1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/initrd.h>
28 #include <linux/bitops.h>
29 #include <linux/export.h>
30 #include <linux/kexec.h>
31 #include <linux/irq.h>
32 #include <linux/memblock.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/libfdt.h>
36 #include <linux/cpu.h>
37
38 #include <asm/prom.h>
39 #include <asm/rtas.h>
40 #include <asm/page.h>
41 #include <asm/processor.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/kdump.h>
45 #include <asm/smp.h>
46 #include <asm/mmu.h>
47 #include <asm/paca.h>
48 #include <asm/pgtable.h>
49 #include <asm/powernv.h>
50 #include <asm/iommu.h>
51 #include <asm/btext.h>
52 #include <asm/sections.h>
53 #include <asm/machdep.h>
54 #include <asm/pci-bridge.h>
55 #include <asm/kexec.h>
56 #include <asm/opal.h>
57 #include <asm/fadump.h>
58 #include <asm/epapr_hcalls.h>
59 #include <asm/firmware.h>
60 #include <asm/dt_cpu_ftrs.h>
61 #include <asm/drmem.h>
62
63 #include <mm/mmu_decl.h>
64
65 #ifdef DEBUG
66 #define DBG(fmt...) printk(KERN_ERR fmt)
67 #else
68 #define DBG(fmt...)
69 #endif
70
71 #ifdef CONFIG_PPC64
72 int __initdata iommu_is_off;
73 int __initdata iommu_force_on;
74 unsigned long tce_alloc_start, tce_alloc_end;
75 u64 ppc64_rma_size;
76 #endif
77 static phys_addr_t first_memblock_size;
78 static int __initdata boot_cpu_count;
79
early_parse_mem(char * p)80 static int __init early_parse_mem(char *p)
81 {
82 if (!p)
83 return 1;
84
85 memory_limit = PAGE_ALIGN(memparse(p, &p));
86 DBG("memory limit = 0x%llx\n", memory_limit);
87
88 return 0;
89 }
90 early_param("mem", early_parse_mem);
91
92 /*
93 * overlaps_initrd - check for overlap with page aligned extension of
94 * initrd.
95 */
overlaps_initrd(unsigned long start,unsigned long size)96 static inline int overlaps_initrd(unsigned long start, unsigned long size)
97 {
98 #ifdef CONFIG_BLK_DEV_INITRD
99 if (!initrd_start)
100 return 0;
101
102 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
103 start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
104 #else
105 return 0;
106 #endif
107 }
108
109 /**
110 * move_device_tree - move tree to an unused area, if needed.
111 *
112 * The device tree may be allocated beyond our memory limit, or inside the
113 * crash kernel region for kdump, or within the page aligned range of initrd.
114 * If so, move it out of the way.
115 */
move_device_tree(void)116 static void __init move_device_tree(void)
117 {
118 unsigned long start, size;
119 void *p;
120
121 DBG("-> move_device_tree\n");
122
123 start = __pa(initial_boot_params);
124 size = fdt_totalsize(initial_boot_params);
125
126 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
127 overlaps_crashkernel(start, size) ||
128 overlaps_initrd(start, size)) {
129 p = __va(memblock_alloc(size, PAGE_SIZE));
130 memcpy(p, initial_boot_params, size);
131 initial_boot_params = p;
132 DBG("Moved device tree to 0x%p\n", p);
133 }
134
135 DBG("<- move_device_tree\n");
136 }
137
138 /*
139 * ibm,pa-features is a per-cpu property that contains a string of
140 * attribute descriptors, each of which has a 2 byte header plus up
141 * to 254 bytes worth of processor attribute bits. First header
142 * byte specifies the number of bytes following the header.
143 * Second header byte is an "attribute-specifier" type, of which
144 * zero is the only currently-defined value.
145 * Implementation: Pass in the byte and bit offset for the feature
146 * that we are interested in. The function will return -1 if the
147 * pa-features property is missing, or a 1/0 to indicate if the feature
148 * is supported/not supported. Note that the bit numbers are
149 * big-endian to match the definition in PAPR.
150 */
151 static struct ibm_pa_feature {
152 unsigned long cpu_features; /* CPU_FTR_xxx bit */
153 unsigned long mmu_features; /* MMU_FTR_xxx bit */
154 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
155 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
156 unsigned char pabyte; /* byte number in ibm,pa-features */
157 unsigned char pabit; /* bit number (big-endian) */
158 unsigned char invert; /* if 1, pa bit set => clear feature */
159 } ibm_pa_features[] __initdata = {
160 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
161 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
162 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
163 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
164 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
165 #ifdef CONFIG_PPC_RADIX_MMU
166 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX },
167 #endif
168 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
169 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
170 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
171 /*
172 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
173 * we don't want to turn on TM here, so we use the *_COMP versions
174 * which are 0 if the kernel doesn't support TM.
175 */
176 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
177 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
178 };
179
scan_features(unsigned long node,const unsigned char * ftrs,unsigned long tablelen,struct ibm_pa_feature * fp,unsigned long ft_size)180 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
181 unsigned long tablelen,
182 struct ibm_pa_feature *fp,
183 unsigned long ft_size)
184 {
185 unsigned long i, len, bit;
186
187 /* find descriptor with type == 0 */
188 for (;;) {
189 if (tablelen < 3)
190 return;
191 len = 2 + ftrs[0];
192 if (tablelen < len)
193 return; /* descriptor 0 not found */
194 if (ftrs[1] == 0)
195 break;
196 tablelen -= len;
197 ftrs += len;
198 }
199
200 /* loop over bits we know about */
201 for (i = 0; i < ft_size; ++i, ++fp) {
202 if (fp->pabyte >= ftrs[0])
203 continue;
204 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
205 if (bit ^ fp->invert) {
206 cur_cpu_spec->cpu_features |= fp->cpu_features;
207 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
208 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
209 cur_cpu_spec->mmu_features |= fp->mmu_features;
210 } else {
211 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
212 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
213 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
214 cur_cpu_spec->mmu_features &= ~fp->mmu_features;
215 }
216 }
217 }
218
check_cpu_pa_features(unsigned long node)219 static void __init check_cpu_pa_features(unsigned long node)
220 {
221 const unsigned char *pa_ftrs;
222 int tablelen;
223
224 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
225 if (pa_ftrs == NULL)
226 return;
227
228 scan_features(node, pa_ftrs, tablelen,
229 ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
230 }
231
232 #ifdef CONFIG_PPC_BOOK3S_64
init_mmu_slb_size(unsigned long node)233 static void __init init_mmu_slb_size(unsigned long node)
234 {
235 const __be32 *slb_size_ptr;
236
237 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
238 of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
239
240 if (slb_size_ptr)
241 mmu_slb_size = be32_to_cpup(slb_size_ptr);
242 }
243 #else
244 #define init_mmu_slb_size(node) do { } while(0)
245 #endif
246
247 static struct feature_property {
248 const char *name;
249 u32 min_value;
250 unsigned long cpu_feature;
251 unsigned long cpu_user_ftr;
252 } feature_properties[] __initdata = {
253 #ifdef CONFIG_ALTIVEC
254 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
255 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
256 #endif /* CONFIG_ALTIVEC */
257 #ifdef CONFIG_VSX
258 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
259 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
260 #endif /* CONFIG_VSX */
261 #ifdef CONFIG_PPC64
262 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
263 {"ibm,purr", 1, CPU_FTR_PURR, 0},
264 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
265 #endif /* CONFIG_PPC64 */
266 };
267
268 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
identical_pvr_fixup(unsigned long node)269 static inline void identical_pvr_fixup(unsigned long node)
270 {
271 unsigned int pvr;
272 const char *model = of_get_flat_dt_prop(node, "model", NULL);
273
274 /*
275 * Since 440GR(x)/440EP(x) processors have the same pvr,
276 * we check the node path and set bit 28 in the cur_cpu_spec
277 * pvr for EP(x) processor version. This bit is always 0 in
278 * the "real" pvr. Then we call identify_cpu again with
279 * the new logical pvr to enable FPU support.
280 */
281 if (model && strstr(model, "440EP")) {
282 pvr = cur_cpu_spec->pvr_value | 0x8;
283 identify_cpu(0, pvr);
284 DBG("Using logical pvr %x for %s\n", pvr, model);
285 }
286 }
287 #else
288 #define identical_pvr_fixup(node) do { } while(0)
289 #endif
290
check_cpu_feature_properties(unsigned long node)291 static void __init check_cpu_feature_properties(unsigned long node)
292 {
293 int i;
294 struct feature_property *fp = feature_properties;
295 const __be32 *prop;
296
297 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
298 prop = of_get_flat_dt_prop(node, fp->name, NULL);
299 if (prop && be32_to_cpup(prop) >= fp->min_value) {
300 cur_cpu_spec->cpu_features |= fp->cpu_feature;
301 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
302 }
303 }
304 }
305
early_init_dt_scan_cpus(unsigned long node,const char * uname,int depth,void * data)306 static int __init early_init_dt_scan_cpus(unsigned long node,
307 const char *uname, int depth,
308 void *data)
309 {
310 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
311 const __be32 *prop;
312 const __be32 *intserv;
313 int i, nthreads;
314 int len;
315 int found = -1;
316 int found_thread = 0;
317
318 /* We are scanning "cpu" nodes only */
319 if (type == NULL || strcmp(type, "cpu") != 0)
320 return 0;
321
322 /* Get physical cpuid */
323 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
324 if (!intserv)
325 intserv = of_get_flat_dt_prop(node, "reg", &len);
326
327 nthreads = len / sizeof(int);
328
329 /*
330 * Now see if any of these threads match our boot cpu.
331 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
332 */
333 for (i = 0; i < nthreads; i++) {
334 if (be32_to_cpu(intserv[i]) ==
335 fdt_boot_cpuid_phys(initial_boot_params)) {
336 found = boot_cpu_count;
337 found_thread = i;
338 }
339 #ifdef CONFIG_SMP
340 /* logical cpu id is always 0 on UP kernels */
341 boot_cpu_count++;
342 #endif
343 }
344
345 /* Not the boot CPU */
346 if (found < 0)
347 return 0;
348
349 DBG("boot cpu: logical %d physical %d\n", found,
350 be32_to_cpu(intserv[found_thread]));
351 boot_cpuid = found;
352
353 /*
354 * PAPR defines "logical" PVR values for cpus that
355 * meet various levels of the architecture:
356 * 0x0f000001 Architecture version 2.04
357 * 0x0f000002 Architecture version 2.05
358 * If the cpu-version property in the cpu node contains
359 * such a value, we call identify_cpu again with the
360 * logical PVR value in order to use the cpu feature
361 * bits appropriate for the architecture level.
362 *
363 * A POWER6 partition in "POWER6 architected" mode
364 * uses the 0x0f000002 PVR value; in POWER5+ mode
365 * it uses 0x0f000001.
366 *
367 * If we're using device tree CPU feature discovery then we don't
368 * support the cpu-version property, and it's the responsibility of the
369 * firmware/hypervisor to provide the correct feature set for the
370 * architecture level via the ibm,powerpc-cpu-features binding.
371 */
372 if (!dt_cpu_ftrs_in_use()) {
373 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
374 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
375 identify_cpu(0, be32_to_cpup(prop));
376
377 check_cpu_feature_properties(node);
378 check_cpu_pa_features(node);
379 }
380
381 identical_pvr_fixup(node);
382 init_mmu_slb_size(node);
383
384 #ifdef CONFIG_PPC64
385 if (nthreads == 1)
386 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
387 else if (!dt_cpu_ftrs_in_use())
388 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
389 allocate_paca(boot_cpuid);
390 #endif
391 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
392
393 return 0;
394 }
395
early_init_dt_scan_chosen_ppc(unsigned long node,const char * uname,int depth,void * data)396 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
397 const char *uname,
398 int depth, void *data)
399 {
400 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
401
402 /* Use common scan routine to determine if this is the chosen node */
403 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
404 return 0;
405
406 #ifdef CONFIG_PPC64
407 /* check if iommu is forced on or off */
408 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
409 iommu_is_off = 1;
410 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
411 iommu_force_on = 1;
412 #endif
413
414 /* mem=x on the command line is the preferred mechanism */
415 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
416 if (lprop)
417 memory_limit = *lprop;
418
419 #ifdef CONFIG_PPC64
420 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
421 if (lprop)
422 tce_alloc_start = *lprop;
423 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
424 if (lprop)
425 tce_alloc_end = *lprop;
426 #endif
427
428 #ifdef CONFIG_KEXEC_CORE
429 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
430 if (lprop)
431 crashk_res.start = *lprop;
432
433 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
434 if (lprop)
435 crashk_res.end = crashk_res.start + *lprop - 1;
436 #endif
437
438 /* break now */
439 return 1;
440 }
441
442 /*
443 * Compare the range against max mem limit and update
444 * size if it cross the limit.
445 */
446
447 #ifdef CONFIG_SPARSEMEM
validate_mem_limit(u64 base,u64 * size)448 static bool validate_mem_limit(u64 base, u64 *size)
449 {
450 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
451
452 if (base >= max_mem)
453 return false;
454 if ((base + *size) > max_mem)
455 *size = max_mem - base;
456 return true;
457 }
458 #else
validate_mem_limit(u64 base,u64 * size)459 static bool validate_mem_limit(u64 base, u64 *size)
460 {
461 return true;
462 }
463 #endif
464
465 #ifdef CONFIG_PPC_PSERIES
466 /*
467 * Interpret the ibm dynamic reconfiguration memory LMBs.
468 * This contains a list of memory blocks along with NUMA affinity
469 * information.
470 */
early_init_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm)471 static void __init early_init_drmem_lmb(struct drmem_lmb *lmb,
472 const __be32 **usm)
473 {
474 u64 base, size;
475 int is_kexec_kdump = 0, rngs;
476
477 base = lmb->base_addr;
478 size = drmem_lmb_size();
479 rngs = 1;
480
481 /*
482 * Skip this block if the reserved bit is set in flags
483 * or if the block is not assigned to this partition.
484 */
485 if ((lmb->flags & DRCONF_MEM_RESERVED) ||
486 !(lmb->flags & DRCONF_MEM_ASSIGNED))
487 return;
488
489 if (*usm)
490 is_kexec_kdump = 1;
491
492 if (is_kexec_kdump) {
493 /*
494 * For each memblock in ibm,dynamic-memory, a
495 * corresponding entry in linux,drconf-usable-memory
496 * property contains a counter 'p' followed by 'p'
497 * (base, size) duple. Now read the counter from
498 * linux,drconf-usable-memory property
499 */
500 rngs = dt_mem_next_cell(dt_root_size_cells, usm);
501 if (!rngs) /* there are no (base, size) duple */
502 return;
503 }
504
505 do {
506 if (is_kexec_kdump) {
507 base = dt_mem_next_cell(dt_root_addr_cells, usm);
508 size = dt_mem_next_cell(dt_root_size_cells, usm);
509 }
510
511 if (iommu_is_off) {
512 if (base >= 0x80000000ul)
513 continue;
514 if ((base + size) > 0x80000000ul)
515 size = 0x80000000ul - base;
516 }
517
518 DBG("Adding: %llx -> %llx\n", base, size);
519 if (validate_mem_limit(base, &size))
520 memblock_add(base, size);
521 } while (--rngs);
522 }
523 #endif /* CONFIG_PPC_PSERIES */
524
early_init_dt_scan_memory_ppc(unsigned long node,const char * uname,int depth,void * data)525 static int __init early_init_dt_scan_memory_ppc(unsigned long node,
526 const char *uname,
527 int depth, void *data)
528 {
529 #ifdef CONFIG_PPC_PSERIES
530 if (depth == 1 &&
531 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
532 walk_drmem_lmbs_early(node, early_init_drmem_lmb);
533 return 0;
534 }
535 #endif
536
537 return early_init_dt_scan_memory(node, uname, depth, data);
538 }
539
540 /*
541 * For a relocatable kernel, we need to get the memstart_addr first,
542 * then use it to calculate the virtual kernel start address. This has
543 * to happen at a very early stage (before machine_init). In this case,
544 * we just want to get the memstart_address and would not like to mess the
545 * memblock at this stage. So introduce a variable to skip the memblock_add()
546 * for this reason.
547 */
548 #ifdef CONFIG_RELOCATABLE
549 static int add_mem_to_memblock = 1;
550 #else
551 #define add_mem_to_memblock 1
552 #endif
553
early_init_dt_add_memory_arch(u64 base,u64 size)554 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
555 {
556 #ifdef CONFIG_PPC64
557 if (iommu_is_off) {
558 if (base >= 0x80000000ul)
559 return;
560 if ((base + size) > 0x80000000ul)
561 size = 0x80000000ul - base;
562 }
563 #endif
564 /* Keep track of the beginning of memory -and- the size of
565 * the very first block in the device-tree as it represents
566 * the RMA on ppc64 server
567 */
568 if (base < memstart_addr) {
569 memstart_addr = base;
570 first_memblock_size = size;
571 }
572
573 /* Add the chunk to the MEMBLOCK list */
574 if (add_mem_to_memblock) {
575 if (validate_mem_limit(base, &size))
576 memblock_add(base, size);
577 }
578 }
579
early_reserve_mem_dt(void)580 static void __init early_reserve_mem_dt(void)
581 {
582 unsigned long i, dt_root;
583 int len;
584 const __be32 *prop;
585
586 early_init_fdt_reserve_self();
587 early_init_fdt_scan_reserved_mem();
588
589 dt_root = of_get_flat_dt_root();
590
591 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
592
593 if (!prop)
594 return;
595
596 DBG("Found new-style reserved-ranges\n");
597
598 /* Each reserved range is an (address,size) pair, 2 cells each,
599 * totalling 4 cells per range. */
600 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
601 u64 base, size;
602
603 base = of_read_number(prop + (i * 4) + 0, 2);
604 size = of_read_number(prop + (i * 4) + 2, 2);
605
606 if (size) {
607 DBG("reserving: %llx -> %llx\n", base, size);
608 memblock_reserve(base, size);
609 }
610 }
611 }
612
early_reserve_mem(void)613 static void __init early_reserve_mem(void)
614 {
615 __be64 *reserve_map;
616
617 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
618 fdt_off_mem_rsvmap(initial_boot_params));
619
620 /* Look for the new "reserved-regions" property in the DT */
621 early_reserve_mem_dt();
622
623 #ifdef CONFIG_BLK_DEV_INITRD
624 /* Then reserve the initrd, if any */
625 if (initrd_start && (initrd_end > initrd_start)) {
626 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
627 _ALIGN_UP(initrd_end, PAGE_SIZE) -
628 _ALIGN_DOWN(initrd_start, PAGE_SIZE));
629 }
630 #endif /* CONFIG_BLK_DEV_INITRD */
631
632 #ifdef CONFIG_PPC32
633 /*
634 * Handle the case where we might be booting from an old kexec
635 * image that setup the mem_rsvmap as pairs of 32-bit values
636 */
637 if (be64_to_cpup(reserve_map) > 0xffffffffull) {
638 u32 base_32, size_32;
639 __be32 *reserve_map_32 = (__be32 *)reserve_map;
640
641 DBG("Found old 32-bit reserve map\n");
642
643 while (1) {
644 base_32 = be32_to_cpup(reserve_map_32++);
645 size_32 = be32_to_cpup(reserve_map_32++);
646 if (size_32 == 0)
647 break;
648 DBG("reserving: %x -> %x\n", base_32, size_32);
649 memblock_reserve(base_32, size_32);
650 }
651 return;
652 }
653 #endif
654 }
655
656 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
657 static bool tm_disabled __initdata;
658
parse_ppc_tm(char * str)659 static int __init parse_ppc_tm(char *str)
660 {
661 bool res;
662
663 if (kstrtobool(str, &res))
664 return -EINVAL;
665
666 tm_disabled = !res;
667
668 return 0;
669 }
670 early_param("ppc_tm", parse_ppc_tm);
671
tm_init(void)672 static void __init tm_init(void)
673 {
674 if (tm_disabled) {
675 pr_info("Disabling hardware transactional memory (HTM)\n");
676 cur_cpu_spec->cpu_user_features2 &=
677 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
678 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
679 return;
680 }
681
682 pnv_tm_init();
683 }
684 #else
tm_init(void)685 static void tm_init(void) { }
686 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
687
early_init_devtree(void * params)688 void __init early_init_devtree(void *params)
689 {
690 phys_addr_t limit;
691
692 DBG(" -> early_init_devtree(%p)\n", params);
693
694 /* Too early to BUG_ON(), do it by hand */
695 if (!early_init_dt_verify(params))
696 panic("BUG: Failed verifying flat device tree, bad version?");
697
698 #ifdef CONFIG_PPC_RTAS
699 /* Some machines might need RTAS info for debugging, grab it now. */
700 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
701 #endif
702
703 #ifdef CONFIG_PPC_POWERNV
704 /* Some machines might need OPAL info for debugging, grab it now. */
705 of_scan_flat_dt(early_init_dt_scan_opal, NULL);
706 #endif
707
708 #ifdef CONFIG_FA_DUMP
709 /* scan tree to see if dump is active during last boot */
710 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
711 #endif
712
713 /* Retrieve various informations from the /chosen node of the
714 * device-tree, including the platform type, initrd location and
715 * size, TCE reserve, and more ...
716 */
717 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
718
719 /* Scan memory nodes and rebuild MEMBLOCKs */
720 of_scan_flat_dt(early_init_dt_scan_root, NULL);
721 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
722
723 parse_early_param();
724
725 /* make sure we've parsed cmdline for mem= before this */
726 if (memory_limit)
727 first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
728 setup_initial_memory_limit(memstart_addr, first_memblock_size);
729 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
730 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
731 /* If relocatable, reserve first 32k for interrupt vectors etc. */
732 if (PHYSICAL_START > MEMORY_START)
733 memblock_reserve(MEMORY_START, 0x8000);
734 reserve_kdump_trampoline();
735 #ifdef CONFIG_FA_DUMP
736 /*
737 * If we fail to reserve memory for firmware-assisted dump then
738 * fallback to kexec based kdump.
739 */
740 if (fadump_reserve_mem() == 0)
741 #endif
742 reserve_crashkernel();
743 early_reserve_mem();
744
745 /* Ensure that total memory size is page-aligned. */
746 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
747 memblock_enforce_memory_limit(limit);
748
749 memblock_allow_resize();
750 memblock_dump_all();
751
752 DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
753
754 /* We may need to relocate the flat tree, do it now.
755 * FIXME .. and the initrd too? */
756 move_device_tree();
757
758 allocate_paca_ptrs();
759
760 DBG("Scanning CPUs ...\n");
761
762 dt_cpu_ftrs_scan();
763
764 /* Retrieve CPU related informations from the flat tree
765 * (altivec support, boot CPU ID, ...)
766 */
767 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
768 if (boot_cpuid < 0) {
769 printk("Failed to identify boot CPU !\n");
770 BUG();
771 }
772
773 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
774 /* We'll later wait for secondaries to check in; there are
775 * NCPUS-1 non-boot CPUs :-)
776 */
777 spinning_secondaries = boot_cpu_count - 1;
778 #endif
779
780 mmu_early_init_devtree();
781
782 #ifdef CONFIG_PPC_POWERNV
783 /* Scan and build the list of machine check recoverable ranges */
784 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
785 #endif
786 epapr_paravirt_early_init();
787
788 /* Now try to figure out if we are running on LPAR and so on */
789 pseries_probe_fw_features();
790
791 #ifdef CONFIG_PPC_PS3
792 /* Identify PS3 firmware */
793 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
794 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
795 #endif
796
797 tm_init();
798
799 DBG(" <- early_init_devtree()\n");
800 }
801
802 #ifdef CONFIG_RELOCATABLE
803 /*
804 * This function run before early_init_devtree, so we have to init
805 * initial_boot_params.
806 */
early_get_first_memblock_info(void * params,phys_addr_t * size)807 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
808 {
809 /* Setup flat device-tree pointer */
810 initial_boot_params = params;
811
812 /*
813 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
814 * mess the memblock.
815 */
816 add_mem_to_memblock = 0;
817 of_scan_flat_dt(early_init_dt_scan_root, NULL);
818 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
819 add_mem_to_memblock = 1;
820
821 if (size)
822 *size = first_memblock_size;
823 }
824 #endif
825
826 /*******
827 *
828 * New implementation of the OF "find" APIs, return a refcounted
829 * object, call of_node_put() when done. The device tree and list
830 * are protected by a rw_lock.
831 *
832 * Note that property management will need some locking as well,
833 * this isn't dealt with yet.
834 *
835 *******/
836
837 /**
838 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
839 * @np: device node of the device
840 *
841 * This looks for a property "ibm,chip-id" in the node or any
842 * of its parents and returns its content, or -1 if it cannot
843 * be found.
844 */
of_get_ibm_chip_id(struct device_node * np)845 int of_get_ibm_chip_id(struct device_node *np)
846 {
847 of_node_get(np);
848 while (np) {
849 u32 chip_id;
850
851 /*
852 * Skiboot may produce memory nodes that contain more than one
853 * cell in chip-id, we only read the first one here.
854 */
855 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
856 of_node_put(np);
857 return chip_id;
858 }
859
860 np = of_get_next_parent(np);
861 }
862 return -1;
863 }
864 EXPORT_SYMBOL(of_get_ibm_chip_id);
865
866 /**
867 * cpu_to_chip_id - Return the cpus chip-id
868 * @cpu: The logical cpu number.
869 *
870 * Return the value of the ibm,chip-id property corresponding to the given
871 * logical cpu number. If the chip-id can not be found, returns -1.
872 */
cpu_to_chip_id(int cpu)873 int cpu_to_chip_id(int cpu)
874 {
875 struct device_node *np;
876
877 np = of_get_cpu_node(cpu, NULL);
878 if (!np)
879 return -1;
880
881 of_node_put(np);
882 return of_get_ibm_chip_id(np);
883 }
884 EXPORT_SYMBOL(cpu_to_chip_id);
885
arch_match_cpu_phys_id(int cpu,u64 phys_id)886 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
887 {
888 #ifdef CONFIG_SMP
889 /*
890 * Early firmware scanning must use this rather than
891 * get_hard_smp_processor_id because we don't have pacas allocated
892 * until memory topology is discovered.
893 */
894 if (cpu_to_phys_id != NULL)
895 return (int)phys_id == cpu_to_phys_id[cpu];
896 #endif
897
898 return (int)phys_id == get_hard_smp_processor_id(cpu);
899 }
900