1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * vineetg: May 2011
9  *  -Refactored get_new_mmu_context( ) to only handle live-mm.
10  *   retiring-mm handled in other hooks
11  *
12  * Vineetg: March 25th, 2008: Bug #92690
13  *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
14  *
15  * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
16  */
17 
18 #ifndef _ASM_ARC_MMU_CONTEXT_H
19 #define _ASM_ARC_MMU_CONTEXT_H
20 
21 #include <asm/arcregs.h>
22 #include <asm/tlb.h>
23 #include <linux/sched/mm.h>
24 
25 #include <asm-generic/mm_hooks.h>
26 
27 /*		ARC700 ASID Management
28  *
29  * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
30  * with same vaddr (different tasks) to co-exit. This provides for
31  * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
32  *
33  * Linux assigns each task a unique ASID. A simple round-robin allocation
34  * of H/w ASID is done using software tracker @asid_cpu.
35  * When it reaches max 255, the allocation cycle starts afresh by flushing
36  * the entire TLB and wrapping ASID back to zero.
37  *
38  * A new allocation cycle, post rollover, could potentially reassign an ASID
39  * to a different task. Thus the rule is to refresh the ASID in a new cycle.
40  * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
41  * serve as cycle/generation indicator and natural 32 bit unsigned math
42  * automagically increments the generation when lower 8 bits rollover.
43  */
44 
45 #define MM_CTXT_ASID_MASK	0x000000ff /* MMU PID reg :8 bit PID */
46 #define MM_CTXT_CYCLE_MASK	(~MM_CTXT_ASID_MASK)
47 
48 #define MM_CTXT_FIRST_CYCLE	(MM_CTXT_ASID_MASK + 1)
49 #define MM_CTXT_NO_ASID		0UL
50 
51 #define asid_mm(mm, cpu)	mm->context.asid[cpu]
52 #define hw_pid(mm, cpu)		(asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
53 
54 DECLARE_PER_CPU(unsigned int, asid_cache);
55 #define asid_cpu(cpu)		per_cpu(asid_cache, cpu)
56 
57 /*
58  * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
59  * Also set the MMU PID register to existing/updated ASID
60  */
get_new_mmu_context(struct mm_struct * mm)61 static inline void get_new_mmu_context(struct mm_struct *mm)
62 {
63 	const unsigned int cpu = smp_processor_id();
64 	unsigned long flags;
65 
66 	local_irq_save(flags);
67 
68 	/*
69 	 * Move to new ASID if it was not from current alloc-cycle/generation.
70 	 * This is done by ensuring that the generation bits in both mm->ASID
71 	 * and cpu's ASID counter are exactly same.
72 	 *
73 	 * Note: Callers needing new ASID unconditionally, independent of
74 	 * 	 generation, e.g. local_flush_tlb_mm() for forking  parent,
75 	 * 	 first need to destroy the context, setting it to invalid
76 	 * 	 value.
77 	 */
78 	if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
79 		goto set_hw;
80 
81 	/* move to new ASID and handle rollover */
82 	if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
83 
84 		local_flush_tlb_all();
85 
86 		/*
87 		 * Above check for rollover of 8 bit ASID in 32 bit container.
88 		 * If the container itself wrapped around, set it to a non zero
89 		 * "generation" to distinguish from no context
90 		 */
91 		if (!asid_cpu(cpu))
92 			asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
93 	}
94 
95 	/* Assign new ASID to tsk */
96 	asid_mm(mm, cpu) = asid_cpu(cpu);
97 
98 set_hw:
99 	write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
100 
101 	local_irq_restore(flags);
102 }
103 
104 /*
105  * Initialize the context related info for a new mm_struct
106  * instance.
107  */
108 static inline int
init_new_context(struct task_struct * tsk,struct mm_struct * mm)109 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
110 {
111 	int i;
112 
113 	for_each_possible_cpu(i)
114 		asid_mm(mm, i) = MM_CTXT_NO_ASID;
115 
116 	return 0;
117 }
118 
destroy_context(struct mm_struct * mm)119 static inline void destroy_context(struct mm_struct *mm)
120 {
121 	unsigned long flags;
122 
123 	/* Needed to elide CONFIG_DEBUG_PREEMPT warning */
124 	local_irq_save(flags);
125 	asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
126 	local_irq_restore(flags);
127 }
128 
129 /* Prepare the MMU for task: setup PID reg with allocated ASID
130     If task doesn't have an ASID (never alloc or stolen, get a new ASID)
131 */
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)132 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
133 			     struct task_struct *tsk)
134 {
135 	const int cpu = smp_processor_id();
136 
137 	/*
138 	 * Note that the mm_cpumask is "aggregating" only, we don't clear it
139 	 * for the switched-out task, unlike some other arches.
140 	 * It is used to enlist cpus for sending TLB flush IPIs and not sending
141 	 * it to CPUs where a task once ran-on, could cause stale TLB entry
142 	 * re-use, specially for a multi-threaded task.
143 	 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
144 	 *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
145 	 *      were to re-migrate to C1, it could access the unmapped region
146 	 *      via any existing stale TLB entries.
147 	 */
148 	cpumask_set_cpu(cpu, mm_cpumask(next));
149 
150 #ifndef CONFIG_SMP
151 	/* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
152 	write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
153 #endif
154 
155 	get_new_mmu_context(next);
156 }
157 
158 /*
159  * Called at the time of execve() to get a new ASID
160  * Note the subtlety here: get_new_mmu_context() behaves differently here
161  * vs. in switch_mm(). Here it always returns a new ASID, because mm has
162  * an unallocated "initial" value, while in latter, it moves to a new ASID,
163  * only if it was unallocated
164  */
165 #define activate_mm(prev, next)		switch_mm(prev, next, NULL)
166 
167 /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
168  * for retiring-mm. However destroy_context( ) still needs to do that because
169  * between mm_release( ) = >deactive_mm( ) and
170  * mmput => .. => __mmdrop( ) => destroy_context( )
171  * there is a good chance that task gets sched-out/in, making it's ASID valid
172  * again (this teased me for a whole day).
173  */
174 #define deactivate_mm(tsk, mm)   do { } while (0)
175 
176 #define enter_lazy_tlb(mm, tsk)
177 
178 #endif /* __ASM_ARC_MMU_CONTEXT_H */
179