1 /*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/nmi.h>
20 #include <linux/interrupt.h>
21 #include <linux/efi.h>
22 #include <linux/timex.h>
23 #include <linux/timekeeper_internal.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched/cputime.h>
26
27 #include <asm/machvec.h>
28 #include <asm/delay.h>
29 #include <asm/hw_irq.h>
30 #include <asm/ptrace.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33
34 #include "fsyscall_gtod_data.h"
35
36 static u64 itc_get_cycles(struct clocksource *cs);
37
38 struct fsyscall_gtod_data_t fsyscall_gtod_data;
39
40 struct itc_jitter_data_t itc_jitter_data;
41
42 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
43
44 #ifdef CONFIG_IA64_DEBUG_IRQ
45
46 unsigned long last_cli_ip;
47 EXPORT_SYMBOL(last_cli_ip);
48
49 #endif
50
51 static struct clocksource clocksource_itc = {
52 .name = "itc",
53 .rating = 350,
54 .read = itc_get_cycles,
55 .mask = CLOCKSOURCE_MASK(64),
56 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
57 };
58 static struct clocksource *itc_clocksource;
59
60 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
61
62 #include <linux/kernel_stat.h>
63
64 extern u64 cycle_to_nsec(u64 cyc);
65
vtime_flush(struct task_struct * tsk)66 void vtime_flush(struct task_struct *tsk)
67 {
68 struct thread_info *ti = task_thread_info(tsk);
69 u64 delta;
70
71 if (ti->utime)
72 account_user_time(tsk, cycle_to_nsec(ti->utime));
73
74 if (ti->gtime)
75 account_guest_time(tsk, cycle_to_nsec(ti->gtime));
76
77 if (ti->idle_time)
78 account_idle_time(cycle_to_nsec(ti->idle_time));
79
80 if (ti->stime) {
81 delta = cycle_to_nsec(ti->stime);
82 account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
83 }
84
85 if (ti->hardirq_time) {
86 delta = cycle_to_nsec(ti->hardirq_time);
87 account_system_index_time(tsk, delta, CPUTIME_IRQ);
88 }
89
90 if (ti->softirq_time) {
91 delta = cycle_to_nsec(ti->softirq_time);
92 account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
93 }
94
95 ti->utime = 0;
96 ti->gtime = 0;
97 ti->idle_time = 0;
98 ti->stime = 0;
99 ti->hardirq_time = 0;
100 ti->softirq_time = 0;
101 }
102
103 /*
104 * Called from the context switch with interrupts disabled, to charge all
105 * accumulated times to the current process, and to prepare accounting on
106 * the next process.
107 */
arch_vtime_task_switch(struct task_struct * prev)108 void arch_vtime_task_switch(struct task_struct *prev)
109 {
110 struct thread_info *pi = task_thread_info(prev);
111 struct thread_info *ni = task_thread_info(current);
112
113 ni->ac_stamp = pi->ac_stamp;
114 ni->ac_stime = ni->ac_utime = 0;
115 }
116
117 /*
118 * Account time for a transition between system, hard irq or soft irq state.
119 * Note that this function is called with interrupts enabled.
120 */
vtime_delta(struct task_struct * tsk)121 static __u64 vtime_delta(struct task_struct *tsk)
122 {
123 struct thread_info *ti = task_thread_info(tsk);
124 __u64 now, delta_stime;
125
126 WARN_ON_ONCE(!irqs_disabled());
127
128 now = ia64_get_itc();
129 delta_stime = now - ti->ac_stamp;
130 ti->ac_stamp = now;
131
132 return delta_stime;
133 }
134
vtime_account_system(struct task_struct * tsk)135 void vtime_account_system(struct task_struct *tsk)
136 {
137 struct thread_info *ti = task_thread_info(tsk);
138 __u64 stime = vtime_delta(tsk);
139
140 if ((tsk->flags & PF_VCPU) && !irq_count())
141 ti->gtime += stime;
142 else if (hardirq_count())
143 ti->hardirq_time += stime;
144 else if (in_serving_softirq())
145 ti->softirq_time += stime;
146 else
147 ti->stime += stime;
148 }
149 EXPORT_SYMBOL_GPL(vtime_account_system);
150
vtime_account_idle(struct task_struct * tsk)151 void vtime_account_idle(struct task_struct *tsk)
152 {
153 struct thread_info *ti = task_thread_info(tsk);
154
155 ti->idle_time += vtime_delta(tsk);
156 }
157
158 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
159
160 static irqreturn_t
timer_interrupt(int irq,void * dev_id)161 timer_interrupt (int irq, void *dev_id)
162 {
163 unsigned long new_itm;
164
165 if (cpu_is_offline(smp_processor_id())) {
166 return IRQ_HANDLED;
167 }
168
169 platform_timer_interrupt(irq, dev_id);
170
171 new_itm = local_cpu_data->itm_next;
172
173 if (!time_after(ia64_get_itc(), new_itm))
174 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
175 ia64_get_itc(), new_itm);
176
177 profile_tick(CPU_PROFILING);
178
179 while (1) {
180 update_process_times(user_mode(get_irq_regs()));
181
182 new_itm += local_cpu_data->itm_delta;
183
184 if (smp_processor_id() == time_keeper_id)
185 xtime_update(1);
186
187 local_cpu_data->itm_next = new_itm;
188
189 if (time_after(new_itm, ia64_get_itc()))
190 break;
191
192 /*
193 * Allow IPIs to interrupt the timer loop.
194 */
195 local_irq_enable();
196 local_irq_disable();
197 }
198
199 do {
200 /*
201 * If we're too close to the next clock tick for
202 * comfort, we increase the safety margin by
203 * intentionally dropping the next tick(s). We do NOT
204 * update itm.next because that would force us to call
205 * xtime_update() which in turn would let our clock run
206 * too fast (with the potentially devastating effect
207 * of losing monotony of time).
208 */
209 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
210 new_itm += local_cpu_data->itm_delta;
211 ia64_set_itm(new_itm);
212 /* double check, in case we got hit by a (slow) PMI: */
213 } while (time_after_eq(ia64_get_itc(), new_itm));
214 return IRQ_HANDLED;
215 }
216
217 /*
218 * Encapsulate access to the itm structure for SMP.
219 */
220 void
ia64_cpu_local_tick(void)221 ia64_cpu_local_tick (void)
222 {
223 int cpu = smp_processor_id();
224 unsigned long shift = 0, delta;
225
226 /* arrange for the cycle counter to generate a timer interrupt: */
227 ia64_set_itv(IA64_TIMER_VECTOR);
228
229 delta = local_cpu_data->itm_delta;
230 /*
231 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
232 * same time:
233 */
234 if (cpu) {
235 unsigned long hi = 1UL << ia64_fls(cpu);
236 shift = (2*(cpu - hi) + 1) * delta/hi/2;
237 }
238 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
239 ia64_set_itm(local_cpu_data->itm_next);
240 }
241
242 static int nojitter;
243
nojitter_setup(char * str)244 static int __init nojitter_setup(char *str)
245 {
246 nojitter = 1;
247 printk("Jitter checking for ITC timers disabled\n");
248 return 1;
249 }
250
251 __setup("nojitter", nojitter_setup);
252
253
ia64_init_itm(void)254 void ia64_init_itm(void)
255 {
256 unsigned long platform_base_freq, itc_freq;
257 struct pal_freq_ratio itc_ratio, proc_ratio;
258 long status, platform_base_drift, itc_drift;
259
260 /*
261 * According to SAL v2.6, we need to use a SAL call to determine the platform base
262 * frequency and then a PAL call to determine the frequency ratio between the ITC
263 * and the base frequency.
264 */
265 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
266 &platform_base_freq, &platform_base_drift);
267 if (status != 0) {
268 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
269 } else {
270 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
271 if (status != 0)
272 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
273 }
274 if (status != 0) {
275 /* invent "random" values */
276 printk(KERN_ERR
277 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
278 platform_base_freq = 100000000;
279 platform_base_drift = -1; /* no drift info */
280 itc_ratio.num = 3;
281 itc_ratio.den = 1;
282 }
283 if (platform_base_freq < 40000000) {
284 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
285 platform_base_freq);
286 platform_base_freq = 75000000;
287 platform_base_drift = -1;
288 }
289 if (!proc_ratio.den)
290 proc_ratio.den = 1; /* avoid division by zero */
291 if (!itc_ratio.den)
292 itc_ratio.den = 1; /* avoid division by zero */
293
294 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
295
296 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
297 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
298 "ITC freq=%lu.%03luMHz", smp_processor_id(),
299 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
300 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
301
302 if (platform_base_drift != -1) {
303 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
304 printk("+/-%ldppm\n", itc_drift);
305 } else {
306 itc_drift = -1;
307 printk("\n");
308 }
309
310 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
311 local_cpu_data->itc_freq = itc_freq;
312 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
313 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
314 + itc_freq/2)/itc_freq;
315
316 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
317 #ifdef CONFIG_SMP
318 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
319 * Jitter compensation requires a cmpxchg which may limit
320 * the scalability of the syscalls for retrieving time.
321 * The ITC synchronization is usually successful to within a few
322 * ITC ticks but this is not a sure thing. If you need to improve
323 * timer performance in SMP situations then boot the kernel with the
324 * "nojitter" option. However, doing so may result in time fluctuating (maybe
325 * even going backward) if the ITC offsets between the individual CPUs
326 * are too large.
327 */
328 if (!nojitter)
329 itc_jitter_data.itc_jitter = 1;
330 #endif
331 } else
332 /*
333 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
334 * ITC values may fluctuate significantly between processors.
335 * Clock should not be used for hrtimers. Mark itc as only
336 * useful for boot and testing.
337 *
338 * Note that jitter compensation is off! There is no point of
339 * synchronizing ITCs since they may be large differentials
340 * that change over time.
341 *
342 * The only way to fix this would be to repeatedly sync the
343 * ITCs. Until that time we have to avoid ITC.
344 */
345 clocksource_itc.rating = 50;
346
347 /* avoid softlock up message when cpu is unplug and plugged again. */
348 touch_softlockup_watchdog();
349
350 /* Setup the CPU local timer tick */
351 ia64_cpu_local_tick();
352
353 if (!itc_clocksource) {
354 clocksource_register_hz(&clocksource_itc,
355 local_cpu_data->itc_freq);
356 itc_clocksource = &clocksource_itc;
357 }
358 }
359
itc_get_cycles(struct clocksource * cs)360 static u64 itc_get_cycles(struct clocksource *cs)
361 {
362 unsigned long lcycle, now, ret;
363
364 if (!itc_jitter_data.itc_jitter)
365 return get_cycles();
366
367 lcycle = itc_jitter_data.itc_lastcycle;
368 now = get_cycles();
369 if (lcycle && time_after(lcycle, now))
370 return lcycle;
371
372 /*
373 * Keep track of the last timer value returned.
374 * In an SMP environment, you could lose out in contention of
375 * cmpxchg. If so, your cmpxchg returns new value which the
376 * winner of contention updated to. Use the new value instead.
377 */
378 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
379 if (unlikely(ret != lcycle))
380 return ret;
381
382 return now;
383 }
384
385
386 static struct irqaction timer_irqaction = {
387 .handler = timer_interrupt,
388 .flags = IRQF_IRQPOLL,
389 .name = "timer"
390 };
391
read_persistent_clock64(struct timespec64 * ts)392 void read_persistent_clock64(struct timespec64 *ts)
393 {
394 efi_gettimeofday(ts);
395 }
396
397 void __init
time_init(void)398 time_init (void)
399 {
400 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
401 ia64_init_itm();
402 }
403
404 /*
405 * Generic udelay assumes that if preemption is allowed and the thread
406 * migrates to another CPU, that the ITC values are synchronized across
407 * all CPUs.
408 */
409 static void
ia64_itc_udelay(unsigned long usecs)410 ia64_itc_udelay (unsigned long usecs)
411 {
412 unsigned long start = ia64_get_itc();
413 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
414
415 while (time_before(ia64_get_itc(), end))
416 cpu_relax();
417 }
418
419 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
420
421 void
udelay(unsigned long usecs)422 udelay (unsigned long usecs)
423 {
424 (*ia64_udelay)(usecs);
425 }
426 EXPORT_SYMBOL(udelay);
427
428 /* IA64 doesn't cache the timezone */
update_vsyscall_tz(void)429 void update_vsyscall_tz(void)
430 {
431 }
432
update_vsyscall(struct timekeeper * tk)433 void update_vsyscall(struct timekeeper *tk)
434 {
435 write_seqcount_begin(&fsyscall_gtod_data.seq);
436
437 /* copy vsyscall data */
438 fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
439 fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
440 fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
441 fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
442 fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
443
444 fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
445 fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
446
447 fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
448 + tk->wall_to_monotonic.tv_sec;
449 fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
450 + ((u64)tk->wall_to_monotonic.tv_nsec
451 << tk->tkr_mono.shift);
452
453 /* normalize */
454 while (fsyscall_gtod_data.monotonic_time.snsec >=
455 (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
456 fsyscall_gtod_data.monotonic_time.snsec -=
457 ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
458 fsyscall_gtod_data.monotonic_time.sec++;
459 }
460
461 write_seqcount_end(&fsyscall_gtod_data.seq);
462 }
463
464