1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4
5 #define ARCH_HAS_IOREMAP_WC
6
7 /*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG 0x60
17 #define FDC_BASE 0x3f0
18
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22 * has legacy ISA devices ?
23 */
24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <asm/page.h>
30 #include <asm/byteorder.h>
31 #include <asm/synch.h>
32 #include <asm/delay.h>
33 #include <asm/mmu.h>
34 #include <asm/ppc_asm.h>
35
36 #ifdef CONFIG_PPC64
37 #include <asm/paca.h>
38 #endif
39
40 #define SIO_CONFIG_RA 0x398
41 #define SIO_CONFIG_RD 0x399
42
43 #define SLOW_DOWN_IO
44
45 /* 32 bits uses slightly different variables for the various IO
46 * bases. Most of this file only uses _IO_BASE though which we
47 * define properly based on the platform
48 */
49 #ifndef CONFIG_PCI
50 #define _IO_BASE 0
51 #define _ISA_MEM_BASE 0
52 #define PCI_DRAM_OFFSET 0
53 #elif defined(CONFIG_PPC32)
54 #define _IO_BASE isa_io_base
55 #define _ISA_MEM_BASE isa_mem_base
56 #define PCI_DRAM_OFFSET pci_dram_offset
57 #else
58 #define _IO_BASE pci_io_base
59 #define _ISA_MEM_BASE isa_mem_base
60 #define PCI_DRAM_OFFSET 0
61 #endif
62
63 extern unsigned long isa_io_base;
64 extern unsigned long pci_io_base;
65 extern unsigned long pci_dram_offset;
66
67 extern resource_size_t isa_mem_base;
68
69 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
70 * is not set or addresses cannot be translated to MMIO. This is typically
71 * set when the platform supports "special" PIO accesses via a non memory
72 * mapped mechanism, and allows things like the early udbg UART code to
73 * function.
74 */
75 extern bool isa_io_special;
76
77 #ifdef CONFIG_PPC32
78 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
79 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
80 #endif
81 #endif
82
83 /*
84 *
85 * Low level MMIO accessors
86 *
87 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
88 * specific and thus shouldn't be used in generic code. The accessors
89 * provided here are:
90 *
91 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
92 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
93 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
94 *
95 * Those operate directly on a kernel virtual address. Note that the prototype
96 * for the out_* accessors has the arguments in opposite order from the usual
97 * linux PCI accessors. Unlike those, they take the address first and the value
98 * next.
99 *
100 * Note: I might drop the _ns suffix on the stream operations soon as it is
101 * simply normal for stream operations to not swap in the first place.
102 *
103 */
104
105 #ifdef CONFIG_PPC64
106 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
107 #else
108 #define IO_SET_SYNC_FLAG()
109 #endif
110
111 /* gcc 4.0 and older doesn't have 'Z' constraint */
112 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
113 #define DEF_MMIO_IN_X(name, size, insn) \
114 static inline u##size name(const volatile u##size __iomem *addr) \
115 { \
116 u##size ret; \
117 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
118 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
119 return ret; \
120 }
121
122 #define DEF_MMIO_OUT_X(name, size, insn) \
123 static inline void name(volatile u##size __iomem *addr, u##size val) \
124 { \
125 __asm__ __volatile__("sync;"#insn" %1,0,%2" \
126 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
127 IO_SET_SYNC_FLAG(); \
128 }
129 #else /* newer gcc */
130 #define DEF_MMIO_IN_X(name, size, insn) \
131 static inline u##size name(const volatile u##size __iomem *addr) \
132 { \
133 u##size ret; \
134 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
135 : "=r" (ret) : "Z" (*addr) : "memory"); \
136 return ret; \
137 }
138
139 #define DEF_MMIO_OUT_X(name, size, insn) \
140 static inline void name(volatile u##size __iomem *addr, u##size val) \
141 { \
142 __asm__ __volatile__("sync;"#insn" %1,%y0" \
143 : "=Z" (*addr) : "r" (val) : "memory"); \
144 IO_SET_SYNC_FLAG(); \
145 }
146 #endif
147
148 #define DEF_MMIO_IN_D(name, size, insn) \
149 static inline u##size name(const volatile u##size __iomem *addr) \
150 { \
151 u##size ret; \
152 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
153 : "=r" (ret) : "m" (*addr) : "memory"); \
154 return ret; \
155 }
156
157 #define DEF_MMIO_OUT_D(name, size, insn) \
158 static inline void name(volatile u##size __iomem *addr, u##size val) \
159 { \
160 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
161 : "=m" (*addr) : "r" (val) : "memory"); \
162 IO_SET_SYNC_FLAG(); \
163 }
164
165 DEF_MMIO_IN_D(in_8, 8, lbz);
166 DEF_MMIO_OUT_D(out_8, 8, stb);
167
168 #ifdef __BIG_ENDIAN__
169 DEF_MMIO_IN_D(in_be16, 16, lhz);
170 DEF_MMIO_IN_D(in_be32, 32, lwz);
171 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
172 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
173
174 DEF_MMIO_OUT_D(out_be16, 16, sth);
175 DEF_MMIO_OUT_D(out_be32, 32, stw);
176 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
177 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
178 #else
179 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
180 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
181 DEF_MMIO_IN_D(in_le16, 16, lhz);
182 DEF_MMIO_IN_D(in_le32, 32, lwz);
183
184 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
185 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
186 DEF_MMIO_OUT_D(out_le16, 16, sth);
187 DEF_MMIO_OUT_D(out_le32, 32, stw);
188
189 #endif /* __BIG_ENDIAN */
190
191 #ifdef __powerpc64__
192
193 #ifdef __BIG_ENDIAN__
194 DEF_MMIO_OUT_D(out_be64, 64, std);
195 DEF_MMIO_IN_D(in_be64, 64, ld);
196
197 /* There is no asm instructions for 64 bits reverse loads and stores */
in_le64(const volatile u64 __iomem * addr)198 static inline u64 in_le64(const volatile u64 __iomem *addr)
199 {
200 return swab64(in_be64(addr));
201 }
202
out_le64(volatile u64 __iomem * addr,u64 val)203 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
204 {
205 out_be64(addr, swab64(val));
206 }
207 #else
208 DEF_MMIO_OUT_D(out_le64, 64, std);
209 DEF_MMIO_IN_D(in_le64, 64, ld);
210
211 /* There is no asm instructions for 64 bits reverse loads and stores */
in_be64(const volatile u64 __iomem * addr)212 static inline u64 in_be64(const volatile u64 __iomem *addr)
213 {
214 return swab64(in_le64(addr));
215 }
216
out_be64(volatile u64 __iomem * addr,u64 val)217 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
218 {
219 out_le64(addr, swab64(val));
220 }
221
222 #endif
223 #endif /* __powerpc64__ */
224
225 /*
226 * Low level IO stream instructions are defined out of line for now
227 */
228 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
229 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
230 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
231 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
232 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
233 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
234
235 /* The _ns naming is historical and will be removed. For now, just #define
236 * the non _ns equivalent names
237 */
238 #define _insw _insw_ns
239 #define _insl _insl_ns
240 #define _outsw _outsw_ns
241 #define _outsl _outsl_ns
242
243
244 /*
245 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
246 */
247
248 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
249 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
250 unsigned long n);
251 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
252 unsigned long n);
253
254 /*
255 *
256 * PCI and standard ISA accessors
257 *
258 * Those are globally defined linux accessors for devices on PCI or ISA
259 * busses. They follow the Linux defined semantics. The current implementation
260 * for PowerPC is as close as possible to the x86 version of these, and thus
261 * provides fairly heavy weight barriers for the non-raw versions
262 *
263 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
264 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
265 * own implementation of some or all of the accessors.
266 */
267
268 /*
269 * Include the EEH definitions when EEH is enabled only so they don't get
270 * in the way when building for 32 bits
271 */
272 #ifdef CONFIG_EEH
273 #include <asm/eeh.h>
274 #endif
275
276 /* Shortcut to the MMIO argument pointer */
277 #define PCI_IO_ADDR volatile void __iomem *
278
279 /* Indirect IO address tokens:
280 *
281 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
282 * on all MMIOs. (Note that this is all 64 bits only for now)
283 *
284 * To help platforms who may need to differentiate MMIO addresses in
285 * their hooks, a bitfield is reserved for use by the platform near the
286 * top of MMIO addresses (not PIO, those have to cope the hard way).
287 *
288 * This bit field is 12 bits and is at the top of the IO virtual
289 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
290 *
291 * The kernel virtual space is thus:
292 *
293 * 0xD000000000000000 : vmalloc
294 * 0xD000080000000000 : PCI PHB IO space
295 * 0xD000080080000000 : ioremap
296 * 0xD0000fffffffffff : end of ioremap region
297 *
298 * Since the top 4 bits are reserved as the region ID, we use thus
299 * the next 12 bits and keep 4 bits available for the future if the
300 * virtual address space is ever to be extended.
301 *
302 * The direct IO mapping operations will then mask off those bits
303 * before doing the actual access, though that only happen when
304 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
305 * mechanism
306 *
307 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
308 * all PIO functions call through a hook.
309 */
310
311 #ifdef CONFIG_PPC_INDIRECT_MMIO
312 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
313 #define PCI_IO_IND_TOKEN_SHIFT 48
314 #define PCI_FIX_ADDR(addr) \
315 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
316 #define PCI_GET_ADDR_TOKEN(addr) \
317 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
318 PCI_IO_IND_TOKEN_SHIFT)
319 #define PCI_SET_ADDR_TOKEN(addr, token) \
320 do { \
321 unsigned long __a = (unsigned long)(addr); \
322 __a &= ~PCI_IO_IND_TOKEN_MASK; \
323 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
324 (addr) = (void __iomem *)__a; \
325 } while(0)
326 #else
327 #define PCI_FIX_ADDR(addr) (addr)
328 #endif
329
330
331 /*
332 * Non ordered and non-swapping "raw" accessors
333 */
334
__raw_readb(const volatile void __iomem * addr)335 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
336 {
337 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
338 }
__raw_readw(const volatile void __iomem * addr)339 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
340 {
341 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
342 }
__raw_readl(const volatile void __iomem * addr)343 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
344 {
345 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
346 }
__raw_writeb(unsigned char v,volatile void __iomem * addr)347 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
348 {
349 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
350 }
__raw_writew(unsigned short v,volatile void __iomem * addr)351 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
352 {
353 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
354 }
__raw_writel(unsigned int v,volatile void __iomem * addr)355 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
356 {
357 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
358 }
359
360 #ifdef __powerpc64__
__raw_readq(const volatile void __iomem * addr)361 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
362 {
363 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
364 }
__raw_writeq(unsigned long v,volatile void __iomem * addr)365 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
366 {
367 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
368 }
369
__raw_writeq_be(unsigned long v,volatile void __iomem * addr)370 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
371 {
372 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
373 }
374
375 /*
376 * Real mode versions of the above. Those instructions are only supposed
377 * to be used in hypervisor real mode as per the architecture spec.
378 */
__raw_rm_writeb(u8 val,volatile void __iomem * paddr)379 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
380 {
381 __asm__ __volatile__("stbcix %0,0,%1"
382 : : "r" (val), "r" (paddr) : "memory");
383 }
384
__raw_rm_writew(u16 val,volatile void __iomem * paddr)385 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
386 {
387 __asm__ __volatile__("sthcix %0,0,%1"
388 : : "r" (val), "r" (paddr) : "memory");
389 }
390
__raw_rm_writel(u32 val,volatile void __iomem * paddr)391 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
392 {
393 __asm__ __volatile__("stwcix %0,0,%1"
394 : : "r" (val), "r" (paddr) : "memory");
395 }
396
__raw_rm_writeq(u64 val,volatile void __iomem * paddr)397 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
398 {
399 __asm__ __volatile__("stdcix %0,0,%1"
400 : : "r" (val), "r" (paddr) : "memory");
401 }
402
__raw_rm_writeq_be(u64 val,volatile void __iomem * paddr)403 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
404 {
405 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
406 }
407
__raw_rm_readb(volatile void __iomem * paddr)408 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
409 {
410 u8 ret;
411 __asm__ __volatile__("lbzcix %0,0, %1"
412 : "=r" (ret) : "r" (paddr) : "memory");
413 return ret;
414 }
415
__raw_rm_readw(volatile void __iomem * paddr)416 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
417 {
418 u16 ret;
419 __asm__ __volatile__("lhzcix %0,0, %1"
420 : "=r" (ret) : "r" (paddr) : "memory");
421 return ret;
422 }
423
__raw_rm_readl(volatile void __iomem * paddr)424 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
425 {
426 u32 ret;
427 __asm__ __volatile__("lwzcix %0,0, %1"
428 : "=r" (ret) : "r" (paddr) : "memory");
429 return ret;
430 }
431
__raw_rm_readq(volatile void __iomem * paddr)432 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
433 {
434 u64 ret;
435 __asm__ __volatile__("ldcix %0,0, %1"
436 : "=r" (ret) : "r" (paddr) : "memory");
437 return ret;
438 }
439 #endif /* __powerpc64__ */
440
441 /*
442 *
443 * PCI PIO and MMIO accessors.
444 *
445 *
446 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
447 * machine checks (which they occasionally do when probing non existing
448 * IO ports on some platforms, like PowerMac and 8xx).
449 * I always found it to be of dubious reliability and I am tempted to get
450 * rid of it one of these days. So if you think it's important to keep it,
451 * please voice up asap. We never had it for 64 bits and I do not intend
452 * to port it over
453 */
454
455 #ifdef CONFIG_PPC32
456
457 #define __do_in_asm(name, op) \
458 static inline unsigned int name(unsigned int port) \
459 { \
460 unsigned int x; \
461 __asm__ __volatile__( \
462 "sync\n" \
463 "0:" op " %0,0,%1\n" \
464 "1: twi 0,%0,0\n" \
465 "2: isync\n" \
466 "3: nop\n" \
467 "4:\n" \
468 ".section .fixup,\"ax\"\n" \
469 "5: li %0,-1\n" \
470 " b 4b\n" \
471 ".previous\n" \
472 EX_TABLE(0b, 5b) \
473 EX_TABLE(1b, 5b) \
474 EX_TABLE(2b, 5b) \
475 EX_TABLE(3b, 5b) \
476 : "=&r" (x) \
477 : "r" (port + _IO_BASE) \
478 : "memory"); \
479 return x; \
480 }
481
482 #define __do_out_asm(name, op) \
483 static inline void name(unsigned int val, unsigned int port) \
484 { \
485 __asm__ __volatile__( \
486 "sync\n" \
487 "0:" op " %0,0,%1\n" \
488 "1: sync\n" \
489 "2:\n" \
490 EX_TABLE(0b, 2b) \
491 EX_TABLE(1b, 2b) \
492 : : "r" (val), "r" (port + _IO_BASE) \
493 : "memory"); \
494 }
495
496 __do_in_asm(_rec_inb, "lbzx")
497 __do_in_asm(_rec_inw, "lhbrx")
498 __do_in_asm(_rec_inl, "lwbrx")
499 __do_out_asm(_rec_outb, "stbx")
500 __do_out_asm(_rec_outw, "sthbrx")
501 __do_out_asm(_rec_outl, "stwbrx")
502
503 #endif /* CONFIG_PPC32 */
504
505 /* The "__do_*" operations below provide the actual "base" implementation
506 * for each of the defined accessors. Some of them use the out_* functions
507 * directly, some of them still use EEH, though we might change that in the
508 * future. Those macros below provide the necessary argument swapping and
509 * handling of the IO base for PIO.
510 *
511 * They are themselves used by the macros that define the actual accessors
512 * and can be used by the hooks if any.
513 *
514 * Note that PIO operations are always defined in terms of their corresonding
515 * MMIO operations. That allows platforms like iSeries who want to modify the
516 * behaviour of both to only hook on the MMIO version and get both. It's also
517 * possible to hook directly at the toplevel PIO operation if they have to
518 * be handled differently
519 */
520 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
521 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
522 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
523 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
524 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
525 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
526 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
527
528 #ifdef CONFIG_EEH
529 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
530 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
531 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
532 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
533 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
534 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
535 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
536 #else /* CONFIG_EEH */
537 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
538 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
539 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
540 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
541 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
542 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
543 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
544 #endif /* !defined(CONFIG_EEH) */
545
546 #ifdef CONFIG_PPC32
547 #define __do_outb(val, port) _rec_outb(val, port)
548 #define __do_outw(val, port) _rec_outw(val, port)
549 #define __do_outl(val, port) _rec_outl(val, port)
550 #define __do_inb(port) _rec_inb(port)
551 #define __do_inw(port) _rec_inw(port)
552 #define __do_inl(port) _rec_inl(port)
553 #else /* CONFIG_PPC32 */
554 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
555 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
556 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
557 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
558 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
559 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
560 #endif /* !CONFIG_PPC32 */
561
562 #ifdef CONFIG_EEH
563 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
564 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
565 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
566 #else /* CONFIG_EEH */
567 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
568 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
569 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
570 #endif /* !CONFIG_EEH */
571 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
572 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
573 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
574
575 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
576 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
577 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
578 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
579 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
580 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
581
582 #define __do_memset_io(addr, c, n) \
583 _memset_io(PCI_FIX_ADDR(addr), c, n)
584 #define __do_memcpy_toio(dst, src, n) \
585 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
586
587 #ifdef CONFIG_EEH
588 #define __do_memcpy_fromio(dst, src, n) \
589 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
590 #else /* CONFIG_EEH */
591 #define __do_memcpy_fromio(dst, src, n) \
592 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
593 #endif /* !CONFIG_EEH */
594
595 #ifdef CONFIG_PPC_INDIRECT_PIO
596 #define DEF_PCI_HOOK_pio(x) x
597 #else
598 #define DEF_PCI_HOOK_pio(x) NULL
599 #endif
600
601 #ifdef CONFIG_PPC_INDIRECT_MMIO
602 #define DEF_PCI_HOOK_mem(x) x
603 #else
604 #define DEF_PCI_HOOK_mem(x) NULL
605 #endif
606
607 /* Structure containing all the hooks */
608 extern struct ppc_pci_io {
609
610 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
611 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
612
613 #include <asm/io-defs.h>
614
615 #undef DEF_PCI_AC_RET
616 #undef DEF_PCI_AC_NORET
617
618 } ppc_pci_io;
619
620 /* The inline wrappers */
621 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
622 static inline ret name at \
623 { \
624 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
625 return ppc_pci_io.name al; \
626 return __do_##name al; \
627 }
628
629 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \
630 static inline void name at \
631 { \
632 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
633 ppc_pci_io.name al; \
634 else \
635 __do_##name al; \
636 }
637
638 #include <asm/io-defs.h>
639
640 #undef DEF_PCI_AC_RET
641 #undef DEF_PCI_AC_NORET
642
643 /* Some drivers check for the presence of readq & writeq with
644 * a #ifdef, so we make them happy here.
645 */
646 #ifdef __powerpc64__
647 #define readq readq
648 #define writeq writeq
649 #endif
650
651 /*
652 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
653 * access
654 */
655 #define xlate_dev_mem_ptr(p) __va(p)
656
657 /*
658 * Convert a virtual cached pointer to an uncached pointer
659 */
660 #define xlate_dev_kmem_ptr(p) p
661
662 /*
663 * We don't do relaxed operations yet, at least not with this semantic
664 */
665 #define readb_relaxed(addr) readb(addr)
666 #define readw_relaxed(addr) readw(addr)
667 #define readl_relaxed(addr) readl(addr)
668 #define readq_relaxed(addr) readq(addr)
669 #define writeb_relaxed(v, addr) writeb(v, addr)
670 #define writew_relaxed(v, addr) writew(v, addr)
671 #define writel_relaxed(v, addr) writel(v, addr)
672 #define writeq_relaxed(v, addr) writeq(v, addr)
673
674 #include <asm-generic/iomap.h>
675
676 #ifdef CONFIG_PPC32
677 #define mmiowb()
678 #else
679 /*
680 * Enforce synchronisation of stores vs. spin_unlock
681 * (this does it explicitly, though our implementation of spin_unlock
682 * does it implicitely too)
683 */
mmiowb(void)684 static inline void mmiowb(void)
685 {
686 unsigned long tmp;
687
688 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
689 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
690 : "memory");
691 }
692 #endif /* !CONFIG_PPC32 */
693
iosync(void)694 static inline void iosync(void)
695 {
696 __asm__ __volatile__ ("sync" : : : "memory");
697 }
698
699 /* Enforce in-order execution of data I/O.
700 * No distinction between read/write on PPC; use eieio for all three.
701 * Those are fairly week though. They don't provide a barrier between
702 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
703 * they only provide barriers between 2 __raw MMIO operations and
704 * possibly break write combining.
705 */
706 #define iobarrier_rw() eieio()
707 #define iobarrier_r() eieio()
708 #define iobarrier_w() eieio()
709
710
711 /*
712 * output pause versions need a delay at least for the
713 * w83c105 ide controller in a p610.
714 */
715 #define inb_p(port) inb(port)
716 #define outb_p(val, port) (udelay(1), outb((val), (port)))
717 #define inw_p(port) inw(port)
718 #define outw_p(val, port) (udelay(1), outw((val), (port)))
719 #define inl_p(port) inl(port)
720 #define outl_p(val, port) (udelay(1), outl((val), (port)))
721
722
723 #define IO_SPACE_LIMIT ~(0UL)
724
725
726 /**
727 * ioremap - map bus memory into CPU space
728 * @address: bus address of the memory
729 * @size: size of the resource to map
730 *
731 * ioremap performs a platform specific sequence of operations to
732 * make bus memory CPU accessible via the readb/readw/readl/writeb/
733 * writew/writel functions and the other mmio helpers. The returned
734 * address is not guaranteed to be usable directly as a virtual
735 * address.
736 *
737 * We provide a few variations of it:
738 *
739 * * ioremap is the standard one and provides non-cacheable guarded mappings
740 * and can be hooked by the platform via ppc_md
741 *
742 * * ioremap_prot allows to specify the page flags as an argument and can
743 * also be hooked by the platform via ppc_md.
744 *
745 * * ioremap_nocache is identical to ioremap
746 *
747 * * ioremap_wc enables write combining
748 *
749 * * iounmap undoes such a mapping and can be hooked
750 *
751 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
752 * create hand-made mappings for use only by the PCI code and cannot
753 * currently be hooked. Must be page aligned.
754 *
755 * * __ioremap is the low level implementation used by ioremap and
756 * ioremap_prot and cannot be hooked (but can be used by a hook on one
757 * of the previous ones)
758 *
759 * * __ioremap_caller is the same as above but takes an explicit caller
760 * reference rather than using __builtin_return_address(0)
761 *
762 * * __iounmap, is the low level implementation used by iounmap and cannot
763 * be hooked (but can be used by a hook on iounmap)
764 *
765 */
766 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
767 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
768 unsigned long flags);
769 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
770 #define ioremap_nocache(addr, size) ioremap((addr), (size))
771 #define ioremap_uc(addr, size) ioremap((addr), (size))
772 #define ioremap_cache(addr, size) \
773 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
774
775 extern void iounmap(volatile void __iomem *addr);
776
777 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
778 unsigned long flags);
779 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
780 unsigned long flags, void *caller);
781
782 extern void __iounmap(volatile void __iomem *addr);
783
784 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
785 unsigned long size, unsigned long flags);
786 extern void __iounmap_at(void *ea, unsigned long size);
787
788 /*
789 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
790 * which needs some additional definitions here. They basically allow PIO
791 * space overall to be 1GB. This will work as long as we never try to use
792 * iomap to map MMIO below 1GB which should be fine on ppc64
793 */
794 #define HAVE_ARCH_PIO_SIZE 1
795 #define PIO_OFFSET 0x00000000UL
796 #define PIO_MASK (FULL_IO_SIZE - 1)
797 #define PIO_RESERVED (FULL_IO_SIZE)
798
799 #define mmio_read16be(addr) readw_be(addr)
800 #define mmio_read32be(addr) readl_be(addr)
801 #define mmio_write16be(val, addr) writew_be(val, addr)
802 #define mmio_write32be(val, addr) writel_be(val, addr)
803 #define mmio_insb(addr, dst, count) readsb(addr, dst, count)
804 #define mmio_insw(addr, dst, count) readsw(addr, dst, count)
805 #define mmio_insl(addr, dst, count) readsl(addr, dst, count)
806 #define mmio_outsb(addr, src, count) writesb(addr, src, count)
807 #define mmio_outsw(addr, src, count) writesw(addr, src, count)
808 #define mmio_outsl(addr, src, count) writesl(addr, src, count)
809
810 /**
811 * virt_to_phys - map virtual addresses to physical
812 * @address: address to remap
813 *
814 * The returned physical address is the physical (CPU) mapping for
815 * the memory address given. It is only valid to use this function on
816 * addresses directly mapped or allocated via kmalloc.
817 *
818 * This function does not give bus mappings for DMA transfers. In
819 * almost all conceivable cases a device driver should not be using
820 * this function
821 */
virt_to_phys(volatile void * address)822 static inline unsigned long virt_to_phys(volatile void * address)
823 {
824 return __pa((unsigned long)address);
825 }
826
827 /**
828 * phys_to_virt - map physical address to virtual
829 * @address: address to remap
830 *
831 * The returned virtual address is a current CPU mapping for
832 * the memory address given. It is only valid to use this function on
833 * addresses that have a kernel mapping
834 *
835 * This function does not handle bus mappings for DMA transfers. In
836 * almost all conceivable cases a device driver should not be using
837 * this function
838 */
phys_to_virt(unsigned long address)839 static inline void * phys_to_virt(unsigned long address)
840 {
841 return (void *)__va(address);
842 }
843
844 /*
845 * Change "struct page" to physical address.
846 */
847 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
848
849 /*
850 * 32 bits still uses virt_to_bus() for it's implementation of DMA
851 * mappings se we have to keep it defined here. We also have some old
852 * drivers (shame shame shame) that use bus_to_virt() and haven't been
853 * fixed yet so I need to define it here.
854 */
855 #ifdef CONFIG_PPC32
856
virt_to_bus(volatile void * address)857 static inline unsigned long virt_to_bus(volatile void * address)
858 {
859 if (address == NULL)
860 return 0;
861 return __pa(address) + PCI_DRAM_OFFSET;
862 }
863
bus_to_virt(unsigned long address)864 static inline void * bus_to_virt(unsigned long address)
865 {
866 if (address == 0)
867 return NULL;
868 return __va(address - PCI_DRAM_OFFSET);
869 }
870
871 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
872
873 #endif /* CONFIG_PPC32 */
874
875 /* access ports */
876 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
877 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
878
879 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
880 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
881
882 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
883 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
884
885 /* Clear and set bits in one shot. These macros can be used to clear and
886 * set multiple bits in a register using a single read-modify-write. These
887 * macros can also be used to set a multiple-bit bit pattern using a mask,
888 * by specifying the mask in the 'clear' parameter and the new bit pattern
889 * in the 'set' parameter.
890 */
891
892 #define clrsetbits(type, addr, clear, set) \
893 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
894
895 #ifdef __powerpc64__
896 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
897 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
898 #endif
899
900 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
901 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
902
903 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
904 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
905
906 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
907
908 #endif /* __KERNEL__ */
909
910 #endif /* _ASM_POWERPC_IO_H */
911