1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/mm.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/smp.h>
39 #include <linux/pagemap.h>
40 #include <linux/mount.h>
41 #include <linux/bitops.h>
42 #include <linux/capability.h>
43 #include <linux/rcupdate.h>
44 #include <linux/completion.h>
45 #include <linux/tracehook.h>
46 #include <linux/slab.h>
47 #include <linux/cpu.h>
48 
49 #include <asm/errno.h>
50 #include <asm/intrinsics.h>
51 #include <asm/page.h>
52 #include <asm/perfmon.h>
53 #include <asm/processor.h>
54 #include <asm/signal.h>
55 #include <linux/uaccess.h>
56 #include <asm/delay.h>
57 
58 #ifdef CONFIG_PERFMON
59 /*
60  * perfmon context state
61  */
62 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
63 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
64 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
65 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
66 
67 #define PFM_INVALID_ACTIVATION	(~0UL)
68 
69 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
70 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
71 
72 /*
73  * depth of message queue
74  */
75 #define PFM_MAX_MSGS		32
76 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 
78 /*
79  * type of a PMU register (bitmask).
80  * bitmask structure:
81  * 	bit0   : register implemented
82  * 	bit1   : end marker
83  * 	bit2-3 : reserved
84  * 	bit4   : pmc has pmc.pm
85  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
86  * 	bit6-7 : register type
87  * 	bit8-31: reserved
88  */
89 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
90 #define PFM_REG_IMPL		0x1 /* register implemented */
91 #define PFM_REG_END		0x2 /* end marker */
92 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
93 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
94 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
95 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
96 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
97 
98 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
99 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
100 
101 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
102 
103 /* i assumed unsigned */
104 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
105 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
106 
107 /* XXX: these assume that register i is implemented */
108 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
109 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
110 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
111 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
112 
113 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
114 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
115 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
116 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
117 
118 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
119 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
120 
121 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
122 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
123 #define PFM_CTX_TASK(h)		(h)->ctx_task
124 
125 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
126 
127 /* XXX: does not support more than 64 PMDs */
128 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
129 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
130 
131 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
132 
133 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
134 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
135 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
136 #define PFM_CODE_RR	0	/* requesting code range restriction */
137 #define PFM_DATA_RR	1	/* requestion data range restriction */
138 
139 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
140 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
141 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
142 
143 #define RDEP(x)	(1UL<<(x))
144 
145 /*
146  * context protection macros
147  * in SMP:
148  * 	- we need to protect against CPU concurrency (spin_lock)
149  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150  * in UP:
151  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
152  *
153  * spin_lock_irqsave()/spin_unlock_irqrestore():
154  * 	in SMP: local_irq_disable + spin_lock
155  * 	in UP : local_irq_disable
156  *
157  * spin_lock()/spin_lock():
158  * 	in UP : removed automatically
159  * 	in SMP: protect against context accesses from other CPU. interrupts
160  * 	        are not masked. This is useful for the PMU interrupt handler
161  * 	        because we know we will not get PMU concurrency in that code.
162  */
163 #define PROTECT_CTX(c, f) \
164 	do {  \
165 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 		spin_lock_irqsave(&(c)->ctx_lock, f); \
167 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
168 	} while(0)
169 
170 #define UNPROTECT_CTX(c, f) \
171 	do { \
172 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
173 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 	} while(0)
175 
176 #define PROTECT_CTX_NOPRINT(c, f) \
177 	do {  \
178 		spin_lock_irqsave(&(c)->ctx_lock, f); \
179 	} while(0)
180 
181 
182 #define UNPROTECT_CTX_NOPRINT(c, f) \
183 	do { \
184 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 	} while(0)
186 
187 
188 #define PROTECT_CTX_NOIRQ(c) \
189 	do {  \
190 		spin_lock(&(c)->ctx_lock); \
191 	} while(0)
192 
193 #define UNPROTECT_CTX_NOIRQ(c) \
194 	do { \
195 		spin_unlock(&(c)->ctx_lock); \
196 	} while(0)
197 
198 
199 #ifdef CONFIG_SMP
200 
201 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
202 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
203 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
204 
205 #else /* !CONFIG_SMP */
206 #define SET_ACTIVATION(t) 	do {} while(0)
207 #define GET_ACTIVATION(t) 	do {} while(0)
208 #define INC_ACTIVATION(t) 	do {} while(0)
209 #endif /* CONFIG_SMP */
210 
211 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
212 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
213 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
214 
215 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
216 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
217 
218 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 
220 /*
221  * cmp0 must be the value of pmc0
222  */
223 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
224 
225 #define PFMFS_MAGIC 0xa0b4d889
226 
227 /*
228  * debugging
229  */
230 #define PFM_DEBUGGING 1
231 #ifdef PFM_DEBUGGING
232 #define DPRINT(a) \
233 	do { \
234 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 	} while (0)
236 
237 #define DPRINT_ovfl(a) \
238 	do { \
239 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
240 	} while (0)
241 #endif
242 
243 /*
244  * 64-bit software counter structure
245  *
246  * the next_reset_type is applied to the next call to pfm_reset_regs()
247  */
248 typedef struct {
249 	unsigned long	val;		/* virtual 64bit counter value */
250 	unsigned long	lval;		/* last reset value */
251 	unsigned long	long_reset;	/* reset value on sampling overflow */
252 	unsigned long	short_reset;    /* reset value on overflow */
253 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
254 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
255 	unsigned long	seed;		/* seed for random-number generator */
256 	unsigned long	mask;		/* mask for random-number generator */
257 	unsigned int 	flags;		/* notify/do not notify */
258 	unsigned long	eventid;	/* overflow event identifier */
259 } pfm_counter_t;
260 
261 /*
262  * context flags
263  */
264 typedef struct {
265 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
266 	unsigned int system:1;		/* do system wide monitoring */
267 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
268 	unsigned int is_sampling:1;	/* true if using a custom format */
269 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
270 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
271 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
272 	unsigned int no_msg:1;		/* no message sent on overflow */
273 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
274 	unsigned int reserved:22;
275 } pfm_context_flags_t;
276 
277 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
278 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
279 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
280 
281 
282 /*
283  * perfmon context: encapsulates all the state of a monitoring session
284  */
285 
286 typedef struct pfm_context {
287 	spinlock_t		ctx_lock;		/* context protection */
288 
289 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
290 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
291 
292 	struct task_struct 	*ctx_task;		/* task to which context is attached */
293 
294 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
295 
296 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
297 
298 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
299 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
300 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
301 
302 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
303 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
304 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
305 
306 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
307 
308 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
309 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
310 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
311 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
312 
313 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
314 
315 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
316 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
317 
318 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
319 
320 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
321 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
322 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
323 
324 	int			ctx_fd;			/* file descriptor used my this context */
325 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
326 
327 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
328 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
329 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
330 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
331 
332 	wait_queue_head_t 	ctx_msgq_wait;
333 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
334 	int			ctx_msgq_head;
335 	int			ctx_msgq_tail;
336 	struct fasync_struct	*ctx_async_queue;
337 
338 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
339 } pfm_context_t;
340 
341 /*
342  * magic number used to verify that structure is really
343  * a perfmon context
344  */
345 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
346 
347 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
348 
349 #ifdef CONFIG_SMP
350 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
351 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
352 #else
353 #define SET_LAST_CPU(ctx, v)	do {} while(0)
354 #define GET_LAST_CPU(ctx)	do {} while(0)
355 #endif
356 
357 
358 #define ctx_fl_block		ctx_flags.block
359 #define ctx_fl_system		ctx_flags.system
360 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
361 #define ctx_fl_is_sampling	ctx_flags.is_sampling
362 #define ctx_fl_excl_idle	ctx_flags.excl_idle
363 #define ctx_fl_going_zombie	ctx_flags.going_zombie
364 #define ctx_fl_trap_reason	ctx_flags.trap_reason
365 #define ctx_fl_no_msg		ctx_flags.no_msg
366 #define ctx_fl_can_restart	ctx_flags.can_restart
367 
368 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
369 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
370 
371 /*
372  * global information about all sessions
373  * mostly used to synchronize between system wide and per-process
374  */
375 typedef struct {
376 	spinlock_t		pfs_lock;		   /* lock the structure */
377 
378 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
379 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
380 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
381 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
382 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383 } pfm_session_t;
384 
385 /*
386  * information about a PMC or PMD.
387  * dep_pmd[]: a bitmask of dependent PMD registers
388  * dep_pmc[]: a bitmask of dependent PMC registers
389  */
390 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391 typedef struct {
392 	unsigned int		type;
393 	int			pm_pos;
394 	unsigned long		default_value;	/* power-on default value */
395 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
396 	pfm_reg_check_t		read_check;
397 	pfm_reg_check_t		write_check;
398 	unsigned long		dep_pmd[4];
399 	unsigned long		dep_pmc[4];
400 } pfm_reg_desc_t;
401 
402 /* assume cnum is a valid monitor */
403 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 
405 /*
406  * This structure is initialized at boot time and contains
407  * a description of the PMU main characteristics.
408  *
409  * If the probe function is defined, detection is based
410  * on its return value:
411  * 	- 0 means recognized PMU
412  * 	- anything else means not supported
413  * When the probe function is not defined, then the pmu_family field
414  * is used and it must match the host CPU family such that:
415  * 	- cpu->family & config->pmu_family != 0
416  */
417 typedef struct {
418 	unsigned long  ovfl_val;	/* overflow value for counters */
419 
420 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
421 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
422 
423 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
424 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
425 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
426 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
427 
428 	char	      *pmu_name;	/* PMU family name */
429 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
430 	unsigned int  flags;		/* pmu specific flags */
431 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
432 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
433 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
434 	int           (*probe)(void);   /* customized probe routine */
435 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
436 } pmu_config_t;
437 /*
438  * PMU specific flags
439  */
440 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
441 
442 /*
443  * debug register related type definitions
444  */
445 typedef struct {
446 	unsigned long ibr_mask:56;
447 	unsigned long ibr_plm:4;
448 	unsigned long ibr_ig:3;
449 	unsigned long ibr_x:1;
450 } ibr_mask_reg_t;
451 
452 typedef struct {
453 	unsigned long dbr_mask:56;
454 	unsigned long dbr_plm:4;
455 	unsigned long dbr_ig:2;
456 	unsigned long dbr_w:1;
457 	unsigned long dbr_r:1;
458 } dbr_mask_reg_t;
459 
460 typedef union {
461 	unsigned long  val;
462 	ibr_mask_reg_t ibr;
463 	dbr_mask_reg_t dbr;
464 } dbreg_t;
465 
466 
467 /*
468  * perfmon command descriptions
469  */
470 typedef struct {
471 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
472 	char		*cmd_name;
473 	int		cmd_flags;
474 	unsigned int	cmd_narg;
475 	size_t		cmd_argsize;
476 	int		(*cmd_getsize)(void *arg, size_t *sz);
477 } pfm_cmd_desc_t;
478 
479 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
480 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
481 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
482 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
483 
484 
485 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
486 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
487 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
488 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
489 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
490 
491 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
492 
493 typedef struct {
494 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
495 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
497 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
498 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
499 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
500 	unsigned long pfm_smpl_handler_calls;
501 	unsigned long pfm_smpl_handler_cycles;
502 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503 } pfm_stats_t;
504 
505 /*
506  * perfmon internal variables
507  */
508 static pfm_stats_t		pfm_stats[NR_CPUS];
509 static pfm_session_t		pfm_sessions;	/* global sessions information */
510 
511 static DEFINE_SPINLOCK(pfm_alt_install_check);
512 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
513 
514 static struct proc_dir_entry 	*perfmon_dir;
515 static pfm_uuid_t		pfm_null_uuid = {0,};
516 
517 static spinlock_t		pfm_buffer_fmt_lock;
518 static LIST_HEAD(pfm_buffer_fmt_list);
519 
520 static pmu_config_t		*pmu_conf;
521 
522 /* sysctl() controls */
523 pfm_sysctl_t pfm_sysctl;
524 EXPORT_SYMBOL(pfm_sysctl);
525 
526 static struct ctl_table pfm_ctl_table[] = {
527 	{
528 		.procname	= "debug",
529 		.data		= &pfm_sysctl.debug,
530 		.maxlen		= sizeof(int),
531 		.mode		= 0666,
532 		.proc_handler	= proc_dointvec,
533 	},
534 	{
535 		.procname	= "debug_ovfl",
536 		.data		= &pfm_sysctl.debug_ovfl,
537 		.maxlen		= sizeof(int),
538 		.mode		= 0666,
539 		.proc_handler	= proc_dointvec,
540 	},
541 	{
542 		.procname	= "fastctxsw",
543 		.data		= &pfm_sysctl.fastctxsw,
544 		.maxlen		= sizeof(int),
545 		.mode		= 0600,
546 		.proc_handler	= proc_dointvec,
547 	},
548 	{
549 		.procname	= "expert_mode",
550 		.data		= &pfm_sysctl.expert_mode,
551 		.maxlen		= sizeof(int),
552 		.mode		= 0600,
553 		.proc_handler	= proc_dointvec,
554 	},
555 	{}
556 };
557 static struct ctl_table pfm_sysctl_dir[] = {
558 	{
559 		.procname	= "perfmon",
560 		.mode		= 0555,
561 		.child		= pfm_ctl_table,
562 	},
563  	{}
564 };
565 static struct ctl_table pfm_sysctl_root[] = {
566 	{
567 		.procname	= "kernel",
568 		.mode		= 0555,
569 		.child		= pfm_sysctl_dir,
570 	},
571  	{}
572 };
573 static struct ctl_table_header *pfm_sysctl_header;
574 
575 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
576 
577 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
578 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
579 
580 static inline void
pfm_put_task(struct task_struct * task)581 pfm_put_task(struct task_struct *task)
582 {
583 	if (task != current) put_task_struct(task);
584 }
585 
586 static inline void
pfm_reserve_page(unsigned long a)587 pfm_reserve_page(unsigned long a)
588 {
589 	SetPageReserved(vmalloc_to_page((void *)a));
590 }
591 static inline void
pfm_unreserve_page(unsigned long a)592 pfm_unreserve_page(unsigned long a)
593 {
594 	ClearPageReserved(vmalloc_to_page((void*)a));
595 }
596 
597 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)598 pfm_protect_ctx_ctxsw(pfm_context_t *x)
599 {
600 	spin_lock(&(x)->ctx_lock);
601 	return 0UL;
602 }
603 
604 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)605 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
606 {
607 	spin_unlock(&(x)->ctx_lock);
608 }
609 
610 /* forward declaration */
611 static const struct dentry_operations pfmfs_dentry_operations;
612 
613 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)614 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
615 {
616 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
617 			PFMFS_MAGIC);
618 }
619 
620 static struct file_system_type pfm_fs_type = {
621 	.name     = "pfmfs",
622 	.mount    = pfmfs_mount,
623 	.kill_sb  = kill_anon_super,
624 };
625 MODULE_ALIAS_FS("pfmfs");
626 
627 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
628 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
629 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
630 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
631 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
632 
633 
634 /* forward declaration */
635 static const struct file_operations pfm_file_ops;
636 
637 /*
638  * forward declarations
639  */
640 #ifndef CONFIG_SMP
641 static void pfm_lazy_save_regs (struct task_struct *ta);
642 #endif
643 
644 void dump_pmu_state(const char *);
645 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
646 
647 #include "perfmon_itanium.h"
648 #include "perfmon_mckinley.h"
649 #include "perfmon_montecito.h"
650 #include "perfmon_generic.h"
651 
652 static pmu_config_t *pmu_confs[]={
653 	&pmu_conf_mont,
654 	&pmu_conf_mck,
655 	&pmu_conf_ita,
656 	&pmu_conf_gen, /* must be last */
657 	NULL
658 };
659 
660 
661 static int pfm_end_notify_user(pfm_context_t *ctx);
662 
663 static inline void
pfm_clear_psr_pp(void)664 pfm_clear_psr_pp(void)
665 {
666 	ia64_rsm(IA64_PSR_PP);
667 	ia64_srlz_i();
668 }
669 
670 static inline void
pfm_set_psr_pp(void)671 pfm_set_psr_pp(void)
672 {
673 	ia64_ssm(IA64_PSR_PP);
674 	ia64_srlz_i();
675 }
676 
677 static inline void
pfm_clear_psr_up(void)678 pfm_clear_psr_up(void)
679 {
680 	ia64_rsm(IA64_PSR_UP);
681 	ia64_srlz_i();
682 }
683 
684 static inline void
pfm_set_psr_up(void)685 pfm_set_psr_up(void)
686 {
687 	ia64_ssm(IA64_PSR_UP);
688 	ia64_srlz_i();
689 }
690 
691 static inline unsigned long
pfm_get_psr(void)692 pfm_get_psr(void)
693 {
694 	unsigned long tmp;
695 	tmp = ia64_getreg(_IA64_REG_PSR);
696 	ia64_srlz_i();
697 	return tmp;
698 }
699 
700 static inline void
pfm_set_psr_l(unsigned long val)701 pfm_set_psr_l(unsigned long val)
702 {
703 	ia64_setreg(_IA64_REG_PSR_L, val);
704 	ia64_srlz_i();
705 }
706 
707 static inline void
pfm_freeze_pmu(void)708 pfm_freeze_pmu(void)
709 {
710 	ia64_set_pmc(0,1UL);
711 	ia64_srlz_d();
712 }
713 
714 static inline void
pfm_unfreeze_pmu(void)715 pfm_unfreeze_pmu(void)
716 {
717 	ia64_set_pmc(0,0UL);
718 	ia64_srlz_d();
719 }
720 
721 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)722 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
723 {
724 	int i;
725 
726 	for (i=0; i < nibrs; i++) {
727 		ia64_set_ibr(i, ibrs[i]);
728 		ia64_dv_serialize_instruction();
729 	}
730 	ia64_srlz_i();
731 }
732 
733 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)734 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
735 {
736 	int i;
737 
738 	for (i=0; i < ndbrs; i++) {
739 		ia64_set_dbr(i, dbrs[i]);
740 		ia64_dv_serialize_data();
741 	}
742 	ia64_srlz_d();
743 }
744 
745 /*
746  * PMD[i] must be a counter. no check is made
747  */
748 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)749 pfm_read_soft_counter(pfm_context_t *ctx, int i)
750 {
751 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
752 }
753 
754 /*
755  * PMD[i] must be a counter. no check is made
756  */
757 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)758 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
759 {
760 	unsigned long ovfl_val = pmu_conf->ovfl_val;
761 
762 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
763 	/*
764 	 * writing to unimplemented part is ignore, so we do not need to
765 	 * mask off top part
766 	 */
767 	ia64_set_pmd(i, val & ovfl_val);
768 }
769 
770 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)771 pfm_get_new_msg(pfm_context_t *ctx)
772 {
773 	int idx, next;
774 
775 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
776 
777 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
778 	if (next == ctx->ctx_msgq_head) return NULL;
779 
780  	idx = 	ctx->ctx_msgq_tail;
781 	ctx->ctx_msgq_tail = next;
782 
783 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
784 
785 	return ctx->ctx_msgq+idx;
786 }
787 
788 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)789 pfm_get_next_msg(pfm_context_t *ctx)
790 {
791 	pfm_msg_t *msg;
792 
793 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
794 
795 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
796 
797 	/*
798 	 * get oldest message
799 	 */
800 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
801 
802 	/*
803 	 * and move forward
804 	 */
805 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
806 
807 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
808 
809 	return msg;
810 }
811 
812 static void
pfm_reset_msgq(pfm_context_t * ctx)813 pfm_reset_msgq(pfm_context_t *ctx)
814 {
815 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
816 	DPRINT(("ctx=%p msgq reset\n", ctx));
817 }
818 
819 static void *
pfm_rvmalloc(unsigned long size)820 pfm_rvmalloc(unsigned long size)
821 {
822 	void *mem;
823 	unsigned long addr;
824 
825 	size = PAGE_ALIGN(size);
826 	mem  = vzalloc(size);
827 	if (mem) {
828 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
829 		addr = (unsigned long)mem;
830 		while (size > 0) {
831 			pfm_reserve_page(addr);
832 			addr+=PAGE_SIZE;
833 			size-=PAGE_SIZE;
834 		}
835 	}
836 	return mem;
837 }
838 
839 static void
pfm_rvfree(void * mem,unsigned long size)840 pfm_rvfree(void *mem, unsigned long size)
841 {
842 	unsigned long addr;
843 
844 	if (mem) {
845 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
846 		addr = (unsigned long) mem;
847 		while ((long) size > 0) {
848 			pfm_unreserve_page(addr);
849 			addr+=PAGE_SIZE;
850 			size-=PAGE_SIZE;
851 		}
852 		vfree(mem);
853 	}
854 	return;
855 }
856 
857 static pfm_context_t *
pfm_context_alloc(int ctx_flags)858 pfm_context_alloc(int ctx_flags)
859 {
860 	pfm_context_t *ctx;
861 
862 	/*
863 	 * allocate context descriptor
864 	 * must be able to free with interrupts disabled
865 	 */
866 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
867 	if (ctx) {
868 		DPRINT(("alloc ctx @%p\n", ctx));
869 
870 		/*
871 		 * init context protection lock
872 		 */
873 		spin_lock_init(&ctx->ctx_lock);
874 
875 		/*
876 		 * context is unloaded
877 		 */
878 		ctx->ctx_state = PFM_CTX_UNLOADED;
879 
880 		/*
881 		 * initialization of context's flags
882 		 */
883 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
884 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
885 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
886 		/*
887 		 * will move to set properties
888 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
889 		 */
890 
891 		/*
892 		 * init restart semaphore to locked
893 		 */
894 		init_completion(&ctx->ctx_restart_done);
895 
896 		/*
897 		 * activation is used in SMP only
898 		 */
899 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
900 		SET_LAST_CPU(ctx, -1);
901 
902 		/*
903 		 * initialize notification message queue
904 		 */
905 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
906 		init_waitqueue_head(&ctx->ctx_msgq_wait);
907 		init_waitqueue_head(&ctx->ctx_zombieq);
908 
909 	}
910 	return ctx;
911 }
912 
913 static void
pfm_context_free(pfm_context_t * ctx)914 pfm_context_free(pfm_context_t *ctx)
915 {
916 	if (ctx) {
917 		DPRINT(("free ctx @%p\n", ctx));
918 		kfree(ctx);
919 	}
920 }
921 
922 static void
pfm_mask_monitoring(struct task_struct * task)923 pfm_mask_monitoring(struct task_struct *task)
924 {
925 	pfm_context_t *ctx = PFM_GET_CTX(task);
926 	unsigned long mask, val, ovfl_mask;
927 	int i;
928 
929 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
930 
931 	ovfl_mask = pmu_conf->ovfl_val;
932 	/*
933 	 * monitoring can only be masked as a result of a valid
934 	 * counter overflow. In UP, it means that the PMU still
935 	 * has an owner. Note that the owner can be different
936 	 * from the current task. However the PMU state belongs
937 	 * to the owner.
938 	 * In SMP, a valid overflow only happens when task is
939 	 * current. Therefore if we come here, we know that
940 	 * the PMU state belongs to the current task, therefore
941 	 * we can access the live registers.
942 	 *
943 	 * So in both cases, the live register contains the owner's
944 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
945 	 *
946 	 * As a consequence to this call, the ctx->th_pmds[] array
947 	 * contains stale information which must be ignored
948 	 * when context is reloaded AND monitoring is active (see
949 	 * pfm_restart).
950 	 */
951 	mask = ctx->ctx_used_pmds[0];
952 	for (i = 0; mask; i++, mask>>=1) {
953 		/* skip non used pmds */
954 		if ((mask & 0x1) == 0) continue;
955 		val = ia64_get_pmd(i);
956 
957 		if (PMD_IS_COUNTING(i)) {
958 			/*
959 		 	 * we rebuild the full 64 bit value of the counter
960 		 	 */
961 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
962 		} else {
963 			ctx->ctx_pmds[i].val = val;
964 		}
965 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
966 			i,
967 			ctx->ctx_pmds[i].val,
968 			val & ovfl_mask));
969 	}
970 	/*
971 	 * mask monitoring by setting the privilege level to 0
972 	 * we cannot use psr.pp/psr.up for this, it is controlled by
973 	 * the user
974 	 *
975 	 * if task is current, modify actual registers, otherwise modify
976 	 * thread save state, i.e., what will be restored in pfm_load_regs()
977 	 */
978 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
979 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
980 		if ((mask & 0x1) == 0UL) continue;
981 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
982 		ctx->th_pmcs[i] &= ~0xfUL;
983 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
984 	}
985 	/*
986 	 * make all of this visible
987 	 */
988 	ia64_srlz_d();
989 }
990 
991 /*
992  * must always be done with task == current
993  *
994  * context must be in MASKED state when calling
995  */
996 static void
pfm_restore_monitoring(struct task_struct * task)997 pfm_restore_monitoring(struct task_struct *task)
998 {
999 	pfm_context_t *ctx = PFM_GET_CTX(task);
1000 	unsigned long mask, ovfl_mask;
1001 	unsigned long psr, val;
1002 	int i, is_system;
1003 
1004 	is_system = ctx->ctx_fl_system;
1005 	ovfl_mask = pmu_conf->ovfl_val;
1006 
1007 	if (task != current) {
1008 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009 		return;
1010 	}
1011 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1012 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014 		return;
1015 	}
1016 	psr = pfm_get_psr();
1017 	/*
1018 	 * monitoring is masked via the PMC.
1019 	 * As we restore their value, we do not want each counter to
1020 	 * restart right away. We stop monitoring using the PSR,
1021 	 * restore the PMC (and PMD) and then re-establish the psr
1022 	 * as it was. Note that there can be no pending overflow at
1023 	 * this point, because monitoring was MASKED.
1024 	 *
1025 	 * system-wide session are pinned and self-monitoring
1026 	 */
1027 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028 		/* disable dcr pp */
1029 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030 		pfm_clear_psr_pp();
1031 	} else {
1032 		pfm_clear_psr_up();
1033 	}
1034 	/*
1035 	 * first, we restore the PMD
1036 	 */
1037 	mask = ctx->ctx_used_pmds[0];
1038 	for (i = 0; mask; i++, mask>>=1) {
1039 		/* skip non used pmds */
1040 		if ((mask & 0x1) == 0) continue;
1041 
1042 		if (PMD_IS_COUNTING(i)) {
1043 			/*
1044 			 * we split the 64bit value according to
1045 			 * counter width
1046 			 */
1047 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1048 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049 		} else {
1050 			val = ctx->ctx_pmds[i].val;
1051 		}
1052 		ia64_set_pmd(i, val);
1053 
1054 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055 			i,
1056 			ctx->ctx_pmds[i].val,
1057 			val));
1058 	}
1059 	/*
1060 	 * restore the PMCs
1061 	 */
1062 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064 		if ((mask & 0x1) == 0UL) continue;
1065 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1067 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1069 	}
1070 	ia64_srlz_d();
1071 
1072 	/*
1073 	 * must restore DBR/IBR because could be modified while masked
1074 	 * XXX: need to optimize
1075 	 */
1076 	if (ctx->ctx_fl_using_dbreg) {
1077 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079 	}
1080 
1081 	/*
1082 	 * now restore PSR
1083 	 */
1084 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085 		/* enable dcr pp */
1086 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087 		ia64_srlz_i();
1088 	}
1089 	pfm_set_psr_l(psr);
1090 }
1091 
1092 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1093 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094 {
1095 	int i;
1096 
1097 	ia64_srlz_d();
1098 
1099 	for (i=0; mask; i++, mask>>=1) {
1100 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101 	}
1102 }
1103 
1104 /*
1105  * reload from thread state (used for ctxw only)
1106  */
1107 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1108 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109 {
1110 	int i;
1111 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112 
1113 	for (i=0; mask; i++, mask>>=1) {
1114 		if ((mask & 0x1) == 0) continue;
1115 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116 		ia64_set_pmd(i, val);
1117 	}
1118 	ia64_srlz_d();
1119 }
1120 
1121 /*
1122  * propagate PMD from context to thread-state
1123  */
1124 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1125 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126 {
1127 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1128 	unsigned long mask = ctx->ctx_all_pmds[0];
1129 	unsigned long val;
1130 	int i;
1131 
1132 	DPRINT(("mask=0x%lx\n", mask));
1133 
1134 	for (i=0; mask; i++, mask>>=1) {
1135 
1136 		val = ctx->ctx_pmds[i].val;
1137 
1138 		/*
1139 		 * We break up the 64 bit value into 2 pieces
1140 		 * the lower bits go to the machine state in the
1141 		 * thread (will be reloaded on ctxsw in).
1142 		 * The upper part stays in the soft-counter.
1143 		 */
1144 		if (PMD_IS_COUNTING(i)) {
1145 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146 			 val &= ovfl_val;
1147 		}
1148 		ctx->th_pmds[i] = val;
1149 
1150 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151 			i,
1152 			ctx->th_pmds[i],
1153 			ctx->ctx_pmds[i].val));
1154 	}
1155 }
1156 
1157 /*
1158  * propagate PMC from context to thread-state
1159  */
1160 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1161 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162 {
1163 	unsigned long mask = ctx->ctx_all_pmcs[0];
1164 	int i;
1165 
1166 	DPRINT(("mask=0x%lx\n", mask));
1167 
1168 	for (i=0; mask; i++, mask>>=1) {
1169 		/* masking 0 with ovfl_val yields 0 */
1170 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172 	}
1173 }
1174 
1175 
1176 
1177 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1178 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179 {
1180 	int i;
1181 
1182 	for (i=0; mask; i++, mask>>=1) {
1183 		if ((mask & 0x1) == 0) continue;
1184 		ia64_set_pmc(i, pmcs[i]);
1185 	}
1186 	ia64_srlz_d();
1187 }
1188 
1189 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1190 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191 {
1192 	return memcmp(a, b, sizeof(pfm_uuid_t));
1193 }
1194 
1195 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1196 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197 {
1198 	int ret = 0;
1199 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200 	return ret;
1201 }
1202 
1203 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1204 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205 {
1206 	int ret = 0;
1207 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208 	return ret;
1209 }
1210 
1211 
1212 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1213 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214 		     int cpu, void *arg)
1215 {
1216 	int ret = 0;
1217 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218 	return ret;
1219 }
1220 
1221 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1222 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223 		     int cpu, void *arg)
1224 {
1225 	int ret = 0;
1226 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227 	return ret;
1228 }
1229 
1230 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1231 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232 {
1233 	int ret = 0;
1234 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235 	return ret;
1236 }
1237 
1238 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1239 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240 {
1241 	int ret = 0;
1242 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243 	return ret;
1244 }
1245 
1246 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1247 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248 {
1249 	struct list_head * pos;
1250 	pfm_buffer_fmt_t * entry;
1251 
1252 	list_for_each(pos, &pfm_buffer_fmt_list) {
1253 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255 			return entry;
1256 	}
1257 	return NULL;
1258 }
1259 
1260 /*
1261  * find a buffer format based on its uuid
1262  */
1263 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1264 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265 {
1266 	pfm_buffer_fmt_t * fmt;
1267 	spin_lock(&pfm_buffer_fmt_lock);
1268 	fmt = __pfm_find_buffer_fmt(uuid);
1269 	spin_unlock(&pfm_buffer_fmt_lock);
1270 	return fmt;
1271 }
1272 
1273 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1274 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275 {
1276 	int ret = 0;
1277 
1278 	/* some sanity checks */
1279 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280 
1281 	/* we need at least a handler */
1282 	if (fmt->fmt_handler == NULL) return -EINVAL;
1283 
1284 	/*
1285 	 * XXX: need check validity of fmt_arg_size
1286 	 */
1287 
1288 	spin_lock(&pfm_buffer_fmt_lock);
1289 
1290 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292 		ret = -EBUSY;
1293 		goto out;
1294 	}
1295 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297 
1298 out:
1299 	spin_unlock(&pfm_buffer_fmt_lock);
1300  	return ret;
1301 }
1302 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303 
1304 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1305 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306 {
1307 	pfm_buffer_fmt_t *fmt;
1308 	int ret = 0;
1309 
1310 	spin_lock(&pfm_buffer_fmt_lock);
1311 
1312 	fmt = __pfm_find_buffer_fmt(uuid);
1313 	if (!fmt) {
1314 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315 		ret = -EINVAL;
1316 		goto out;
1317 	}
1318 	list_del_init(&fmt->fmt_list);
1319 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320 
1321 out:
1322 	spin_unlock(&pfm_buffer_fmt_lock);
1323 	return ret;
1324 
1325 }
1326 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327 
1328 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1329 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330 {
1331 	unsigned long flags;
1332 	/*
1333 	 * validity checks on cpu_mask have been done upstream
1334 	 */
1335 	LOCK_PFS(flags);
1336 
1337 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338 		pfm_sessions.pfs_sys_sessions,
1339 		pfm_sessions.pfs_task_sessions,
1340 		pfm_sessions.pfs_sys_use_dbregs,
1341 		is_syswide,
1342 		cpu));
1343 
1344 	if (is_syswide) {
1345 		/*
1346 		 * cannot mix system wide and per-task sessions
1347 		 */
1348 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1349 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350 			  	pfm_sessions.pfs_task_sessions));
1351 			goto abort;
1352 		}
1353 
1354 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355 
1356 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357 
1358 		pfm_sessions.pfs_sys_session[cpu] = task;
1359 
1360 		pfm_sessions.pfs_sys_sessions++ ;
1361 
1362 	} else {
1363 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1364 		pfm_sessions.pfs_task_sessions++;
1365 	}
1366 
1367 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368 		pfm_sessions.pfs_sys_sessions,
1369 		pfm_sessions.pfs_task_sessions,
1370 		pfm_sessions.pfs_sys_use_dbregs,
1371 		is_syswide,
1372 		cpu));
1373 
1374 	/*
1375 	 * Force idle() into poll mode
1376 	 */
1377 	cpu_idle_poll_ctrl(true);
1378 
1379 	UNLOCK_PFS(flags);
1380 
1381 	return 0;
1382 
1383 error_conflict:
1384 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386 		cpu));
1387 abort:
1388 	UNLOCK_PFS(flags);
1389 
1390 	return -EBUSY;
1391 
1392 }
1393 
1394 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1395 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396 {
1397 	unsigned long flags;
1398 	/*
1399 	 * validity checks on cpu_mask have been done upstream
1400 	 */
1401 	LOCK_PFS(flags);
1402 
1403 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404 		pfm_sessions.pfs_sys_sessions,
1405 		pfm_sessions.pfs_task_sessions,
1406 		pfm_sessions.pfs_sys_use_dbregs,
1407 		is_syswide,
1408 		cpu));
1409 
1410 
1411 	if (is_syswide) {
1412 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1413 		/*
1414 		 * would not work with perfmon+more than one bit in cpu_mask
1415 		 */
1416 		if (ctx && ctx->ctx_fl_using_dbreg) {
1417 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419 			} else {
1420 				pfm_sessions.pfs_sys_use_dbregs--;
1421 			}
1422 		}
1423 		pfm_sessions.pfs_sys_sessions--;
1424 	} else {
1425 		pfm_sessions.pfs_task_sessions--;
1426 	}
1427 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428 		pfm_sessions.pfs_sys_sessions,
1429 		pfm_sessions.pfs_task_sessions,
1430 		pfm_sessions.pfs_sys_use_dbregs,
1431 		is_syswide,
1432 		cpu));
1433 
1434 	/* Undo forced polling. Last session reenables pal_halt */
1435 	cpu_idle_poll_ctrl(false);
1436 
1437 	UNLOCK_PFS(flags);
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * removes virtual mapping of the sampling buffer.
1444  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445  * a PROTECT_CTX() section.
1446  */
1447 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1448 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449 {
1450 	struct task_struct *task = current;
1451 	int r;
1452 
1453 	/* sanity checks */
1454 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456 		return -EINVAL;
1457 	}
1458 
1459 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460 
1461 	/*
1462 	 * does the actual unmapping
1463 	 */
1464 	r = vm_munmap((unsigned long)vaddr, size);
1465 
1466 	if (r !=0) {
1467 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468 	}
1469 
1470 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471 
1472 	return 0;
1473 }
1474 
1475 /*
1476  * free actual physical storage used by sampling buffer
1477  */
1478 #if 0
1479 static int
1480 pfm_free_smpl_buffer(pfm_context_t *ctx)
1481 {
1482 	pfm_buffer_fmt_t *fmt;
1483 
1484 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485 
1486 	/*
1487 	 * we won't use the buffer format anymore
1488 	 */
1489 	fmt = ctx->ctx_buf_fmt;
1490 
1491 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492 		ctx->ctx_smpl_hdr,
1493 		ctx->ctx_smpl_size,
1494 		ctx->ctx_smpl_vaddr));
1495 
1496 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497 
1498 	/*
1499 	 * free the buffer
1500 	 */
1501 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502 
1503 	ctx->ctx_smpl_hdr  = NULL;
1504 	ctx->ctx_smpl_size = 0UL;
1505 
1506 	return 0;
1507 
1508 invalid_free:
1509 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510 	return -EINVAL;
1511 }
1512 #endif
1513 
1514 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1515 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516 {
1517 	if (fmt == NULL) return;
1518 
1519 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520 
1521 }
1522 
1523 /*
1524  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525  * no real gain from having the whole whorehouse mounted. So we don't need
1526  * any operations on the root directory. However, we need a non-trivial
1527  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528  */
1529 static struct vfsmount *pfmfs_mnt __read_mostly;
1530 
1531 static int __init
init_pfm_fs(void)1532 init_pfm_fs(void)
1533 {
1534 	int err = register_filesystem(&pfm_fs_type);
1535 	if (!err) {
1536 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1537 		err = PTR_ERR(pfmfs_mnt);
1538 		if (IS_ERR(pfmfs_mnt))
1539 			unregister_filesystem(&pfm_fs_type);
1540 		else
1541 			err = 0;
1542 	}
1543 	return err;
1544 }
1545 
1546 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1547 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548 {
1549 	pfm_context_t *ctx;
1550 	pfm_msg_t *msg;
1551 	ssize_t ret;
1552 	unsigned long flags;
1553   	DECLARE_WAITQUEUE(wait, current);
1554 	if (PFM_IS_FILE(filp) == 0) {
1555 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556 		return -EINVAL;
1557 	}
1558 
1559 	ctx = filp->private_data;
1560 	if (ctx == NULL) {
1561 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562 		return -EINVAL;
1563 	}
1564 
1565 	/*
1566 	 * check even when there is no message
1567 	 */
1568 	if (size < sizeof(pfm_msg_t)) {
1569 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570 		return -EINVAL;
1571 	}
1572 
1573 	PROTECT_CTX(ctx, flags);
1574 
1575   	/*
1576 	 * put ourselves on the wait queue
1577 	 */
1578   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579 
1580 
1581   	for(;;) {
1582 		/*
1583 		 * check wait queue
1584 		 */
1585 
1586   		set_current_state(TASK_INTERRUPTIBLE);
1587 
1588 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589 
1590 		ret = 0;
1591 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592 
1593 		UNPROTECT_CTX(ctx, flags);
1594 
1595 		/*
1596 		 * check non-blocking read
1597 		 */
1598       		ret = -EAGAIN;
1599 		if(filp->f_flags & O_NONBLOCK) break;
1600 
1601 		/*
1602 		 * check pending signals
1603 		 */
1604 		if(signal_pending(current)) {
1605 			ret = -EINTR;
1606 			break;
1607 		}
1608       		/*
1609 		 * no message, so wait
1610 		 */
1611       		schedule();
1612 
1613 		PROTECT_CTX(ctx, flags);
1614 	}
1615 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616   	set_current_state(TASK_RUNNING);
1617 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618 
1619 	if (ret < 0) goto abort;
1620 
1621 	ret = -EINVAL;
1622 	msg = pfm_get_next_msg(ctx);
1623 	if (msg == NULL) {
1624 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625 		goto abort_locked;
1626 	}
1627 
1628 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629 
1630 	ret = -EFAULT;
1631   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632 
1633 abort_locked:
1634 	UNPROTECT_CTX(ctx, flags);
1635 abort:
1636 	return ret;
1637 }
1638 
1639 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1640 pfm_write(struct file *file, const char __user *ubuf,
1641 			  size_t size, loff_t *ppos)
1642 {
1643 	DPRINT(("pfm_write called\n"));
1644 	return -EINVAL;
1645 }
1646 
1647 static __poll_t
pfm_poll(struct file * filp,poll_table * wait)1648 pfm_poll(struct file *filp, poll_table * wait)
1649 {
1650 	pfm_context_t *ctx;
1651 	unsigned long flags;
1652 	__poll_t mask = 0;
1653 
1654 	if (PFM_IS_FILE(filp) == 0) {
1655 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656 		return 0;
1657 	}
1658 
1659 	ctx = filp->private_data;
1660 	if (ctx == NULL) {
1661 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662 		return 0;
1663 	}
1664 
1665 
1666 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667 
1668 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669 
1670 	PROTECT_CTX(ctx, flags);
1671 
1672 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1673 		mask =  EPOLLIN | EPOLLRDNORM;
1674 
1675 	UNPROTECT_CTX(ctx, flags);
1676 
1677 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678 
1679 	return mask;
1680 }
1681 
1682 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1683 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684 {
1685 	DPRINT(("pfm_ioctl called\n"));
1686 	return -EINVAL;
1687 }
1688 
1689 /*
1690  * interrupt cannot be masked when coming here
1691  */
1692 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1693 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694 {
1695 	int ret;
1696 
1697 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698 
1699 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 		task_pid_nr(current),
1701 		fd,
1702 		on,
1703 		ctx->ctx_async_queue, ret));
1704 
1705 	return ret;
1706 }
1707 
1708 static int
pfm_fasync(int fd,struct file * filp,int on)1709 pfm_fasync(int fd, struct file *filp, int on)
1710 {
1711 	pfm_context_t *ctx;
1712 	int ret;
1713 
1714 	if (PFM_IS_FILE(filp) == 0) {
1715 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716 		return -EBADF;
1717 	}
1718 
1719 	ctx = filp->private_data;
1720 	if (ctx == NULL) {
1721 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722 		return -EBADF;
1723 	}
1724 	/*
1725 	 * we cannot mask interrupts during this call because this may
1726 	 * may go to sleep if memory is not readily avalaible.
1727 	 *
1728 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729 	 * done in caller. Serialization of this function is ensured by caller.
1730 	 */
1731 	ret = pfm_do_fasync(fd, filp, ctx, on);
1732 
1733 
1734 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 		fd,
1736 		on,
1737 		ctx->ctx_async_queue, ret));
1738 
1739 	return ret;
1740 }
1741 
1742 #ifdef CONFIG_SMP
1743 /*
1744  * this function is exclusively called from pfm_close().
1745  * The context is not protected at that time, nor are interrupts
1746  * on the remote CPU. That's necessary to avoid deadlocks.
1747  */
1748 static void
pfm_syswide_force_stop(void * info)1749 pfm_syswide_force_stop(void *info)
1750 {
1751 	pfm_context_t   *ctx = (pfm_context_t *)info;
1752 	struct pt_regs *regs = task_pt_regs(current);
1753 	struct task_struct *owner;
1754 	unsigned long flags;
1755 	int ret;
1756 
1757 	if (ctx->ctx_cpu != smp_processor_id()) {
1758 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1759 			ctx->ctx_cpu,
1760 			smp_processor_id());
1761 		return;
1762 	}
1763 	owner = GET_PMU_OWNER();
1764 	if (owner != ctx->ctx_task) {
1765 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766 			smp_processor_id(),
1767 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768 		return;
1769 	}
1770 	if (GET_PMU_CTX() != ctx) {
1771 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772 			smp_processor_id(),
1773 			GET_PMU_CTX(), ctx);
1774 		return;
1775 	}
1776 
1777 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778 	/*
1779 	 * the context is already protected in pfm_close(), we simply
1780 	 * need to mask interrupts to avoid a PMU interrupt race on
1781 	 * this CPU
1782 	 */
1783 	local_irq_save(flags);
1784 
1785 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1786 	if (ret) {
1787 		DPRINT(("context_unload returned %d\n", ret));
1788 	}
1789 
1790 	/*
1791 	 * unmask interrupts, PMU interrupts are now spurious here
1792 	 */
1793 	local_irq_restore(flags);
1794 }
1795 
1796 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1797 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798 {
1799 	int ret;
1800 
1801 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804 }
1805 #endif /* CONFIG_SMP */
1806 
1807 /*
1808  * called for each close(). Partially free resources.
1809  * When caller is self-monitoring, the context is unloaded.
1810  */
1811 static int
pfm_flush(struct file * filp,fl_owner_t id)1812 pfm_flush(struct file *filp, fl_owner_t id)
1813 {
1814 	pfm_context_t *ctx;
1815 	struct task_struct *task;
1816 	struct pt_regs *regs;
1817 	unsigned long flags;
1818 	unsigned long smpl_buf_size = 0UL;
1819 	void *smpl_buf_vaddr = NULL;
1820 	int state, is_system;
1821 
1822 	if (PFM_IS_FILE(filp) == 0) {
1823 		DPRINT(("bad magic for\n"));
1824 		return -EBADF;
1825 	}
1826 
1827 	ctx = filp->private_data;
1828 	if (ctx == NULL) {
1829 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830 		return -EBADF;
1831 	}
1832 
1833 	/*
1834 	 * remove our file from the async queue, if we use this mode.
1835 	 * This can be done without the context being protected. We come
1836 	 * here when the context has become unreachable by other tasks.
1837 	 *
1838 	 * We may still have active monitoring at this point and we may
1839 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1840 	 * operates with interrupts disabled and it cleans up the
1841 	 * queue. If the PMU handler is called prior to entering
1842 	 * fasync_helper() then it will send a signal. If it is
1843 	 * invoked after, it will find an empty queue and no
1844 	 * signal will be sent. In both case, we are safe
1845 	 */
1846 	PROTECT_CTX(ctx, flags);
1847 
1848 	state     = ctx->ctx_state;
1849 	is_system = ctx->ctx_fl_system;
1850 
1851 	task = PFM_CTX_TASK(ctx);
1852 	regs = task_pt_regs(task);
1853 
1854 	DPRINT(("ctx_state=%d is_current=%d\n",
1855 		state,
1856 		task == current ? 1 : 0));
1857 
1858 	/*
1859 	 * if state == UNLOADED, then task is NULL
1860 	 */
1861 
1862 	/*
1863 	 * we must stop and unload because we are losing access to the context.
1864 	 */
1865 	if (task == current) {
1866 #ifdef CONFIG_SMP
1867 		/*
1868 		 * the task IS the owner but it migrated to another CPU: that's bad
1869 		 * but we must handle this cleanly. Unfortunately, the kernel does
1870 		 * not provide a mechanism to block migration (while the context is loaded).
1871 		 *
1872 		 * We need to release the resource on the ORIGINAL cpu.
1873 		 */
1874 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875 
1876 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877 			/*
1878 			 * keep context protected but unmask interrupt for IPI
1879 			 */
1880 			local_irq_restore(flags);
1881 
1882 			pfm_syswide_cleanup_other_cpu(ctx);
1883 
1884 			/*
1885 			 * restore interrupt masking
1886 			 */
1887 			local_irq_save(flags);
1888 
1889 			/*
1890 			 * context is unloaded at this point
1891 			 */
1892 		} else
1893 #endif /* CONFIG_SMP */
1894 		{
1895 
1896 			DPRINT(("forcing unload\n"));
1897 			/*
1898 		 	* stop and unload, returning with state UNLOADED
1899 		 	* and session unreserved.
1900 		 	*/
1901 			pfm_context_unload(ctx, NULL, 0, regs);
1902 
1903 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904 		}
1905 	}
1906 
1907 	/*
1908 	 * remove virtual mapping, if any, for the calling task.
1909 	 * cannot reset ctx field until last user is calling close().
1910 	 *
1911 	 * ctx_smpl_vaddr must never be cleared because it is needed
1912 	 * by every task with access to the context
1913 	 *
1914 	 * When called from do_exit(), the mm context is gone already, therefore
1915 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1916 	 * do anything here
1917 	 */
1918 	if (ctx->ctx_smpl_vaddr && current->mm) {
1919 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920 		smpl_buf_size  = ctx->ctx_smpl_size;
1921 	}
1922 
1923 	UNPROTECT_CTX(ctx, flags);
1924 
1925 	/*
1926 	 * if there was a mapping, then we systematically remove it
1927 	 * at this point. Cannot be done inside critical section
1928 	 * because some VM function reenables interrupts.
1929 	 *
1930 	 */
1931 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932 
1933 	return 0;
1934 }
1935 /*
1936  * called either on explicit close() or from exit_files().
1937  * Only the LAST user of the file gets to this point, i.e., it is
1938  * called only ONCE.
1939  *
1940  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941  * (fput()),i.e, last task to access the file. Nobody else can access the
1942  * file at this point.
1943  *
1944  * When called from exit_files(), the VMA has been freed because exit_mm()
1945  * is executed before exit_files().
1946  *
1947  * When called from exit_files(), the current task is not yet ZOMBIE but we
1948  * flush the PMU state to the context.
1949  */
1950 static int
pfm_close(struct inode * inode,struct file * filp)1951 pfm_close(struct inode *inode, struct file *filp)
1952 {
1953 	pfm_context_t *ctx;
1954 	struct task_struct *task;
1955 	struct pt_regs *regs;
1956   	DECLARE_WAITQUEUE(wait, current);
1957 	unsigned long flags;
1958 	unsigned long smpl_buf_size = 0UL;
1959 	void *smpl_buf_addr = NULL;
1960 	int free_possible = 1;
1961 	int state, is_system;
1962 
1963 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964 
1965 	if (PFM_IS_FILE(filp) == 0) {
1966 		DPRINT(("bad magic\n"));
1967 		return -EBADF;
1968 	}
1969 
1970 	ctx = filp->private_data;
1971 	if (ctx == NULL) {
1972 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973 		return -EBADF;
1974 	}
1975 
1976 	PROTECT_CTX(ctx, flags);
1977 
1978 	state     = ctx->ctx_state;
1979 	is_system = ctx->ctx_fl_system;
1980 
1981 	task = PFM_CTX_TASK(ctx);
1982 	regs = task_pt_regs(task);
1983 
1984 	DPRINT(("ctx_state=%d is_current=%d\n",
1985 		state,
1986 		task == current ? 1 : 0));
1987 
1988 	/*
1989 	 * if task == current, then pfm_flush() unloaded the context
1990 	 */
1991 	if (state == PFM_CTX_UNLOADED) goto doit;
1992 
1993 	/*
1994 	 * context is loaded/masked and task != current, we need to
1995 	 * either force an unload or go zombie
1996 	 */
1997 
1998 	/*
1999 	 * The task is currently blocked or will block after an overflow.
2000 	 * we must force it to wakeup to get out of the
2001 	 * MASKED state and transition to the unloaded state by itself.
2002 	 *
2003 	 * This situation is only possible for per-task mode
2004 	 */
2005 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006 
2007 		/*
2008 		 * set a "partial" zombie state to be checked
2009 		 * upon return from down() in pfm_handle_work().
2010 		 *
2011 		 * We cannot use the ZOMBIE state, because it is checked
2012 		 * by pfm_load_regs() which is called upon wakeup from down().
2013 		 * In such case, it would free the context and then we would
2014 		 * return to pfm_handle_work() which would access the
2015 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 		 * but visible to pfm_handle_work().
2017 		 *
2018 		 * For some window of time, we have a zombie context with
2019 		 * ctx_state = MASKED  and not ZOMBIE
2020 		 */
2021 		ctx->ctx_fl_going_zombie = 1;
2022 
2023 		/*
2024 		 * force task to wake up from MASKED state
2025 		 */
2026 		complete(&ctx->ctx_restart_done);
2027 
2028 		DPRINT(("waking up ctx_state=%d\n", state));
2029 
2030 		/*
2031 		 * put ourself to sleep waiting for the other
2032 		 * task to report completion
2033 		 *
2034 		 * the context is protected by mutex, therefore there
2035 		 * is no risk of being notified of completion before
2036 		 * begin actually on the waitq.
2037 		 */
2038   		set_current_state(TASK_INTERRUPTIBLE);
2039   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2040 
2041 		UNPROTECT_CTX(ctx, flags);
2042 
2043 		/*
2044 		 * XXX: check for signals :
2045 		 * 	- ok for explicit close
2046 		 * 	- not ok when coming from exit_files()
2047 		 */
2048       		schedule();
2049 
2050 
2051 		PROTECT_CTX(ctx, flags);
2052 
2053 
2054 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055   		set_current_state(TASK_RUNNING);
2056 
2057 		/*
2058 		 * context is unloaded at this point
2059 		 */
2060 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061 	}
2062 	else if (task != current) {
2063 #ifdef CONFIG_SMP
2064 		/*
2065 	 	 * switch context to zombie state
2066 	 	 */
2067 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2068 
2069 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070 		/*
2071 		 * cannot free the context on the spot. deferred until
2072 		 * the task notices the ZOMBIE state
2073 		 */
2074 		free_possible = 0;
2075 #else
2076 		pfm_context_unload(ctx, NULL, 0, regs);
2077 #endif
2078 	}
2079 
2080 doit:
2081 	/* reload state, may have changed during  opening of critical section */
2082 	state = ctx->ctx_state;
2083 
2084 	/*
2085 	 * the context is still attached to a task (possibly current)
2086 	 * we cannot destroy it right now
2087 	 */
2088 
2089 	/*
2090 	 * we must free the sampling buffer right here because
2091 	 * we cannot rely on it being cleaned up later by the
2092 	 * monitored task. It is not possible to free vmalloc'ed
2093 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 	 * now. should there be subsequent PMU overflow originally
2095 	 * meant for sampling, the will be converted to spurious
2096 	 * and that's fine because the monitoring tools is gone anyway.
2097 	 */
2098 	if (ctx->ctx_smpl_hdr) {
2099 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2100 		smpl_buf_size = ctx->ctx_smpl_size;
2101 		/* no more sampling */
2102 		ctx->ctx_smpl_hdr = NULL;
2103 		ctx->ctx_fl_is_sampling = 0;
2104 	}
2105 
2106 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107 		state,
2108 		free_possible,
2109 		smpl_buf_addr,
2110 		smpl_buf_size));
2111 
2112 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113 
2114 	/*
2115 	 * UNLOADED that the session has already been unreserved.
2116 	 */
2117 	if (state == PFM_CTX_ZOMBIE) {
2118 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119 	}
2120 
2121 	/*
2122 	 * disconnect file descriptor from context must be done
2123 	 * before we unlock.
2124 	 */
2125 	filp->private_data = NULL;
2126 
2127 	/*
2128 	 * if we free on the spot, the context is now completely unreachable
2129 	 * from the callers side. The monitored task side is also cut, so we
2130 	 * can freely cut.
2131 	 *
2132 	 * If we have a deferred free, only the caller side is disconnected.
2133 	 */
2134 	UNPROTECT_CTX(ctx, flags);
2135 
2136 	/*
2137 	 * All memory free operations (especially for vmalloc'ed memory)
2138 	 * MUST be done with interrupts ENABLED.
2139 	 */
2140 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141 
2142 	/*
2143 	 * return the memory used by the context
2144 	 */
2145 	if (free_possible) pfm_context_free(ctx);
2146 
2147 	return 0;
2148 }
2149 
2150 static const struct file_operations pfm_file_ops = {
2151 	.llseek		= no_llseek,
2152 	.read		= pfm_read,
2153 	.write		= pfm_write,
2154 	.poll		= pfm_poll,
2155 	.unlocked_ioctl = pfm_ioctl,
2156 	.fasync		= pfm_fasync,
2157 	.release	= pfm_close,
2158 	.flush		= pfm_flush
2159 };
2160 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2161 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162 {
2163 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164 			     d_inode(dentry)->i_ino);
2165 }
2166 
2167 static const struct dentry_operations pfmfs_dentry_operations = {
2168 	.d_delete = always_delete_dentry,
2169 	.d_dname = pfmfs_dname,
2170 };
2171 
2172 
2173 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2174 pfm_alloc_file(pfm_context_t *ctx)
2175 {
2176 	struct file *file;
2177 	struct inode *inode;
2178 	struct path path;
2179 	struct qstr this = { .name = "" };
2180 
2181 	/*
2182 	 * allocate a new inode
2183 	 */
2184 	inode = new_inode(pfmfs_mnt->mnt_sb);
2185 	if (!inode)
2186 		return ERR_PTR(-ENOMEM);
2187 
2188 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189 
2190 	inode->i_mode = S_IFCHR|S_IRUGO;
2191 	inode->i_uid  = current_fsuid();
2192 	inode->i_gid  = current_fsgid();
2193 
2194 	/*
2195 	 * allocate a new dcache entry
2196 	 */
2197 	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198 	if (!path.dentry) {
2199 		iput(inode);
2200 		return ERR_PTR(-ENOMEM);
2201 	}
2202 	path.mnt = mntget(pfmfs_mnt);
2203 
2204 	d_add(path.dentry, inode);
2205 
2206 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207 	if (IS_ERR(file)) {
2208 		path_put(&path);
2209 		return file;
2210 	}
2211 
2212 	file->f_flags = O_RDONLY;
2213 	file->private_data = ctx;
2214 
2215 	return file;
2216 }
2217 
2218 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2219 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220 {
2221 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222 
2223 	while (size > 0) {
2224 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225 
2226 
2227 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228 			return -ENOMEM;
2229 
2230 		addr  += PAGE_SIZE;
2231 		buf   += PAGE_SIZE;
2232 		size  -= PAGE_SIZE;
2233 	}
2234 	return 0;
2235 }
2236 
2237 /*
2238  * allocate a sampling buffer and remaps it into the user address space of the task
2239  */
2240 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2241 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242 {
2243 	struct mm_struct *mm = task->mm;
2244 	struct vm_area_struct *vma = NULL;
2245 	unsigned long size;
2246 	void *smpl_buf;
2247 
2248 
2249 	/*
2250 	 * the fixed header + requested size and align to page boundary
2251 	 */
2252 	size = PAGE_ALIGN(rsize);
2253 
2254 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255 
2256 	/*
2257 	 * check requested size to avoid Denial-of-service attacks
2258 	 * XXX: may have to refine this test
2259 	 * Check against address space limit.
2260 	 *
2261 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262 	 * 	return -ENOMEM;
2263 	 */
2264 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265 		return -ENOMEM;
2266 
2267 	/*
2268 	 * We do the easy to undo allocations first.
2269  	 *
2270 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2271 	 */
2272 	smpl_buf = pfm_rvmalloc(size);
2273 	if (smpl_buf == NULL) {
2274 		DPRINT(("Can't allocate sampling buffer\n"));
2275 		return -ENOMEM;
2276 	}
2277 
2278 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2279 
2280 	/* allocate vma */
2281 	vma = vm_area_alloc(mm);
2282 	if (!vma) {
2283 		DPRINT(("Cannot allocate vma\n"));
2284 		goto error_kmem;
2285 	}
2286 
2287 	/*
2288 	 * partially initialize the vma for the sampling buffer
2289 	 */
2290 	vma->vm_file	     = get_file(filp);
2291 	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2293 
2294 	/*
2295 	 * Now we have everything we need and we can initialize
2296 	 * and connect all the data structures
2297 	 */
2298 
2299 	ctx->ctx_smpl_hdr   = smpl_buf;
2300 	ctx->ctx_smpl_size  = size; /* aligned size */
2301 
2302 	/*
2303 	 * Let's do the difficult operations next.
2304 	 *
2305 	 * now we atomically find some area in the address space and
2306 	 * remap the buffer in it.
2307 	 */
2308 	down_write(&task->mm->mmap_sem);
2309 
2310 	/* find some free area in address space, must have mmap sem held */
2311 	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312 	if (IS_ERR_VALUE(vma->vm_start)) {
2313 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314 		up_write(&task->mm->mmap_sem);
2315 		goto error;
2316 	}
2317 	vma->vm_end = vma->vm_start + size;
2318 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319 
2320 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321 
2322 	/* can only be applied to current task, need to have the mm semaphore held when called */
2323 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324 		DPRINT(("Can't remap buffer\n"));
2325 		up_write(&task->mm->mmap_sem);
2326 		goto error;
2327 	}
2328 
2329 	/*
2330 	 * now insert the vma in the vm list for the process, must be
2331 	 * done with mmap lock held
2332 	 */
2333 	insert_vm_struct(mm, vma);
2334 
2335 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2336 	up_write(&task->mm->mmap_sem);
2337 
2338 	/*
2339 	 * keep track of user level virtual address
2340 	 */
2341 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2342 	*(unsigned long *)user_vaddr = vma->vm_start;
2343 
2344 	return 0;
2345 
2346 error:
2347 	vm_area_free(vma);
2348 error_kmem:
2349 	pfm_rvfree(smpl_buf, size);
2350 
2351 	return -ENOMEM;
2352 }
2353 
2354 /*
2355  * XXX: do something better here
2356  */
2357 static int
pfm_bad_permissions(struct task_struct * task)2358 pfm_bad_permissions(struct task_struct *task)
2359 {
2360 	const struct cred *tcred;
2361 	kuid_t uid = current_uid();
2362 	kgid_t gid = current_gid();
2363 	int ret;
2364 
2365 	rcu_read_lock();
2366 	tcred = __task_cred(task);
2367 
2368 	/* inspired by ptrace_attach() */
2369 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2370 		from_kuid(&init_user_ns, uid),
2371 		from_kgid(&init_user_ns, gid),
2372 		from_kuid(&init_user_ns, tcred->euid),
2373 		from_kuid(&init_user_ns, tcred->suid),
2374 		from_kuid(&init_user_ns, tcred->uid),
2375 		from_kgid(&init_user_ns, tcred->egid),
2376 		from_kgid(&init_user_ns, tcred->sgid)));
2377 
2378 	ret = ((!uid_eq(uid, tcred->euid))
2379 	       || (!uid_eq(uid, tcred->suid))
2380 	       || (!uid_eq(uid, tcred->uid))
2381 	       || (!gid_eq(gid, tcred->egid))
2382 	       || (!gid_eq(gid, tcred->sgid))
2383 	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2384 
2385 	rcu_read_unlock();
2386 	return ret;
2387 }
2388 
2389 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2390 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2391 {
2392 	int ctx_flags;
2393 
2394 	/* valid signal */
2395 
2396 	ctx_flags = pfx->ctx_flags;
2397 
2398 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2399 
2400 		/*
2401 		 * cannot block in this mode
2402 		 */
2403 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2404 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2405 			return -EINVAL;
2406 		}
2407 	} else {
2408 	}
2409 	/* probably more to add here */
2410 
2411 	return 0;
2412 }
2413 
2414 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2415 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2416 		     unsigned int cpu, pfarg_context_t *arg)
2417 {
2418 	pfm_buffer_fmt_t *fmt = NULL;
2419 	unsigned long size = 0UL;
2420 	void *uaddr = NULL;
2421 	void *fmt_arg = NULL;
2422 	int ret = 0;
2423 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2424 
2425 	/* invoke and lock buffer format, if found */
2426 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2427 	if (fmt == NULL) {
2428 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2429 		return -EINVAL;
2430 	}
2431 
2432 	/*
2433 	 * buffer argument MUST be contiguous to pfarg_context_t
2434 	 */
2435 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2436 
2437 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2438 
2439 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2440 
2441 	if (ret) goto error;
2442 
2443 	/* link buffer format and context */
2444 	ctx->ctx_buf_fmt = fmt;
2445 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2446 
2447 	/*
2448 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2449 	 */
2450 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2451 	if (ret) goto error;
2452 
2453 	if (size) {
2454 		/*
2455 		 * buffer is always remapped into the caller's address space
2456 		 */
2457 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2458 		if (ret) goto error;
2459 
2460 		/* keep track of user address of buffer */
2461 		arg->ctx_smpl_vaddr = uaddr;
2462 	}
2463 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2464 
2465 error:
2466 	return ret;
2467 }
2468 
2469 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2470 pfm_reset_pmu_state(pfm_context_t *ctx)
2471 {
2472 	int i;
2473 
2474 	/*
2475 	 * install reset values for PMC.
2476 	 */
2477 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2478 		if (PMC_IS_IMPL(i) == 0) continue;
2479 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2480 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2481 	}
2482 	/*
2483 	 * PMD registers are set to 0UL when the context in memset()
2484 	 */
2485 
2486 	/*
2487 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2488 	 * when they are not actively used by the task. In UP, the incoming process
2489 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2490 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2491 	 * process because they may change what is being measured.
2492 	 * Therefore, we must systematically reinstall the entire
2493 	 * PMC state. In SMP, the same thing is possible on the
2494 	 * same CPU but also on between 2 CPUs.
2495 	 *
2496 	 * The problem with PMD is information leaking especially
2497 	 * to user level when psr.sp=0
2498 	 *
2499 	 * There is unfortunately no easy way to avoid this problem
2500 	 * on either UP or SMP. This definitively slows down the
2501 	 * pfm_load_regs() function.
2502 	 */
2503 
2504 	 /*
2505 	  * bitmask of all PMCs accessible to this context
2506 	  *
2507 	  * PMC0 is treated differently.
2508 	  */
2509 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2510 
2511 	/*
2512 	 * bitmask of all PMDs that are accessible to this context
2513 	 */
2514 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2515 
2516 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2517 
2518 	/*
2519 	 * useful in case of re-enable after disable
2520 	 */
2521 	ctx->ctx_used_ibrs[0] = 0UL;
2522 	ctx->ctx_used_dbrs[0] = 0UL;
2523 }
2524 
2525 static int
pfm_ctx_getsize(void * arg,size_t * sz)2526 pfm_ctx_getsize(void *arg, size_t *sz)
2527 {
2528 	pfarg_context_t *req = (pfarg_context_t *)arg;
2529 	pfm_buffer_fmt_t *fmt;
2530 
2531 	*sz = 0;
2532 
2533 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2534 
2535 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2536 	if (fmt == NULL) {
2537 		DPRINT(("cannot find buffer format\n"));
2538 		return -EINVAL;
2539 	}
2540 	/* get just enough to copy in user parameters */
2541 	*sz = fmt->fmt_arg_size;
2542 	DPRINT(("arg_size=%lu\n", *sz));
2543 
2544 	return 0;
2545 }
2546 
2547 
2548 
2549 /*
2550  * cannot attach if :
2551  * 	- kernel task
2552  * 	- task not owned by caller
2553  * 	- task incompatible with context mode
2554  */
2555 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2556 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2557 {
2558 	/*
2559 	 * no kernel task or task not owner by caller
2560 	 */
2561 	if (task->mm == NULL) {
2562 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2563 		return -EPERM;
2564 	}
2565 	if (pfm_bad_permissions(task)) {
2566 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2567 		return -EPERM;
2568 	}
2569 	/*
2570 	 * cannot block in self-monitoring mode
2571 	 */
2572 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2573 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2574 		return -EINVAL;
2575 	}
2576 
2577 	if (task->exit_state == EXIT_ZOMBIE) {
2578 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2579 		return -EBUSY;
2580 	}
2581 
2582 	/*
2583 	 * always ok for self
2584 	 */
2585 	if (task == current) return 0;
2586 
2587 	if (!task_is_stopped_or_traced(task)) {
2588 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2589 		return -EBUSY;
2590 	}
2591 	/*
2592 	 * make sure the task is off any CPU
2593 	 */
2594 	wait_task_inactive(task, 0);
2595 
2596 	/* more to come... */
2597 
2598 	return 0;
2599 }
2600 
2601 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2602 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2603 {
2604 	struct task_struct *p = current;
2605 	int ret;
2606 
2607 	/* XXX: need to add more checks here */
2608 	if (pid < 2) return -EPERM;
2609 
2610 	if (pid != task_pid_vnr(current)) {
2611 		/* make sure task cannot go away while we operate on it */
2612 		p = find_get_task_by_vpid(pid);
2613 		if (!p)
2614 			return -ESRCH;
2615 	}
2616 
2617 	ret = pfm_task_incompatible(ctx, p);
2618 	if (ret == 0) {
2619 		*task = p;
2620 	} else if (p != current) {
2621 		pfm_put_task(p);
2622 	}
2623 	return ret;
2624 }
2625 
2626 
2627 
2628 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2629 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2630 {
2631 	pfarg_context_t *req = (pfarg_context_t *)arg;
2632 	struct file *filp;
2633 	struct path path;
2634 	int ctx_flags;
2635 	int fd;
2636 	int ret;
2637 
2638 	/* let's check the arguments first */
2639 	ret = pfarg_is_sane(current, req);
2640 	if (ret < 0)
2641 		return ret;
2642 
2643 	ctx_flags = req->ctx_flags;
2644 
2645 	ret = -ENOMEM;
2646 
2647 	fd = get_unused_fd_flags(0);
2648 	if (fd < 0)
2649 		return fd;
2650 
2651 	ctx = pfm_context_alloc(ctx_flags);
2652 	if (!ctx)
2653 		goto error;
2654 
2655 	filp = pfm_alloc_file(ctx);
2656 	if (IS_ERR(filp)) {
2657 		ret = PTR_ERR(filp);
2658 		goto error_file;
2659 	}
2660 
2661 	req->ctx_fd = ctx->ctx_fd = fd;
2662 
2663 	/*
2664 	 * does the user want to sample?
2665 	 */
2666 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2667 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2668 		if (ret)
2669 			goto buffer_error;
2670 	}
2671 
2672 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2673 		ctx,
2674 		ctx_flags,
2675 		ctx->ctx_fl_system,
2676 		ctx->ctx_fl_block,
2677 		ctx->ctx_fl_excl_idle,
2678 		ctx->ctx_fl_no_msg,
2679 		ctx->ctx_fd));
2680 
2681 	/*
2682 	 * initialize soft PMU state
2683 	 */
2684 	pfm_reset_pmu_state(ctx);
2685 
2686 	fd_install(fd, filp);
2687 
2688 	return 0;
2689 
2690 buffer_error:
2691 	path = filp->f_path;
2692 	put_filp(filp);
2693 	path_put(&path);
2694 
2695 	if (ctx->ctx_buf_fmt) {
2696 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2697 	}
2698 error_file:
2699 	pfm_context_free(ctx);
2700 
2701 error:
2702 	put_unused_fd(fd);
2703 	return ret;
2704 }
2705 
2706 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2707 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2708 {
2709 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2710 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2711 	extern unsigned long carta_random32 (unsigned long seed);
2712 
2713 	if (reg->flags & PFM_REGFL_RANDOM) {
2714 		new_seed = carta_random32(old_seed);
2715 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2716 		if ((mask >> 32) != 0)
2717 			/* construct a full 64-bit random value: */
2718 			new_seed |= carta_random32(old_seed >> 32) << 32;
2719 		reg->seed = new_seed;
2720 	}
2721 	reg->lval = val;
2722 	return val;
2723 }
2724 
2725 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2726 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2727 {
2728 	unsigned long mask = ovfl_regs[0];
2729 	unsigned long reset_others = 0UL;
2730 	unsigned long val;
2731 	int i;
2732 
2733 	/*
2734 	 * now restore reset value on sampling overflowed counters
2735 	 */
2736 	mask >>= PMU_FIRST_COUNTER;
2737 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2738 
2739 		if ((mask & 0x1UL) == 0UL) continue;
2740 
2741 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2742 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2743 
2744 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2745 	}
2746 
2747 	/*
2748 	 * Now take care of resetting the other registers
2749 	 */
2750 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2751 
2752 		if ((reset_others & 0x1) == 0) continue;
2753 
2754 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2755 
2756 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2757 			  is_long_reset ? "long" : "short", i, val));
2758 	}
2759 }
2760 
2761 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2762 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2763 {
2764 	unsigned long mask = ovfl_regs[0];
2765 	unsigned long reset_others = 0UL;
2766 	unsigned long val;
2767 	int i;
2768 
2769 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2770 
2771 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2772 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2773 		return;
2774 	}
2775 
2776 	/*
2777 	 * now restore reset value on sampling overflowed counters
2778 	 */
2779 	mask >>= PMU_FIRST_COUNTER;
2780 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2781 
2782 		if ((mask & 0x1UL) == 0UL) continue;
2783 
2784 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2785 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2786 
2787 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2788 
2789 		pfm_write_soft_counter(ctx, i, val);
2790 	}
2791 
2792 	/*
2793 	 * Now take care of resetting the other registers
2794 	 */
2795 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2796 
2797 		if ((reset_others & 0x1) == 0) continue;
2798 
2799 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2800 
2801 		if (PMD_IS_COUNTING(i)) {
2802 			pfm_write_soft_counter(ctx, i, val);
2803 		} else {
2804 			ia64_set_pmd(i, val);
2805 		}
2806 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2807 			  is_long_reset ? "long" : "short", i, val));
2808 	}
2809 	ia64_srlz_d();
2810 }
2811 
2812 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2813 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2814 {
2815 	struct task_struct *task;
2816 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2817 	unsigned long value, pmc_pm;
2818 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2819 	unsigned int cnum, reg_flags, flags, pmc_type;
2820 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2821 	int is_monitor, is_counting, state;
2822 	int ret = -EINVAL;
2823 	pfm_reg_check_t	wr_func;
2824 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2825 
2826 	state     = ctx->ctx_state;
2827 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2828 	is_system = ctx->ctx_fl_system;
2829 	task      = ctx->ctx_task;
2830 	impl_pmds = pmu_conf->impl_pmds[0];
2831 
2832 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2833 
2834 	if (is_loaded) {
2835 		/*
2836 		 * In system wide and when the context is loaded, access can only happen
2837 		 * when the caller is running on the CPU being monitored by the session.
2838 		 * It does not have to be the owner (ctx_task) of the context per se.
2839 		 */
2840 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2841 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2842 			return -EBUSY;
2843 		}
2844 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2845 	}
2846 	expert_mode = pfm_sysctl.expert_mode;
2847 
2848 	for (i = 0; i < count; i++, req++) {
2849 
2850 		cnum       = req->reg_num;
2851 		reg_flags  = req->reg_flags;
2852 		value      = req->reg_value;
2853 		smpl_pmds  = req->reg_smpl_pmds[0];
2854 		reset_pmds = req->reg_reset_pmds[0];
2855 		flags      = 0;
2856 
2857 
2858 		if (cnum >= PMU_MAX_PMCS) {
2859 			DPRINT(("pmc%u is invalid\n", cnum));
2860 			goto error;
2861 		}
2862 
2863 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2864 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2865 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2866 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2867 
2868 		/*
2869 		 * we reject all non implemented PMC as well
2870 		 * as attempts to modify PMC[0-3] which are used
2871 		 * as status registers by the PMU
2872 		 */
2873 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2874 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2875 			goto error;
2876 		}
2877 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2878 		/*
2879 		 * If the PMC is a monitor, then if the value is not the default:
2880 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2881 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2882 		 */
2883 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2884 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2885 				cnum,
2886 				pmc_pm,
2887 				is_system));
2888 			goto error;
2889 		}
2890 
2891 		if (is_counting) {
2892 			/*
2893 		 	 * enforce generation of overflow interrupt. Necessary on all
2894 		 	 * CPUs.
2895 		 	 */
2896 			value |= 1 << PMU_PMC_OI;
2897 
2898 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2899 				flags |= PFM_REGFL_OVFL_NOTIFY;
2900 			}
2901 
2902 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2903 
2904 			/* verify validity of smpl_pmds */
2905 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2906 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2907 				goto error;
2908 			}
2909 
2910 			/* verify validity of reset_pmds */
2911 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2912 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2913 				goto error;
2914 			}
2915 		} else {
2916 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2917 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2918 				goto error;
2919 			}
2920 			/* eventid on non-counting monitors are ignored */
2921 		}
2922 
2923 		/*
2924 		 * execute write checker, if any
2925 		 */
2926 		if (likely(expert_mode == 0 && wr_func)) {
2927 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2928 			if (ret) goto error;
2929 			ret = -EINVAL;
2930 		}
2931 
2932 		/*
2933 		 * no error on this register
2934 		 */
2935 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2936 
2937 		/*
2938 		 * Now we commit the changes to the software state
2939 		 */
2940 
2941 		/*
2942 		 * update overflow information
2943 		 */
2944 		if (is_counting) {
2945 			/*
2946 		 	 * full flag update each time a register is programmed
2947 		 	 */
2948 			ctx->ctx_pmds[cnum].flags = flags;
2949 
2950 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2951 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2952 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2953 
2954 			/*
2955 			 * Mark all PMDS to be accessed as used.
2956 			 *
2957 			 * We do not keep track of PMC because we have to
2958 			 * systematically restore ALL of them.
2959 			 *
2960 			 * We do not update the used_monitors mask, because
2961 			 * if we have not programmed them, then will be in
2962 			 * a quiescent state, therefore we will not need to
2963 			 * mask/restore then when context is MASKED.
2964 			 */
2965 			CTX_USED_PMD(ctx, reset_pmds);
2966 			CTX_USED_PMD(ctx, smpl_pmds);
2967 			/*
2968 		 	 * make sure we do not try to reset on
2969 		 	 * restart because we have established new values
2970 		 	 */
2971 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2972 		}
2973 		/*
2974 		 * Needed in case the user does not initialize the equivalent
2975 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2976 		 * possible leak here.
2977 		 */
2978 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2979 
2980 		/*
2981 		 * keep track of the monitor PMC that we are using.
2982 		 * we save the value of the pmc in ctx_pmcs[] and if
2983 		 * the monitoring is not stopped for the context we also
2984 		 * place it in the saved state area so that it will be
2985 		 * picked up later by the context switch code.
2986 		 *
2987 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2988 		 *
2989 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2990 		 * monitoring needs to be stopped.
2991 		 */
2992 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
2993 
2994 		/*
2995 		 * update context state
2996 		 */
2997 		ctx->ctx_pmcs[cnum] = value;
2998 
2999 		if (is_loaded) {
3000 			/*
3001 			 * write thread state
3002 			 */
3003 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3004 
3005 			/*
3006 			 * write hardware register if we can
3007 			 */
3008 			if (can_access_pmu) {
3009 				ia64_set_pmc(cnum, value);
3010 			}
3011 #ifdef CONFIG_SMP
3012 			else {
3013 				/*
3014 				 * per-task SMP only here
3015 				 *
3016 			 	 * we are guaranteed that the task is not running on the other CPU,
3017 			 	 * we indicate that this PMD will need to be reloaded if the task
3018 			 	 * is rescheduled on the CPU it ran last on.
3019 			 	 */
3020 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3021 			}
3022 #endif
3023 		}
3024 
3025 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3026 			  cnum,
3027 			  value,
3028 			  is_loaded,
3029 			  can_access_pmu,
3030 			  flags,
3031 			  ctx->ctx_all_pmcs[0],
3032 			  ctx->ctx_used_pmds[0],
3033 			  ctx->ctx_pmds[cnum].eventid,
3034 			  smpl_pmds,
3035 			  reset_pmds,
3036 			  ctx->ctx_reload_pmcs[0],
3037 			  ctx->ctx_used_monitors[0],
3038 			  ctx->ctx_ovfl_regs[0]));
3039 	}
3040 
3041 	/*
3042 	 * make sure the changes are visible
3043 	 */
3044 	if (can_access_pmu) ia64_srlz_d();
3045 
3046 	return 0;
3047 error:
3048 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3049 	return ret;
3050 }
3051 
3052 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3053 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3054 {
3055 	struct task_struct *task;
3056 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3057 	unsigned long value, hw_value, ovfl_mask;
3058 	unsigned int cnum;
3059 	int i, can_access_pmu = 0, state;
3060 	int is_counting, is_loaded, is_system, expert_mode;
3061 	int ret = -EINVAL;
3062 	pfm_reg_check_t wr_func;
3063 
3064 
3065 	state     = ctx->ctx_state;
3066 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3067 	is_system = ctx->ctx_fl_system;
3068 	ovfl_mask = pmu_conf->ovfl_val;
3069 	task      = ctx->ctx_task;
3070 
3071 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3072 
3073 	/*
3074 	 * on both UP and SMP, we can only write to the PMC when the task is
3075 	 * the owner of the local PMU.
3076 	 */
3077 	if (likely(is_loaded)) {
3078 		/*
3079 		 * In system wide and when the context is loaded, access can only happen
3080 		 * when the caller is running on the CPU being monitored by the session.
3081 		 * It does not have to be the owner (ctx_task) of the context per se.
3082 		 */
3083 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3084 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3085 			return -EBUSY;
3086 		}
3087 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3088 	}
3089 	expert_mode = pfm_sysctl.expert_mode;
3090 
3091 	for (i = 0; i < count; i++, req++) {
3092 
3093 		cnum  = req->reg_num;
3094 		value = req->reg_value;
3095 
3096 		if (!PMD_IS_IMPL(cnum)) {
3097 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3098 			goto abort_mission;
3099 		}
3100 		is_counting = PMD_IS_COUNTING(cnum);
3101 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3102 
3103 		/*
3104 		 * execute write checker, if any
3105 		 */
3106 		if (unlikely(expert_mode == 0 && wr_func)) {
3107 			unsigned long v = value;
3108 
3109 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3110 			if (ret) goto abort_mission;
3111 
3112 			value = v;
3113 			ret   = -EINVAL;
3114 		}
3115 
3116 		/*
3117 		 * no error on this register
3118 		 */
3119 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3120 
3121 		/*
3122 		 * now commit changes to software state
3123 		 */
3124 		hw_value = value;
3125 
3126 		/*
3127 		 * update virtualized (64bits) counter
3128 		 */
3129 		if (is_counting) {
3130 			/*
3131 			 * write context state
3132 			 */
3133 			ctx->ctx_pmds[cnum].lval = value;
3134 
3135 			/*
3136 			 * when context is load we use the split value
3137 			 */
3138 			if (is_loaded) {
3139 				hw_value = value &  ovfl_mask;
3140 				value    = value & ~ovfl_mask;
3141 			}
3142 		}
3143 		/*
3144 		 * update reset values (not just for counters)
3145 		 */
3146 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3147 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3148 
3149 		/*
3150 		 * update randomization parameters (not just for counters)
3151 		 */
3152 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3153 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3154 
3155 		/*
3156 		 * update context value
3157 		 */
3158 		ctx->ctx_pmds[cnum].val  = value;
3159 
3160 		/*
3161 		 * Keep track of what we use
3162 		 *
3163 		 * We do not keep track of PMC because we have to
3164 		 * systematically restore ALL of them.
3165 		 */
3166 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3167 
3168 		/*
3169 		 * mark this PMD register used as well
3170 		 */
3171 		CTX_USED_PMD(ctx, RDEP(cnum));
3172 
3173 		/*
3174 		 * make sure we do not try to reset on
3175 		 * restart because we have established new values
3176 		 */
3177 		if (is_counting && state == PFM_CTX_MASKED) {
3178 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3179 		}
3180 
3181 		if (is_loaded) {
3182 			/*
3183 		 	 * write thread state
3184 		 	 */
3185 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3186 
3187 			/*
3188 			 * write hardware register if we can
3189 			 */
3190 			if (can_access_pmu) {
3191 				ia64_set_pmd(cnum, hw_value);
3192 			} else {
3193 #ifdef CONFIG_SMP
3194 				/*
3195 			 	 * we are guaranteed that the task is not running on the other CPU,
3196 			 	 * we indicate that this PMD will need to be reloaded if the task
3197 			 	 * is rescheduled on the CPU it ran last on.
3198 			 	 */
3199 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3200 #endif
3201 			}
3202 		}
3203 
3204 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3205 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3206 			cnum,
3207 			value,
3208 			is_loaded,
3209 			can_access_pmu,
3210 			hw_value,
3211 			ctx->ctx_pmds[cnum].val,
3212 			ctx->ctx_pmds[cnum].short_reset,
3213 			ctx->ctx_pmds[cnum].long_reset,
3214 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3215 			ctx->ctx_pmds[cnum].seed,
3216 			ctx->ctx_pmds[cnum].mask,
3217 			ctx->ctx_used_pmds[0],
3218 			ctx->ctx_pmds[cnum].reset_pmds[0],
3219 			ctx->ctx_reload_pmds[0],
3220 			ctx->ctx_all_pmds[0],
3221 			ctx->ctx_ovfl_regs[0]));
3222 	}
3223 
3224 	/*
3225 	 * make changes visible
3226 	 */
3227 	if (can_access_pmu) ia64_srlz_d();
3228 
3229 	return 0;
3230 
3231 abort_mission:
3232 	/*
3233 	 * for now, we have only one possibility for error
3234 	 */
3235 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3236 	return ret;
3237 }
3238 
3239 /*
3240  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3241  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3242  * interrupt is delivered during the call, it will be kept pending until we leave, making
3243  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3244  * guaranteed to return consistent data to the user, it may simply be old. It is not
3245  * trivial to treat the overflow while inside the call because you may end up in
3246  * some module sampling buffer code causing deadlocks.
3247  */
3248 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3249 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3250 {
3251 	struct task_struct *task;
3252 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3253 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3254 	unsigned int cnum, reg_flags = 0;
3255 	int i, can_access_pmu = 0, state;
3256 	int is_loaded, is_system, is_counting, expert_mode;
3257 	int ret = -EINVAL;
3258 	pfm_reg_check_t rd_func;
3259 
3260 	/*
3261 	 * access is possible when loaded only for
3262 	 * self-monitoring tasks or in UP mode
3263 	 */
3264 
3265 	state     = ctx->ctx_state;
3266 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3267 	is_system = ctx->ctx_fl_system;
3268 	ovfl_mask = pmu_conf->ovfl_val;
3269 	task      = ctx->ctx_task;
3270 
3271 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3272 
3273 	if (likely(is_loaded)) {
3274 		/*
3275 		 * In system wide and when the context is loaded, access can only happen
3276 		 * when the caller is running on the CPU being monitored by the session.
3277 		 * It does not have to be the owner (ctx_task) of the context per se.
3278 		 */
3279 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3280 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3281 			return -EBUSY;
3282 		}
3283 		/*
3284 		 * this can be true when not self-monitoring only in UP
3285 		 */
3286 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3287 
3288 		if (can_access_pmu) ia64_srlz_d();
3289 	}
3290 	expert_mode = pfm_sysctl.expert_mode;
3291 
3292 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3293 		is_loaded,
3294 		can_access_pmu,
3295 		state));
3296 
3297 	/*
3298 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3299 	 * the task is the owner of the local PMU.
3300 	 */
3301 
3302 	for (i = 0; i < count; i++, req++) {
3303 
3304 		cnum        = req->reg_num;
3305 		reg_flags   = req->reg_flags;
3306 
3307 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3308 		/*
3309 		 * we can only read the register that we use. That includes
3310 		 * the one we explicitly initialize AND the one we want included
3311 		 * in the sampling buffer (smpl_regs).
3312 		 *
3313 		 * Having this restriction allows optimization in the ctxsw routine
3314 		 * without compromising security (leaks)
3315 		 */
3316 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3317 
3318 		sval        = ctx->ctx_pmds[cnum].val;
3319 		lval        = ctx->ctx_pmds[cnum].lval;
3320 		is_counting = PMD_IS_COUNTING(cnum);
3321 
3322 		/*
3323 		 * If the task is not the current one, then we check if the
3324 		 * PMU state is still in the local live register due to lazy ctxsw.
3325 		 * If true, then we read directly from the registers.
3326 		 */
3327 		if (can_access_pmu){
3328 			val = ia64_get_pmd(cnum);
3329 		} else {
3330 			/*
3331 			 * context has been saved
3332 			 * if context is zombie, then task does not exist anymore.
3333 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3334 			 */
3335 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3336 		}
3337 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3338 
3339 		if (is_counting) {
3340 			/*
3341 			 * XXX: need to check for overflow when loaded
3342 			 */
3343 			val &= ovfl_mask;
3344 			val += sval;
3345 		}
3346 
3347 		/*
3348 		 * execute read checker, if any
3349 		 */
3350 		if (unlikely(expert_mode == 0 && rd_func)) {
3351 			unsigned long v = val;
3352 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3353 			if (ret) goto error;
3354 			val = v;
3355 			ret = -EINVAL;
3356 		}
3357 
3358 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3359 
3360 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3361 
3362 		/*
3363 		 * update register return value, abort all if problem during copy.
3364 		 * we only modify the reg_flags field. no check mode is fine because
3365 		 * access has been verified upfront in sys_perfmonctl().
3366 		 */
3367 		req->reg_value            = val;
3368 		req->reg_flags            = reg_flags;
3369 		req->reg_last_reset_val   = lval;
3370 	}
3371 
3372 	return 0;
3373 
3374 error:
3375 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3376 	return ret;
3377 }
3378 
3379 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3380 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3381 {
3382 	pfm_context_t *ctx;
3383 
3384 	if (req == NULL) return -EINVAL;
3385 
3386  	ctx = GET_PMU_CTX();
3387 
3388 	if (ctx == NULL) return -EINVAL;
3389 
3390 	/*
3391 	 * for now limit to current task, which is enough when calling
3392 	 * from overflow handler
3393 	 */
3394 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3395 
3396 	return pfm_write_pmcs(ctx, req, nreq, regs);
3397 }
3398 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3399 
3400 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3401 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3402 {
3403 	pfm_context_t *ctx;
3404 
3405 	if (req == NULL) return -EINVAL;
3406 
3407  	ctx = GET_PMU_CTX();
3408 
3409 	if (ctx == NULL) return -EINVAL;
3410 
3411 	/*
3412 	 * for now limit to current task, which is enough when calling
3413 	 * from overflow handler
3414 	 */
3415 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3416 
3417 	return pfm_read_pmds(ctx, req, nreq, regs);
3418 }
3419 EXPORT_SYMBOL(pfm_mod_read_pmds);
3420 
3421 /*
3422  * Only call this function when a process it trying to
3423  * write the debug registers (reading is always allowed)
3424  */
3425 int
pfm_use_debug_registers(struct task_struct * task)3426 pfm_use_debug_registers(struct task_struct *task)
3427 {
3428 	pfm_context_t *ctx = task->thread.pfm_context;
3429 	unsigned long flags;
3430 	int ret = 0;
3431 
3432 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3433 
3434 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3435 
3436 	/*
3437 	 * do it only once
3438 	 */
3439 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3440 
3441 	/*
3442 	 * Even on SMP, we do not need to use an atomic here because
3443 	 * the only way in is via ptrace() and this is possible only when the
3444 	 * process is stopped. Even in the case where the ctxsw out is not totally
3445 	 * completed by the time we come here, there is no way the 'stopped' process
3446 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3447 	 * So this is always safe.
3448 	 */
3449 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3450 
3451 	LOCK_PFS(flags);
3452 
3453 	/*
3454 	 * We cannot allow setting breakpoints when system wide monitoring
3455 	 * sessions are using the debug registers.
3456 	 */
3457 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3458 		ret = -1;
3459 	else
3460 		pfm_sessions.pfs_ptrace_use_dbregs++;
3461 
3462 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3463 		  pfm_sessions.pfs_ptrace_use_dbregs,
3464 		  pfm_sessions.pfs_sys_use_dbregs,
3465 		  task_pid_nr(task), ret));
3466 
3467 	UNLOCK_PFS(flags);
3468 
3469 	return ret;
3470 }
3471 
3472 /*
3473  * This function is called for every task that exits with the
3474  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3475  * able to use the debug registers for debugging purposes via
3476  * ptrace(). Therefore we know it was not using them for
3477  * performance monitoring, so we only decrement the number
3478  * of "ptraced" debug register users to keep the count up to date
3479  */
3480 int
pfm_release_debug_registers(struct task_struct * task)3481 pfm_release_debug_registers(struct task_struct *task)
3482 {
3483 	unsigned long flags;
3484 	int ret;
3485 
3486 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3487 
3488 	LOCK_PFS(flags);
3489 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3490 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3491 		ret = -1;
3492 	}  else {
3493 		pfm_sessions.pfs_ptrace_use_dbregs--;
3494 		ret = 0;
3495 	}
3496 	UNLOCK_PFS(flags);
3497 
3498 	return ret;
3499 }
3500 
3501 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3502 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3503 {
3504 	struct task_struct *task;
3505 	pfm_buffer_fmt_t *fmt;
3506 	pfm_ovfl_ctrl_t rst_ctrl;
3507 	int state, is_system;
3508 	int ret = 0;
3509 
3510 	state     = ctx->ctx_state;
3511 	fmt       = ctx->ctx_buf_fmt;
3512 	is_system = ctx->ctx_fl_system;
3513 	task      = PFM_CTX_TASK(ctx);
3514 
3515 	switch(state) {
3516 		case PFM_CTX_MASKED:
3517 			break;
3518 		case PFM_CTX_LOADED:
3519 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3520 			/* fall through */
3521 		case PFM_CTX_UNLOADED:
3522 		case PFM_CTX_ZOMBIE:
3523 			DPRINT(("invalid state=%d\n", state));
3524 			return -EBUSY;
3525 		default:
3526 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3527 			return -EINVAL;
3528 	}
3529 
3530 	/*
3531  	 * In system wide and when the context is loaded, access can only happen
3532  	 * when the caller is running on the CPU being monitored by the session.
3533  	 * It does not have to be the owner (ctx_task) of the context per se.
3534  	 */
3535 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3536 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3537 		return -EBUSY;
3538 	}
3539 
3540 	/* sanity check */
3541 	if (unlikely(task == NULL)) {
3542 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3543 		return -EINVAL;
3544 	}
3545 
3546 	if (task == current || is_system) {
3547 
3548 		fmt = ctx->ctx_buf_fmt;
3549 
3550 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3551 			task_pid_nr(task),
3552 			ctx->ctx_ovfl_regs[0]));
3553 
3554 		if (CTX_HAS_SMPL(ctx)) {
3555 
3556 			prefetch(ctx->ctx_smpl_hdr);
3557 
3558 			rst_ctrl.bits.mask_monitoring = 0;
3559 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3560 
3561 			if (state == PFM_CTX_LOADED)
3562 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3563 			else
3564 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3565 		} else {
3566 			rst_ctrl.bits.mask_monitoring = 0;
3567 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3568 		}
3569 
3570 		if (ret == 0) {
3571 			if (rst_ctrl.bits.reset_ovfl_pmds)
3572 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3573 
3574 			if (rst_ctrl.bits.mask_monitoring == 0) {
3575 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3576 
3577 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3578 			} else {
3579 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3580 
3581 				// cannot use pfm_stop_monitoring(task, regs);
3582 			}
3583 		}
3584 		/*
3585 		 * clear overflowed PMD mask to remove any stale information
3586 		 */
3587 		ctx->ctx_ovfl_regs[0] = 0UL;
3588 
3589 		/*
3590 		 * back to LOADED state
3591 		 */
3592 		ctx->ctx_state = PFM_CTX_LOADED;
3593 
3594 		/*
3595 		 * XXX: not really useful for self monitoring
3596 		 */
3597 		ctx->ctx_fl_can_restart = 0;
3598 
3599 		return 0;
3600 	}
3601 
3602 	/*
3603 	 * restart another task
3604 	 */
3605 
3606 	/*
3607 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3608 	 * one is seen by the task.
3609 	 */
3610 	if (state == PFM_CTX_MASKED) {
3611 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3612 		/*
3613 		 * will prevent subsequent restart before this one is
3614 		 * seen by other task
3615 		 */
3616 		ctx->ctx_fl_can_restart = 0;
3617 	}
3618 
3619 	/*
3620 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3621 	 * the task is blocked or on its way to block. That's the normal
3622 	 * restart path. If the monitoring is not masked, then the task
3623 	 * can be actively monitoring and we cannot directly intervene.
3624 	 * Therefore we use the trap mechanism to catch the task and
3625 	 * force it to reset the buffer/reset PMDs.
3626 	 *
3627 	 * if non-blocking, then we ensure that the task will go into
3628 	 * pfm_handle_work() before returning to user mode.
3629 	 *
3630 	 * We cannot explicitly reset another task, it MUST always
3631 	 * be done by the task itself. This works for system wide because
3632 	 * the tool that is controlling the session is logically doing
3633 	 * "self-monitoring".
3634 	 */
3635 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3636 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3637 		complete(&ctx->ctx_restart_done);
3638 	} else {
3639 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3640 
3641 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3642 
3643 		PFM_SET_WORK_PENDING(task, 1);
3644 
3645 		set_notify_resume(task);
3646 
3647 		/*
3648 		 * XXX: send reschedule if task runs on another CPU
3649 		 */
3650 	}
3651 	return 0;
3652 }
3653 
3654 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3655 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3656 {
3657 	unsigned int m = *(unsigned int *)arg;
3658 
3659 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3660 
3661 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3662 
3663 	if (m == 0) {
3664 		memset(pfm_stats, 0, sizeof(pfm_stats));
3665 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3666 	}
3667 	return 0;
3668 }
3669 
3670 /*
3671  * arg can be NULL and count can be zero for this function
3672  */
3673 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3674 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3675 {
3676 	struct thread_struct *thread = NULL;
3677 	struct task_struct *task;
3678 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3679 	unsigned long flags;
3680 	dbreg_t dbreg;
3681 	unsigned int rnum;
3682 	int first_time;
3683 	int ret = 0, state;
3684 	int i, can_access_pmu = 0;
3685 	int is_system, is_loaded;
3686 
3687 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3688 
3689 	state     = ctx->ctx_state;
3690 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3691 	is_system = ctx->ctx_fl_system;
3692 	task      = ctx->ctx_task;
3693 
3694 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3695 
3696 	/*
3697 	 * on both UP and SMP, we can only write to the PMC when the task is
3698 	 * the owner of the local PMU.
3699 	 */
3700 	if (is_loaded) {
3701 		thread = &task->thread;
3702 		/*
3703 		 * In system wide and when the context is loaded, access can only happen
3704 		 * when the caller is running on the CPU being monitored by the session.
3705 		 * It does not have to be the owner (ctx_task) of the context per se.
3706 		 */
3707 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3708 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3709 			return -EBUSY;
3710 		}
3711 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3712 	}
3713 
3714 	/*
3715 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3716 	 * ensuring that no real breakpoint can be installed via this call.
3717 	 *
3718 	 * IMPORTANT: regs can be NULL in this function
3719 	 */
3720 
3721 	first_time = ctx->ctx_fl_using_dbreg == 0;
3722 
3723 	/*
3724 	 * don't bother if we are loaded and task is being debugged
3725 	 */
3726 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3727 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3728 		return -EBUSY;
3729 	}
3730 
3731 	/*
3732 	 * check for debug registers in system wide mode
3733 	 *
3734 	 * If though a check is done in pfm_context_load(),
3735 	 * we must repeat it here, in case the registers are
3736 	 * written after the context is loaded
3737 	 */
3738 	if (is_loaded) {
3739 		LOCK_PFS(flags);
3740 
3741 		if (first_time && is_system) {
3742 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3743 				ret = -EBUSY;
3744 			else
3745 				pfm_sessions.pfs_sys_use_dbregs++;
3746 		}
3747 		UNLOCK_PFS(flags);
3748 	}
3749 
3750 	if (ret != 0) return ret;
3751 
3752 	/*
3753 	 * mark ourself as user of the debug registers for
3754 	 * perfmon purposes.
3755 	 */
3756 	ctx->ctx_fl_using_dbreg = 1;
3757 
3758 	/*
3759  	 * clear hardware registers to make sure we don't
3760  	 * pick up stale state.
3761 	 *
3762 	 * for a system wide session, we do not use
3763 	 * thread.dbr, thread.ibr because this process
3764 	 * never leaves the current CPU and the state
3765 	 * is shared by all processes running on it
3766  	 */
3767 	if (first_time && can_access_pmu) {
3768 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3769 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3770 			ia64_set_ibr(i, 0UL);
3771 			ia64_dv_serialize_instruction();
3772 		}
3773 		ia64_srlz_i();
3774 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3775 			ia64_set_dbr(i, 0UL);
3776 			ia64_dv_serialize_data();
3777 		}
3778 		ia64_srlz_d();
3779 	}
3780 
3781 	/*
3782 	 * Now install the values into the registers
3783 	 */
3784 	for (i = 0; i < count; i++, req++) {
3785 
3786 		rnum      = req->dbreg_num;
3787 		dbreg.val = req->dbreg_value;
3788 
3789 		ret = -EINVAL;
3790 
3791 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3792 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3793 				  rnum, dbreg.val, mode, i, count));
3794 
3795 			goto abort_mission;
3796 		}
3797 
3798 		/*
3799 		 * make sure we do not install enabled breakpoint
3800 		 */
3801 		if (rnum & 0x1) {
3802 			if (mode == PFM_CODE_RR)
3803 				dbreg.ibr.ibr_x = 0;
3804 			else
3805 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3806 		}
3807 
3808 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3809 
3810 		/*
3811 		 * Debug registers, just like PMC, can only be modified
3812 		 * by a kernel call. Moreover, perfmon() access to those
3813 		 * registers are centralized in this routine. The hardware
3814 		 * does not modify the value of these registers, therefore,
3815 		 * if we save them as they are written, we can avoid having
3816 		 * to save them on context switch out. This is made possible
3817 		 * by the fact that when perfmon uses debug registers, ptrace()
3818 		 * won't be able to modify them concurrently.
3819 		 */
3820 		if (mode == PFM_CODE_RR) {
3821 			CTX_USED_IBR(ctx, rnum);
3822 
3823 			if (can_access_pmu) {
3824 				ia64_set_ibr(rnum, dbreg.val);
3825 				ia64_dv_serialize_instruction();
3826 			}
3827 
3828 			ctx->ctx_ibrs[rnum] = dbreg.val;
3829 
3830 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3831 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3832 		} else {
3833 			CTX_USED_DBR(ctx, rnum);
3834 
3835 			if (can_access_pmu) {
3836 				ia64_set_dbr(rnum, dbreg.val);
3837 				ia64_dv_serialize_data();
3838 			}
3839 			ctx->ctx_dbrs[rnum] = dbreg.val;
3840 
3841 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3842 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3843 		}
3844 	}
3845 
3846 	return 0;
3847 
3848 abort_mission:
3849 	/*
3850 	 * in case it was our first attempt, we undo the global modifications
3851 	 */
3852 	if (first_time) {
3853 		LOCK_PFS(flags);
3854 		if (ctx->ctx_fl_system) {
3855 			pfm_sessions.pfs_sys_use_dbregs--;
3856 		}
3857 		UNLOCK_PFS(flags);
3858 		ctx->ctx_fl_using_dbreg = 0;
3859 	}
3860 	/*
3861 	 * install error return flag
3862 	 */
3863 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3864 
3865 	return ret;
3866 }
3867 
3868 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3869 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3870 {
3871 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3872 }
3873 
3874 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3875 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3876 {
3877 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3878 }
3879 
3880 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3881 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3882 {
3883 	pfm_context_t *ctx;
3884 
3885 	if (req == NULL) return -EINVAL;
3886 
3887  	ctx = GET_PMU_CTX();
3888 
3889 	if (ctx == NULL) return -EINVAL;
3890 
3891 	/*
3892 	 * for now limit to current task, which is enough when calling
3893 	 * from overflow handler
3894 	 */
3895 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3896 
3897 	return pfm_write_ibrs(ctx, req, nreq, regs);
3898 }
3899 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3900 
3901 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3902 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3903 {
3904 	pfm_context_t *ctx;
3905 
3906 	if (req == NULL) return -EINVAL;
3907 
3908  	ctx = GET_PMU_CTX();
3909 
3910 	if (ctx == NULL) return -EINVAL;
3911 
3912 	/*
3913 	 * for now limit to current task, which is enough when calling
3914 	 * from overflow handler
3915 	 */
3916 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3917 
3918 	return pfm_write_dbrs(ctx, req, nreq, regs);
3919 }
3920 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3921 
3922 
3923 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3924 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3925 {
3926 	pfarg_features_t *req = (pfarg_features_t *)arg;
3927 
3928 	req->ft_version = PFM_VERSION;
3929 	return 0;
3930 }
3931 
3932 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3933 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3934 {
3935 	struct pt_regs *tregs;
3936 	struct task_struct *task = PFM_CTX_TASK(ctx);
3937 	int state, is_system;
3938 
3939 	state     = ctx->ctx_state;
3940 	is_system = ctx->ctx_fl_system;
3941 
3942 	/*
3943 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3944 	 */
3945 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3946 
3947 	/*
3948  	 * In system wide and when the context is loaded, access can only happen
3949  	 * when the caller is running on the CPU being monitored by the session.
3950  	 * It does not have to be the owner (ctx_task) of the context per se.
3951  	 */
3952 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3953 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3954 		return -EBUSY;
3955 	}
3956 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3957 		task_pid_nr(PFM_CTX_TASK(ctx)),
3958 		state,
3959 		is_system));
3960 	/*
3961 	 * in system mode, we need to update the PMU directly
3962 	 * and the user level state of the caller, which may not
3963 	 * necessarily be the creator of the context.
3964 	 */
3965 	if (is_system) {
3966 		/*
3967 		 * Update local PMU first
3968 		 *
3969 		 * disable dcr pp
3970 		 */
3971 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3972 		ia64_srlz_i();
3973 
3974 		/*
3975 		 * update local cpuinfo
3976 		 */
3977 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3978 
3979 		/*
3980 		 * stop monitoring, does srlz.i
3981 		 */
3982 		pfm_clear_psr_pp();
3983 
3984 		/*
3985 		 * stop monitoring in the caller
3986 		 */
3987 		ia64_psr(regs)->pp = 0;
3988 
3989 		return 0;
3990 	}
3991 	/*
3992 	 * per-task mode
3993 	 */
3994 
3995 	if (task == current) {
3996 		/* stop monitoring  at kernel level */
3997 		pfm_clear_psr_up();
3998 
3999 		/*
4000 	 	 * stop monitoring at the user level
4001 	 	 */
4002 		ia64_psr(regs)->up = 0;
4003 	} else {
4004 		tregs = task_pt_regs(task);
4005 
4006 		/*
4007 	 	 * stop monitoring at the user level
4008 	 	 */
4009 		ia64_psr(tregs)->up = 0;
4010 
4011 		/*
4012 		 * monitoring disabled in kernel at next reschedule
4013 		 */
4014 		ctx->ctx_saved_psr_up = 0;
4015 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4016 	}
4017 	return 0;
4018 }
4019 
4020 
4021 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4022 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4023 {
4024 	struct pt_regs *tregs;
4025 	int state, is_system;
4026 
4027 	state     = ctx->ctx_state;
4028 	is_system = ctx->ctx_fl_system;
4029 
4030 	if (state != PFM_CTX_LOADED) return -EINVAL;
4031 
4032 	/*
4033  	 * In system wide and when the context is loaded, access can only happen
4034  	 * when the caller is running on the CPU being monitored by the session.
4035  	 * It does not have to be the owner (ctx_task) of the context per se.
4036  	 */
4037 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4038 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4039 		return -EBUSY;
4040 	}
4041 
4042 	/*
4043 	 * in system mode, we need to update the PMU directly
4044 	 * and the user level state of the caller, which may not
4045 	 * necessarily be the creator of the context.
4046 	 */
4047 	if (is_system) {
4048 
4049 		/*
4050 		 * set user level psr.pp for the caller
4051 		 */
4052 		ia64_psr(regs)->pp = 1;
4053 
4054 		/*
4055 		 * now update the local PMU and cpuinfo
4056 		 */
4057 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4058 
4059 		/*
4060 		 * start monitoring at kernel level
4061 		 */
4062 		pfm_set_psr_pp();
4063 
4064 		/* enable dcr pp */
4065 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4066 		ia64_srlz_i();
4067 
4068 		return 0;
4069 	}
4070 
4071 	/*
4072 	 * per-process mode
4073 	 */
4074 
4075 	if (ctx->ctx_task == current) {
4076 
4077 		/* start monitoring at kernel level */
4078 		pfm_set_psr_up();
4079 
4080 		/*
4081 		 * activate monitoring at user level
4082 		 */
4083 		ia64_psr(regs)->up = 1;
4084 
4085 	} else {
4086 		tregs = task_pt_regs(ctx->ctx_task);
4087 
4088 		/*
4089 		 * start monitoring at the kernel level the next
4090 		 * time the task is scheduled
4091 		 */
4092 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4093 
4094 		/*
4095 		 * activate monitoring at user level
4096 		 */
4097 		ia64_psr(tregs)->up = 1;
4098 	}
4099 	return 0;
4100 }
4101 
4102 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4103 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4104 {
4105 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4106 	unsigned int cnum;
4107 	int i;
4108 	int ret = -EINVAL;
4109 
4110 	for (i = 0; i < count; i++, req++) {
4111 
4112 		cnum = req->reg_num;
4113 
4114 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4115 
4116 		req->reg_value = PMC_DFL_VAL(cnum);
4117 
4118 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4119 
4120 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4121 	}
4122 	return 0;
4123 
4124 abort_mission:
4125 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4126 	return ret;
4127 }
4128 
4129 static int
pfm_check_task_exist(pfm_context_t * ctx)4130 pfm_check_task_exist(pfm_context_t *ctx)
4131 {
4132 	struct task_struct *g, *t;
4133 	int ret = -ESRCH;
4134 
4135 	read_lock(&tasklist_lock);
4136 
4137 	do_each_thread (g, t) {
4138 		if (t->thread.pfm_context == ctx) {
4139 			ret = 0;
4140 			goto out;
4141 		}
4142 	} while_each_thread (g, t);
4143 out:
4144 	read_unlock(&tasklist_lock);
4145 
4146 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4147 
4148 	return ret;
4149 }
4150 
4151 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4152 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4153 {
4154 	struct task_struct *task;
4155 	struct thread_struct *thread;
4156 	struct pfm_context_t *old;
4157 	unsigned long flags;
4158 #ifndef CONFIG_SMP
4159 	struct task_struct *owner_task = NULL;
4160 #endif
4161 	pfarg_load_t *req = (pfarg_load_t *)arg;
4162 	unsigned long *pmcs_source, *pmds_source;
4163 	int the_cpu;
4164 	int ret = 0;
4165 	int state, is_system, set_dbregs = 0;
4166 
4167 	state     = ctx->ctx_state;
4168 	is_system = ctx->ctx_fl_system;
4169 	/*
4170 	 * can only load from unloaded or terminated state
4171 	 */
4172 	if (state != PFM_CTX_UNLOADED) {
4173 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4174 			req->load_pid,
4175 			ctx->ctx_state));
4176 		return -EBUSY;
4177 	}
4178 
4179 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4180 
4181 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4182 		DPRINT(("cannot use blocking mode on self\n"));
4183 		return -EINVAL;
4184 	}
4185 
4186 	ret = pfm_get_task(ctx, req->load_pid, &task);
4187 	if (ret) {
4188 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4189 		return ret;
4190 	}
4191 
4192 	ret = -EINVAL;
4193 
4194 	/*
4195 	 * system wide is self monitoring only
4196 	 */
4197 	if (is_system && task != current) {
4198 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4199 			req->load_pid));
4200 		goto error;
4201 	}
4202 
4203 	thread = &task->thread;
4204 
4205 	ret = 0;
4206 	/*
4207 	 * cannot load a context which is using range restrictions,
4208 	 * into a task that is being debugged.
4209 	 */
4210 	if (ctx->ctx_fl_using_dbreg) {
4211 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4212 			ret = -EBUSY;
4213 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4214 			goto error;
4215 		}
4216 		LOCK_PFS(flags);
4217 
4218 		if (is_system) {
4219 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4220 				DPRINT(("cannot load [%d] dbregs in use\n",
4221 							task_pid_nr(task)));
4222 				ret = -EBUSY;
4223 			} else {
4224 				pfm_sessions.pfs_sys_use_dbregs++;
4225 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4226 				set_dbregs = 1;
4227 			}
4228 		}
4229 
4230 		UNLOCK_PFS(flags);
4231 
4232 		if (ret) goto error;
4233 	}
4234 
4235 	/*
4236 	 * SMP system-wide monitoring implies self-monitoring.
4237 	 *
4238 	 * The programming model expects the task to
4239 	 * be pinned on a CPU throughout the session.
4240 	 * Here we take note of the current CPU at the
4241 	 * time the context is loaded. No call from
4242 	 * another CPU will be allowed.
4243 	 *
4244 	 * The pinning via shed_setaffinity()
4245 	 * must be done by the calling task prior
4246 	 * to this call.
4247 	 *
4248 	 * systemwide: keep track of CPU this session is supposed to run on
4249 	 */
4250 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4251 
4252 	ret = -EBUSY;
4253 	/*
4254 	 * now reserve the session
4255 	 */
4256 	ret = pfm_reserve_session(current, is_system, the_cpu);
4257 	if (ret) goto error;
4258 
4259 	/*
4260 	 * task is necessarily stopped at this point.
4261 	 *
4262 	 * If the previous context was zombie, then it got removed in
4263 	 * pfm_save_regs(). Therefore we should not see it here.
4264 	 * If we see a context, then this is an active context
4265 	 *
4266 	 * XXX: needs to be atomic
4267 	 */
4268 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4269 		thread->pfm_context, ctx));
4270 
4271 	ret = -EBUSY;
4272 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4273 	if (old != NULL) {
4274 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4275 		goto error_unres;
4276 	}
4277 
4278 	pfm_reset_msgq(ctx);
4279 
4280 	ctx->ctx_state = PFM_CTX_LOADED;
4281 
4282 	/*
4283 	 * link context to task
4284 	 */
4285 	ctx->ctx_task = task;
4286 
4287 	if (is_system) {
4288 		/*
4289 		 * we load as stopped
4290 		 */
4291 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4292 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4293 
4294 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4295 	} else {
4296 		thread->flags |= IA64_THREAD_PM_VALID;
4297 	}
4298 
4299 	/*
4300 	 * propagate into thread-state
4301 	 */
4302 	pfm_copy_pmds(task, ctx);
4303 	pfm_copy_pmcs(task, ctx);
4304 
4305 	pmcs_source = ctx->th_pmcs;
4306 	pmds_source = ctx->th_pmds;
4307 
4308 	/*
4309 	 * always the case for system-wide
4310 	 */
4311 	if (task == current) {
4312 
4313 		if (is_system == 0) {
4314 
4315 			/* allow user level control */
4316 			ia64_psr(regs)->sp = 0;
4317 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4318 
4319 			SET_LAST_CPU(ctx, smp_processor_id());
4320 			INC_ACTIVATION();
4321 			SET_ACTIVATION(ctx);
4322 #ifndef CONFIG_SMP
4323 			/*
4324 			 * push the other task out, if any
4325 			 */
4326 			owner_task = GET_PMU_OWNER();
4327 			if (owner_task) pfm_lazy_save_regs(owner_task);
4328 #endif
4329 		}
4330 		/*
4331 		 * load all PMD from ctx to PMU (as opposed to thread state)
4332 		 * restore all PMC from ctx to PMU
4333 		 */
4334 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4335 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4336 
4337 		ctx->ctx_reload_pmcs[0] = 0UL;
4338 		ctx->ctx_reload_pmds[0] = 0UL;
4339 
4340 		/*
4341 		 * guaranteed safe by earlier check against DBG_VALID
4342 		 */
4343 		if (ctx->ctx_fl_using_dbreg) {
4344 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4345 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4346 		}
4347 		/*
4348 		 * set new ownership
4349 		 */
4350 		SET_PMU_OWNER(task, ctx);
4351 
4352 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4353 	} else {
4354 		/*
4355 		 * when not current, task MUST be stopped, so this is safe
4356 		 */
4357 		regs = task_pt_regs(task);
4358 
4359 		/* force a full reload */
4360 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4361 		SET_LAST_CPU(ctx, -1);
4362 
4363 		/* initial saved psr (stopped) */
4364 		ctx->ctx_saved_psr_up = 0UL;
4365 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4366 	}
4367 
4368 	ret = 0;
4369 
4370 error_unres:
4371 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4372 error:
4373 	/*
4374 	 * we must undo the dbregs setting (for system-wide)
4375 	 */
4376 	if (ret && set_dbregs) {
4377 		LOCK_PFS(flags);
4378 		pfm_sessions.pfs_sys_use_dbregs--;
4379 		UNLOCK_PFS(flags);
4380 	}
4381 	/*
4382 	 * release task, there is now a link with the context
4383 	 */
4384 	if (is_system == 0 && task != current) {
4385 		pfm_put_task(task);
4386 
4387 		if (ret == 0) {
4388 			ret = pfm_check_task_exist(ctx);
4389 			if (ret) {
4390 				ctx->ctx_state = PFM_CTX_UNLOADED;
4391 				ctx->ctx_task  = NULL;
4392 			}
4393 		}
4394 	}
4395 	return ret;
4396 }
4397 
4398 /*
4399  * in this function, we do not need to increase the use count
4400  * for the task via get_task_struct(), because we hold the
4401  * context lock. If the task were to disappear while having
4402  * a context attached, it would go through pfm_exit_thread()
4403  * which also grabs the context lock  and would therefore be blocked
4404  * until we are here.
4405  */
4406 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4407 
4408 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4409 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4410 {
4411 	struct task_struct *task = PFM_CTX_TASK(ctx);
4412 	struct pt_regs *tregs;
4413 	int prev_state, is_system;
4414 	int ret;
4415 
4416 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4417 
4418 	prev_state = ctx->ctx_state;
4419 	is_system  = ctx->ctx_fl_system;
4420 
4421 	/*
4422 	 * unload only when necessary
4423 	 */
4424 	if (prev_state == PFM_CTX_UNLOADED) {
4425 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4426 		return 0;
4427 	}
4428 
4429 	/*
4430 	 * clear psr and dcr bits
4431 	 */
4432 	ret = pfm_stop(ctx, NULL, 0, regs);
4433 	if (ret) return ret;
4434 
4435 	ctx->ctx_state = PFM_CTX_UNLOADED;
4436 
4437 	/*
4438 	 * in system mode, we need to update the PMU directly
4439 	 * and the user level state of the caller, which may not
4440 	 * necessarily be the creator of the context.
4441 	 */
4442 	if (is_system) {
4443 
4444 		/*
4445 		 * Update cpuinfo
4446 		 *
4447 		 * local PMU is taken care of in pfm_stop()
4448 		 */
4449 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4450 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4451 
4452 		/*
4453 		 * save PMDs in context
4454 		 * release ownership
4455 		 */
4456 		pfm_flush_pmds(current, ctx);
4457 
4458 		/*
4459 		 * at this point we are done with the PMU
4460 		 * so we can unreserve the resource.
4461 		 */
4462 		if (prev_state != PFM_CTX_ZOMBIE)
4463 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4464 
4465 		/*
4466 		 * disconnect context from task
4467 		 */
4468 		task->thread.pfm_context = NULL;
4469 		/*
4470 		 * disconnect task from context
4471 		 */
4472 		ctx->ctx_task = NULL;
4473 
4474 		/*
4475 		 * There is nothing more to cleanup here.
4476 		 */
4477 		return 0;
4478 	}
4479 
4480 	/*
4481 	 * per-task mode
4482 	 */
4483 	tregs = task == current ? regs : task_pt_regs(task);
4484 
4485 	if (task == current) {
4486 		/*
4487 		 * cancel user level control
4488 		 */
4489 		ia64_psr(regs)->sp = 1;
4490 
4491 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4492 	}
4493 	/*
4494 	 * save PMDs to context
4495 	 * release ownership
4496 	 */
4497 	pfm_flush_pmds(task, ctx);
4498 
4499 	/*
4500 	 * at this point we are done with the PMU
4501 	 * so we can unreserve the resource.
4502 	 *
4503 	 * when state was ZOMBIE, we have already unreserved.
4504 	 */
4505 	if (prev_state != PFM_CTX_ZOMBIE)
4506 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4507 
4508 	/*
4509 	 * reset activation counter and psr
4510 	 */
4511 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4512 	SET_LAST_CPU(ctx, -1);
4513 
4514 	/*
4515 	 * PMU state will not be restored
4516 	 */
4517 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4518 
4519 	/*
4520 	 * break links between context and task
4521 	 */
4522 	task->thread.pfm_context  = NULL;
4523 	ctx->ctx_task             = NULL;
4524 
4525 	PFM_SET_WORK_PENDING(task, 0);
4526 
4527 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4528 	ctx->ctx_fl_can_restart  = 0;
4529 	ctx->ctx_fl_going_zombie = 0;
4530 
4531 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4532 
4533 	return 0;
4534 }
4535 
4536 
4537 /*
4538  * called only from exit_thread()
4539  * we come here only if the task has a context attached (loaded or masked)
4540  */
4541 void
pfm_exit_thread(struct task_struct * task)4542 pfm_exit_thread(struct task_struct *task)
4543 {
4544 	pfm_context_t *ctx;
4545 	unsigned long flags;
4546 	struct pt_regs *regs = task_pt_regs(task);
4547 	int ret, state;
4548 	int free_ok = 0;
4549 
4550 	ctx = PFM_GET_CTX(task);
4551 
4552 	PROTECT_CTX(ctx, flags);
4553 
4554 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4555 
4556 	state = ctx->ctx_state;
4557 	switch(state) {
4558 		case PFM_CTX_UNLOADED:
4559 			/*
4560 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4561 			 * be in unloaded state
4562 	 		 */
4563 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4564 			break;
4565 		case PFM_CTX_LOADED:
4566 		case PFM_CTX_MASKED:
4567 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4568 			if (ret) {
4569 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4570 			}
4571 			DPRINT(("ctx unloaded for current state was %d\n", state));
4572 
4573 			pfm_end_notify_user(ctx);
4574 			break;
4575 		case PFM_CTX_ZOMBIE:
4576 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4577 			if (ret) {
4578 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4579 			}
4580 			free_ok = 1;
4581 			break;
4582 		default:
4583 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4584 			break;
4585 	}
4586 	UNPROTECT_CTX(ctx, flags);
4587 
4588 	{ u64 psr = pfm_get_psr();
4589 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4590 	  BUG_ON(GET_PMU_OWNER());
4591 	  BUG_ON(ia64_psr(regs)->up);
4592 	  BUG_ON(ia64_psr(regs)->pp);
4593 	}
4594 
4595 	/*
4596 	 * All memory free operations (especially for vmalloc'ed memory)
4597 	 * MUST be done with interrupts ENABLED.
4598 	 */
4599 	if (free_ok) pfm_context_free(ctx);
4600 }
4601 
4602 /*
4603  * functions MUST be listed in the increasing order of their index (see permfon.h)
4604  */
4605 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4606 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4607 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4608 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4609 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4610 
4611 static pfm_cmd_desc_t pfm_cmd_tab[]={
4612 /* 0  */PFM_CMD_NONE,
4613 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4614 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4615 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4616 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4617 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4618 /* 6  */PFM_CMD_NONE,
4619 /* 7  */PFM_CMD_NONE,
4620 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4621 /* 9  */PFM_CMD_NONE,
4622 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4623 /* 11 */PFM_CMD_NONE,
4624 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4625 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4626 /* 14 */PFM_CMD_NONE,
4627 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4628 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4629 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4630 /* 18 */PFM_CMD_NONE,
4631 /* 19 */PFM_CMD_NONE,
4632 /* 20 */PFM_CMD_NONE,
4633 /* 21 */PFM_CMD_NONE,
4634 /* 22 */PFM_CMD_NONE,
4635 /* 23 */PFM_CMD_NONE,
4636 /* 24 */PFM_CMD_NONE,
4637 /* 25 */PFM_CMD_NONE,
4638 /* 26 */PFM_CMD_NONE,
4639 /* 27 */PFM_CMD_NONE,
4640 /* 28 */PFM_CMD_NONE,
4641 /* 29 */PFM_CMD_NONE,
4642 /* 30 */PFM_CMD_NONE,
4643 /* 31 */PFM_CMD_NONE,
4644 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4645 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4646 };
4647 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4648 
4649 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4650 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4651 {
4652 	struct task_struct *task;
4653 	int state, old_state;
4654 
4655 recheck:
4656 	state = ctx->ctx_state;
4657 	task  = ctx->ctx_task;
4658 
4659 	if (task == NULL) {
4660 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4661 		return 0;
4662 	}
4663 
4664 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4665 		ctx->ctx_fd,
4666 		state,
4667 		task_pid_nr(task),
4668 		task->state, PFM_CMD_STOPPED(cmd)));
4669 
4670 	/*
4671 	 * self-monitoring always ok.
4672 	 *
4673 	 * for system-wide the caller can either be the creator of the
4674 	 * context (to one to which the context is attached to) OR
4675 	 * a task running on the same CPU as the session.
4676 	 */
4677 	if (task == current || ctx->ctx_fl_system) return 0;
4678 
4679 	/*
4680 	 * we are monitoring another thread
4681 	 */
4682 	switch(state) {
4683 		case PFM_CTX_UNLOADED:
4684 			/*
4685 			 * if context is UNLOADED we are safe to go
4686 			 */
4687 			return 0;
4688 		case PFM_CTX_ZOMBIE:
4689 			/*
4690 			 * no command can operate on a zombie context
4691 			 */
4692 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4693 			return -EINVAL;
4694 		case PFM_CTX_MASKED:
4695 			/*
4696 			 * PMU state has been saved to software even though
4697 			 * the thread may still be running.
4698 			 */
4699 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4700 	}
4701 
4702 	/*
4703 	 * context is LOADED or MASKED. Some commands may need to have
4704 	 * the task stopped.
4705 	 *
4706 	 * We could lift this restriction for UP but it would mean that
4707 	 * the user has no guarantee the task would not run between
4708 	 * two successive calls to perfmonctl(). That's probably OK.
4709 	 * If this user wants to ensure the task does not run, then
4710 	 * the task must be stopped.
4711 	 */
4712 	if (PFM_CMD_STOPPED(cmd)) {
4713 		if (!task_is_stopped_or_traced(task)) {
4714 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4715 			return -EBUSY;
4716 		}
4717 		/*
4718 		 * task is now stopped, wait for ctxsw out
4719 		 *
4720 		 * This is an interesting point in the code.
4721 		 * We need to unprotect the context because
4722 		 * the pfm_save_regs() routines needs to grab
4723 		 * the same lock. There are danger in doing
4724 		 * this because it leaves a window open for
4725 		 * another task to get access to the context
4726 		 * and possibly change its state. The one thing
4727 		 * that is not possible is for the context to disappear
4728 		 * because we are protected by the VFS layer, i.e.,
4729 		 * get_fd()/put_fd().
4730 		 */
4731 		old_state = state;
4732 
4733 		UNPROTECT_CTX(ctx, flags);
4734 
4735 		wait_task_inactive(task, 0);
4736 
4737 		PROTECT_CTX(ctx, flags);
4738 
4739 		/*
4740 		 * we must recheck to verify if state has changed
4741 		 */
4742 		if (ctx->ctx_state != old_state) {
4743 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4744 			goto recheck;
4745 		}
4746 	}
4747 	return 0;
4748 }
4749 
4750 /*
4751  * system-call entry point (must return long)
4752  */
4753 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4754 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4755 {
4756 	struct fd f = {NULL, 0};
4757 	pfm_context_t *ctx = NULL;
4758 	unsigned long flags = 0UL;
4759 	void *args_k = NULL;
4760 	long ret; /* will expand int return types */
4761 	size_t base_sz, sz, xtra_sz = 0;
4762 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4763 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4764 	int (*getsize)(void *arg, size_t *sz);
4765 #define PFM_MAX_ARGSIZE	4096
4766 
4767 	/*
4768 	 * reject any call if perfmon was disabled at initialization
4769 	 */
4770 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4771 
4772 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4773 		DPRINT(("invalid cmd=%d\n", cmd));
4774 		return -EINVAL;
4775 	}
4776 
4777 	func      = pfm_cmd_tab[cmd].cmd_func;
4778 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4779 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4780 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4781 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4782 
4783 	if (unlikely(func == NULL)) {
4784 		DPRINT(("invalid cmd=%d\n", cmd));
4785 		return -EINVAL;
4786 	}
4787 
4788 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4789 		PFM_CMD_NAME(cmd),
4790 		cmd,
4791 		narg,
4792 		base_sz,
4793 		count));
4794 
4795 	/*
4796 	 * check if number of arguments matches what the command expects
4797 	 */
4798 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4799 		return -EINVAL;
4800 
4801 restart_args:
4802 	sz = xtra_sz + base_sz*count;
4803 	/*
4804 	 * limit abuse to min page size
4805 	 */
4806 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4807 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4808 		return -E2BIG;
4809 	}
4810 
4811 	/*
4812 	 * allocate default-sized argument buffer
4813 	 */
4814 	if (likely(count && args_k == NULL)) {
4815 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4816 		if (args_k == NULL) return -ENOMEM;
4817 	}
4818 
4819 	ret = -EFAULT;
4820 
4821 	/*
4822 	 * copy arguments
4823 	 *
4824 	 * assume sz = 0 for command without parameters
4825 	 */
4826 	if (sz && copy_from_user(args_k, arg, sz)) {
4827 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4828 		goto error_args;
4829 	}
4830 
4831 	/*
4832 	 * check if command supports extra parameters
4833 	 */
4834 	if (completed_args == 0 && getsize) {
4835 		/*
4836 		 * get extra parameters size (based on main argument)
4837 		 */
4838 		ret = (*getsize)(args_k, &xtra_sz);
4839 		if (ret) goto error_args;
4840 
4841 		completed_args = 1;
4842 
4843 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4844 
4845 		/* retry if necessary */
4846 		if (likely(xtra_sz)) goto restart_args;
4847 	}
4848 
4849 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4850 
4851 	ret = -EBADF;
4852 
4853 	f = fdget(fd);
4854 	if (unlikely(f.file == NULL)) {
4855 		DPRINT(("invalid fd %d\n", fd));
4856 		goto error_args;
4857 	}
4858 	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4859 		DPRINT(("fd %d not related to perfmon\n", fd));
4860 		goto error_args;
4861 	}
4862 
4863 	ctx = f.file->private_data;
4864 	if (unlikely(ctx == NULL)) {
4865 		DPRINT(("no context for fd %d\n", fd));
4866 		goto error_args;
4867 	}
4868 	prefetch(&ctx->ctx_state);
4869 
4870 	PROTECT_CTX(ctx, flags);
4871 
4872 	/*
4873 	 * check task is stopped
4874 	 */
4875 	ret = pfm_check_task_state(ctx, cmd, flags);
4876 	if (unlikely(ret)) goto abort_locked;
4877 
4878 skip_fd:
4879 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4880 
4881 	call_made = 1;
4882 
4883 abort_locked:
4884 	if (likely(ctx)) {
4885 		DPRINT(("context unlocked\n"));
4886 		UNPROTECT_CTX(ctx, flags);
4887 	}
4888 
4889 	/* copy argument back to user, if needed */
4890 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4891 
4892 error_args:
4893 	if (f.file)
4894 		fdput(f);
4895 
4896 	kfree(args_k);
4897 
4898 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4899 
4900 	return ret;
4901 }
4902 
4903 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4904 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4905 {
4906 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4907 	pfm_ovfl_ctrl_t rst_ctrl;
4908 	int state;
4909 	int ret = 0;
4910 
4911 	state = ctx->ctx_state;
4912 	/*
4913 	 * Unlock sampling buffer and reset index atomically
4914 	 * XXX: not really needed when blocking
4915 	 */
4916 	if (CTX_HAS_SMPL(ctx)) {
4917 
4918 		rst_ctrl.bits.mask_monitoring = 0;
4919 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4920 
4921 		if (state == PFM_CTX_LOADED)
4922 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4923 		else
4924 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4925 	} else {
4926 		rst_ctrl.bits.mask_monitoring = 0;
4927 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4928 	}
4929 
4930 	if (ret == 0) {
4931 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4932 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4933 		}
4934 		if (rst_ctrl.bits.mask_monitoring == 0) {
4935 			DPRINT(("resuming monitoring\n"));
4936 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4937 		} else {
4938 			DPRINT(("stopping monitoring\n"));
4939 			//pfm_stop_monitoring(current, regs);
4940 		}
4941 		ctx->ctx_state = PFM_CTX_LOADED;
4942 	}
4943 }
4944 
4945 /*
4946  * context MUST BE LOCKED when calling
4947  * can only be called for current
4948  */
4949 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4950 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4951 {
4952 	int ret;
4953 
4954 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4955 
4956 	ret = pfm_context_unload(ctx, NULL, 0, regs);
4957 	if (ret) {
4958 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4959 	}
4960 
4961 	/*
4962 	 * and wakeup controlling task, indicating we are now disconnected
4963 	 */
4964 	wake_up_interruptible(&ctx->ctx_zombieq);
4965 
4966 	/*
4967 	 * given that context is still locked, the controlling
4968 	 * task will only get access when we return from
4969 	 * pfm_handle_work().
4970 	 */
4971 }
4972 
4973 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4974 
4975  /*
4976   * pfm_handle_work() can be called with interrupts enabled
4977   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4978   * call may sleep, therefore we must re-enable interrupts
4979   * to avoid deadlocks. It is safe to do so because this function
4980   * is called ONLY when returning to user level (pUStk=1), in which case
4981   * there is no risk of kernel stack overflow due to deep
4982   * interrupt nesting.
4983   */
4984 void
pfm_handle_work(void)4985 pfm_handle_work(void)
4986 {
4987 	pfm_context_t *ctx;
4988 	struct pt_regs *regs;
4989 	unsigned long flags, dummy_flags;
4990 	unsigned long ovfl_regs;
4991 	unsigned int reason;
4992 	int ret;
4993 
4994 	ctx = PFM_GET_CTX(current);
4995 	if (ctx == NULL) {
4996 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
4997 			task_pid_nr(current));
4998 		return;
4999 	}
5000 
5001 	PROTECT_CTX(ctx, flags);
5002 
5003 	PFM_SET_WORK_PENDING(current, 0);
5004 
5005 	regs = task_pt_regs(current);
5006 
5007 	/*
5008 	 * extract reason for being here and clear
5009 	 */
5010 	reason = ctx->ctx_fl_trap_reason;
5011 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5012 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5013 
5014 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5015 
5016 	/*
5017 	 * must be done before we check for simple-reset mode
5018 	 */
5019 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5020 		goto do_zombie;
5021 
5022 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5023 	if (reason == PFM_TRAP_REASON_RESET)
5024 		goto skip_blocking;
5025 
5026 	/*
5027 	 * restore interrupt mask to what it was on entry.
5028 	 * Could be enabled/diasbled.
5029 	 */
5030 	UNPROTECT_CTX(ctx, flags);
5031 
5032 	/*
5033 	 * force interrupt enable because of down_interruptible()
5034 	 */
5035 	local_irq_enable();
5036 
5037 	DPRINT(("before block sleeping\n"));
5038 
5039 	/*
5040 	 * may go through without blocking on SMP systems
5041 	 * if restart has been received already by the time we call down()
5042 	 */
5043 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5044 
5045 	DPRINT(("after block sleeping ret=%d\n", ret));
5046 
5047 	/*
5048 	 * lock context and mask interrupts again
5049 	 * We save flags into a dummy because we may have
5050 	 * altered interrupts mask compared to entry in this
5051 	 * function.
5052 	 */
5053 	PROTECT_CTX(ctx, dummy_flags);
5054 
5055 	/*
5056 	 * we need to read the ovfl_regs only after wake-up
5057 	 * because we may have had pfm_write_pmds() in between
5058 	 * and that can changed PMD values and therefore
5059 	 * ovfl_regs is reset for these new PMD values.
5060 	 */
5061 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5062 
5063 	if (ctx->ctx_fl_going_zombie) {
5064 do_zombie:
5065 		DPRINT(("context is zombie, bailing out\n"));
5066 		pfm_context_force_terminate(ctx, regs);
5067 		goto nothing_to_do;
5068 	}
5069 	/*
5070 	 * in case of interruption of down() we don't restart anything
5071 	 */
5072 	if (ret < 0)
5073 		goto nothing_to_do;
5074 
5075 skip_blocking:
5076 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5077 	ctx->ctx_ovfl_regs[0] = 0UL;
5078 
5079 nothing_to_do:
5080 	/*
5081 	 * restore flags as they were upon entry
5082 	 */
5083 	UNPROTECT_CTX(ctx, flags);
5084 }
5085 
5086 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5087 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5088 {
5089 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5090 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5091 		return 0;
5092 	}
5093 
5094 	DPRINT(("waking up somebody\n"));
5095 
5096 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5097 
5098 	/*
5099 	 * safe, we are not in intr handler, nor in ctxsw when
5100 	 * we come here
5101 	 */
5102 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5103 
5104 	return 0;
5105 }
5106 
5107 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5108 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5109 {
5110 	pfm_msg_t *msg = NULL;
5111 
5112 	if (ctx->ctx_fl_no_msg == 0) {
5113 		msg = pfm_get_new_msg(ctx);
5114 		if (msg == NULL) {
5115 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5116 			return -1;
5117 		}
5118 
5119 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5120 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5121 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5122 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5123 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5124 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5125 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5126 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5127 	}
5128 
5129 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5130 		msg,
5131 		ctx->ctx_fl_no_msg,
5132 		ctx->ctx_fd,
5133 		ovfl_pmds));
5134 
5135 	return pfm_notify_user(ctx, msg);
5136 }
5137 
5138 static int
pfm_end_notify_user(pfm_context_t * ctx)5139 pfm_end_notify_user(pfm_context_t *ctx)
5140 {
5141 	pfm_msg_t *msg;
5142 
5143 	msg = pfm_get_new_msg(ctx);
5144 	if (msg == NULL) {
5145 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5146 		return -1;
5147 	}
5148 	/* no leak */
5149 	memset(msg, 0, sizeof(*msg));
5150 
5151 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5152 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5153 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5154 
5155 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5156 		msg,
5157 		ctx->ctx_fl_no_msg,
5158 		ctx->ctx_fd));
5159 
5160 	return pfm_notify_user(ctx, msg);
5161 }
5162 
5163 /*
5164  * main overflow processing routine.
5165  * it can be called from the interrupt path or explicitly during the context switch code
5166  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5167 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5168 				unsigned long pmc0, struct pt_regs *regs)
5169 {
5170 	pfm_ovfl_arg_t *ovfl_arg;
5171 	unsigned long mask;
5172 	unsigned long old_val, ovfl_val, new_val;
5173 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5174 	unsigned long tstamp;
5175 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5176 	unsigned int i, has_smpl;
5177 	int must_notify = 0;
5178 
5179 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5180 
5181 	/*
5182 	 * sanity test. Should never happen
5183 	 */
5184 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5185 
5186 	tstamp   = ia64_get_itc();
5187 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5188 	ovfl_val = pmu_conf->ovfl_val;
5189 	has_smpl = CTX_HAS_SMPL(ctx);
5190 
5191 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5192 		     "used_pmds=0x%lx\n",
5193 			pmc0,
5194 			task ? task_pid_nr(task): -1,
5195 			(regs ? regs->cr_iip : 0),
5196 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5197 			ctx->ctx_used_pmds[0]));
5198 
5199 
5200 	/*
5201 	 * first we update the virtual counters
5202 	 * assume there was a prior ia64_srlz_d() issued
5203 	 */
5204 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5205 
5206 		/* skip pmd which did not overflow */
5207 		if ((mask & 0x1) == 0) continue;
5208 
5209 		/*
5210 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5211 		 * may have happened before the PMU was frozen. The residual count is not
5212 		 * taken into consideration here but will be with any read of the pmd via
5213 		 * pfm_read_pmds().
5214 		 */
5215 		old_val              = new_val = ctx->ctx_pmds[i].val;
5216 		new_val             += 1 + ovfl_val;
5217 		ctx->ctx_pmds[i].val = new_val;
5218 
5219 		/*
5220 		 * check for overflow condition
5221 		 */
5222 		if (likely(old_val > new_val)) {
5223 			ovfl_pmds |= 1UL << i;
5224 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5225 		}
5226 
5227 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5228 			i,
5229 			new_val,
5230 			old_val,
5231 			ia64_get_pmd(i) & ovfl_val,
5232 			ovfl_pmds,
5233 			ovfl_notify));
5234 	}
5235 
5236 	/*
5237 	 * there was no 64-bit overflow, nothing else to do
5238 	 */
5239 	if (ovfl_pmds == 0UL) return;
5240 
5241 	/*
5242 	 * reset all control bits
5243 	 */
5244 	ovfl_ctrl.val = 0;
5245 	reset_pmds    = 0UL;
5246 
5247 	/*
5248 	 * if a sampling format module exists, then we "cache" the overflow by
5249 	 * calling the module's handler() routine.
5250 	 */
5251 	if (has_smpl) {
5252 		unsigned long start_cycles, end_cycles;
5253 		unsigned long pmd_mask;
5254 		int j, k, ret = 0;
5255 		int this_cpu = smp_processor_id();
5256 
5257 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5258 		ovfl_arg = &ctx->ctx_ovfl_arg;
5259 
5260 		prefetch(ctx->ctx_smpl_hdr);
5261 
5262 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5263 
5264 			mask = 1UL << i;
5265 
5266 			if ((pmd_mask & 0x1) == 0) continue;
5267 
5268 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5269 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5270 			ovfl_arg->active_set    = 0;
5271 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5272 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5273 
5274 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5275 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5276 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5277 
5278 			/*
5279 		 	 * copy values of pmds of interest. Sampling format may copy them
5280 		 	 * into sampling buffer.
5281 		 	 */
5282 			if (smpl_pmds) {
5283 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5284 					if ((smpl_pmds & 0x1) == 0) continue;
5285 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5286 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5287 				}
5288 			}
5289 
5290 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5291 
5292 			start_cycles = ia64_get_itc();
5293 
5294 			/*
5295 		 	 * call custom buffer format record (handler) routine
5296 		 	 */
5297 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5298 
5299 			end_cycles = ia64_get_itc();
5300 
5301 			/*
5302 			 * For those controls, we take the union because they have
5303 			 * an all or nothing behavior.
5304 			 */
5305 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5306 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5307 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5308 			/*
5309 			 * build the bitmask of pmds to reset now
5310 			 */
5311 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5312 
5313 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5314 		}
5315 		/*
5316 		 * when the module cannot handle the rest of the overflows, we abort right here
5317 		 */
5318 		if (ret && pmd_mask) {
5319 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5320 				pmd_mask<<PMU_FIRST_COUNTER));
5321 		}
5322 		/*
5323 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5324 		 */
5325 		ovfl_pmds &= ~reset_pmds;
5326 	} else {
5327 		/*
5328 		 * when no sampling module is used, then the default
5329 		 * is to notify on overflow if requested by user
5330 		 */
5331 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5332 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5333 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5334 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5335 		/*
5336 		 * if needed, we reset all overflowed pmds
5337 		 */
5338 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5339 	}
5340 
5341 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5342 
5343 	/*
5344 	 * reset the requested PMD registers using the short reset values
5345 	 */
5346 	if (reset_pmds) {
5347 		unsigned long bm = reset_pmds;
5348 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5349 	}
5350 
5351 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5352 		/*
5353 		 * keep track of what to reset when unblocking
5354 		 */
5355 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5356 
5357 		/*
5358 		 * check for blocking context
5359 		 */
5360 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5361 
5362 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5363 
5364 			/*
5365 			 * set the perfmon specific checking pending work for the task
5366 			 */
5367 			PFM_SET_WORK_PENDING(task, 1);
5368 
5369 			/*
5370 			 * when coming from ctxsw, current still points to the
5371 			 * previous task, therefore we must work with task and not current.
5372 			 */
5373 			set_notify_resume(task);
5374 		}
5375 		/*
5376 		 * defer until state is changed (shorten spin window). the context is locked
5377 		 * anyway, so the signal receiver would come spin for nothing.
5378 		 */
5379 		must_notify = 1;
5380 	}
5381 
5382 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5383 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5384 			PFM_GET_WORK_PENDING(task),
5385 			ctx->ctx_fl_trap_reason,
5386 			ovfl_pmds,
5387 			ovfl_notify,
5388 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5389 	/*
5390 	 * in case monitoring must be stopped, we toggle the psr bits
5391 	 */
5392 	if (ovfl_ctrl.bits.mask_monitoring) {
5393 		pfm_mask_monitoring(task);
5394 		ctx->ctx_state = PFM_CTX_MASKED;
5395 		ctx->ctx_fl_can_restart = 1;
5396 	}
5397 
5398 	/*
5399 	 * send notification now
5400 	 */
5401 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5402 
5403 	return;
5404 
5405 sanity_check:
5406 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5407 			smp_processor_id(),
5408 			task ? task_pid_nr(task) : -1,
5409 			pmc0);
5410 	return;
5411 
5412 stop_monitoring:
5413 	/*
5414 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5415 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5416 	 * come here as zombie only if the task is the current task. In which case, we
5417 	 * can access the PMU  hardware directly.
5418 	 *
5419 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5420 	 *
5421 	 * In case the context was zombified it could not be reclaimed at the time
5422 	 * the monitoring program exited. At this point, the PMU reservation has been
5423 	 * returned, the sampiing buffer has been freed. We must convert this call
5424 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5425 	 * by stopping monitoring for this task. We can only come here for a per-task
5426 	 * context. All we need to do is to stop monitoring using the psr bits which
5427 	 * are always task private. By re-enabling secure montioring, we ensure that
5428 	 * the monitored task will not be able to re-activate monitoring.
5429 	 * The task will eventually be context switched out, at which point the context
5430 	 * will be reclaimed (that includes releasing ownership of the PMU).
5431 	 *
5432 	 * So there might be a window of time where the number of per-task session is zero
5433 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5434 	 * context. This is safe because if a per-task session comes in, it will push this one
5435 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5436 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5437 	 * also push our zombie context out.
5438 	 *
5439 	 * Overall pretty hairy stuff....
5440 	 */
5441 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5442 	pfm_clear_psr_up();
5443 	ia64_psr(regs)->up = 0;
5444 	ia64_psr(regs)->sp = 1;
5445 	return;
5446 }
5447 
5448 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5449 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5450 {
5451 	struct task_struct *task;
5452 	pfm_context_t *ctx;
5453 	unsigned long flags;
5454 	u64 pmc0;
5455 	int this_cpu = smp_processor_id();
5456 	int retval = 0;
5457 
5458 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5459 
5460 	/*
5461 	 * srlz.d done before arriving here
5462 	 */
5463 	pmc0 = ia64_get_pmc(0);
5464 
5465 	task = GET_PMU_OWNER();
5466 	ctx  = GET_PMU_CTX();
5467 
5468 	/*
5469 	 * if we have some pending bits set
5470 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5471 	 */
5472 	if (PMC0_HAS_OVFL(pmc0) && task) {
5473 		/*
5474 		 * we assume that pmc0.fr is always set here
5475 		 */
5476 
5477 		/* sanity check */
5478 		if (!ctx) goto report_spurious1;
5479 
5480 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5481 			goto report_spurious2;
5482 
5483 		PROTECT_CTX_NOPRINT(ctx, flags);
5484 
5485 		pfm_overflow_handler(task, ctx, pmc0, regs);
5486 
5487 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5488 
5489 	} else {
5490 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5491 		retval = -1;
5492 	}
5493 	/*
5494 	 * keep it unfrozen at all times
5495 	 */
5496 	pfm_unfreeze_pmu();
5497 
5498 	return retval;
5499 
5500 report_spurious1:
5501 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5502 		this_cpu, task_pid_nr(task));
5503 	pfm_unfreeze_pmu();
5504 	return -1;
5505 report_spurious2:
5506 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5507 		this_cpu,
5508 		task_pid_nr(task));
5509 	pfm_unfreeze_pmu();
5510 	return -1;
5511 }
5512 
5513 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5514 pfm_interrupt_handler(int irq, void *arg)
5515 {
5516 	unsigned long start_cycles, total_cycles;
5517 	unsigned long min, max;
5518 	int this_cpu;
5519 	int ret;
5520 	struct pt_regs *regs = get_irq_regs();
5521 
5522 	this_cpu = get_cpu();
5523 	if (likely(!pfm_alt_intr_handler)) {
5524 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5525 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5526 
5527 		start_cycles = ia64_get_itc();
5528 
5529 		ret = pfm_do_interrupt_handler(arg, regs);
5530 
5531 		total_cycles = ia64_get_itc();
5532 
5533 		/*
5534 		 * don't measure spurious interrupts
5535 		 */
5536 		if (likely(ret == 0)) {
5537 			total_cycles -= start_cycles;
5538 
5539 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5540 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5541 
5542 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5543 		}
5544 	}
5545 	else {
5546 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5547 	}
5548 
5549 	put_cpu();
5550 	return IRQ_HANDLED;
5551 }
5552 
5553 /*
5554  * /proc/perfmon interface, for debug only
5555  */
5556 
5557 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5558 
5559 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5560 pfm_proc_start(struct seq_file *m, loff_t *pos)
5561 {
5562 	if (*pos == 0) {
5563 		return PFM_PROC_SHOW_HEADER;
5564 	}
5565 
5566 	while (*pos <= nr_cpu_ids) {
5567 		if (cpu_online(*pos - 1)) {
5568 			return (void *)*pos;
5569 		}
5570 		++*pos;
5571 	}
5572 	return NULL;
5573 }
5574 
5575 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5576 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5577 {
5578 	++*pos;
5579 	return pfm_proc_start(m, pos);
5580 }
5581 
5582 static void
pfm_proc_stop(struct seq_file * m,void * v)5583 pfm_proc_stop(struct seq_file *m, void *v)
5584 {
5585 }
5586 
5587 static void
pfm_proc_show_header(struct seq_file * m)5588 pfm_proc_show_header(struct seq_file *m)
5589 {
5590 	struct list_head * pos;
5591 	pfm_buffer_fmt_t * entry;
5592 	unsigned long flags;
5593 
5594  	seq_printf(m,
5595 		"perfmon version           : %u.%u\n"
5596 		"model                     : %s\n"
5597 		"fastctxsw                 : %s\n"
5598 		"expert mode               : %s\n"
5599 		"ovfl_mask                 : 0x%lx\n"
5600 		"PMU flags                 : 0x%x\n",
5601 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5602 		pmu_conf->pmu_name,
5603 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5604 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5605 		pmu_conf->ovfl_val,
5606 		pmu_conf->flags);
5607 
5608   	LOCK_PFS(flags);
5609 
5610  	seq_printf(m,
5611  		"proc_sessions             : %u\n"
5612  		"sys_sessions              : %u\n"
5613  		"sys_use_dbregs            : %u\n"
5614  		"ptrace_use_dbregs         : %u\n",
5615  		pfm_sessions.pfs_task_sessions,
5616  		pfm_sessions.pfs_sys_sessions,
5617  		pfm_sessions.pfs_sys_use_dbregs,
5618  		pfm_sessions.pfs_ptrace_use_dbregs);
5619 
5620   	UNLOCK_PFS(flags);
5621 
5622 	spin_lock(&pfm_buffer_fmt_lock);
5623 
5624 	list_for_each(pos, &pfm_buffer_fmt_list) {
5625 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5626 		seq_printf(m, "format                    : %16phD %s\n",
5627 			   entry->fmt_uuid, entry->fmt_name);
5628 	}
5629 	spin_unlock(&pfm_buffer_fmt_lock);
5630 
5631 }
5632 
5633 static int
pfm_proc_show(struct seq_file * m,void * v)5634 pfm_proc_show(struct seq_file *m, void *v)
5635 {
5636 	unsigned long psr;
5637 	unsigned int i;
5638 	int cpu;
5639 
5640 	if (v == PFM_PROC_SHOW_HEADER) {
5641 		pfm_proc_show_header(m);
5642 		return 0;
5643 	}
5644 
5645 	/* show info for CPU (v - 1) */
5646 
5647 	cpu = (long)v - 1;
5648 	seq_printf(m,
5649 		"CPU%-2d overflow intrs      : %lu\n"
5650 		"CPU%-2d overflow cycles     : %lu\n"
5651 		"CPU%-2d overflow min        : %lu\n"
5652 		"CPU%-2d overflow max        : %lu\n"
5653 		"CPU%-2d smpl handler calls  : %lu\n"
5654 		"CPU%-2d smpl handler cycles : %lu\n"
5655 		"CPU%-2d spurious intrs      : %lu\n"
5656 		"CPU%-2d replay   intrs      : %lu\n"
5657 		"CPU%-2d syst_wide           : %d\n"
5658 		"CPU%-2d dcr_pp              : %d\n"
5659 		"CPU%-2d exclude idle        : %d\n"
5660 		"CPU%-2d owner               : %d\n"
5661 		"CPU%-2d context             : %p\n"
5662 		"CPU%-2d activations         : %lu\n",
5663 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5664 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5665 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5666 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5667 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5668 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5669 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5670 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5671 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5672 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5673 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5674 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5675 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5676 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5677 
5678 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5679 
5680 		psr = pfm_get_psr();
5681 
5682 		ia64_srlz_d();
5683 
5684 		seq_printf(m,
5685 			"CPU%-2d psr                 : 0x%lx\n"
5686 			"CPU%-2d pmc0                : 0x%lx\n",
5687 			cpu, psr,
5688 			cpu, ia64_get_pmc(0));
5689 
5690 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5691 			if (PMC_IS_COUNTING(i) == 0) continue;
5692    			seq_printf(m,
5693 				"CPU%-2d pmc%u                : 0x%lx\n"
5694    				"CPU%-2d pmd%u                : 0x%lx\n",
5695 				cpu, i, ia64_get_pmc(i),
5696 				cpu, i, ia64_get_pmd(i));
5697   		}
5698 	}
5699 	return 0;
5700 }
5701 
5702 const struct seq_operations pfm_seq_ops = {
5703 	.start =	pfm_proc_start,
5704  	.next =		pfm_proc_next,
5705  	.stop =		pfm_proc_stop,
5706  	.show =		pfm_proc_show
5707 };
5708 
5709 /*
5710  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5711  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5712  * is active or inactive based on mode. We must rely on the value in
5713  * local_cpu_data->pfm_syst_info
5714  */
5715 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5716 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5717 {
5718 	struct pt_regs *regs;
5719 	unsigned long dcr;
5720 	unsigned long dcr_pp;
5721 
5722 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5723 
5724 	/*
5725 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5726 	 * on every CPU, so we can rely on the pid to identify the idle task.
5727 	 */
5728 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5729 		regs = task_pt_regs(task);
5730 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5731 		return;
5732 	}
5733 	/*
5734 	 * if monitoring has started
5735 	 */
5736 	if (dcr_pp) {
5737 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5738 		/*
5739 		 * context switching in?
5740 		 */
5741 		if (is_ctxswin) {
5742 			/* mask monitoring for the idle task */
5743 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5744 			pfm_clear_psr_pp();
5745 			ia64_srlz_i();
5746 			return;
5747 		}
5748 		/*
5749 		 * context switching out
5750 		 * restore monitoring for next task
5751 		 *
5752 		 * Due to inlining this odd if-then-else construction generates
5753 		 * better code.
5754 		 */
5755 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5756 		pfm_set_psr_pp();
5757 		ia64_srlz_i();
5758 	}
5759 }
5760 
5761 #ifdef CONFIG_SMP
5762 
5763 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5764 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5765 {
5766 	struct task_struct *task = ctx->ctx_task;
5767 
5768 	ia64_psr(regs)->up = 0;
5769 	ia64_psr(regs)->sp = 1;
5770 
5771 	if (GET_PMU_OWNER() == task) {
5772 		DPRINT(("cleared ownership for [%d]\n",
5773 					task_pid_nr(ctx->ctx_task)));
5774 		SET_PMU_OWNER(NULL, NULL);
5775 	}
5776 
5777 	/*
5778 	 * disconnect the task from the context and vice-versa
5779 	 */
5780 	PFM_SET_WORK_PENDING(task, 0);
5781 
5782 	task->thread.pfm_context  = NULL;
5783 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5784 
5785 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5786 }
5787 
5788 
5789 /*
5790  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5791  */
5792 void
pfm_save_regs(struct task_struct * task)5793 pfm_save_regs(struct task_struct *task)
5794 {
5795 	pfm_context_t *ctx;
5796 	unsigned long flags;
5797 	u64 psr;
5798 
5799 
5800 	ctx = PFM_GET_CTX(task);
5801 	if (ctx == NULL) return;
5802 
5803 	/*
5804  	 * we always come here with interrupts ALREADY disabled by
5805  	 * the scheduler. So we simply need to protect against concurrent
5806 	 * access, not CPU concurrency.
5807 	 */
5808 	flags = pfm_protect_ctx_ctxsw(ctx);
5809 
5810 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5811 		struct pt_regs *regs = task_pt_regs(task);
5812 
5813 		pfm_clear_psr_up();
5814 
5815 		pfm_force_cleanup(ctx, regs);
5816 
5817 		BUG_ON(ctx->ctx_smpl_hdr);
5818 
5819 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5820 
5821 		pfm_context_free(ctx);
5822 		return;
5823 	}
5824 
5825 	/*
5826 	 * save current PSR: needed because we modify it
5827 	 */
5828 	ia64_srlz_d();
5829 	psr = pfm_get_psr();
5830 
5831 	BUG_ON(psr & (IA64_PSR_I));
5832 
5833 	/*
5834 	 * stop monitoring:
5835 	 * This is the last instruction which may generate an overflow
5836 	 *
5837 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5838 	 * It will be restored from ipsr when going back to user level
5839 	 */
5840 	pfm_clear_psr_up();
5841 
5842 	/*
5843 	 * keep a copy of psr.up (for reload)
5844 	 */
5845 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5846 
5847 	/*
5848 	 * release ownership of this PMU.
5849 	 * PM interrupts are masked, so nothing
5850 	 * can happen.
5851 	 */
5852 	SET_PMU_OWNER(NULL, NULL);
5853 
5854 	/*
5855 	 * we systematically save the PMD as we have no
5856 	 * guarantee we will be schedule at that same
5857 	 * CPU again.
5858 	 */
5859 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5860 
5861 	/*
5862 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5863 	 * we will need it on the restore path to check
5864 	 * for pending overflow.
5865 	 */
5866 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5867 
5868 	/*
5869 	 * unfreeze PMU if had pending overflows
5870 	 */
5871 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5872 
5873 	/*
5874 	 * finally, allow context access.
5875 	 * interrupts will still be masked after this call.
5876 	 */
5877 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5878 }
5879 
5880 #else /* !CONFIG_SMP */
5881 void
pfm_save_regs(struct task_struct * task)5882 pfm_save_regs(struct task_struct *task)
5883 {
5884 	pfm_context_t *ctx;
5885 	u64 psr;
5886 
5887 	ctx = PFM_GET_CTX(task);
5888 	if (ctx == NULL) return;
5889 
5890 	/*
5891 	 * save current PSR: needed because we modify it
5892 	 */
5893 	psr = pfm_get_psr();
5894 
5895 	BUG_ON(psr & (IA64_PSR_I));
5896 
5897 	/*
5898 	 * stop monitoring:
5899 	 * This is the last instruction which may generate an overflow
5900 	 *
5901 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5902 	 * It will be restored from ipsr when going back to user level
5903 	 */
5904 	pfm_clear_psr_up();
5905 
5906 	/*
5907 	 * keep a copy of psr.up (for reload)
5908 	 */
5909 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5910 }
5911 
5912 static void
pfm_lazy_save_regs(struct task_struct * task)5913 pfm_lazy_save_regs (struct task_struct *task)
5914 {
5915 	pfm_context_t *ctx;
5916 	unsigned long flags;
5917 
5918 	{ u64 psr  = pfm_get_psr();
5919 	  BUG_ON(psr & IA64_PSR_UP);
5920 	}
5921 
5922 	ctx = PFM_GET_CTX(task);
5923 
5924 	/*
5925 	 * we need to mask PMU overflow here to
5926 	 * make sure that we maintain pmc0 until
5927 	 * we save it. overflow interrupts are
5928 	 * treated as spurious if there is no
5929 	 * owner.
5930 	 *
5931 	 * XXX: I don't think this is necessary
5932 	 */
5933 	PROTECT_CTX(ctx,flags);
5934 
5935 	/*
5936 	 * release ownership of this PMU.
5937 	 * must be done before we save the registers.
5938 	 *
5939 	 * after this call any PMU interrupt is treated
5940 	 * as spurious.
5941 	 */
5942 	SET_PMU_OWNER(NULL, NULL);
5943 
5944 	/*
5945 	 * save all the pmds we use
5946 	 */
5947 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5948 
5949 	/*
5950 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5951 	 * it is needed to check for pended overflow
5952 	 * on the restore path
5953 	 */
5954 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5955 
5956 	/*
5957 	 * unfreeze PMU if had pending overflows
5958 	 */
5959 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5960 
5961 	/*
5962 	 * now get can unmask PMU interrupts, they will
5963 	 * be treated as purely spurious and we will not
5964 	 * lose any information
5965 	 */
5966 	UNPROTECT_CTX(ctx,flags);
5967 }
5968 #endif /* CONFIG_SMP */
5969 
5970 #ifdef CONFIG_SMP
5971 /*
5972  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5973  */
5974 void
pfm_load_regs(struct task_struct * task)5975 pfm_load_regs (struct task_struct *task)
5976 {
5977 	pfm_context_t *ctx;
5978 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5979 	unsigned long flags;
5980 	u64 psr, psr_up;
5981 	int need_irq_resend;
5982 
5983 	ctx = PFM_GET_CTX(task);
5984 	if (unlikely(ctx == NULL)) return;
5985 
5986 	BUG_ON(GET_PMU_OWNER());
5987 
5988 	/*
5989 	 * possible on unload
5990 	 */
5991 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
5992 
5993 	/*
5994  	 * we always come here with interrupts ALREADY disabled by
5995  	 * the scheduler. So we simply need to protect against concurrent
5996 	 * access, not CPU concurrency.
5997 	 */
5998 	flags = pfm_protect_ctx_ctxsw(ctx);
5999 	psr   = pfm_get_psr();
6000 
6001 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6002 
6003 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6004 	BUG_ON(psr & IA64_PSR_I);
6005 
6006 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6007 		struct pt_regs *regs = task_pt_regs(task);
6008 
6009 		BUG_ON(ctx->ctx_smpl_hdr);
6010 
6011 		pfm_force_cleanup(ctx, regs);
6012 
6013 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6014 
6015 		/*
6016 		 * this one (kmalloc'ed) is fine with interrupts disabled
6017 		 */
6018 		pfm_context_free(ctx);
6019 
6020 		return;
6021 	}
6022 
6023 	/*
6024 	 * we restore ALL the debug registers to avoid picking up
6025 	 * stale state.
6026 	 */
6027 	if (ctx->ctx_fl_using_dbreg) {
6028 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6029 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6030 	}
6031 	/*
6032 	 * retrieve saved psr.up
6033 	 */
6034 	psr_up = ctx->ctx_saved_psr_up;
6035 
6036 	/*
6037 	 * if we were the last user of the PMU on that CPU,
6038 	 * then nothing to do except restore psr
6039 	 */
6040 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6041 
6042 		/*
6043 		 * retrieve partial reload masks (due to user modifications)
6044 		 */
6045 		pmc_mask = ctx->ctx_reload_pmcs[0];
6046 		pmd_mask = ctx->ctx_reload_pmds[0];
6047 
6048 	} else {
6049 		/*
6050 	 	 * To avoid leaking information to the user level when psr.sp=0,
6051 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6052 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6053 	 	 * we initialized or requested (sampling) so there is no risk there.
6054 	 	 */
6055 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6056 
6057 		/*
6058 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6059 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6060 	 	 * up stale configuration.
6061 	 	 *
6062 	 	 * PMC0 is never in the mask. It is always restored separately.
6063 	 	 */
6064 		pmc_mask = ctx->ctx_all_pmcs[0];
6065 	}
6066 	/*
6067 	 * when context is MASKED, we will restore PMC with plm=0
6068 	 * and PMD with stale information, but that's ok, nothing
6069 	 * will be captured.
6070 	 *
6071 	 * XXX: optimize here
6072 	 */
6073 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6074 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6075 
6076 	/*
6077 	 * check for pending overflow at the time the state
6078 	 * was saved.
6079 	 */
6080 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6081 		/*
6082 		 * reload pmc0 with the overflow information
6083 		 * On McKinley PMU, this will trigger a PMU interrupt
6084 		 */
6085 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6086 		ia64_srlz_d();
6087 		ctx->th_pmcs[0] = 0UL;
6088 
6089 		/*
6090 		 * will replay the PMU interrupt
6091 		 */
6092 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6093 
6094 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6095 	}
6096 
6097 	/*
6098 	 * we just did a reload, so we reset the partial reload fields
6099 	 */
6100 	ctx->ctx_reload_pmcs[0] = 0UL;
6101 	ctx->ctx_reload_pmds[0] = 0UL;
6102 
6103 	SET_LAST_CPU(ctx, smp_processor_id());
6104 
6105 	/*
6106 	 * dump activation value for this PMU
6107 	 */
6108 	INC_ACTIVATION();
6109 	/*
6110 	 * record current activation for this context
6111 	 */
6112 	SET_ACTIVATION(ctx);
6113 
6114 	/*
6115 	 * establish new ownership.
6116 	 */
6117 	SET_PMU_OWNER(task, ctx);
6118 
6119 	/*
6120 	 * restore the psr.up bit. measurement
6121 	 * is active again.
6122 	 * no PMU interrupt can happen at this point
6123 	 * because we still have interrupts disabled.
6124 	 */
6125 	if (likely(psr_up)) pfm_set_psr_up();
6126 
6127 	/*
6128 	 * allow concurrent access to context
6129 	 */
6130 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6131 }
6132 #else /*  !CONFIG_SMP */
6133 /*
6134  * reload PMU state for UP kernels
6135  * in 2.5 we come here with interrupts disabled
6136  */
6137 void
pfm_load_regs(struct task_struct * task)6138 pfm_load_regs (struct task_struct *task)
6139 {
6140 	pfm_context_t *ctx;
6141 	struct task_struct *owner;
6142 	unsigned long pmd_mask, pmc_mask;
6143 	u64 psr, psr_up;
6144 	int need_irq_resend;
6145 
6146 	owner = GET_PMU_OWNER();
6147 	ctx   = PFM_GET_CTX(task);
6148 	psr   = pfm_get_psr();
6149 
6150 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6151 	BUG_ON(psr & IA64_PSR_I);
6152 
6153 	/*
6154 	 * we restore ALL the debug registers to avoid picking up
6155 	 * stale state.
6156 	 *
6157 	 * This must be done even when the task is still the owner
6158 	 * as the registers may have been modified via ptrace()
6159 	 * (not perfmon) by the previous task.
6160 	 */
6161 	if (ctx->ctx_fl_using_dbreg) {
6162 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6163 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6164 	}
6165 
6166 	/*
6167 	 * retrieved saved psr.up
6168 	 */
6169 	psr_up = ctx->ctx_saved_psr_up;
6170 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6171 
6172 	/*
6173 	 * short path, our state is still there, just
6174 	 * need to restore psr and we go
6175 	 *
6176 	 * we do not touch either PMC nor PMD. the psr is not touched
6177 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6178 	 * concurrency even without interrupt masking.
6179 	 */
6180 	if (likely(owner == task)) {
6181 		if (likely(psr_up)) pfm_set_psr_up();
6182 		return;
6183 	}
6184 
6185 	/*
6186 	 * someone else is still using the PMU, first push it out and
6187 	 * then we'll be able to install our stuff !
6188 	 *
6189 	 * Upon return, there will be no owner for the current PMU
6190 	 */
6191 	if (owner) pfm_lazy_save_regs(owner);
6192 
6193 	/*
6194 	 * To avoid leaking information to the user level when psr.sp=0,
6195 	 * we must reload ALL implemented pmds (even the ones we don't use).
6196 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6197 	 * we initialized or requested (sampling) so there is no risk there.
6198 	 */
6199 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6200 
6201 	/*
6202 	 * ALL accessible PMCs are systematically reloaded, unused registers
6203 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6204 	 * up stale configuration.
6205 	 *
6206 	 * PMC0 is never in the mask. It is always restored separately
6207 	 */
6208 	pmc_mask = ctx->ctx_all_pmcs[0];
6209 
6210 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6211 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6212 
6213 	/*
6214 	 * check for pending overflow at the time the state
6215 	 * was saved.
6216 	 */
6217 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6218 		/*
6219 		 * reload pmc0 with the overflow information
6220 		 * On McKinley PMU, this will trigger a PMU interrupt
6221 		 */
6222 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6223 		ia64_srlz_d();
6224 
6225 		ctx->th_pmcs[0] = 0UL;
6226 
6227 		/*
6228 		 * will replay the PMU interrupt
6229 		 */
6230 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6231 
6232 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6233 	}
6234 
6235 	/*
6236 	 * establish new ownership.
6237 	 */
6238 	SET_PMU_OWNER(task, ctx);
6239 
6240 	/*
6241 	 * restore the psr.up bit. measurement
6242 	 * is active again.
6243 	 * no PMU interrupt can happen at this point
6244 	 * because we still have interrupts disabled.
6245 	 */
6246 	if (likely(psr_up)) pfm_set_psr_up();
6247 }
6248 #endif /* CONFIG_SMP */
6249 
6250 /*
6251  * this function assumes monitoring is stopped
6252  */
6253 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6254 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6255 {
6256 	u64 pmc0;
6257 	unsigned long mask2, val, pmd_val, ovfl_val;
6258 	int i, can_access_pmu = 0;
6259 	int is_self;
6260 
6261 	/*
6262 	 * is the caller the task being monitored (or which initiated the
6263 	 * session for system wide measurements)
6264 	 */
6265 	is_self = ctx->ctx_task == task ? 1 : 0;
6266 
6267 	/*
6268 	 * can access PMU is task is the owner of the PMU state on the current CPU
6269 	 * or if we are running on the CPU bound to the context in system-wide mode
6270 	 * (that is not necessarily the task the context is attached to in this mode).
6271 	 * In system-wide we always have can_access_pmu true because a task running on an
6272 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6273 	 */
6274 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6275 	if (can_access_pmu) {
6276 		/*
6277 		 * Mark the PMU as not owned
6278 		 * This will cause the interrupt handler to do nothing in case an overflow
6279 		 * interrupt was in-flight
6280 		 * This also guarantees that pmc0 will contain the final state
6281 		 * It virtually gives us full control on overflow processing from that point
6282 		 * on.
6283 		 */
6284 		SET_PMU_OWNER(NULL, NULL);
6285 		DPRINT(("releasing ownership\n"));
6286 
6287 		/*
6288 		 * read current overflow status:
6289 		 *
6290 		 * we are guaranteed to read the final stable state
6291 		 */
6292 		ia64_srlz_d();
6293 		pmc0 = ia64_get_pmc(0); /* slow */
6294 
6295 		/*
6296 		 * reset freeze bit, overflow status information destroyed
6297 		 */
6298 		pfm_unfreeze_pmu();
6299 	} else {
6300 		pmc0 = ctx->th_pmcs[0];
6301 		/*
6302 		 * clear whatever overflow status bits there were
6303 		 */
6304 		ctx->th_pmcs[0] = 0;
6305 	}
6306 	ovfl_val = pmu_conf->ovfl_val;
6307 	/*
6308 	 * we save all the used pmds
6309 	 * we take care of overflows for counting PMDs
6310 	 *
6311 	 * XXX: sampling situation is not taken into account here
6312 	 */
6313 	mask2 = ctx->ctx_used_pmds[0];
6314 
6315 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6316 
6317 	for (i = 0; mask2; i++, mask2>>=1) {
6318 
6319 		/* skip non used pmds */
6320 		if ((mask2 & 0x1) == 0) continue;
6321 
6322 		/*
6323 		 * can access PMU always true in system wide mode
6324 		 */
6325 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6326 
6327 		if (PMD_IS_COUNTING(i)) {
6328 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6329 				task_pid_nr(task),
6330 				i,
6331 				ctx->ctx_pmds[i].val,
6332 				val & ovfl_val));
6333 
6334 			/*
6335 			 * we rebuild the full 64 bit value of the counter
6336 			 */
6337 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6338 
6339 			/*
6340 			 * now everything is in ctx_pmds[] and we need
6341 			 * to clear the saved context from save_regs() such that
6342 			 * pfm_read_pmds() gets the correct value
6343 			 */
6344 			pmd_val = 0UL;
6345 
6346 			/*
6347 			 * take care of overflow inline
6348 			 */
6349 			if (pmc0 & (1UL << i)) {
6350 				val += 1 + ovfl_val;
6351 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6352 			}
6353 		}
6354 
6355 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6356 
6357 		if (is_self) ctx->th_pmds[i] = pmd_val;
6358 
6359 		ctx->ctx_pmds[i].val = val;
6360 	}
6361 }
6362 
6363 static struct irqaction perfmon_irqaction = {
6364 	.handler = pfm_interrupt_handler,
6365 	.name    = "perfmon"
6366 };
6367 
6368 static void
pfm_alt_save_pmu_state(void * data)6369 pfm_alt_save_pmu_state(void *data)
6370 {
6371 	struct pt_regs *regs;
6372 
6373 	regs = task_pt_regs(current);
6374 
6375 	DPRINT(("called\n"));
6376 
6377 	/*
6378 	 * should not be necessary but
6379 	 * let's take not risk
6380 	 */
6381 	pfm_clear_psr_up();
6382 	pfm_clear_psr_pp();
6383 	ia64_psr(regs)->pp = 0;
6384 
6385 	/*
6386 	 * This call is required
6387 	 * May cause a spurious interrupt on some processors
6388 	 */
6389 	pfm_freeze_pmu();
6390 
6391 	ia64_srlz_d();
6392 }
6393 
6394 void
pfm_alt_restore_pmu_state(void * data)6395 pfm_alt_restore_pmu_state(void *data)
6396 {
6397 	struct pt_regs *regs;
6398 
6399 	regs = task_pt_regs(current);
6400 
6401 	DPRINT(("called\n"));
6402 
6403 	/*
6404 	 * put PMU back in state expected
6405 	 * by perfmon
6406 	 */
6407 	pfm_clear_psr_up();
6408 	pfm_clear_psr_pp();
6409 	ia64_psr(regs)->pp = 0;
6410 
6411 	/*
6412 	 * perfmon runs with PMU unfrozen at all times
6413 	 */
6414 	pfm_unfreeze_pmu();
6415 
6416 	ia64_srlz_d();
6417 }
6418 
6419 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6420 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6421 {
6422 	int ret, i;
6423 	int reserve_cpu;
6424 
6425 	/* some sanity checks */
6426 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6427 
6428 	/* do the easy test first */
6429 	if (pfm_alt_intr_handler) return -EBUSY;
6430 
6431 	/* one at a time in the install or remove, just fail the others */
6432 	if (!spin_trylock(&pfm_alt_install_check)) {
6433 		return -EBUSY;
6434 	}
6435 
6436 	/* reserve our session */
6437 	for_each_online_cpu(reserve_cpu) {
6438 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6439 		if (ret) goto cleanup_reserve;
6440 	}
6441 
6442 	/* save the current system wide pmu states */
6443 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6444 	if (ret) {
6445 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6446 		goto cleanup_reserve;
6447 	}
6448 
6449 	/* officially change to the alternate interrupt handler */
6450 	pfm_alt_intr_handler = hdl;
6451 
6452 	spin_unlock(&pfm_alt_install_check);
6453 
6454 	return 0;
6455 
6456 cleanup_reserve:
6457 	for_each_online_cpu(i) {
6458 		/* don't unreserve more than we reserved */
6459 		if (i >= reserve_cpu) break;
6460 
6461 		pfm_unreserve_session(NULL, 1, i);
6462 	}
6463 
6464 	spin_unlock(&pfm_alt_install_check);
6465 
6466 	return ret;
6467 }
6468 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6469 
6470 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6471 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6472 {
6473 	int i;
6474 	int ret;
6475 
6476 	if (hdl == NULL) return -EINVAL;
6477 
6478 	/* cannot remove someone else's handler! */
6479 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6480 
6481 	/* one at a time in the install or remove, just fail the others */
6482 	if (!spin_trylock(&pfm_alt_install_check)) {
6483 		return -EBUSY;
6484 	}
6485 
6486 	pfm_alt_intr_handler = NULL;
6487 
6488 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6489 	if (ret) {
6490 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6491 	}
6492 
6493 	for_each_online_cpu(i) {
6494 		pfm_unreserve_session(NULL, 1, i);
6495 	}
6496 
6497 	spin_unlock(&pfm_alt_install_check);
6498 
6499 	return 0;
6500 }
6501 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6502 
6503 /*
6504  * perfmon initialization routine, called from the initcall() table
6505  */
6506 static int init_pfm_fs(void);
6507 
6508 static int __init
pfm_probe_pmu(void)6509 pfm_probe_pmu(void)
6510 {
6511 	pmu_config_t **p;
6512 	int family;
6513 
6514 	family = local_cpu_data->family;
6515 	p      = pmu_confs;
6516 
6517 	while(*p) {
6518 		if ((*p)->probe) {
6519 			if ((*p)->probe() == 0) goto found;
6520 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6521 			goto found;
6522 		}
6523 		p++;
6524 	}
6525 	return -1;
6526 found:
6527 	pmu_conf = *p;
6528 	return 0;
6529 }
6530 
6531 int __init
pfm_init(void)6532 pfm_init(void)
6533 {
6534 	unsigned int n, n_counters, i;
6535 
6536 	printk("perfmon: version %u.%u IRQ %u\n",
6537 		PFM_VERSION_MAJ,
6538 		PFM_VERSION_MIN,
6539 		IA64_PERFMON_VECTOR);
6540 
6541 	if (pfm_probe_pmu()) {
6542 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6543 				local_cpu_data->family);
6544 		return -ENODEV;
6545 	}
6546 
6547 	/*
6548 	 * compute the number of implemented PMD/PMC from the
6549 	 * description tables
6550 	 */
6551 	n = 0;
6552 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6553 		if (PMC_IS_IMPL(i) == 0) continue;
6554 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6555 		n++;
6556 	}
6557 	pmu_conf->num_pmcs = n;
6558 
6559 	n = 0; n_counters = 0;
6560 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6561 		if (PMD_IS_IMPL(i) == 0) continue;
6562 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6563 		n++;
6564 		if (PMD_IS_COUNTING(i)) n_counters++;
6565 	}
6566 	pmu_conf->num_pmds      = n;
6567 	pmu_conf->num_counters  = n_counters;
6568 
6569 	/*
6570 	 * sanity checks on the number of debug registers
6571 	 */
6572 	if (pmu_conf->use_rr_dbregs) {
6573 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6574 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6575 			pmu_conf = NULL;
6576 			return -1;
6577 		}
6578 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6579 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6580 			pmu_conf = NULL;
6581 			return -1;
6582 		}
6583 	}
6584 
6585 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6586 	       pmu_conf->pmu_name,
6587 	       pmu_conf->num_pmcs,
6588 	       pmu_conf->num_pmds,
6589 	       pmu_conf->num_counters,
6590 	       ffz(pmu_conf->ovfl_val));
6591 
6592 	/* sanity check */
6593 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6594 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6595 		pmu_conf = NULL;
6596 		return -1;
6597 	}
6598 
6599 	/*
6600 	 * create /proc/perfmon (mostly for debugging purposes)
6601 	 */
6602 	perfmon_dir = proc_create_seq("perfmon", S_IRUGO, NULL, &pfm_seq_ops);
6603 	if (perfmon_dir == NULL) {
6604 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6605 		pmu_conf = NULL;
6606 		return -1;
6607 	}
6608 
6609 	/*
6610 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6611 	 */
6612 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6613 
6614 	/*
6615 	 * initialize all our spinlocks
6616 	 */
6617 	spin_lock_init(&pfm_sessions.pfs_lock);
6618 	spin_lock_init(&pfm_buffer_fmt_lock);
6619 
6620 	init_pfm_fs();
6621 
6622 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6623 
6624 	return 0;
6625 }
6626 
6627 __initcall(pfm_init);
6628 
6629 /*
6630  * this function is called before pfm_init()
6631  */
6632 void
pfm_init_percpu(void)6633 pfm_init_percpu (void)
6634 {
6635 	static int first_time=1;
6636 	/*
6637 	 * make sure no measurement is active
6638 	 * (may inherit programmed PMCs from EFI).
6639 	 */
6640 	pfm_clear_psr_pp();
6641 	pfm_clear_psr_up();
6642 
6643 	/*
6644 	 * we run with the PMU not frozen at all times
6645 	 */
6646 	pfm_unfreeze_pmu();
6647 
6648 	if (first_time) {
6649 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6650 		first_time=0;
6651 	}
6652 
6653 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6654 	ia64_srlz_d();
6655 }
6656 
6657 /*
6658  * used for debug purposes only
6659  */
6660 void
dump_pmu_state(const char * from)6661 dump_pmu_state(const char *from)
6662 {
6663 	struct task_struct *task;
6664 	struct pt_regs *regs;
6665 	pfm_context_t *ctx;
6666 	unsigned long psr, dcr, info, flags;
6667 	int i, this_cpu;
6668 
6669 	local_irq_save(flags);
6670 
6671 	this_cpu = smp_processor_id();
6672 	regs     = task_pt_regs(current);
6673 	info     = PFM_CPUINFO_GET();
6674 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6675 
6676 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6677 		local_irq_restore(flags);
6678 		return;
6679 	}
6680 
6681 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6682 		this_cpu,
6683 		from,
6684 		task_pid_nr(current),
6685 		regs->cr_iip,
6686 		current->comm);
6687 
6688 	task = GET_PMU_OWNER();
6689 	ctx  = GET_PMU_CTX();
6690 
6691 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6692 
6693 	psr = pfm_get_psr();
6694 
6695 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6696 		this_cpu,
6697 		ia64_get_pmc(0),
6698 		psr & IA64_PSR_PP ? 1 : 0,
6699 		psr & IA64_PSR_UP ? 1 : 0,
6700 		dcr & IA64_DCR_PP ? 1 : 0,
6701 		info,
6702 		ia64_psr(regs)->up,
6703 		ia64_psr(regs)->pp);
6704 
6705 	ia64_psr(regs)->up = 0;
6706 	ia64_psr(regs)->pp = 0;
6707 
6708 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6709 		if (PMC_IS_IMPL(i) == 0) continue;
6710 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6711 	}
6712 
6713 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6714 		if (PMD_IS_IMPL(i) == 0) continue;
6715 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6716 	}
6717 
6718 	if (ctx) {
6719 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6720 				this_cpu,
6721 				ctx->ctx_state,
6722 				ctx->ctx_smpl_vaddr,
6723 				ctx->ctx_smpl_hdr,
6724 				ctx->ctx_msgq_head,
6725 				ctx->ctx_msgq_tail,
6726 				ctx->ctx_saved_psr_up);
6727 	}
6728 	local_irq_restore(flags);
6729 }
6730 
6731 /*
6732  * called from process.c:copy_thread(). task is new child.
6733  */
6734 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6735 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6736 {
6737 	struct thread_struct *thread;
6738 
6739 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6740 
6741 	thread = &task->thread;
6742 
6743 	/*
6744 	 * cut links inherited from parent (current)
6745 	 */
6746 	thread->pfm_context = NULL;
6747 
6748 	PFM_SET_WORK_PENDING(task, 0);
6749 
6750 	/*
6751 	 * the psr bits are already set properly in copy_threads()
6752 	 */
6753 }
6754 #else  /* !CONFIG_PERFMON */
6755 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6756 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6757 {
6758 	return -ENOSYS;
6759 }
6760 #endif /* CONFIG_PERFMON */
6761