1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25 
26 enum {
27 	PG_DIRECT_MAP_4K = 0,
28 	PG_DIRECT_MAP_1M,
29 	PG_DIRECT_MAP_2G,
30 	PG_DIRECT_MAP_MAX
31 };
32 
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34 
update_page_count(int level,long count)35 static inline void update_page_count(int level, long count)
36 {
37 	if (IS_ENABLED(CONFIG_PROC_FS))
38 		atomic_long_add(count, &direct_pages_count[level]);
39 }
40 
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43 
44 /*
45  * The S390 doesn't have any external MMU info: the kernel page
46  * tables contain all the necessary information.
47  */
48 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50 
51 /*
52  * ZERO_PAGE is a global shared page that is always zero; used
53  * for zero-mapped memory areas etc..
54  */
55 
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58 
59 #define ZERO_PAGE(vaddr) \
60 	(virt_to_page((void *)(empty_zero_page + \
61 	 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63 
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65 
66 #define FIRST_USER_ADDRESS  0UL
67 
68 #define pte_ERROR(e) \
69 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78 
79 /*
80  * The vmalloc and module area will always be on the topmost area of the
81  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83  * modules will reside. That makes sure that inter module branches always
84  * happen without trampolines and in addition the placement within a 2GB frame
85  * is branch prediction unit friendly.
86  */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 extern struct page *vmemmap;
90 
91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92 
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR	MODULES_VADDR
96 #define MODULES_END	MODULES_END
97 #define MODULES_LEN	(1UL << 31)
98 
is_module_addr(void * addr)99 static inline int is_module_addr(void *addr)
100 {
101 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 	if (addr < (void *)MODULES_VADDR)
103 		return 0;
104 	if (addr > (void *)MODULES_END)
105 		return 0;
106 	return 1;
107 }
108 
109 /*
110  * A 64 bit pagetable entry of S390 has following format:
111  * |			 PFRA			      |0IPC|  OS  |
112  * 0000000000111111111122222222223333333333444444444455555555556666
113  * 0123456789012345678901234567890123456789012345678901234567890123
114  *
115  * I Page-Invalid Bit:    Page is not available for address-translation
116  * P Page-Protection Bit: Store access not possible for page
117  * C Change-bit override: HW is not required to set change bit
118  *
119  * A 64 bit segmenttable entry of S390 has following format:
120  * |        P-table origin                              |      TT
121  * 0000000000111111111122222222223333333333444444444455555555556666
122  * 0123456789012345678901234567890123456789012345678901234567890123
123  *
124  * I Segment-Invalid Bit:    Segment is not available for address-translation
125  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
126  * P Page-Protection Bit: Store access not possible for page
127  * TT Type 00
128  *
129  * A 64 bit region table entry of S390 has following format:
130  * |        S-table origin                             |   TF  TTTL
131  * 0000000000111111111122222222223333333333444444444455555555556666
132  * 0123456789012345678901234567890123456789012345678901234567890123
133  *
134  * I Segment-Invalid Bit:    Segment is not available for address-translation
135  * TT Type 01
136  * TF
137  * TL Table length
138  *
139  * The 64 bit regiontable origin of S390 has following format:
140  * |      region table origon                          |       DTTL
141  * 0000000000111111111122222222223333333333444444444455555555556666
142  * 0123456789012345678901234567890123456789012345678901234567890123
143  *
144  * X Space-Switch event:
145  * G Segment-Invalid Bit:
146  * P Private-Space Bit:
147  * S Storage-Alteration:
148  * R Real space
149  * TL Table-Length:
150  *
151  * A storage key has the following format:
152  * | ACC |F|R|C|0|
153  *  0   3 4 5 6 7
154  * ACC: access key
155  * F  : fetch protection bit
156  * R  : referenced bit
157  * C  : changed bit
158  */
159 
160 /* Hardware bits in the page table entry */
161 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
162 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
163 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
164 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
165 
166 /* Software bits in the page table entry */
167 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
168 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
169 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
170 #define _PAGE_READ	0x010		/* SW pte read bit */
171 #define _PAGE_WRITE	0x020		/* SW pte write bit */
172 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
173 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
174 
175 #ifdef CONFIG_MEM_SOFT_DIRTY
176 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
177 #else
178 #define _PAGE_SOFT_DIRTY 0x000
179 #endif
180 
181 /* Set of bits not changed in pte_modify */
182 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
183 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
184 
185 /*
186  * handle_pte_fault uses pte_present and pte_none to find out the pte type
187  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
188  * distinguish present from not-present ptes. It is changed only with the page
189  * table lock held.
190  *
191  * The following table gives the different possible bit combinations for
192  * the pte hardware and software bits in the last 12 bits of a pte
193  * (. unassigned bit, x don't care, t swap type):
194  *
195  *				842100000000
196  *				000084210000
197  *				000000008421
198  *				.IR.uswrdy.p
199  * empty			.10.00000000
200  * swap				.11..ttttt.0
201  * prot-none, clean, old	.11.xx0000.1
202  * prot-none, clean, young	.11.xx0001.1
203  * prot-none, dirty, old	.11.xx0010.1
204  * prot-none, dirty, young	.11.xx0011.1
205  * read-only, clean, old	.11.xx0100.1
206  * read-only, clean, young	.01.xx0101.1
207  * read-only, dirty, old	.11.xx0110.1
208  * read-only, dirty, young	.01.xx0111.1
209  * read-write, clean, old	.11.xx1100.1
210  * read-write, clean, young	.01.xx1101.1
211  * read-write, dirty, old	.10.xx1110.1
212  * read-write, dirty, young	.00.xx1111.1
213  * HW-bits: R read-only, I invalid
214  * SW-bits: p present, y young, d dirty, r read, w write, s special,
215  *	    u unused, l large
216  *
217  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
218  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
219  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
220  */
221 
222 /* Bits in the segment/region table address-space-control-element */
223 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
224 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
225 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
226 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
227 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
228 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
229 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
230 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
231 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
232 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
233 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
234 
235 /* Bits in the region table entry */
236 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
237 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
238 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
239 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
240 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
241 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
242 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
243 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
244 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
245 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
246 
247 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
248 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
249 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
250 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
251 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
252 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
253 
254 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
255 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
256 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
257 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
258 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
259 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
260 
261 #ifdef CONFIG_MEM_SOFT_DIRTY
262 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
263 #else
264 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
265 #endif
266 
267 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
268 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
269 
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_BITS_LARGE		0xfffffffffff0ff33UL
273 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
275 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
276 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
277 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
278 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
279 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
280 
281 #define _SEGMENT_ENTRY		(0)
282 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
283 
284 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
285 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
286 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
287 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
288 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
292 #else
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
294 #endif
295 
296 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
297 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
298 
299 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
300 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
301 
302 #define _REGION1_SHIFT	53
303 #define _REGION2_SHIFT	42
304 #define _REGION3_SHIFT	31
305 #define _SEGMENT_SHIFT	20
306 
307 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
308 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
309 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
310 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
311 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
312 
313 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
314 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
315 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
316 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
317 
318 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
319 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
320 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
321 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
322 
323 #define PMD_SHIFT	_SEGMENT_SHIFT
324 #define PUD_SHIFT	_REGION3_SHIFT
325 #define P4D_SHIFT	_REGION2_SHIFT
326 #define PGDIR_SHIFT	_REGION1_SHIFT
327 
328 #define PMD_SIZE	_SEGMENT_SIZE
329 #define PUD_SIZE	_REGION3_SIZE
330 #define P4D_SIZE	_REGION2_SIZE
331 #define PGDIR_SIZE	_REGION1_SIZE
332 
333 #define PMD_MASK	_SEGMENT_MASK
334 #define PUD_MASK	_REGION3_MASK
335 #define P4D_MASK	_REGION2_MASK
336 #define PGDIR_MASK	_REGION1_MASK
337 
338 #define PTRS_PER_PTE	_PAGE_ENTRIES
339 #define PTRS_PER_PMD	_CRST_ENTRIES
340 #define PTRS_PER_PUD	_CRST_ENTRIES
341 #define PTRS_PER_P4D	_CRST_ENTRIES
342 #define PTRS_PER_PGD	_CRST_ENTRIES
343 
344 /*
345  * Segment table and region3 table entry encoding
346  * (R = read-only, I = invalid, y = young bit):
347  *				dy..R...I...wr
348  * prot-none, clean, old	00..1...1...00
349  * prot-none, clean, young	01..1...1...00
350  * prot-none, dirty, old	10..1...1...00
351  * prot-none, dirty, young	11..1...1...00
352  * read-only, clean, old	00..1...1...01
353  * read-only, clean, young	01..1...0...01
354  * read-only, dirty, old	10..1...1...01
355  * read-only, dirty, young	11..1...0...01
356  * read-write, clean, old	00..1...1...11
357  * read-write, clean, young	01..1...0...11
358  * read-write, dirty, old	10..0...1...11
359  * read-write, dirty, young	11..0...0...11
360  * The segment table origin is used to distinguish empty (origin==0) from
361  * read-write, old segment table entries (origin!=0)
362  * HW-bits: R read-only, I invalid
363  * SW-bits: y young, d dirty, r read, w write
364  */
365 
366 /* Page status table bits for virtualization */
367 #define PGSTE_ACC_BITS	0xf000000000000000UL
368 #define PGSTE_FP_BIT	0x0800000000000000UL
369 #define PGSTE_PCL_BIT	0x0080000000000000UL
370 #define PGSTE_HR_BIT	0x0040000000000000UL
371 #define PGSTE_HC_BIT	0x0020000000000000UL
372 #define PGSTE_GR_BIT	0x0004000000000000UL
373 #define PGSTE_GC_BIT	0x0002000000000000UL
374 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
375 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
376 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
377 
378 /* Guest Page State used for virtualization */
379 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
380 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
381 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
382 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
383 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
384 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
385 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
386 
387 /*
388  * A user page table pointer has the space-switch-event bit, the
389  * private-space-control bit and the storage-alteration-event-control
390  * bit set. A kernel page table pointer doesn't need them.
391  */
392 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
393 				 _ASCE_ALT_EVENT)
394 
395 /*
396  * Page protection definitions.
397  */
398 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
399 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
400 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 				 _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
404 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 				 _PAGE_INVALID | _PAGE_PROTECT)
407 
408 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
410 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
413 				 _PAGE_PROTECT | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 				  _PAGE_YOUNG |	_PAGE_DIRTY)
416 
417 /*
418  * On s390 the page table entry has an invalid bit and a read-only bit.
419  * Read permission implies execute permission and write permission
420  * implies read permission.
421  */
422          /*xwr*/
423 #define __P000	PAGE_NONE
424 #define __P001	PAGE_RO
425 #define __P010	PAGE_RO
426 #define __P011	PAGE_RO
427 #define __P100	PAGE_RX
428 #define __P101	PAGE_RX
429 #define __P110	PAGE_RX
430 #define __P111	PAGE_RX
431 
432 #define __S000	PAGE_NONE
433 #define __S001	PAGE_RO
434 #define __S010	PAGE_RW
435 #define __S011	PAGE_RW
436 #define __S100	PAGE_RX
437 #define __S101	PAGE_RX
438 #define __S110	PAGE_RWX
439 #define __S111	PAGE_RWX
440 
441 /*
442  * Segment entry (large page) protection definitions.
443  */
444 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
445 				 _SEGMENT_ENTRY_PROTECT)
446 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
447 				 _SEGMENT_ENTRY_READ | \
448 				 _SEGMENT_ENTRY_NOEXEC)
449 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
450 				 _SEGMENT_ENTRY_READ)
451 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
452 				 _SEGMENT_ENTRY_WRITE | \
453 				 _SEGMENT_ENTRY_NOEXEC)
454 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
455 				 _SEGMENT_ENTRY_WRITE)
456 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
457 				 _SEGMENT_ENTRY_LARGE |	\
458 				 _SEGMENT_ENTRY_READ |	\
459 				 _SEGMENT_ENTRY_WRITE | \
460 				 _SEGMENT_ENTRY_YOUNG | \
461 				 _SEGMENT_ENTRY_DIRTY | \
462 				 _SEGMENT_ENTRY_NOEXEC)
463 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
464 				 _SEGMENT_ENTRY_LARGE |	\
465 				 _SEGMENT_ENTRY_READ |	\
466 				 _SEGMENT_ENTRY_YOUNG |	\
467 				 _SEGMENT_ENTRY_PROTECT | \
468 				 _SEGMENT_ENTRY_NOEXEC)
469 
470 /*
471  * Region3 entry (large page) protection definitions.
472  */
473 
474 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
475 				 _REGION3_ENTRY_LARGE |	 \
476 				 _REGION3_ENTRY_READ |	 \
477 				 _REGION3_ENTRY_WRITE |	 \
478 				 _REGION3_ENTRY_YOUNG |	 \
479 				 _REGION3_ENTRY_DIRTY | \
480 				 _REGION_ENTRY_NOEXEC)
481 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
482 				   _REGION3_ENTRY_LARGE |  \
483 				   _REGION3_ENTRY_READ |   \
484 				   _REGION3_ENTRY_YOUNG |  \
485 				   _REGION_ENTRY_PROTECT | \
486 				   _REGION_ENTRY_NOEXEC)
487 
mm_has_pgste(struct mm_struct * mm)488 static inline int mm_has_pgste(struct mm_struct *mm)
489 {
490 #ifdef CONFIG_PGSTE
491 	if (unlikely(mm->context.has_pgste))
492 		return 1;
493 #endif
494 	return 0;
495 }
496 
mm_alloc_pgste(struct mm_struct * mm)497 static inline int mm_alloc_pgste(struct mm_struct *mm)
498 {
499 #ifdef CONFIG_PGSTE
500 	if (unlikely(mm->context.alloc_pgste))
501 		return 1;
502 #endif
503 	return 0;
504 }
505 
506 /*
507  * In the case that a guest uses storage keys
508  * faults should no longer be backed by zero pages
509  */
510 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)511 static inline int mm_uses_skeys(struct mm_struct *mm)
512 {
513 #ifdef CONFIG_PGSTE
514 	if (mm->context.uses_skeys)
515 		return 1;
516 #endif
517 	return 0;
518 }
519 
csp(unsigned int * ptr,unsigned int old,unsigned int new)520 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
521 {
522 	register unsigned long reg2 asm("2") = old;
523 	register unsigned long reg3 asm("3") = new;
524 	unsigned long address = (unsigned long)ptr | 1;
525 
526 	asm volatile(
527 		"	csp	%0,%3"
528 		: "+d" (reg2), "+m" (*ptr)
529 		: "d" (reg3), "d" (address)
530 		: "cc");
531 }
532 
cspg(unsigned long * ptr,unsigned long old,unsigned long new)533 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
534 {
535 	register unsigned long reg2 asm("2") = old;
536 	register unsigned long reg3 asm("3") = new;
537 	unsigned long address = (unsigned long)ptr | 1;
538 
539 	asm volatile(
540 		"	.insn	rre,0xb98a0000,%0,%3"
541 		: "+d" (reg2), "+m" (*ptr)
542 		: "d" (reg3), "d" (address)
543 		: "cc");
544 }
545 
546 #define CRDTE_DTT_PAGE		0x00UL
547 #define CRDTE_DTT_SEGMENT	0x10UL
548 #define CRDTE_DTT_REGION3	0x14UL
549 #define CRDTE_DTT_REGION2	0x18UL
550 #define CRDTE_DTT_REGION1	0x1cUL
551 
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)552 static inline void crdte(unsigned long old, unsigned long new,
553 			 unsigned long table, unsigned long dtt,
554 			 unsigned long address, unsigned long asce)
555 {
556 	register unsigned long reg2 asm("2") = old;
557 	register unsigned long reg3 asm("3") = new;
558 	register unsigned long reg4 asm("4") = table | dtt;
559 	register unsigned long reg5 asm("5") = address;
560 
561 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
562 		     : "+d" (reg2)
563 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
564 		     : "memory", "cc");
565 }
566 
567 /*
568  * pgd/p4d/pud/pmd/pte query functions
569  */
pgd_folded(pgd_t pgd)570 static inline int pgd_folded(pgd_t pgd)
571 {
572 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
573 }
574 
pgd_present(pgd_t pgd)575 static inline int pgd_present(pgd_t pgd)
576 {
577 	if (pgd_folded(pgd))
578 		return 1;
579 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
580 }
581 
pgd_none(pgd_t pgd)582 static inline int pgd_none(pgd_t pgd)
583 {
584 	if (pgd_folded(pgd))
585 		return 0;
586 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
587 }
588 
pgd_bad(pgd_t pgd)589 static inline int pgd_bad(pgd_t pgd)
590 {
591 	/*
592 	 * With dynamic page table levels the pgd can be a region table
593 	 * entry or a segment table entry. Check for the bit that are
594 	 * invalid for either table entry.
595 	 */
596 	unsigned long mask =
597 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
598 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
599 	return (pgd_val(pgd) & mask) != 0;
600 }
601 
p4d_folded(p4d_t p4d)602 static inline int p4d_folded(p4d_t p4d)
603 {
604 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
605 }
606 
p4d_present(p4d_t p4d)607 static inline int p4d_present(p4d_t p4d)
608 {
609 	if (p4d_folded(p4d))
610 		return 1;
611 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
612 }
613 
p4d_none(p4d_t p4d)614 static inline int p4d_none(p4d_t p4d)
615 {
616 	if (p4d_folded(p4d))
617 		return 0;
618 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
619 }
620 
p4d_pfn(p4d_t p4d)621 static inline unsigned long p4d_pfn(p4d_t p4d)
622 {
623 	unsigned long origin_mask;
624 
625 	origin_mask = _REGION_ENTRY_ORIGIN;
626 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
627 }
628 
pud_folded(pud_t pud)629 static inline int pud_folded(pud_t pud)
630 {
631 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
632 }
633 
pud_present(pud_t pud)634 static inline int pud_present(pud_t pud)
635 {
636 	if (pud_folded(pud))
637 		return 1;
638 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
639 }
640 
pud_none(pud_t pud)641 static inline int pud_none(pud_t pud)
642 {
643 	if (pud_folded(pud))
644 		return 0;
645 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
646 }
647 
pud_large(pud_t pud)648 static inline int pud_large(pud_t pud)
649 {
650 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
651 		return 0;
652 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
653 }
654 
pud_pfn(pud_t pud)655 static inline unsigned long pud_pfn(pud_t pud)
656 {
657 	unsigned long origin_mask;
658 
659 	origin_mask = _REGION_ENTRY_ORIGIN;
660 	if (pud_large(pud))
661 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
662 	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
663 }
664 
pmd_large(pmd_t pmd)665 static inline int pmd_large(pmd_t pmd)
666 {
667 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
668 }
669 
pmd_bad(pmd_t pmd)670 static inline int pmd_bad(pmd_t pmd)
671 {
672 	if (pmd_large(pmd))
673 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
674 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
675 }
676 
pud_bad(pud_t pud)677 static inline int pud_bad(pud_t pud)
678 {
679 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
680 		return pmd_bad(__pmd(pud_val(pud)));
681 	if (pud_large(pud))
682 		return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
683 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
684 }
685 
p4d_bad(p4d_t p4d)686 static inline int p4d_bad(p4d_t p4d)
687 {
688 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
689 		return pud_bad(__pud(p4d_val(p4d)));
690 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
691 }
692 
pmd_present(pmd_t pmd)693 static inline int pmd_present(pmd_t pmd)
694 {
695 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
696 }
697 
pmd_none(pmd_t pmd)698 static inline int pmd_none(pmd_t pmd)
699 {
700 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
701 }
702 
pmd_pfn(pmd_t pmd)703 static inline unsigned long pmd_pfn(pmd_t pmd)
704 {
705 	unsigned long origin_mask;
706 
707 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
708 	if (pmd_large(pmd))
709 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
710 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
711 }
712 
713 #define pmd_write pmd_write
pmd_write(pmd_t pmd)714 static inline int pmd_write(pmd_t pmd)
715 {
716 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
717 }
718 
pmd_dirty(pmd_t pmd)719 static inline int pmd_dirty(pmd_t pmd)
720 {
721 	int dirty = 1;
722 	if (pmd_large(pmd))
723 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
724 	return dirty;
725 }
726 
pmd_young(pmd_t pmd)727 static inline int pmd_young(pmd_t pmd)
728 {
729 	int young = 1;
730 	if (pmd_large(pmd))
731 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
732 	return young;
733 }
734 
pte_present(pte_t pte)735 static inline int pte_present(pte_t pte)
736 {
737 	/* Bit pattern: (pte & 0x001) == 0x001 */
738 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
739 }
740 
pte_none(pte_t pte)741 static inline int pte_none(pte_t pte)
742 {
743 	/* Bit pattern: pte == 0x400 */
744 	return pte_val(pte) == _PAGE_INVALID;
745 }
746 
pte_swap(pte_t pte)747 static inline int pte_swap(pte_t pte)
748 {
749 	/* Bit pattern: (pte & 0x201) == 0x200 */
750 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
751 		== _PAGE_PROTECT;
752 }
753 
pte_special(pte_t pte)754 static inline int pte_special(pte_t pte)
755 {
756 	return (pte_val(pte) & _PAGE_SPECIAL);
757 }
758 
759 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)760 static inline int pte_same(pte_t a, pte_t b)
761 {
762 	return pte_val(a) == pte_val(b);
763 }
764 
765 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)766 static inline int pte_protnone(pte_t pte)
767 {
768 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
769 }
770 
pmd_protnone(pmd_t pmd)771 static inline int pmd_protnone(pmd_t pmd)
772 {
773 	/* pmd_large(pmd) implies pmd_present(pmd) */
774 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
775 }
776 #endif
777 
pte_soft_dirty(pte_t pte)778 static inline int pte_soft_dirty(pte_t pte)
779 {
780 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
781 }
782 #define pte_swp_soft_dirty pte_soft_dirty
783 
pte_mksoft_dirty(pte_t pte)784 static inline pte_t pte_mksoft_dirty(pte_t pte)
785 {
786 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
787 	return pte;
788 }
789 #define pte_swp_mksoft_dirty pte_mksoft_dirty
790 
pte_clear_soft_dirty(pte_t pte)791 static inline pte_t pte_clear_soft_dirty(pte_t pte)
792 {
793 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
794 	return pte;
795 }
796 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
797 
pmd_soft_dirty(pmd_t pmd)798 static inline int pmd_soft_dirty(pmd_t pmd)
799 {
800 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
801 }
802 
pmd_mksoft_dirty(pmd_t pmd)803 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
804 {
805 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
806 	return pmd;
807 }
808 
pmd_clear_soft_dirty(pmd_t pmd)809 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
810 {
811 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
812 	return pmd;
813 }
814 
815 /*
816  * query functions pte_write/pte_dirty/pte_young only work if
817  * pte_present() is true. Undefined behaviour if not..
818  */
pte_write(pte_t pte)819 static inline int pte_write(pte_t pte)
820 {
821 	return (pte_val(pte) & _PAGE_WRITE) != 0;
822 }
823 
pte_dirty(pte_t pte)824 static inline int pte_dirty(pte_t pte)
825 {
826 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
827 }
828 
pte_young(pte_t pte)829 static inline int pte_young(pte_t pte)
830 {
831 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
832 }
833 
834 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)835 static inline int pte_unused(pte_t pte)
836 {
837 	return pte_val(pte) & _PAGE_UNUSED;
838 }
839 
840 /*
841  * pgd/pmd/pte modification functions
842  */
843 
pgd_clear(pgd_t * pgd)844 static inline void pgd_clear(pgd_t *pgd)
845 {
846 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
847 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
848 }
849 
p4d_clear(p4d_t * p4d)850 static inline void p4d_clear(p4d_t *p4d)
851 {
852 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
853 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
854 }
855 
pud_clear(pud_t * pud)856 static inline void pud_clear(pud_t *pud)
857 {
858 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
859 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
860 }
861 
pmd_clear(pmd_t * pmdp)862 static inline void pmd_clear(pmd_t *pmdp)
863 {
864 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
865 }
866 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)867 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
868 {
869 	pte_val(*ptep) = _PAGE_INVALID;
870 }
871 
872 /*
873  * The following pte modification functions only work if
874  * pte_present() is true. Undefined behaviour if not..
875  */
pte_modify(pte_t pte,pgprot_t newprot)876 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
877 {
878 	pte_val(pte) &= _PAGE_CHG_MASK;
879 	pte_val(pte) |= pgprot_val(newprot);
880 	/*
881 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
882 	 * has the invalid bit set, clear it again for readable, young pages
883 	 */
884 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
885 		pte_val(pte) &= ~_PAGE_INVALID;
886 	/*
887 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
888 	 * protection bit set, clear it again for writable, dirty pages
889 	 */
890 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
891 		pte_val(pte) &= ~_PAGE_PROTECT;
892 	return pte;
893 }
894 
pte_wrprotect(pte_t pte)895 static inline pte_t pte_wrprotect(pte_t pte)
896 {
897 	pte_val(pte) &= ~_PAGE_WRITE;
898 	pte_val(pte) |= _PAGE_PROTECT;
899 	return pte;
900 }
901 
pte_mkwrite(pte_t pte)902 static inline pte_t pte_mkwrite(pte_t pte)
903 {
904 	pte_val(pte) |= _PAGE_WRITE;
905 	if (pte_val(pte) & _PAGE_DIRTY)
906 		pte_val(pte) &= ~_PAGE_PROTECT;
907 	return pte;
908 }
909 
pte_mkclean(pte_t pte)910 static inline pte_t pte_mkclean(pte_t pte)
911 {
912 	pte_val(pte) &= ~_PAGE_DIRTY;
913 	pte_val(pte) |= _PAGE_PROTECT;
914 	return pte;
915 }
916 
pte_mkdirty(pte_t pte)917 static inline pte_t pte_mkdirty(pte_t pte)
918 {
919 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
920 	if (pte_val(pte) & _PAGE_WRITE)
921 		pte_val(pte) &= ~_PAGE_PROTECT;
922 	return pte;
923 }
924 
pte_mkold(pte_t pte)925 static inline pte_t pte_mkold(pte_t pte)
926 {
927 	pte_val(pte) &= ~_PAGE_YOUNG;
928 	pte_val(pte) |= _PAGE_INVALID;
929 	return pte;
930 }
931 
pte_mkyoung(pte_t pte)932 static inline pte_t pte_mkyoung(pte_t pte)
933 {
934 	pte_val(pte) |= _PAGE_YOUNG;
935 	if (pte_val(pte) & _PAGE_READ)
936 		pte_val(pte) &= ~_PAGE_INVALID;
937 	return pte;
938 }
939 
pte_mkspecial(pte_t pte)940 static inline pte_t pte_mkspecial(pte_t pte)
941 {
942 	pte_val(pte) |= _PAGE_SPECIAL;
943 	return pte;
944 }
945 
946 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)947 static inline pte_t pte_mkhuge(pte_t pte)
948 {
949 	pte_val(pte) |= _PAGE_LARGE;
950 	return pte;
951 }
952 #endif
953 
954 #define IPTE_GLOBAL	0
955 #define	IPTE_LOCAL	1
956 
957 #define IPTE_NODAT	0x400
958 #define IPTE_GUEST_ASCE	0x800
959 
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)960 static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
961 			       unsigned long opt, unsigned long asce,
962 			       int local)
963 {
964 	unsigned long pto = (unsigned long) ptep;
965 
966 	if (__builtin_constant_p(opt) && opt == 0) {
967 		/* Invalidation + TLB flush for the pte */
968 		asm volatile(
969 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
970 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
971 			  [m4] "i" (local));
972 		return;
973 	}
974 
975 	/* Invalidate ptes with options + TLB flush of the ptes */
976 	opt = opt | (asce & _ASCE_ORIGIN);
977 	asm volatile(
978 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
979 		: [r2] "+a" (address), [r3] "+a" (opt)
980 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
981 }
982 
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)983 static inline void __ptep_ipte_range(unsigned long address, int nr,
984 				     pte_t *ptep, int local)
985 {
986 	unsigned long pto = (unsigned long) ptep;
987 
988 	/* Invalidate a range of ptes + TLB flush of the ptes */
989 	do {
990 		asm volatile(
991 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
992 			: [r2] "+a" (address), [r3] "+a" (nr)
993 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
994 	} while (nr != 255);
995 }
996 
997 /*
998  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
999  * both clear the TLB for the unmapped pte. The reason is that
1000  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1001  * to modify an active pte. The sequence is
1002  *   1) ptep_get_and_clear
1003  *   2) set_pte_at
1004  *   3) flush_tlb_range
1005  * On s390 the tlb needs to get flushed with the modification of the pte
1006  * if the pte is active. The only way how this can be implemented is to
1007  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1008  * is a nop.
1009  */
1010 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1011 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1012 
1013 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1014 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1015 					    unsigned long addr, pte_t *ptep)
1016 {
1017 	pte_t pte = *ptep;
1018 
1019 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1020 	return pte_young(pte);
1021 }
1022 
1023 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1024 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1025 					 unsigned long address, pte_t *ptep)
1026 {
1027 	return ptep_test_and_clear_young(vma, address, ptep);
1028 }
1029 
1030 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1031 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1032 				       unsigned long addr, pte_t *ptep)
1033 {
1034 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1035 }
1036 
1037 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1038 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1039 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1040 
1041 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1042 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1043 				     unsigned long addr, pte_t *ptep)
1044 {
1045 	return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1046 }
1047 
1048 /*
1049  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1050  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1051  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1052  * cannot be accessed while the batched unmap is running. In this case
1053  * full==1 and a simple pte_clear is enough. See tlb.h.
1054  */
1055 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1056 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1057 					    unsigned long addr,
1058 					    pte_t *ptep, int full)
1059 {
1060 	if (full) {
1061 		pte_t pte = *ptep;
1062 		*ptep = __pte(_PAGE_INVALID);
1063 		return pte;
1064 	}
1065 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1066 }
1067 
1068 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1069 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1070 				      unsigned long addr, pte_t *ptep)
1071 {
1072 	pte_t pte = *ptep;
1073 
1074 	if (pte_write(pte))
1075 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1076 }
1077 
1078 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1079 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1080 					unsigned long addr, pte_t *ptep,
1081 					pte_t entry, int dirty)
1082 {
1083 	if (pte_same(*ptep, entry))
1084 		return 0;
1085 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1086 	return 1;
1087 }
1088 
1089 /*
1090  * Additional functions to handle KVM guest page tables
1091  */
1092 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1093 		     pte_t *ptep, pte_t entry);
1094 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1095 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1096 		 pte_t *ptep, unsigned long bits);
1097 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1098 		    pte_t *ptep, int prot, unsigned long bit);
1099 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1100 		     pte_t *ptep , int reset);
1101 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1102 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1103 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1104 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1105 
1106 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1107 			    pte_t *ptep);
1108 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1109 			  unsigned char key, bool nq);
1110 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1111 			       unsigned char key, unsigned char *oldkey,
1112 			       bool nq, bool mr, bool mc);
1113 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1114 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1115 			  unsigned char *key);
1116 
1117 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1118 				unsigned long bits, unsigned long value);
1119 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1120 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1121 			unsigned long *oldpte, unsigned long *oldpgste);
1122 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1123 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1124 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1125 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1126 
1127 /*
1128  * Certain architectures need to do special things when PTEs
1129  * within a page table are directly modified.  Thus, the following
1130  * hook is made available.
1131  */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1132 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1133 			      pte_t *ptep, pte_t entry)
1134 {
1135 	if (!MACHINE_HAS_NX)
1136 		pte_val(entry) &= ~_PAGE_NOEXEC;
1137 	if (pte_present(entry))
1138 		pte_val(entry) &= ~_PAGE_UNUSED;
1139 	if (mm_has_pgste(mm))
1140 		ptep_set_pte_at(mm, addr, ptep, entry);
1141 	else
1142 		*ptep = entry;
1143 }
1144 
1145 /*
1146  * Conversion functions: convert a page and protection to a page entry,
1147  * and a page entry and page directory to the page they refer to.
1148  */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1149 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1150 {
1151 	pte_t __pte;
1152 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1153 	return pte_mkyoung(__pte);
1154 }
1155 
mk_pte(struct page * page,pgprot_t pgprot)1156 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1157 {
1158 	unsigned long physpage = page_to_phys(page);
1159 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1160 
1161 	if (pte_write(__pte) && PageDirty(page))
1162 		__pte = pte_mkdirty(__pte);
1163 	return __pte;
1164 }
1165 
1166 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1167 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1168 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1169 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1170 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1171 
1172 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1173 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1174 
1175 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1176 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1177 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1178 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1179 
p4d_offset(pgd_t * pgd,unsigned long address)1180 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1181 {
1182 	p4d_t *p4d = (p4d_t *) pgd;
1183 
1184 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1185 		p4d = (p4d_t *) pgd_deref(*pgd);
1186 	return p4d + p4d_index(address);
1187 }
1188 
pud_offset(p4d_t * p4d,unsigned long address)1189 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1190 {
1191 	pud_t *pud = (pud_t *) p4d;
1192 
1193 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1194 		pud = (pud_t *) p4d_deref(*p4d);
1195 	return pud + pud_index(address);
1196 }
1197 
pmd_offset(pud_t * pud,unsigned long address)1198 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1199 {
1200 	pmd_t *pmd = (pmd_t *) pud;
1201 
1202 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1203 		pmd = (pmd_t *) pud_deref(*pud);
1204 	return pmd + pmd_index(address);
1205 }
1206 
1207 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1208 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1209 #define pte_page(x) pfn_to_page(pte_pfn(x))
1210 
1211 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1212 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1213 #define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1214 
1215 /* Find an entry in the lowest level page table.. */
1216 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1217 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1218 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1219 #define pte_unmap(pte) do { } while (0)
1220 
pmd_wrprotect(pmd_t pmd)1221 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1222 {
1223 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1224 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1225 	return pmd;
1226 }
1227 
pmd_mkwrite(pmd_t pmd)1228 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1229 {
1230 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1231 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1232 		return pmd;
1233 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1234 	return pmd;
1235 }
1236 
pmd_mkclean(pmd_t pmd)1237 static inline pmd_t pmd_mkclean(pmd_t pmd)
1238 {
1239 	if (pmd_large(pmd)) {
1240 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1241 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1242 	}
1243 	return pmd;
1244 }
1245 
pmd_mkdirty(pmd_t pmd)1246 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1247 {
1248 	if (pmd_large(pmd)) {
1249 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1250 				_SEGMENT_ENTRY_SOFT_DIRTY;
1251 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1252 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1253 	}
1254 	return pmd;
1255 }
1256 
pud_wrprotect(pud_t pud)1257 static inline pud_t pud_wrprotect(pud_t pud)
1258 {
1259 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1260 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1261 	return pud;
1262 }
1263 
pud_mkwrite(pud_t pud)1264 static inline pud_t pud_mkwrite(pud_t pud)
1265 {
1266 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1267 	if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1268 		return pud;
1269 	pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1270 	return pud;
1271 }
1272 
pud_mkclean(pud_t pud)1273 static inline pud_t pud_mkclean(pud_t pud)
1274 {
1275 	if (pud_large(pud)) {
1276 		pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1277 		pud_val(pud) |= _REGION_ENTRY_PROTECT;
1278 	}
1279 	return pud;
1280 }
1281 
pud_mkdirty(pud_t pud)1282 static inline pud_t pud_mkdirty(pud_t pud)
1283 {
1284 	if (pud_large(pud)) {
1285 		pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1286 				_REGION3_ENTRY_SOFT_DIRTY;
1287 		if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1288 			pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1289 	}
1290 	return pud;
1291 }
1292 
1293 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1294 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1295 {
1296 	/*
1297 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1298 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1299 	 */
1300 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1301 		return pgprot_val(SEGMENT_NONE);
1302 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1303 		return pgprot_val(SEGMENT_RO);
1304 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1305 		return pgprot_val(SEGMENT_RX);
1306 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1307 		return pgprot_val(SEGMENT_RW);
1308 	return pgprot_val(SEGMENT_RWX);
1309 }
1310 
pmd_mkyoung(pmd_t pmd)1311 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1312 {
1313 	if (pmd_large(pmd)) {
1314 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1315 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1316 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1317 	}
1318 	return pmd;
1319 }
1320 
pmd_mkold(pmd_t pmd)1321 static inline pmd_t pmd_mkold(pmd_t pmd)
1322 {
1323 	if (pmd_large(pmd)) {
1324 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1325 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1326 	}
1327 	return pmd;
1328 }
1329 
pmd_modify(pmd_t pmd,pgprot_t newprot)1330 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1331 {
1332 	if (pmd_large(pmd)) {
1333 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1334 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1335 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1336 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1337 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1338 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1339 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1340 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1341 		return pmd;
1342 	}
1343 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1344 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1345 	return pmd;
1346 }
1347 
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1348 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1349 {
1350 	pmd_t __pmd;
1351 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1352 	return __pmd;
1353 }
1354 
1355 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1356 
__pmdp_csp(pmd_t * pmdp)1357 static inline void __pmdp_csp(pmd_t *pmdp)
1358 {
1359 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1360 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1361 }
1362 
1363 #define IDTE_GLOBAL	0
1364 #define IDTE_LOCAL	1
1365 
1366 #define IDTE_PTOA	0x0800
1367 #define IDTE_NODAT	0x1000
1368 #define IDTE_GUEST_ASCE	0x2000
1369 
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1370 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1371 			       unsigned long opt, unsigned long asce,
1372 			       int local)
1373 {
1374 	unsigned long sto;
1375 
1376 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1377 	if (__builtin_constant_p(opt) && opt == 0) {
1378 		/* flush without guest asce */
1379 		asm volatile(
1380 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1381 			: "+m" (*pmdp)
1382 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1383 			  [m4] "i" (local)
1384 			: "cc" );
1385 	} else {
1386 		/* flush with guest asce */
1387 		asm volatile(
1388 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1389 			: "+m" (*pmdp)
1390 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1391 			  [r3] "a" (asce), [m4] "i" (local)
1392 			: "cc" );
1393 	}
1394 }
1395 
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1396 static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1397 			       unsigned long opt, unsigned long asce,
1398 			       int local)
1399 {
1400 	unsigned long r3o;
1401 
1402 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1403 	r3o |= _ASCE_TYPE_REGION3;
1404 	if (__builtin_constant_p(opt) && opt == 0) {
1405 		/* flush without guest asce */
1406 		asm volatile(
1407 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1408 			: "+m" (*pudp)
1409 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1410 			  [m4] "i" (local)
1411 			: "cc");
1412 	} else {
1413 		/* flush with guest asce */
1414 		asm volatile(
1415 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1416 			: "+m" (*pudp)
1417 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1418 			  [r3] "a" (asce), [m4] "i" (local)
1419 			: "cc" );
1420 	}
1421 }
1422 
1423 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1424 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1425 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1426 
1427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1428 
1429 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1430 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1431 				pgtable_t pgtable);
1432 
1433 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1434 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1435 
1436 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1437 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1438 					unsigned long addr, pmd_t *pmdp,
1439 					pmd_t entry, int dirty)
1440 {
1441 	VM_BUG_ON(addr & ~HPAGE_MASK);
1442 
1443 	entry = pmd_mkyoung(entry);
1444 	if (dirty)
1445 		entry = pmd_mkdirty(entry);
1446 	if (pmd_val(*pmdp) == pmd_val(entry))
1447 		return 0;
1448 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1449 	return 1;
1450 }
1451 
1452 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1453 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1454 					    unsigned long addr, pmd_t *pmdp)
1455 {
1456 	pmd_t pmd = *pmdp;
1457 
1458 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1459 	return pmd_young(pmd);
1460 }
1461 
1462 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1463 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1464 					 unsigned long addr, pmd_t *pmdp)
1465 {
1466 	VM_BUG_ON(addr & ~HPAGE_MASK);
1467 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1468 }
1469 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1470 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1471 			      pmd_t *pmdp, pmd_t entry)
1472 {
1473 	if (!MACHINE_HAS_NX)
1474 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1475 	*pmdp = entry;
1476 }
1477 
pmd_mkhuge(pmd_t pmd)1478 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1479 {
1480 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1481 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1482 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1483 	return pmd;
1484 }
1485 
1486 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1487 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1488 					    unsigned long addr, pmd_t *pmdp)
1489 {
1490 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1491 }
1492 
1493 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,int full)1494 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1495 						 unsigned long addr,
1496 						 pmd_t *pmdp, int full)
1497 {
1498 	if (full) {
1499 		pmd_t pmd = *pmdp;
1500 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1501 		return pmd;
1502 	}
1503 	return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1504 }
1505 
1506 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1507 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1508 					  unsigned long addr, pmd_t *pmdp)
1509 {
1510 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1511 }
1512 
1513 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1514 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1515 				   unsigned long addr, pmd_t *pmdp)
1516 {
1517 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1518 
1519 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1520 }
1521 
1522 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1523 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1524 				      unsigned long addr, pmd_t *pmdp)
1525 {
1526 	pmd_t pmd = *pmdp;
1527 
1528 	if (pmd_write(pmd))
1529 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1530 }
1531 
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1532 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1533 					unsigned long address,
1534 					pmd_t *pmdp)
1535 {
1536 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1537 }
1538 #define pmdp_collapse_flush pmdp_collapse_flush
1539 
1540 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1541 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1542 
pmd_trans_huge(pmd_t pmd)1543 static inline int pmd_trans_huge(pmd_t pmd)
1544 {
1545 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1546 }
1547 
1548 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1549 static inline int has_transparent_hugepage(void)
1550 {
1551 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1552 }
1553 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1554 
1555 /*
1556  * 64 bit swap entry format:
1557  * A page-table entry has some bits we have to treat in a special way.
1558  * Bits 52 and bit 55 have to be zero, otherwise a specification
1559  * exception will occur instead of a page translation exception. The
1560  * specification exception has the bad habit not to store necessary
1561  * information in the lowcore.
1562  * Bits 54 and 63 are used to indicate the page type.
1563  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1564  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1565  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1566  * for the offset.
1567  * |			  offset			|01100|type |00|
1568  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1569  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1570  */
1571 
1572 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1573 #define __SWP_OFFSET_SHIFT	12
1574 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1575 #define __SWP_TYPE_SHIFT	2
1576 
mk_swap_pte(unsigned long type,unsigned long offset)1577 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1578 {
1579 	pte_t pte;
1580 
1581 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1582 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1583 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1584 	return pte;
1585 }
1586 
__swp_type(swp_entry_t entry)1587 static inline unsigned long __swp_type(swp_entry_t entry)
1588 {
1589 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1590 }
1591 
__swp_offset(swp_entry_t entry)1592 static inline unsigned long __swp_offset(swp_entry_t entry)
1593 {
1594 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1595 }
1596 
__swp_entry(unsigned long type,unsigned long offset)1597 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1598 {
1599 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1600 }
1601 
1602 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1603 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1604 
1605 #define kern_addr_valid(addr)   (1)
1606 
1607 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1608 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1609 extern int s390_enable_sie(void);
1610 extern int s390_enable_skey(void);
1611 extern void s390_reset_cmma(struct mm_struct *mm);
1612 
1613 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1614 #define HAVE_ARCH_UNMAPPED_AREA
1615 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1616 
1617 /*
1618  * No page table caches to initialise
1619  */
pgtable_cache_init(void)1620 static inline void pgtable_cache_init(void) { }
check_pgt_cache(void)1621 static inline void check_pgt_cache(void) { }
1622 
1623 #include <asm-generic/pgtable.h>
1624 
1625 #endif /* _S390_PAGE_H */
1626