
245 cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
246 }
247
compute_alias(struct cache_info * c)248 static void compute_alias(struct cache_info *c)
249 {
250 #ifdef CONFIG_MMU
251 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
252 #else
253 c->alias_mask = 0;
254 #endif
255 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
256 }
257
emit_cache_params(void)258 static void __init emit_cache_params(void)
259 {
260 printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
261 boot_cpu_data.icache.ways,
262 boot_cpu_data.icache.sets,
263 boot_cpu_data.icache.way_incr);
264 printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
265 boot_cpu_data.icache.entry_mask,
266 boot_cpu_data.icache.alias_mask,
267 boot_cpu_data.icache.n_aliases);
268 printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
269 boot_cpu_data.dcache.ways,
270 boot_cpu_data.dcache.sets,
271 boot_cpu_data.dcache.way_incr);
272 printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
273 boot_cpu_data.dcache.entry_mask,
274 boot_cpu_data.dcache.alias_mask,
275 boot_cpu_data.dcache.n_aliases);
276
277 /*
278 * Emit Secondary Cache parameters if the CPU has a probed L2.
279 */
280 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
281 printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
282 boot_cpu_data.scache.ways,
283 boot_cpu_data.scache.sets,
284 boot_cpu_data.scache.way_incr);
285 printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
286 boot_cpu_data.scache.entry_mask,
287 boot_cpu_data.scache.alias_mask,
288 boot_cpu_data.scache.n_aliases);
289 }
290 }
291
cpu_cache_init(void)292 void __init cpu_cache_init(void)
293 {
294 unsigned int cache_disabled = 0;
295
296 #ifdef SH_CCR
297 cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE);
298 #endif
299
300 compute_alias(&boot_cpu_data.icache);
301 compute_alias(&boot_cpu_data.dcache);
302 compute_alias(&boot_cpu_data.scache);
303
304 __flush_wback_region = noop__flush_region;
305 __flush_purge_region = noop__flush_region;
306 __flush_invalidate_region = noop__flush_region;
307
308 /*
309 * No flushing is necessary in the disabled cache case so we can
310 * just keep the noop functions in local_flush_..() and __flush_..()
311 */
312 if (unlikely(cache_disabled))
313 goto skip;
314
315 if (boot_cpu_data.type == CPU_J2) {
316 extern void __weak j2_cache_init(void);
317
318 j2_cache_init();
319 } else if (boot_cpu_data.family == CPU_FAMILY_SH2) {
320 extern void __weak sh2_cache_init(void);
321
322 sh2_cache_init();
323 }
324
325 if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
326 extern void __weak sh2a_cache_init(void);
327
328 sh2a_cache_init();
329 }
330
331 if (boot_cpu_data.family == CPU_FAMILY_SH3) {
332 extern void __weak sh3_cache_init(void);
333
334 sh3_cache_init();
335
336 if ((boot_cpu_data.type == CPU_SH7705) &&
337 (boot_cpu_data.dcache.sets == 512)) {
338 extern void __weak sh7705_cache_init(void);
339
340 sh7705_cache_init();
341 }
342 }
343
344 if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
345 (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
346 (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
347 extern void __weak sh4_cache_init(void);
348
349 sh4_cache_init();
350
351 if ((boot_cpu_data.type == CPU_SH7786) ||
352 (boot_cpu_data.type == CPU_SHX3)) {
353 extern void __weak shx3_cache_init(void);
354
355 shx3_cache_init();
356 }
357 }
358
359 if (boot_cpu_data.family == CPU_FAMILY_SH5) {
360 extern void __weak sh5_cache_init(void);
361
362 sh5_cache_init();
363 }
364
365 skip:
366 emit_cache_params();
367 }
368