1 /*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /dev/nvram driver for PPC64
10 *
11 * This perhaps should live in drivers/char
12 *
13 * TODO: Split the /dev/nvram part (that one can use
14 * drivers/char/generic_nvram.c) from the arch & partition
15 * parsing code.
16 */
17
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/fs.h>
21 #include <linux/miscdevice.h>
22 #include <linux/fcntl.h>
23 #include <linux/nvram.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/kmsg_dump.h>
28 #include <linux/pagemap.h>
29 #include <linux/pstore.h>
30 #include <linux/zlib.h>
31 #include <linux/uaccess.h>
32 #include <asm/nvram.h>
33 #include <asm/rtas.h>
34 #include <asm/prom.h>
35 #include <asm/machdep.h>
36
37 #undef DEBUG_NVRAM
38
39 #define NVRAM_HEADER_LEN sizeof(struct nvram_header)
40 #define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN
41
42 /* If change this size, then change the size of NVNAME_LEN */
43 struct nvram_header {
44 unsigned char signature;
45 unsigned char checksum;
46 unsigned short length;
47 /* Terminating null required only for names < 12 chars. */
48 char name[12];
49 };
50
51 struct nvram_partition {
52 struct list_head partition;
53 struct nvram_header header;
54 unsigned int index;
55 };
56
57 static LIST_HEAD(nvram_partitions);
58
59 #ifdef CONFIG_PPC_PSERIES
60 struct nvram_os_partition rtas_log_partition = {
61 .name = "ibm,rtas-log",
62 .req_size = 2079,
63 .min_size = 1055,
64 .index = -1,
65 .os_partition = true
66 };
67 #endif
68
69 struct nvram_os_partition oops_log_partition = {
70 .name = "lnx,oops-log",
71 .req_size = 4000,
72 .min_size = 2000,
73 .index = -1,
74 .os_partition = true
75 };
76
77 static const char *nvram_os_partitions[] = {
78 #ifdef CONFIG_PPC_PSERIES
79 "ibm,rtas-log",
80 #endif
81 "lnx,oops-log",
82 NULL
83 };
84
85 static void oops_to_nvram(struct kmsg_dumper *dumper,
86 enum kmsg_dump_reason reason);
87
88 static struct kmsg_dumper nvram_kmsg_dumper = {
89 .dump = oops_to_nvram
90 };
91
92 /*
93 * For capturing and compressing an oops or panic report...
94
95 * big_oops_buf[] holds the uncompressed text we're capturing.
96 *
97 * oops_buf[] holds the compressed text, preceded by a oops header.
98 * oops header has u16 holding the version of oops header (to differentiate
99 * between old and new format header) followed by u16 holding the length of
100 * the compressed* text (*Or uncompressed, if compression fails.) and u64
101 * holding the timestamp. oops_buf[] gets written to NVRAM.
102 *
103 * oops_log_info points to the header. oops_data points to the compressed text.
104 *
105 * +- oops_buf
106 * | +- oops_data
107 * v v
108 * +-----------+-----------+-----------+------------------------+
109 * | version | length | timestamp | text |
110 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
111 * +-----------+-----------+-----------+------------------------+
112 * ^
113 * +- oops_log_info
114 *
115 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
116 */
117 static size_t big_oops_buf_sz;
118 static char *big_oops_buf, *oops_buf;
119 static char *oops_data;
120 static size_t oops_data_sz;
121
122 /* Compression parameters */
123 #define COMPR_LEVEL 6
124 #define WINDOW_BITS 12
125 #define MEM_LEVEL 4
126 static struct z_stream_s stream;
127
128 #ifdef CONFIG_PSTORE
129 #ifdef CONFIG_PPC_POWERNV
130 static struct nvram_os_partition skiboot_partition = {
131 .name = "ibm,skiboot",
132 .index = -1,
133 .os_partition = false
134 };
135 #endif
136
137 #ifdef CONFIG_PPC_PSERIES
138 static struct nvram_os_partition of_config_partition = {
139 .name = "of-config",
140 .index = -1,
141 .os_partition = false
142 };
143 #endif
144
145 static struct nvram_os_partition common_partition = {
146 .name = "common",
147 .index = -1,
148 .os_partition = false
149 };
150
151 static enum pstore_type_id nvram_type_ids[] = {
152 PSTORE_TYPE_DMESG,
153 PSTORE_TYPE_PPC_COMMON,
154 -1,
155 -1,
156 -1
157 };
158 static int read_type;
159 #endif
160
161 /* nvram_write_os_partition
162 *
163 * We need to buffer the error logs into nvram to ensure that we have
164 * the failure information to decode. If we have a severe error there
165 * is no way to guarantee that the OS or the machine is in a state to
166 * get back to user land and write the error to disk. For example if
167 * the SCSI device driver causes a Machine Check by writing to a bad
168 * IO address, there is no way of guaranteeing that the device driver
169 * is in any state that is would also be able to write the error data
170 * captured to disk, thus we buffer it in NVRAM for analysis on the
171 * next boot.
172 *
173 * In NVRAM the partition containing the error log buffer will looks like:
174 * Header (in bytes):
175 * +-----------+----------+--------+------------+------------------+
176 * | signature | checksum | length | name | data |
177 * |0 |1 |2 3|4 15|16 length-1|
178 * +-----------+----------+--------+------------+------------------+
179 *
180 * The 'data' section would look like (in bytes):
181 * +--------------+------------+-----------------------------------+
182 * | event_logged | sequence # | error log |
183 * |0 3|4 7|8 error_log_size-1|
184 * +--------------+------------+-----------------------------------+
185 *
186 * event_logged: 0 if event has not been logged to syslog, 1 if it has
187 * sequence #: The unique sequence # for each event. (until it wraps)
188 * error log: The error log from event_scan
189 */
nvram_write_os_partition(struct nvram_os_partition * part,char * buff,int length,unsigned int err_type,unsigned int error_log_cnt)190 int nvram_write_os_partition(struct nvram_os_partition *part,
191 char *buff, int length,
192 unsigned int err_type,
193 unsigned int error_log_cnt)
194 {
195 int rc;
196 loff_t tmp_index;
197 struct err_log_info info;
198
199 if (part->index == -1)
200 return -ESPIPE;
201
202 if (length > part->size)
203 length = part->size;
204
205 info.error_type = cpu_to_be32(err_type);
206 info.seq_num = cpu_to_be32(error_log_cnt);
207
208 tmp_index = part->index;
209
210 rc = ppc_md.nvram_write((char *)&info, sizeof(info), &tmp_index);
211 if (rc <= 0) {
212 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
213 return rc;
214 }
215
216 rc = ppc_md.nvram_write(buff, length, &tmp_index);
217 if (rc <= 0) {
218 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
219 return rc;
220 }
221
222 return 0;
223 }
224
225 /* nvram_read_partition
226 *
227 * Reads nvram partition for at most 'length'
228 */
nvram_read_partition(struct nvram_os_partition * part,char * buff,int length,unsigned int * err_type,unsigned int * error_log_cnt)229 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
230 int length, unsigned int *err_type,
231 unsigned int *error_log_cnt)
232 {
233 int rc;
234 loff_t tmp_index;
235 struct err_log_info info;
236
237 if (part->index == -1)
238 return -1;
239
240 if (length > part->size)
241 length = part->size;
242
243 tmp_index = part->index;
244
245 if (part->os_partition) {
246 rc = ppc_md.nvram_read((char *)&info, sizeof(info), &tmp_index);
247 if (rc <= 0) {
248 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
249 return rc;
250 }
251 }
252
253 rc = ppc_md.nvram_read(buff, length, &tmp_index);
254 if (rc <= 0) {
255 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
256 return rc;
257 }
258
259 if (part->os_partition) {
260 *error_log_cnt = be32_to_cpu(info.seq_num);
261 *err_type = be32_to_cpu(info.error_type);
262 }
263
264 return 0;
265 }
266
267 /* nvram_init_os_partition
268 *
269 * This sets up a partition with an "OS" signature.
270 *
271 * The general strategy is the following:
272 * 1.) If a partition with the indicated name already exists...
273 * - If it's large enough, use it.
274 * - Otherwise, recycle it and keep going.
275 * 2.) Search for a free partition that is large enough.
276 * 3.) If there's not a free partition large enough, recycle any obsolete
277 * OS partitions and try again.
278 * 4.) Will first try getting a chunk that will satisfy the requested size.
279 * 5.) If a chunk of the requested size cannot be allocated, then try finding
280 * a chunk that will satisfy the minum needed.
281 *
282 * Returns 0 on success, else -1.
283 */
nvram_init_os_partition(struct nvram_os_partition * part)284 int __init nvram_init_os_partition(struct nvram_os_partition *part)
285 {
286 loff_t p;
287 int size;
288
289 /* Look for ours */
290 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
291
292 /* Found one but too small, remove it */
293 if (p && size < part->min_size) {
294 pr_info("nvram: Found too small %s partition,"
295 " removing it...\n", part->name);
296 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
297 p = 0;
298 }
299
300 /* Create one if we didn't find */
301 if (!p) {
302 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
303 part->req_size, part->min_size);
304 if (p == -ENOSPC) {
305 pr_info("nvram: No room to create %s partition, "
306 "deleting any obsolete OS partitions...\n",
307 part->name);
308 nvram_remove_partition(NULL, NVRAM_SIG_OS,
309 nvram_os_partitions);
310 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
311 part->req_size, part->min_size);
312 }
313 }
314
315 if (p <= 0) {
316 pr_err("nvram: Failed to find or create %s"
317 " partition, err %d\n", part->name, (int)p);
318 return -1;
319 }
320
321 part->index = p;
322 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
323
324 return 0;
325 }
326
327 /* Derived from logfs_compress() */
nvram_compress(const void * in,void * out,size_t inlen,size_t outlen)328 static int nvram_compress(const void *in, void *out, size_t inlen,
329 size_t outlen)
330 {
331 int err, ret;
332
333 ret = -EIO;
334 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
335 MEM_LEVEL, Z_DEFAULT_STRATEGY);
336 if (err != Z_OK)
337 goto error;
338
339 stream.next_in = in;
340 stream.avail_in = inlen;
341 stream.total_in = 0;
342 stream.next_out = out;
343 stream.avail_out = outlen;
344 stream.total_out = 0;
345
346 err = zlib_deflate(&stream, Z_FINISH);
347 if (err != Z_STREAM_END)
348 goto error;
349
350 err = zlib_deflateEnd(&stream);
351 if (err != Z_OK)
352 goto error;
353
354 if (stream.total_out >= stream.total_in)
355 goto error;
356
357 ret = stream.total_out;
358 error:
359 return ret;
360 }
361
362 /* Compress the text from big_oops_buf into oops_buf. */
zip_oops(size_t text_len)363 static int zip_oops(size_t text_len)
364 {
365 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
366 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
367 oops_data_sz);
368 if (zipped_len < 0) {
369 pr_err("nvram: compression failed; returned %d\n", zipped_len);
370 pr_err("nvram: logging uncompressed oops/panic report\n");
371 return -1;
372 }
373 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
374 oops_hdr->report_length = cpu_to_be16(zipped_len);
375 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
376 return 0;
377 }
378
379 #ifdef CONFIG_PSTORE
nvram_pstore_open(struct pstore_info * psi)380 static int nvram_pstore_open(struct pstore_info *psi)
381 {
382 /* Reset the iterator to start reading partitions again */
383 read_type = -1;
384 return 0;
385 }
386
387 /**
388 * nvram_pstore_write - pstore write callback for nvram
389 * @record: pstore record to write, with @id to be set
390 *
391 * Called by pstore_dump() when an oops or panic report is logged in the
392 * printk buffer.
393 * Returns 0 on successful write.
394 */
nvram_pstore_write(struct pstore_record * record)395 static int nvram_pstore_write(struct pstore_record *record)
396 {
397 int rc;
398 unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
399 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
400
401 /* part 1 has the recent messages from printk buffer */
402 if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG))
403 return -1;
404
405 if (clobbering_unread_rtas_event())
406 return -1;
407
408 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
409 oops_hdr->report_length = cpu_to_be16(record->size);
410 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
411
412 if (record->compressed)
413 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
414
415 rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
416 (int) (sizeof(*oops_hdr) + record->size), err_type,
417 record->count);
418
419 if (rc != 0)
420 return rc;
421
422 record->id = record->part;
423 return 0;
424 }
425
426 /*
427 * Reads the oops/panic report, rtas, of-config and common partition.
428 * Returns the length of the data we read from each partition.
429 * Returns 0 if we've been called before.
430 */
nvram_pstore_read(struct pstore_record * record)431 static ssize_t nvram_pstore_read(struct pstore_record *record)
432 {
433 struct oops_log_info *oops_hdr;
434 unsigned int err_type, id_no, size = 0;
435 struct nvram_os_partition *part = NULL;
436 char *buff = NULL;
437 int sig = 0;
438 loff_t p;
439
440 read_type++;
441
442 switch (nvram_type_ids[read_type]) {
443 case PSTORE_TYPE_DMESG:
444 part = &oops_log_partition;
445 record->type = PSTORE_TYPE_DMESG;
446 break;
447 case PSTORE_TYPE_PPC_COMMON:
448 sig = NVRAM_SIG_SYS;
449 part = &common_partition;
450 record->type = PSTORE_TYPE_PPC_COMMON;
451 record->id = PSTORE_TYPE_PPC_COMMON;
452 record->time.tv_sec = 0;
453 record->time.tv_nsec = 0;
454 break;
455 #ifdef CONFIG_PPC_PSERIES
456 case PSTORE_TYPE_PPC_RTAS:
457 part = &rtas_log_partition;
458 record->type = PSTORE_TYPE_PPC_RTAS;
459 record->time.tv_sec = last_rtas_event;
460 record->time.tv_nsec = 0;
461 break;
462 case PSTORE_TYPE_PPC_OF:
463 sig = NVRAM_SIG_OF;
464 part = &of_config_partition;
465 record->type = PSTORE_TYPE_PPC_OF;
466 record->id = PSTORE_TYPE_PPC_OF;
467 record->time.tv_sec = 0;
468 record->time.tv_nsec = 0;
469 break;
470 #endif
471 #ifdef CONFIG_PPC_POWERNV
472 case PSTORE_TYPE_PPC_OPAL:
473 sig = NVRAM_SIG_FW;
474 part = &skiboot_partition;
475 record->type = PSTORE_TYPE_PPC_OPAL;
476 record->id = PSTORE_TYPE_PPC_OPAL;
477 record->time.tv_sec = 0;
478 record->time.tv_nsec = 0;
479 break;
480 #endif
481 default:
482 return 0;
483 }
484
485 if (!part->os_partition) {
486 p = nvram_find_partition(part->name, sig, &size);
487 if (p <= 0) {
488 pr_err("nvram: Failed to find partition %s, "
489 "err %d\n", part->name, (int)p);
490 return 0;
491 }
492 part->index = p;
493 part->size = size;
494 }
495
496 buff = kmalloc(part->size, GFP_KERNEL);
497
498 if (!buff)
499 return -ENOMEM;
500
501 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
502 kfree(buff);
503 return 0;
504 }
505
506 record->count = 0;
507
508 if (part->os_partition)
509 record->id = id_no;
510
511 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
512 size_t length, hdr_size;
513
514 oops_hdr = (struct oops_log_info *)buff;
515 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
516 /* Old format oops header had 2-byte record size */
517 hdr_size = sizeof(u16);
518 length = be16_to_cpu(oops_hdr->version);
519 record->time.tv_sec = 0;
520 record->time.tv_nsec = 0;
521 } else {
522 hdr_size = sizeof(*oops_hdr);
523 length = be16_to_cpu(oops_hdr->report_length);
524 record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp);
525 record->time.tv_nsec = 0;
526 }
527 record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
528 kfree(buff);
529 if (record->buf == NULL)
530 return -ENOMEM;
531
532 record->ecc_notice_size = 0;
533 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
534 record->compressed = true;
535 else
536 record->compressed = false;
537 return length;
538 }
539
540 record->buf = buff;
541 return part->size;
542 }
543
544 static struct pstore_info nvram_pstore_info = {
545 .owner = THIS_MODULE,
546 .name = "nvram",
547 .flags = PSTORE_FLAGS_DMESG,
548 .open = nvram_pstore_open,
549 .read = nvram_pstore_read,
550 .write = nvram_pstore_write,
551 };
552
nvram_pstore_init(void)553 static int nvram_pstore_init(void)
554 {
555 int rc = 0;
556
557 if (machine_is(pseries)) {
558 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
559 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
560 } else
561 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
562
563 nvram_pstore_info.buf = oops_data;
564 nvram_pstore_info.bufsize = oops_data_sz;
565
566 spin_lock_init(&nvram_pstore_info.buf_lock);
567
568 rc = pstore_register(&nvram_pstore_info);
569 if (rc && (rc != -EPERM))
570 /* Print error only when pstore.backend == nvram */
571 pr_err("nvram: pstore_register() failed, returned %d. "
572 "Defaults to kmsg_dump\n", rc);
573
574 return rc;
575 }
576 #else
nvram_pstore_init(void)577 static int nvram_pstore_init(void)
578 {
579 return -1;
580 }
581 #endif
582
nvram_init_oops_partition(int rtas_partition_exists)583 void __init nvram_init_oops_partition(int rtas_partition_exists)
584 {
585 int rc;
586
587 rc = nvram_init_os_partition(&oops_log_partition);
588 if (rc != 0) {
589 #ifdef CONFIG_PPC_PSERIES
590 if (!rtas_partition_exists) {
591 pr_err("nvram: Failed to initialize oops partition!");
592 return;
593 }
594 pr_notice("nvram: Using %s partition to log both"
595 " RTAS errors and oops/panic reports\n",
596 rtas_log_partition.name);
597 memcpy(&oops_log_partition, &rtas_log_partition,
598 sizeof(rtas_log_partition));
599 #else
600 pr_err("nvram: Failed to initialize oops partition!");
601 return;
602 #endif
603 }
604 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
605 if (!oops_buf) {
606 pr_err("nvram: No memory for %s partition\n",
607 oops_log_partition.name);
608 return;
609 }
610 oops_data = oops_buf + sizeof(struct oops_log_info);
611 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
612
613 rc = nvram_pstore_init();
614
615 if (!rc)
616 return;
617
618 /*
619 * Figure compression (preceded by elimination of each line's <n>
620 * severity prefix) will reduce the oops/panic report to at most
621 * 45% of its original size.
622 */
623 big_oops_buf_sz = (oops_data_sz * 100) / 45;
624 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
625 if (big_oops_buf) {
626 stream.workspace = kmalloc(zlib_deflate_workspacesize(
627 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
628 if (!stream.workspace) {
629 pr_err("nvram: No memory for compression workspace; "
630 "skipping compression of %s partition data\n",
631 oops_log_partition.name);
632 kfree(big_oops_buf);
633 big_oops_buf = NULL;
634 }
635 } else {
636 pr_err("No memory for uncompressed %s data; "
637 "skipping compression\n", oops_log_partition.name);
638 stream.workspace = NULL;
639 }
640
641 rc = kmsg_dump_register(&nvram_kmsg_dumper);
642 if (rc != 0) {
643 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
644 kfree(oops_buf);
645 kfree(big_oops_buf);
646 kfree(stream.workspace);
647 }
648 }
649
650 /*
651 * This is our kmsg_dump callback, called after an oops or panic report
652 * has been written to the printk buffer. We want to capture as much
653 * of the printk buffer as possible. First, capture as much as we can
654 * that we think will compress sufficiently to fit in the lnx,oops-log
655 * partition. If that's too much, go back and capture uncompressed text.
656 */
oops_to_nvram(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason)657 static void oops_to_nvram(struct kmsg_dumper *dumper,
658 enum kmsg_dump_reason reason)
659 {
660 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
661 static unsigned int oops_count = 0;
662 static bool panicking = false;
663 static DEFINE_SPINLOCK(lock);
664 unsigned long flags;
665 size_t text_len;
666 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
667 int rc = -1;
668
669 switch (reason) {
670 case KMSG_DUMP_RESTART:
671 case KMSG_DUMP_HALT:
672 case KMSG_DUMP_POWEROFF:
673 /* These are almost always orderly shutdowns. */
674 return;
675 case KMSG_DUMP_OOPS:
676 break;
677 case KMSG_DUMP_PANIC:
678 panicking = true;
679 break;
680 case KMSG_DUMP_EMERG:
681 if (panicking)
682 /* Panic report already captured. */
683 return;
684 break;
685 default:
686 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
687 __func__, (int) reason);
688 return;
689 }
690
691 if (clobbering_unread_rtas_event())
692 return;
693
694 if (!spin_trylock_irqsave(&lock, flags))
695 return;
696
697 if (big_oops_buf) {
698 kmsg_dump_get_buffer(dumper, false,
699 big_oops_buf, big_oops_buf_sz, &text_len);
700 rc = zip_oops(text_len);
701 }
702 if (rc != 0) {
703 kmsg_dump_rewind(dumper);
704 kmsg_dump_get_buffer(dumper, false,
705 oops_data, oops_data_sz, &text_len);
706 err_type = ERR_TYPE_KERNEL_PANIC;
707 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
708 oops_hdr->report_length = cpu_to_be16(text_len);
709 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
710 }
711
712 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
713 (int) (sizeof(*oops_hdr) + text_len), err_type,
714 ++oops_count);
715
716 spin_unlock_irqrestore(&lock, flags);
717 }
718
dev_nvram_llseek(struct file * file,loff_t offset,int origin)719 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
720 {
721 if (ppc_md.nvram_size == NULL)
722 return -ENODEV;
723 return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
724 ppc_md.nvram_size());
725 }
726
727
dev_nvram_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)728 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
729 size_t count, loff_t *ppos)
730 {
731 ssize_t ret;
732 char *tmp = NULL;
733 ssize_t size;
734
735 if (!ppc_md.nvram_size) {
736 ret = -ENODEV;
737 goto out;
738 }
739
740 size = ppc_md.nvram_size();
741 if (size < 0) {
742 ret = size;
743 goto out;
744 }
745
746 if (*ppos >= size) {
747 ret = 0;
748 goto out;
749 }
750
751 count = min_t(size_t, count, size - *ppos);
752 count = min(count, PAGE_SIZE);
753
754 tmp = kmalloc(count, GFP_KERNEL);
755 if (!tmp) {
756 ret = -ENOMEM;
757 goto out;
758 }
759
760 ret = ppc_md.nvram_read(tmp, count, ppos);
761 if (ret <= 0)
762 goto out;
763
764 if (copy_to_user(buf, tmp, ret))
765 ret = -EFAULT;
766
767 out:
768 kfree(tmp);
769 return ret;
770
771 }
772
dev_nvram_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)773 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
774 size_t count, loff_t *ppos)
775 {
776 ssize_t ret;
777 char *tmp = NULL;
778 ssize_t size;
779
780 ret = -ENODEV;
781 if (!ppc_md.nvram_size)
782 goto out;
783
784 ret = 0;
785 size = ppc_md.nvram_size();
786 if (*ppos >= size || size < 0)
787 goto out;
788
789 count = min_t(size_t, count, size - *ppos);
790 count = min(count, PAGE_SIZE);
791
792 tmp = memdup_user(buf, count);
793 if (IS_ERR(tmp)) {
794 ret = PTR_ERR(tmp);
795 goto out;
796 }
797
798 ret = ppc_md.nvram_write(tmp, count, ppos);
799
800 kfree(tmp);
801 out:
802 return ret;
803 }
804
dev_nvram_ioctl(struct file * file,unsigned int cmd,unsigned long arg)805 static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
806 unsigned long arg)
807 {
808 switch(cmd) {
809 #ifdef CONFIG_PPC_PMAC
810 case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
811 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
812 case IOC_NVRAM_GET_OFFSET: {
813 int part, offset;
814
815 if (!machine_is(powermac))
816 return -EINVAL;
817 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
818 return -EFAULT;
819 if (part < pmac_nvram_OF || part > pmac_nvram_NR)
820 return -EINVAL;
821 offset = pmac_get_partition(part);
822 if (offset < 0)
823 return offset;
824 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
825 return -EFAULT;
826 return 0;
827 }
828 #endif /* CONFIG_PPC_PMAC */
829 default:
830 return -EINVAL;
831 }
832 }
833
834 static const struct file_operations nvram_fops = {
835 .owner = THIS_MODULE,
836 .llseek = dev_nvram_llseek,
837 .read = dev_nvram_read,
838 .write = dev_nvram_write,
839 .unlocked_ioctl = dev_nvram_ioctl,
840 };
841
842 static struct miscdevice nvram_dev = {
843 NVRAM_MINOR,
844 "nvram",
845 &nvram_fops
846 };
847
848
849 #ifdef DEBUG_NVRAM
nvram_print_partitions(char * label)850 static void __init nvram_print_partitions(char * label)
851 {
852 struct nvram_partition * tmp_part;
853
854 printk(KERN_WARNING "--------%s---------\n", label);
855 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
856 list_for_each_entry(tmp_part, &nvram_partitions, partition) {
857 printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n",
858 tmp_part->index, tmp_part->header.signature,
859 tmp_part->header.checksum, tmp_part->header.length,
860 tmp_part->header.name);
861 }
862 }
863 #endif
864
865
nvram_write_header(struct nvram_partition * part)866 static int __init nvram_write_header(struct nvram_partition * part)
867 {
868 loff_t tmp_index;
869 int rc;
870 struct nvram_header phead;
871
872 memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
873 phead.length = cpu_to_be16(phead.length);
874
875 tmp_index = part->index;
876 rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
877
878 return rc;
879 }
880
881
nvram_checksum(struct nvram_header * p)882 static unsigned char __init nvram_checksum(struct nvram_header *p)
883 {
884 unsigned int c_sum, c_sum2;
885 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
886 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
887
888 /* The sum may have spilled into the 3rd byte. Fold it back. */
889 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
890 /* The sum cannot exceed 2 bytes. Fold it into a checksum */
891 c_sum2 = (c_sum >> 8) + (c_sum << 8);
892 c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
893 return c_sum;
894 }
895
896 /*
897 * Per the criteria passed via nvram_remove_partition(), should this
898 * partition be removed? 1=remove, 0=keep
899 */
nvram_can_remove_partition(struct nvram_partition * part,const char * name,int sig,const char * exceptions[])900 static int nvram_can_remove_partition(struct nvram_partition *part,
901 const char *name, int sig, const char *exceptions[])
902 {
903 if (part->header.signature != sig)
904 return 0;
905 if (name) {
906 if (strncmp(name, part->header.name, 12))
907 return 0;
908 } else if (exceptions) {
909 const char **except;
910 for (except = exceptions; *except; except++) {
911 if (!strncmp(*except, part->header.name, 12))
912 return 0;
913 }
914 }
915 return 1;
916 }
917
918 /**
919 * nvram_remove_partition - Remove one or more partitions in nvram
920 * @name: name of the partition to remove, or NULL for a
921 * signature only match
922 * @sig: signature of the partition(s) to remove
923 * @exceptions: When removing all partitions with a matching signature,
924 * leave these alone.
925 */
926
nvram_remove_partition(const char * name,int sig,const char * exceptions[])927 int __init nvram_remove_partition(const char *name, int sig,
928 const char *exceptions[])
929 {
930 struct nvram_partition *part, *prev, *tmp;
931 int rc;
932
933 list_for_each_entry(part, &nvram_partitions, partition) {
934 if (!nvram_can_remove_partition(part, name, sig, exceptions))
935 continue;
936
937 /* Make partition a free partition */
938 part->header.signature = NVRAM_SIG_FREE;
939 memset(part->header.name, 'w', 12);
940 part->header.checksum = nvram_checksum(&part->header);
941 rc = nvram_write_header(part);
942 if (rc <= 0) {
943 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
944 return rc;
945 }
946 }
947
948 /* Merge contiguous ones */
949 prev = NULL;
950 list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
951 if (part->header.signature != NVRAM_SIG_FREE) {
952 prev = NULL;
953 continue;
954 }
955 if (prev) {
956 prev->header.length += part->header.length;
957 prev->header.checksum = nvram_checksum(&prev->header);
958 rc = nvram_write_header(prev);
959 if (rc <= 0) {
960 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
961 return rc;
962 }
963 list_del(&part->partition);
964 kfree(part);
965 } else
966 prev = part;
967 }
968
969 return 0;
970 }
971
972 /**
973 * nvram_create_partition - Create a partition in nvram
974 * @name: name of the partition to create
975 * @sig: signature of the partition to create
976 * @req_size: size of data to allocate in bytes
977 * @min_size: minimum acceptable size (0 means req_size)
978 *
979 * Returns a negative error code or a positive nvram index
980 * of the beginning of the data area of the newly created
981 * partition. If you provided a min_size smaller than req_size
982 * you need to query for the actual size yourself after the
983 * call using nvram_partition_get_size().
984 */
nvram_create_partition(const char * name,int sig,int req_size,int min_size)985 loff_t __init nvram_create_partition(const char *name, int sig,
986 int req_size, int min_size)
987 {
988 struct nvram_partition *part;
989 struct nvram_partition *new_part;
990 struct nvram_partition *free_part = NULL;
991 static char nv_init_vals[16];
992 loff_t tmp_index;
993 long size = 0;
994 int rc;
995
996 /* Convert sizes from bytes to blocks */
997 req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
998 min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
999
1000 /* If no minimum size specified, make it the same as the
1001 * requested size
1002 */
1003 if (min_size == 0)
1004 min_size = req_size;
1005 if (min_size > req_size)
1006 return -EINVAL;
1007
1008 /* Now add one block to each for the header */
1009 req_size += 1;
1010 min_size += 1;
1011
1012 /* Find a free partition that will give us the maximum needed size
1013 If can't find one that will give us the minimum size needed */
1014 list_for_each_entry(part, &nvram_partitions, partition) {
1015 if (part->header.signature != NVRAM_SIG_FREE)
1016 continue;
1017
1018 if (part->header.length >= req_size) {
1019 size = req_size;
1020 free_part = part;
1021 break;
1022 }
1023 if (part->header.length > size &&
1024 part->header.length >= min_size) {
1025 size = part->header.length;
1026 free_part = part;
1027 }
1028 }
1029 if (!size)
1030 return -ENOSPC;
1031
1032 /* Create our OS partition */
1033 new_part = kzalloc(sizeof(*new_part), GFP_KERNEL);
1034 if (!new_part) {
1035 pr_err("%s: kmalloc failed\n", __func__);
1036 return -ENOMEM;
1037 }
1038
1039 new_part->index = free_part->index;
1040 new_part->header.signature = sig;
1041 new_part->header.length = size;
1042 memcpy(new_part->header.name, name, strnlen(name, sizeof(new_part->header.name)));
1043 new_part->header.checksum = nvram_checksum(&new_part->header);
1044
1045 rc = nvram_write_header(new_part);
1046 if (rc <= 0) {
1047 pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1048 kfree(new_part);
1049 return rc;
1050 }
1051 list_add_tail(&new_part->partition, &free_part->partition);
1052
1053 /* Adjust or remove the partition we stole the space from */
1054 if (free_part->header.length > size) {
1055 free_part->index += size * NVRAM_BLOCK_LEN;
1056 free_part->header.length -= size;
1057 free_part->header.checksum = nvram_checksum(&free_part->header);
1058 rc = nvram_write_header(free_part);
1059 if (rc <= 0) {
1060 pr_err("%s: nvram_write_header failed (%d)\n",
1061 __func__, rc);
1062 return rc;
1063 }
1064 } else {
1065 list_del(&free_part->partition);
1066 kfree(free_part);
1067 }
1068
1069 /* Clear the new partition */
1070 for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1071 tmp_index < ((size - 1) * NVRAM_BLOCK_LEN);
1072 tmp_index += NVRAM_BLOCK_LEN) {
1073 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1074 if (rc <= 0) {
1075 pr_err("%s: nvram_write failed (%d)\n",
1076 __func__, rc);
1077 return rc;
1078 }
1079 }
1080
1081 return new_part->index + NVRAM_HEADER_LEN;
1082 }
1083
1084 /**
1085 * nvram_get_partition_size - Get the data size of an nvram partition
1086 * @data_index: This is the offset of the start of the data of
1087 * the partition. The same value that is returned by
1088 * nvram_create_partition().
1089 */
nvram_get_partition_size(loff_t data_index)1090 int nvram_get_partition_size(loff_t data_index)
1091 {
1092 struct nvram_partition *part;
1093
1094 list_for_each_entry(part, &nvram_partitions, partition) {
1095 if (part->index + NVRAM_HEADER_LEN == data_index)
1096 return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1097 }
1098 return -1;
1099 }
1100
1101
1102 /**
1103 * nvram_find_partition - Find an nvram partition by signature and name
1104 * @name: Name of the partition or NULL for any name
1105 * @sig: Signature to test against
1106 * @out_size: if non-NULL, returns the size of the data part of the partition
1107 */
nvram_find_partition(const char * name,int sig,int * out_size)1108 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1109 {
1110 struct nvram_partition *p;
1111
1112 list_for_each_entry(p, &nvram_partitions, partition) {
1113 if (p->header.signature == sig &&
1114 (!name || !strncmp(p->header.name, name, 12))) {
1115 if (out_size)
1116 *out_size = (p->header.length - 1) *
1117 NVRAM_BLOCK_LEN;
1118 return p->index + NVRAM_HEADER_LEN;
1119 }
1120 }
1121 return 0;
1122 }
1123
nvram_scan_partitions(void)1124 int __init nvram_scan_partitions(void)
1125 {
1126 loff_t cur_index = 0;
1127 struct nvram_header phead;
1128 struct nvram_partition * tmp_part;
1129 unsigned char c_sum;
1130 char * header;
1131 int total_size;
1132 int err;
1133
1134 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1135 return -ENODEV;
1136 total_size = ppc_md.nvram_size();
1137
1138 header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1139 if (!header) {
1140 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1141 return -ENOMEM;
1142 }
1143
1144 while (cur_index < total_size) {
1145
1146 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1147 if (err != NVRAM_HEADER_LEN) {
1148 printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1149 "nvram partitions\n");
1150 goto out;
1151 }
1152
1153 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1154
1155 memcpy(&phead, header, NVRAM_HEADER_LEN);
1156
1157 phead.length = be16_to_cpu(phead.length);
1158
1159 err = 0;
1160 c_sum = nvram_checksum(&phead);
1161 if (c_sum != phead.checksum) {
1162 printk(KERN_WARNING "WARNING: nvram partition checksum"
1163 " was %02x, should be %02x!\n",
1164 phead.checksum, c_sum);
1165 printk(KERN_WARNING "Terminating nvram partition scan\n");
1166 goto out;
1167 }
1168 if (!phead.length) {
1169 printk(KERN_WARNING "WARNING: nvram corruption "
1170 "detected: 0-length partition\n");
1171 goto out;
1172 }
1173 tmp_part = kmalloc(sizeof(*tmp_part), GFP_KERNEL);
1174 err = -ENOMEM;
1175 if (!tmp_part) {
1176 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1177 goto out;
1178 }
1179
1180 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1181 tmp_part->index = cur_index;
1182 list_add_tail(&tmp_part->partition, &nvram_partitions);
1183
1184 cur_index += phead.length * NVRAM_BLOCK_LEN;
1185 }
1186 err = 0;
1187
1188 #ifdef DEBUG_NVRAM
1189 nvram_print_partitions("NVRAM Partitions");
1190 #endif
1191
1192 out:
1193 kfree(header);
1194 return err;
1195 }
1196
nvram_init(void)1197 static int __init nvram_init(void)
1198 {
1199 int rc;
1200
1201 BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1202
1203 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1204 return -ENODEV;
1205
1206 rc = misc_register(&nvram_dev);
1207 if (rc != 0) {
1208 printk(KERN_ERR "nvram_init: failed to register device\n");
1209 return rc;
1210 }
1211
1212 return rc;
1213 }
1214 device_initcall(nvram_init);
1215