1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
3 *
4 * AF_XDP sockets allows a channel between XDP programs and userspace
5 * applications.
6 * Copyright(c) 2018 Intel Corporation.
7 *
8 * Author(s): Björn Töpel <bjorn.topel@intel.com>
9 * Magnus Karlsson <magnus.karlsson@intel.com>
10 */
11
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
13
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <linux/vmalloc.h>
26 #include <net/xdp_sock_drv.h>
27 #include <net/busy_poll.h>
28 #include <net/netdev_rx_queue.h>
29 #include <net/xdp.h>
30
31 #include "xsk_queue.h"
32 #include "xdp_umem.h"
33 #include "xsk.h"
34
35 #define TX_BATCH_SIZE 32
36
37 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
38
xsk_set_rx_need_wakeup(struct xsk_buff_pool * pool)39 void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool)
40 {
41 if (pool->cached_need_wakeup & XDP_WAKEUP_RX)
42 return;
43
44 pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
45 pool->cached_need_wakeup |= XDP_WAKEUP_RX;
46 }
47 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
48
xsk_set_tx_need_wakeup(struct xsk_buff_pool * pool)49 void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool)
50 {
51 struct xdp_sock *xs;
52
53 if (pool->cached_need_wakeup & XDP_WAKEUP_TX)
54 return;
55
56 rcu_read_lock();
57 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
58 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
59 }
60 rcu_read_unlock();
61
62 pool->cached_need_wakeup |= XDP_WAKEUP_TX;
63 }
64 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
65
xsk_clear_rx_need_wakeup(struct xsk_buff_pool * pool)66 void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool)
67 {
68 if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX))
69 return;
70
71 pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
72 pool->cached_need_wakeup &= ~XDP_WAKEUP_RX;
73 }
74 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
75
xsk_clear_tx_need_wakeup(struct xsk_buff_pool * pool)76 void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool)
77 {
78 struct xdp_sock *xs;
79
80 if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX))
81 return;
82
83 rcu_read_lock();
84 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
85 xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
86 }
87 rcu_read_unlock();
88
89 pool->cached_need_wakeup &= ~XDP_WAKEUP_TX;
90 }
91 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
92
xsk_uses_need_wakeup(struct xsk_buff_pool * pool)93 bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool)
94 {
95 return pool->uses_need_wakeup;
96 }
97 EXPORT_SYMBOL(xsk_uses_need_wakeup);
98
xsk_get_pool_from_qid(struct net_device * dev,u16 queue_id)99 struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev,
100 u16 queue_id)
101 {
102 if (queue_id < dev->real_num_rx_queues)
103 return dev->_rx[queue_id].pool;
104 if (queue_id < dev->real_num_tx_queues)
105 return dev->_tx[queue_id].pool;
106
107 return NULL;
108 }
109 EXPORT_SYMBOL(xsk_get_pool_from_qid);
110
xsk_clear_pool_at_qid(struct net_device * dev,u16 queue_id)111 void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id)
112 {
113 if (queue_id < dev->num_rx_queues)
114 dev->_rx[queue_id].pool = NULL;
115 if (queue_id < dev->num_tx_queues)
116 dev->_tx[queue_id].pool = NULL;
117 }
118
119 /* The buffer pool is stored both in the _rx struct and the _tx struct as we do
120 * not know if the device has more tx queues than rx, or the opposite.
121 * This might also change during run time.
122 */
xsk_reg_pool_at_qid(struct net_device * dev,struct xsk_buff_pool * pool,u16 queue_id)123 int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool,
124 u16 queue_id)
125 {
126 if (queue_id >= max_t(unsigned int,
127 dev->real_num_rx_queues,
128 dev->real_num_tx_queues))
129 return -EINVAL;
130
131 if (queue_id < dev->real_num_rx_queues)
132 dev->_rx[queue_id].pool = pool;
133 if (queue_id < dev->real_num_tx_queues)
134 dev->_tx[queue_id].pool = pool;
135
136 return 0;
137 }
138
__xsk_rcv_zc(struct xdp_sock * xs,struct xdp_buff_xsk * xskb,u32 len,u32 flags)139 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff_xsk *xskb, u32 len,
140 u32 flags)
141 {
142 u64 addr;
143 int err;
144
145 addr = xp_get_handle(xskb);
146 err = xskq_prod_reserve_desc(xs->rx, addr, len, flags);
147 if (err) {
148 xs->rx_queue_full++;
149 return err;
150 }
151
152 xp_release(xskb);
153 return 0;
154 }
155
xsk_rcv_zc(struct xdp_sock * xs,struct xdp_buff * xdp,u32 len)156 static int xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
157 {
158 struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
159 u32 frags = xdp_buff_has_frags(xdp);
160 struct xdp_buff_xsk *pos, *tmp;
161 struct list_head *xskb_list;
162 u32 contd = 0;
163 int err;
164
165 if (frags)
166 contd = XDP_PKT_CONTD;
167
168 err = __xsk_rcv_zc(xs, xskb, len, contd);
169 if (err || likely(!frags))
170 goto out;
171
172 xskb_list = &xskb->pool->xskb_list;
173 list_for_each_entry_safe(pos, tmp, xskb_list, xskb_list_node) {
174 if (list_is_singular(xskb_list))
175 contd = 0;
176 len = pos->xdp.data_end - pos->xdp.data;
177 err = __xsk_rcv_zc(xs, pos, len, contd);
178 if (err)
179 return err;
180 list_del(&pos->xskb_list_node);
181 }
182
183 out:
184 return err;
185 }
186
xsk_copy_xdp_start(struct xdp_buff * from)187 static void *xsk_copy_xdp_start(struct xdp_buff *from)
188 {
189 if (unlikely(xdp_data_meta_unsupported(from)))
190 return from->data;
191 else
192 return from->data_meta;
193 }
194
xsk_copy_xdp(void * to,void ** from,u32 to_len,u32 * from_len,skb_frag_t ** frag,u32 rem)195 static u32 xsk_copy_xdp(void *to, void **from, u32 to_len,
196 u32 *from_len, skb_frag_t **frag, u32 rem)
197 {
198 u32 copied = 0;
199
200 while (1) {
201 u32 copy_len = min_t(u32, *from_len, to_len);
202
203 memcpy(to, *from, copy_len);
204 copied += copy_len;
205 if (rem == copied)
206 return copied;
207
208 if (*from_len == copy_len) {
209 *from = skb_frag_address(*frag);
210 *from_len = skb_frag_size((*frag)++);
211 } else {
212 *from += copy_len;
213 *from_len -= copy_len;
214 }
215 if (to_len == copy_len)
216 return copied;
217
218 to_len -= copy_len;
219 to += copy_len;
220 }
221 }
222
__xsk_rcv(struct xdp_sock * xs,struct xdp_buff * xdp,u32 len)223 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
224 {
225 u32 frame_size = xsk_pool_get_rx_frame_size(xs->pool);
226 void *copy_from = xsk_copy_xdp_start(xdp), *copy_to;
227 u32 from_len, meta_len, rem, num_desc;
228 struct xdp_buff_xsk *xskb;
229 struct xdp_buff *xsk_xdp;
230 skb_frag_t *frag;
231
232 from_len = xdp->data_end - copy_from;
233 meta_len = xdp->data - copy_from;
234 rem = len + meta_len;
235
236 if (len <= frame_size && !xdp_buff_has_frags(xdp)) {
237 int err;
238
239 xsk_xdp = xsk_buff_alloc(xs->pool);
240 if (!xsk_xdp) {
241 xs->rx_dropped++;
242 return -ENOMEM;
243 }
244 memcpy(xsk_xdp->data - meta_len, copy_from, rem);
245 xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
246 err = __xsk_rcv_zc(xs, xskb, len, 0);
247 if (err) {
248 xsk_buff_free(xsk_xdp);
249 return err;
250 }
251
252 return 0;
253 }
254
255 num_desc = (len - 1) / frame_size + 1;
256
257 if (!xsk_buff_can_alloc(xs->pool, num_desc)) {
258 xs->rx_dropped++;
259 return -ENOMEM;
260 }
261 if (xskq_prod_nb_free(xs->rx, num_desc) < num_desc) {
262 xs->rx_queue_full++;
263 return -ENOBUFS;
264 }
265
266 if (xdp_buff_has_frags(xdp)) {
267 struct skb_shared_info *sinfo;
268
269 sinfo = xdp_get_shared_info_from_buff(xdp);
270 frag = &sinfo->frags[0];
271 }
272
273 do {
274 u32 to_len = frame_size + meta_len;
275 u32 copied;
276
277 xsk_xdp = xsk_buff_alloc(xs->pool);
278 copy_to = xsk_xdp->data - meta_len;
279
280 copied = xsk_copy_xdp(copy_to, ©_from, to_len, &from_len, &frag, rem);
281 rem -= copied;
282
283 xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
284 __xsk_rcv_zc(xs, xskb, copied - meta_len, rem ? XDP_PKT_CONTD : 0);
285 meta_len = 0;
286 } while (rem);
287
288 return 0;
289 }
290
xsk_tx_writeable(struct xdp_sock * xs)291 static bool xsk_tx_writeable(struct xdp_sock *xs)
292 {
293 if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2)
294 return false;
295
296 return true;
297 }
298
xsk_is_bound(struct xdp_sock * xs)299 static bool xsk_is_bound(struct xdp_sock *xs)
300 {
301 if (READ_ONCE(xs->state) == XSK_BOUND) {
302 /* Matches smp_wmb() in bind(). */
303 smp_rmb();
304 return true;
305 }
306 return false;
307 }
308
xsk_rcv_check(struct xdp_sock * xs,struct xdp_buff * xdp,u32 len)309 static int xsk_rcv_check(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
310 {
311 if (!xsk_is_bound(xs))
312 return -ENXIO;
313
314 if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
315 return -EINVAL;
316
317 if (len > xsk_pool_get_rx_frame_size(xs->pool) && !xs->sg) {
318 xs->rx_dropped++;
319 return -ENOSPC;
320 }
321
322 sk_mark_napi_id_once_xdp(&xs->sk, xdp);
323 return 0;
324 }
325
xsk_flush(struct xdp_sock * xs)326 static void xsk_flush(struct xdp_sock *xs)
327 {
328 xskq_prod_submit(xs->rx);
329 __xskq_cons_release(xs->pool->fq);
330 sock_def_readable(&xs->sk);
331 }
332
xsk_generic_rcv(struct xdp_sock * xs,struct xdp_buff * xdp)333 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
334 {
335 u32 len = xdp_get_buff_len(xdp);
336 int err;
337
338 spin_lock_bh(&xs->rx_lock);
339 err = xsk_rcv_check(xs, xdp, len);
340 if (!err) {
341 err = __xsk_rcv(xs, xdp, len);
342 xsk_flush(xs);
343 }
344 spin_unlock_bh(&xs->rx_lock);
345 return err;
346 }
347
xsk_rcv(struct xdp_sock * xs,struct xdp_buff * xdp)348 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
349 {
350 u32 len = xdp_get_buff_len(xdp);
351 int err;
352
353 err = xsk_rcv_check(xs, xdp, len);
354 if (err)
355 return err;
356
357 if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) {
358 len = xdp->data_end - xdp->data;
359 return xsk_rcv_zc(xs, xdp, len);
360 }
361
362 err = __xsk_rcv(xs, xdp, len);
363 if (!err)
364 xdp_return_buff(xdp);
365 return err;
366 }
367
__xsk_map_redirect(struct xdp_sock * xs,struct xdp_buff * xdp)368 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
369 {
370 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
371 int err;
372
373 err = xsk_rcv(xs, xdp);
374 if (err)
375 return err;
376
377 if (!xs->flush_node.prev)
378 list_add(&xs->flush_node, flush_list);
379
380 return 0;
381 }
382
__xsk_map_flush(void)383 void __xsk_map_flush(void)
384 {
385 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
386 struct xdp_sock *xs, *tmp;
387
388 list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
389 xsk_flush(xs);
390 __list_del_clearprev(&xs->flush_node);
391 }
392 }
393
xsk_tx_completed(struct xsk_buff_pool * pool,u32 nb_entries)394 void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries)
395 {
396 xskq_prod_submit_n(pool->cq, nb_entries);
397 }
398 EXPORT_SYMBOL(xsk_tx_completed);
399
xsk_tx_release(struct xsk_buff_pool * pool)400 void xsk_tx_release(struct xsk_buff_pool *pool)
401 {
402 struct xdp_sock *xs;
403
404 rcu_read_lock();
405 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
406 __xskq_cons_release(xs->tx);
407 if (xsk_tx_writeable(xs))
408 xs->sk.sk_write_space(&xs->sk);
409 }
410 rcu_read_unlock();
411 }
412 EXPORT_SYMBOL(xsk_tx_release);
413
xsk_tx_peek_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)414 bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc)
415 {
416 struct xdp_sock *xs;
417
418 rcu_read_lock();
419 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
420 if (!xskq_cons_peek_desc(xs->tx, desc, pool)) {
421 if (xskq_has_descs(xs->tx))
422 xskq_cons_release(xs->tx);
423 continue;
424 }
425
426 /* This is the backpressure mechanism for the Tx path.
427 * Reserve space in the completion queue and only proceed
428 * if there is space in it. This avoids having to implement
429 * any buffering in the Tx path.
430 */
431 if (xskq_prod_reserve_addr(pool->cq, desc->addr))
432 goto out;
433
434 xskq_cons_release(xs->tx);
435 rcu_read_unlock();
436 return true;
437 }
438
439 out:
440 rcu_read_unlock();
441 return false;
442 }
443 EXPORT_SYMBOL(xsk_tx_peek_desc);
444
xsk_tx_peek_release_fallback(struct xsk_buff_pool * pool,u32 max_entries)445 static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, u32 max_entries)
446 {
447 struct xdp_desc *descs = pool->tx_descs;
448 u32 nb_pkts = 0;
449
450 while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts]))
451 nb_pkts++;
452
453 xsk_tx_release(pool);
454 return nb_pkts;
455 }
456
xsk_tx_peek_release_desc_batch(struct xsk_buff_pool * pool,u32 nb_pkts)457 u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, u32 nb_pkts)
458 {
459 struct xdp_sock *xs;
460
461 rcu_read_lock();
462 if (!list_is_singular(&pool->xsk_tx_list)) {
463 /* Fallback to the non-batched version */
464 rcu_read_unlock();
465 return xsk_tx_peek_release_fallback(pool, nb_pkts);
466 }
467
468 xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list);
469 if (!xs) {
470 nb_pkts = 0;
471 goto out;
472 }
473
474 nb_pkts = xskq_cons_nb_entries(xs->tx, nb_pkts);
475
476 /* This is the backpressure mechanism for the Tx path. Try to
477 * reserve space in the completion queue for all packets, but
478 * if there are fewer slots available, just process that many
479 * packets. This avoids having to implement any buffering in
480 * the Tx path.
481 */
482 nb_pkts = xskq_prod_nb_free(pool->cq, nb_pkts);
483 if (!nb_pkts)
484 goto out;
485
486 nb_pkts = xskq_cons_read_desc_batch(xs->tx, pool, nb_pkts);
487 if (!nb_pkts) {
488 xs->tx->queue_empty_descs++;
489 goto out;
490 }
491
492 __xskq_cons_release(xs->tx);
493 xskq_prod_write_addr_batch(pool->cq, pool->tx_descs, nb_pkts);
494 xs->sk.sk_write_space(&xs->sk);
495
496 out:
497 rcu_read_unlock();
498 return nb_pkts;
499 }
500 EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch);
501
xsk_wakeup(struct xdp_sock * xs,u8 flags)502 static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
503 {
504 struct net_device *dev = xs->dev;
505
506 return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
507 }
508
xsk_cq_reserve_addr_locked(struct xdp_sock * xs,u64 addr)509 static int xsk_cq_reserve_addr_locked(struct xdp_sock *xs, u64 addr)
510 {
511 unsigned long flags;
512 int ret;
513
514 spin_lock_irqsave(&xs->pool->cq_lock, flags);
515 ret = xskq_prod_reserve_addr(xs->pool->cq, addr);
516 spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
517
518 return ret;
519 }
520
xsk_cq_submit_locked(struct xdp_sock * xs,u32 n)521 static void xsk_cq_submit_locked(struct xdp_sock *xs, u32 n)
522 {
523 unsigned long flags;
524
525 spin_lock_irqsave(&xs->pool->cq_lock, flags);
526 xskq_prod_submit_n(xs->pool->cq, n);
527 spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
528 }
529
xsk_cq_cancel_locked(struct xdp_sock * xs,u32 n)530 static void xsk_cq_cancel_locked(struct xdp_sock *xs, u32 n)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&xs->pool->cq_lock, flags);
535 xskq_prod_cancel_n(xs->pool->cq, n);
536 spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
537 }
538
xsk_get_num_desc(struct sk_buff * skb)539 static u32 xsk_get_num_desc(struct sk_buff *skb)
540 {
541 return skb ? (long)skb_shinfo(skb)->destructor_arg : 0;
542 }
543
xsk_destruct_skb(struct sk_buff * skb)544 static void xsk_destruct_skb(struct sk_buff *skb)
545 {
546 xsk_cq_submit_locked(xdp_sk(skb->sk), xsk_get_num_desc(skb));
547 sock_wfree(skb);
548 }
549
xsk_set_destructor_arg(struct sk_buff * skb)550 static void xsk_set_destructor_arg(struct sk_buff *skb)
551 {
552 long num = xsk_get_num_desc(xdp_sk(skb->sk)->skb) + 1;
553
554 skb_shinfo(skb)->destructor_arg = (void *)num;
555 }
556
xsk_consume_skb(struct sk_buff * skb)557 static void xsk_consume_skb(struct sk_buff *skb)
558 {
559 struct xdp_sock *xs = xdp_sk(skb->sk);
560
561 skb->destructor = sock_wfree;
562 xsk_cq_cancel_locked(xs, xsk_get_num_desc(skb));
563 /* Free skb without triggering the perf drop trace */
564 consume_skb(skb);
565 xs->skb = NULL;
566 }
567
xsk_drop_skb(struct sk_buff * skb)568 static void xsk_drop_skb(struct sk_buff *skb)
569 {
570 xdp_sk(skb->sk)->tx->invalid_descs += xsk_get_num_desc(skb);
571 xsk_consume_skb(skb);
572 }
573
xsk_build_skb_zerocopy(struct xdp_sock * xs,struct xdp_desc * desc)574 static struct sk_buff *xsk_build_skb_zerocopy(struct xdp_sock *xs,
575 struct xdp_desc *desc)
576 {
577 struct xsk_buff_pool *pool = xs->pool;
578 u32 hr, len, ts, offset, copy, copied;
579 struct sk_buff *skb = xs->skb;
580 struct page *page;
581 void *buffer;
582 int err, i;
583 u64 addr;
584
585 if (!skb) {
586 hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(xs->dev->needed_headroom));
587
588 skb = sock_alloc_send_skb(&xs->sk, hr, 1, &err);
589 if (unlikely(!skb))
590 return ERR_PTR(err);
591
592 skb_reserve(skb, hr);
593 }
594
595 addr = desc->addr;
596 len = desc->len;
597 ts = pool->unaligned ? len : pool->chunk_size;
598
599 buffer = xsk_buff_raw_get_data(pool, addr);
600 offset = offset_in_page(buffer);
601 addr = buffer - pool->addrs;
602
603 for (copied = 0, i = skb_shinfo(skb)->nr_frags; copied < len; i++) {
604 if (unlikely(i >= MAX_SKB_FRAGS))
605 return ERR_PTR(-EOVERFLOW);
606
607 page = pool->umem->pgs[addr >> PAGE_SHIFT];
608 get_page(page);
609
610 copy = min_t(u32, PAGE_SIZE - offset, len - copied);
611 skb_fill_page_desc(skb, i, page, offset, copy);
612
613 copied += copy;
614 addr += copy;
615 offset = 0;
616 }
617
618 skb->len += len;
619 skb->data_len += len;
620 skb->truesize += ts;
621
622 refcount_add(ts, &xs->sk.sk_wmem_alloc);
623
624 return skb;
625 }
626
xsk_build_skb(struct xdp_sock * xs,struct xdp_desc * desc)627 static struct sk_buff *xsk_build_skb(struct xdp_sock *xs,
628 struct xdp_desc *desc)
629 {
630 struct net_device *dev = xs->dev;
631 struct sk_buff *skb = xs->skb;
632 int err;
633
634 if (dev->priv_flags & IFF_TX_SKB_NO_LINEAR) {
635 skb = xsk_build_skb_zerocopy(xs, desc);
636 if (IS_ERR(skb)) {
637 err = PTR_ERR(skb);
638 goto free_err;
639 }
640 } else {
641 u32 hr, tr, len;
642 void *buffer;
643
644 buffer = xsk_buff_raw_get_data(xs->pool, desc->addr);
645 len = desc->len;
646
647 if (!skb) {
648 hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(dev->needed_headroom));
649 tr = dev->needed_tailroom;
650 skb = sock_alloc_send_skb(&xs->sk, hr + len + tr, 1, &err);
651 if (unlikely(!skb))
652 goto free_err;
653
654 skb_reserve(skb, hr);
655 skb_put(skb, len);
656
657 err = skb_store_bits(skb, 0, buffer, len);
658 if (unlikely(err)) {
659 kfree_skb(skb);
660 goto free_err;
661 }
662 } else {
663 int nr_frags = skb_shinfo(skb)->nr_frags;
664 struct page *page;
665 u8 *vaddr;
666
667 if (unlikely(nr_frags == (MAX_SKB_FRAGS - 1) && xp_mb_desc(desc))) {
668 err = -EOVERFLOW;
669 goto free_err;
670 }
671
672 page = alloc_page(xs->sk.sk_allocation);
673 if (unlikely(!page)) {
674 err = -EAGAIN;
675 goto free_err;
676 }
677
678 vaddr = kmap_local_page(page);
679 memcpy(vaddr, buffer, len);
680 kunmap_local(vaddr);
681
682 skb_add_rx_frag(skb, nr_frags, page, 0, len, 0);
683 }
684 }
685
686 skb->dev = dev;
687 skb->priority = xs->sk.sk_priority;
688 skb->mark = READ_ONCE(xs->sk.sk_mark);
689 skb->destructor = xsk_destruct_skb;
690 xsk_set_destructor_arg(skb);
691
692 return skb;
693
694 free_err:
695 if (err == -EOVERFLOW) {
696 /* Drop the packet */
697 xsk_set_destructor_arg(xs->skb);
698 xsk_drop_skb(xs->skb);
699 xskq_cons_release(xs->tx);
700 } else {
701 /* Let application retry */
702 xsk_cq_cancel_locked(xs, 1);
703 }
704
705 return ERR_PTR(err);
706 }
707
__xsk_generic_xmit(struct sock * sk)708 static int __xsk_generic_xmit(struct sock *sk)
709 {
710 struct xdp_sock *xs = xdp_sk(sk);
711 u32 max_batch = TX_BATCH_SIZE;
712 bool sent_frame = false;
713 struct xdp_desc desc;
714 struct sk_buff *skb;
715 int err = 0;
716
717 mutex_lock(&xs->mutex);
718
719 /* Since we dropped the RCU read lock, the socket state might have changed. */
720 if (unlikely(!xsk_is_bound(xs))) {
721 err = -ENXIO;
722 goto out;
723 }
724
725 if (xs->queue_id >= xs->dev->real_num_tx_queues)
726 goto out;
727
728 while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) {
729 if (max_batch-- == 0) {
730 err = -EAGAIN;
731 goto out;
732 }
733
734 /* This is the backpressure mechanism for the Tx path.
735 * Reserve space in the completion queue and only proceed
736 * if there is space in it. This avoids having to implement
737 * any buffering in the Tx path.
738 */
739 if (xsk_cq_reserve_addr_locked(xs, desc.addr))
740 goto out;
741
742 skb = xsk_build_skb(xs, &desc);
743 if (IS_ERR(skb)) {
744 err = PTR_ERR(skb);
745 if (err != -EOVERFLOW)
746 goto out;
747 err = 0;
748 continue;
749 }
750
751 xskq_cons_release(xs->tx);
752
753 if (xp_mb_desc(&desc)) {
754 xs->skb = skb;
755 continue;
756 }
757
758 err = __dev_direct_xmit(skb, xs->queue_id);
759 if (err == NETDEV_TX_BUSY) {
760 /* Tell user-space to retry the send */
761 xskq_cons_cancel_n(xs->tx, xsk_get_num_desc(skb));
762 xsk_consume_skb(skb);
763 err = -EAGAIN;
764 goto out;
765 }
766
767 /* Ignore NET_XMIT_CN as packet might have been sent */
768 if (err == NET_XMIT_DROP) {
769 /* SKB completed but not sent */
770 err = -EBUSY;
771 xs->skb = NULL;
772 goto out;
773 }
774
775 sent_frame = true;
776 xs->skb = NULL;
777 }
778
779 if (xskq_has_descs(xs->tx)) {
780 if (xs->skb)
781 xsk_drop_skb(xs->skb);
782 xskq_cons_release(xs->tx);
783 }
784
785 out:
786 if (sent_frame)
787 if (xsk_tx_writeable(xs))
788 sk->sk_write_space(sk);
789
790 mutex_unlock(&xs->mutex);
791 return err;
792 }
793
xsk_generic_xmit(struct sock * sk)794 static int xsk_generic_xmit(struct sock *sk)
795 {
796 int ret;
797
798 /* Drop the RCU lock since the SKB path might sleep. */
799 rcu_read_unlock();
800 ret = __xsk_generic_xmit(sk);
801 /* Reaquire RCU lock before going into common code. */
802 rcu_read_lock();
803
804 return ret;
805 }
806
xsk_no_wakeup(struct sock * sk)807 static bool xsk_no_wakeup(struct sock *sk)
808 {
809 #ifdef CONFIG_NET_RX_BUSY_POLL
810 /* Prefer busy-polling, skip the wakeup. */
811 return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) &&
812 READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID;
813 #else
814 return false;
815 #endif
816 }
817
xsk_check_common(struct xdp_sock * xs)818 static int xsk_check_common(struct xdp_sock *xs)
819 {
820 if (unlikely(!xsk_is_bound(xs)))
821 return -ENXIO;
822 if (unlikely(!(xs->dev->flags & IFF_UP)))
823 return -ENETDOWN;
824
825 return 0;
826 }
827
__xsk_sendmsg(struct socket * sock,struct msghdr * m,size_t total_len)828 static int __xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
829 {
830 bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
831 struct sock *sk = sock->sk;
832 struct xdp_sock *xs = xdp_sk(sk);
833 struct xsk_buff_pool *pool;
834 int err;
835
836 err = xsk_check_common(xs);
837 if (err)
838 return err;
839 if (unlikely(need_wait))
840 return -EOPNOTSUPP;
841 if (unlikely(!xs->tx))
842 return -ENOBUFS;
843
844 if (sk_can_busy_loop(sk)) {
845 if (xs->zc)
846 __sk_mark_napi_id_once(sk, xsk_pool_get_napi_id(xs->pool));
847 sk_busy_loop(sk, 1); /* only support non-blocking sockets */
848 }
849
850 if (xs->zc && xsk_no_wakeup(sk))
851 return 0;
852
853 pool = xs->pool;
854 if (pool->cached_need_wakeup & XDP_WAKEUP_TX) {
855 if (xs->zc)
856 return xsk_wakeup(xs, XDP_WAKEUP_TX);
857 return xsk_generic_xmit(sk);
858 }
859 return 0;
860 }
861
xsk_sendmsg(struct socket * sock,struct msghdr * m,size_t total_len)862 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
863 {
864 int ret;
865
866 rcu_read_lock();
867 ret = __xsk_sendmsg(sock, m, total_len);
868 rcu_read_unlock();
869
870 return ret;
871 }
872
__xsk_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)873 static int __xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
874 {
875 bool need_wait = !(flags & MSG_DONTWAIT);
876 struct sock *sk = sock->sk;
877 struct xdp_sock *xs = xdp_sk(sk);
878 int err;
879
880 err = xsk_check_common(xs);
881 if (err)
882 return err;
883 if (unlikely(!xs->rx))
884 return -ENOBUFS;
885 if (unlikely(need_wait))
886 return -EOPNOTSUPP;
887
888 if (sk_can_busy_loop(sk))
889 sk_busy_loop(sk, 1); /* only support non-blocking sockets */
890
891 if (xsk_no_wakeup(sk))
892 return 0;
893
894 if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc)
895 return xsk_wakeup(xs, XDP_WAKEUP_RX);
896 return 0;
897 }
898
xsk_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)899 static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
900 {
901 int ret;
902
903 rcu_read_lock();
904 ret = __xsk_recvmsg(sock, m, len, flags);
905 rcu_read_unlock();
906
907 return ret;
908 }
909
xsk_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)910 static __poll_t xsk_poll(struct file *file, struct socket *sock,
911 struct poll_table_struct *wait)
912 {
913 __poll_t mask = 0;
914 struct sock *sk = sock->sk;
915 struct xdp_sock *xs = xdp_sk(sk);
916 struct xsk_buff_pool *pool;
917
918 sock_poll_wait(file, sock, wait);
919
920 rcu_read_lock();
921 if (xsk_check_common(xs))
922 goto skip_tx;
923
924 pool = xs->pool;
925
926 if (pool->cached_need_wakeup) {
927 if (xs->zc)
928 xsk_wakeup(xs, pool->cached_need_wakeup);
929 else if (xs->tx)
930 /* Poll needs to drive Tx also in copy mode */
931 xsk_generic_xmit(sk);
932 }
933
934 skip_tx:
935 if (xs->rx && !xskq_prod_is_empty(xs->rx))
936 mask |= EPOLLIN | EPOLLRDNORM;
937 if (xs->tx && xsk_tx_writeable(xs))
938 mask |= EPOLLOUT | EPOLLWRNORM;
939
940 rcu_read_unlock();
941 return mask;
942 }
943
xsk_init_queue(u32 entries,struct xsk_queue ** queue,bool umem_queue)944 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
945 bool umem_queue)
946 {
947 struct xsk_queue *q;
948
949 if (entries == 0 || *queue || !is_power_of_2(entries))
950 return -EINVAL;
951
952 q = xskq_create(entries, umem_queue);
953 if (!q)
954 return -ENOMEM;
955
956 /* Make sure queue is ready before it can be seen by others */
957 smp_wmb();
958 WRITE_ONCE(*queue, q);
959 return 0;
960 }
961
xsk_unbind_dev(struct xdp_sock * xs)962 static void xsk_unbind_dev(struct xdp_sock *xs)
963 {
964 struct net_device *dev = xs->dev;
965
966 if (xs->state != XSK_BOUND)
967 return;
968 WRITE_ONCE(xs->state, XSK_UNBOUND);
969
970 /* Wait for driver to stop using the xdp socket. */
971 xp_del_xsk(xs->pool, xs);
972 synchronize_net();
973 dev_put(dev);
974 }
975
xsk_get_map_list_entry(struct xdp_sock * xs,struct xdp_sock __rcu *** map_entry)976 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
977 struct xdp_sock __rcu ***map_entry)
978 {
979 struct xsk_map *map = NULL;
980 struct xsk_map_node *node;
981
982 *map_entry = NULL;
983
984 spin_lock_bh(&xs->map_list_lock);
985 node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
986 node);
987 if (node) {
988 bpf_map_inc(&node->map->map);
989 map = node->map;
990 *map_entry = node->map_entry;
991 }
992 spin_unlock_bh(&xs->map_list_lock);
993 return map;
994 }
995
xsk_delete_from_maps(struct xdp_sock * xs)996 static void xsk_delete_from_maps(struct xdp_sock *xs)
997 {
998 /* This function removes the current XDP socket from all the
999 * maps it resides in. We need to take extra care here, due to
1000 * the two locks involved. Each map has a lock synchronizing
1001 * updates to the entries, and each socket has a lock that
1002 * synchronizes access to the list of maps (map_list). For
1003 * deadlock avoidance the locks need to be taken in the order
1004 * "map lock"->"socket map list lock". We start off by
1005 * accessing the socket map list, and take a reference to the
1006 * map to guarantee existence between the
1007 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
1008 * calls. Then we ask the map to remove the socket, which
1009 * tries to remove the socket from the map. Note that there
1010 * might be updates to the map between
1011 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
1012 */
1013 struct xdp_sock __rcu **map_entry = NULL;
1014 struct xsk_map *map;
1015
1016 while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
1017 xsk_map_try_sock_delete(map, xs, map_entry);
1018 bpf_map_put(&map->map);
1019 }
1020 }
1021
xsk_release(struct socket * sock)1022 static int xsk_release(struct socket *sock)
1023 {
1024 struct sock *sk = sock->sk;
1025 struct xdp_sock *xs = xdp_sk(sk);
1026 struct net *net;
1027
1028 if (!sk)
1029 return 0;
1030
1031 net = sock_net(sk);
1032
1033 if (xs->skb)
1034 xsk_drop_skb(xs->skb);
1035
1036 mutex_lock(&net->xdp.lock);
1037 sk_del_node_init_rcu(sk);
1038 mutex_unlock(&net->xdp.lock);
1039
1040 sock_prot_inuse_add(net, sk->sk_prot, -1);
1041
1042 xsk_delete_from_maps(xs);
1043 mutex_lock(&xs->mutex);
1044 xsk_unbind_dev(xs);
1045 mutex_unlock(&xs->mutex);
1046
1047 xskq_destroy(xs->rx);
1048 xskq_destroy(xs->tx);
1049 xskq_destroy(xs->fq_tmp);
1050 xskq_destroy(xs->cq_tmp);
1051
1052 sock_orphan(sk);
1053 sock->sk = NULL;
1054
1055 sock_put(sk);
1056
1057 return 0;
1058 }
1059
xsk_lookup_xsk_from_fd(int fd)1060 static struct socket *xsk_lookup_xsk_from_fd(int fd)
1061 {
1062 struct socket *sock;
1063 int err;
1064
1065 sock = sockfd_lookup(fd, &err);
1066 if (!sock)
1067 return ERR_PTR(-ENOTSOCK);
1068
1069 if (sock->sk->sk_family != PF_XDP) {
1070 sockfd_put(sock);
1071 return ERR_PTR(-ENOPROTOOPT);
1072 }
1073
1074 return sock;
1075 }
1076
xsk_validate_queues(struct xdp_sock * xs)1077 static bool xsk_validate_queues(struct xdp_sock *xs)
1078 {
1079 return xs->fq_tmp && xs->cq_tmp;
1080 }
1081
xsk_bind(struct socket * sock,struct sockaddr * addr,int addr_len)1082 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
1083 {
1084 struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
1085 struct sock *sk = sock->sk;
1086 struct xdp_sock *xs = xdp_sk(sk);
1087 struct net_device *dev;
1088 int bound_dev_if;
1089 u32 flags, qid;
1090 int err = 0;
1091
1092 if (addr_len < sizeof(struct sockaddr_xdp))
1093 return -EINVAL;
1094 if (sxdp->sxdp_family != AF_XDP)
1095 return -EINVAL;
1096
1097 flags = sxdp->sxdp_flags;
1098 if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
1099 XDP_USE_NEED_WAKEUP | XDP_USE_SG))
1100 return -EINVAL;
1101
1102 bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
1103 if (bound_dev_if && bound_dev_if != sxdp->sxdp_ifindex)
1104 return -EINVAL;
1105
1106 rtnl_lock();
1107 mutex_lock(&xs->mutex);
1108 if (xs->state != XSK_READY) {
1109 err = -EBUSY;
1110 goto out_release;
1111 }
1112
1113 dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
1114 if (!dev) {
1115 err = -ENODEV;
1116 goto out_release;
1117 }
1118
1119 if (!xs->rx && !xs->tx) {
1120 err = -EINVAL;
1121 goto out_unlock;
1122 }
1123
1124 qid = sxdp->sxdp_queue_id;
1125
1126 if (flags & XDP_SHARED_UMEM) {
1127 struct xdp_sock *umem_xs;
1128 struct socket *sock;
1129
1130 if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
1131 (flags & XDP_USE_NEED_WAKEUP) || (flags & XDP_USE_SG)) {
1132 /* Cannot specify flags for shared sockets. */
1133 err = -EINVAL;
1134 goto out_unlock;
1135 }
1136
1137 if (xs->umem) {
1138 /* We have already our own. */
1139 err = -EINVAL;
1140 goto out_unlock;
1141 }
1142
1143 sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
1144 if (IS_ERR(sock)) {
1145 err = PTR_ERR(sock);
1146 goto out_unlock;
1147 }
1148
1149 umem_xs = xdp_sk(sock->sk);
1150 if (!xsk_is_bound(umem_xs)) {
1151 err = -EBADF;
1152 sockfd_put(sock);
1153 goto out_unlock;
1154 }
1155
1156 if (umem_xs->queue_id != qid || umem_xs->dev != dev) {
1157 /* Share the umem with another socket on another qid
1158 * and/or device.
1159 */
1160 xs->pool = xp_create_and_assign_umem(xs,
1161 umem_xs->umem);
1162 if (!xs->pool) {
1163 err = -ENOMEM;
1164 sockfd_put(sock);
1165 goto out_unlock;
1166 }
1167
1168 err = xp_assign_dev_shared(xs->pool, umem_xs, dev,
1169 qid);
1170 if (err) {
1171 xp_destroy(xs->pool);
1172 xs->pool = NULL;
1173 sockfd_put(sock);
1174 goto out_unlock;
1175 }
1176 } else {
1177 /* Share the buffer pool with the other socket. */
1178 if (xs->fq_tmp || xs->cq_tmp) {
1179 /* Do not allow setting your own fq or cq. */
1180 err = -EINVAL;
1181 sockfd_put(sock);
1182 goto out_unlock;
1183 }
1184
1185 xp_get_pool(umem_xs->pool);
1186 xs->pool = umem_xs->pool;
1187
1188 /* If underlying shared umem was created without Tx
1189 * ring, allocate Tx descs array that Tx batching API
1190 * utilizes
1191 */
1192 if (xs->tx && !xs->pool->tx_descs) {
1193 err = xp_alloc_tx_descs(xs->pool, xs);
1194 if (err) {
1195 xp_put_pool(xs->pool);
1196 xs->pool = NULL;
1197 sockfd_put(sock);
1198 goto out_unlock;
1199 }
1200 }
1201 }
1202
1203 xdp_get_umem(umem_xs->umem);
1204 WRITE_ONCE(xs->umem, umem_xs->umem);
1205 sockfd_put(sock);
1206 } else if (!xs->umem || !xsk_validate_queues(xs)) {
1207 err = -EINVAL;
1208 goto out_unlock;
1209 } else {
1210 /* This xsk has its own umem. */
1211 xs->pool = xp_create_and_assign_umem(xs, xs->umem);
1212 if (!xs->pool) {
1213 err = -ENOMEM;
1214 goto out_unlock;
1215 }
1216
1217 err = xp_assign_dev(xs->pool, dev, qid, flags);
1218 if (err) {
1219 xp_destroy(xs->pool);
1220 xs->pool = NULL;
1221 goto out_unlock;
1222 }
1223 }
1224
1225 /* FQ and CQ are now owned by the buffer pool and cleaned up with it. */
1226 xs->fq_tmp = NULL;
1227 xs->cq_tmp = NULL;
1228
1229 xs->dev = dev;
1230 xs->zc = xs->umem->zc;
1231 xs->sg = !!(flags & XDP_USE_SG);
1232 xs->queue_id = qid;
1233 xp_add_xsk(xs->pool, xs);
1234
1235 out_unlock:
1236 if (err) {
1237 dev_put(dev);
1238 } else {
1239 /* Matches smp_rmb() in bind() for shared umem
1240 * sockets, and xsk_is_bound().
1241 */
1242 smp_wmb();
1243 WRITE_ONCE(xs->state, XSK_BOUND);
1244 }
1245 out_release:
1246 mutex_unlock(&xs->mutex);
1247 rtnl_unlock();
1248 return err;
1249 }
1250
1251 struct xdp_umem_reg_v1 {
1252 __u64 addr; /* Start of packet data area */
1253 __u64 len; /* Length of packet data area */
1254 __u32 chunk_size;
1255 __u32 headroom;
1256 };
1257
xsk_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1258 static int xsk_setsockopt(struct socket *sock, int level, int optname,
1259 sockptr_t optval, unsigned int optlen)
1260 {
1261 struct sock *sk = sock->sk;
1262 struct xdp_sock *xs = xdp_sk(sk);
1263 int err;
1264
1265 if (level != SOL_XDP)
1266 return -ENOPROTOOPT;
1267
1268 switch (optname) {
1269 case XDP_RX_RING:
1270 case XDP_TX_RING:
1271 {
1272 struct xsk_queue **q;
1273 int entries;
1274
1275 if (optlen < sizeof(entries))
1276 return -EINVAL;
1277 if (copy_from_sockptr(&entries, optval, sizeof(entries)))
1278 return -EFAULT;
1279
1280 mutex_lock(&xs->mutex);
1281 if (xs->state != XSK_READY) {
1282 mutex_unlock(&xs->mutex);
1283 return -EBUSY;
1284 }
1285 q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
1286 err = xsk_init_queue(entries, q, false);
1287 if (!err && optname == XDP_TX_RING)
1288 /* Tx needs to be explicitly woken up the first time */
1289 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
1290 mutex_unlock(&xs->mutex);
1291 return err;
1292 }
1293 case XDP_UMEM_REG:
1294 {
1295 size_t mr_size = sizeof(struct xdp_umem_reg);
1296 struct xdp_umem_reg mr = {};
1297 struct xdp_umem *umem;
1298
1299 if (optlen < sizeof(struct xdp_umem_reg_v1))
1300 return -EINVAL;
1301 else if (optlen < sizeof(mr))
1302 mr_size = sizeof(struct xdp_umem_reg_v1);
1303
1304 if (copy_from_sockptr(&mr, optval, mr_size))
1305 return -EFAULT;
1306
1307 mutex_lock(&xs->mutex);
1308 if (xs->state != XSK_READY || xs->umem) {
1309 mutex_unlock(&xs->mutex);
1310 return -EBUSY;
1311 }
1312
1313 umem = xdp_umem_create(&mr);
1314 if (IS_ERR(umem)) {
1315 mutex_unlock(&xs->mutex);
1316 return PTR_ERR(umem);
1317 }
1318
1319 /* Make sure umem is ready before it can be seen by others */
1320 smp_wmb();
1321 WRITE_ONCE(xs->umem, umem);
1322 mutex_unlock(&xs->mutex);
1323 return 0;
1324 }
1325 case XDP_UMEM_FILL_RING:
1326 case XDP_UMEM_COMPLETION_RING:
1327 {
1328 struct xsk_queue **q;
1329 int entries;
1330
1331 if (copy_from_sockptr(&entries, optval, sizeof(entries)))
1332 return -EFAULT;
1333
1334 mutex_lock(&xs->mutex);
1335 if (xs->state != XSK_READY) {
1336 mutex_unlock(&xs->mutex);
1337 return -EBUSY;
1338 }
1339
1340 q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp :
1341 &xs->cq_tmp;
1342 err = xsk_init_queue(entries, q, true);
1343 mutex_unlock(&xs->mutex);
1344 return err;
1345 }
1346 default:
1347 break;
1348 }
1349
1350 return -ENOPROTOOPT;
1351 }
1352
xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 * ring)1353 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
1354 {
1355 ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
1356 ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
1357 ring->desc = offsetof(struct xdp_rxtx_ring, desc);
1358 }
1359
xsk_enter_umem_offsets(struct xdp_ring_offset_v1 * ring)1360 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
1361 {
1362 ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
1363 ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
1364 ring->desc = offsetof(struct xdp_umem_ring, desc);
1365 }
1366
1367 struct xdp_statistics_v1 {
1368 __u64 rx_dropped;
1369 __u64 rx_invalid_descs;
1370 __u64 tx_invalid_descs;
1371 };
1372
xsk_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1373 static int xsk_getsockopt(struct socket *sock, int level, int optname,
1374 char __user *optval, int __user *optlen)
1375 {
1376 struct sock *sk = sock->sk;
1377 struct xdp_sock *xs = xdp_sk(sk);
1378 int len;
1379
1380 if (level != SOL_XDP)
1381 return -ENOPROTOOPT;
1382
1383 if (get_user(len, optlen))
1384 return -EFAULT;
1385 if (len < 0)
1386 return -EINVAL;
1387
1388 switch (optname) {
1389 case XDP_STATISTICS:
1390 {
1391 struct xdp_statistics stats = {};
1392 bool extra_stats = true;
1393 size_t stats_size;
1394
1395 if (len < sizeof(struct xdp_statistics_v1)) {
1396 return -EINVAL;
1397 } else if (len < sizeof(stats)) {
1398 extra_stats = false;
1399 stats_size = sizeof(struct xdp_statistics_v1);
1400 } else {
1401 stats_size = sizeof(stats);
1402 }
1403
1404 mutex_lock(&xs->mutex);
1405 stats.rx_dropped = xs->rx_dropped;
1406 if (extra_stats) {
1407 stats.rx_ring_full = xs->rx_queue_full;
1408 stats.rx_fill_ring_empty_descs =
1409 xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0;
1410 stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx);
1411 } else {
1412 stats.rx_dropped += xs->rx_queue_full;
1413 }
1414 stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
1415 stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
1416 mutex_unlock(&xs->mutex);
1417
1418 if (copy_to_user(optval, &stats, stats_size))
1419 return -EFAULT;
1420 if (put_user(stats_size, optlen))
1421 return -EFAULT;
1422
1423 return 0;
1424 }
1425 case XDP_MMAP_OFFSETS:
1426 {
1427 struct xdp_mmap_offsets off;
1428 struct xdp_mmap_offsets_v1 off_v1;
1429 bool flags_supported = true;
1430 void *to_copy;
1431
1432 if (len < sizeof(off_v1))
1433 return -EINVAL;
1434 else if (len < sizeof(off))
1435 flags_supported = false;
1436
1437 if (flags_supported) {
1438 /* xdp_ring_offset is identical to xdp_ring_offset_v1
1439 * except for the flags field added to the end.
1440 */
1441 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
1442 &off.rx);
1443 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
1444 &off.tx);
1445 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
1446 &off.fr);
1447 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
1448 &off.cr);
1449 off.rx.flags = offsetof(struct xdp_rxtx_ring,
1450 ptrs.flags);
1451 off.tx.flags = offsetof(struct xdp_rxtx_ring,
1452 ptrs.flags);
1453 off.fr.flags = offsetof(struct xdp_umem_ring,
1454 ptrs.flags);
1455 off.cr.flags = offsetof(struct xdp_umem_ring,
1456 ptrs.flags);
1457
1458 len = sizeof(off);
1459 to_copy = &off;
1460 } else {
1461 xsk_enter_rxtx_offsets(&off_v1.rx);
1462 xsk_enter_rxtx_offsets(&off_v1.tx);
1463 xsk_enter_umem_offsets(&off_v1.fr);
1464 xsk_enter_umem_offsets(&off_v1.cr);
1465
1466 len = sizeof(off_v1);
1467 to_copy = &off_v1;
1468 }
1469
1470 if (copy_to_user(optval, to_copy, len))
1471 return -EFAULT;
1472 if (put_user(len, optlen))
1473 return -EFAULT;
1474
1475 return 0;
1476 }
1477 case XDP_OPTIONS:
1478 {
1479 struct xdp_options opts = {};
1480
1481 if (len < sizeof(opts))
1482 return -EINVAL;
1483
1484 mutex_lock(&xs->mutex);
1485 if (xs->zc)
1486 opts.flags |= XDP_OPTIONS_ZEROCOPY;
1487 mutex_unlock(&xs->mutex);
1488
1489 len = sizeof(opts);
1490 if (copy_to_user(optval, &opts, len))
1491 return -EFAULT;
1492 if (put_user(len, optlen))
1493 return -EFAULT;
1494
1495 return 0;
1496 }
1497 default:
1498 break;
1499 }
1500
1501 return -EOPNOTSUPP;
1502 }
1503
xsk_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1504 static int xsk_mmap(struct file *file, struct socket *sock,
1505 struct vm_area_struct *vma)
1506 {
1507 loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1508 unsigned long size = vma->vm_end - vma->vm_start;
1509 struct xdp_sock *xs = xdp_sk(sock->sk);
1510 int state = READ_ONCE(xs->state);
1511 struct xsk_queue *q = NULL;
1512
1513 if (state != XSK_READY && state != XSK_BOUND)
1514 return -EBUSY;
1515
1516 if (offset == XDP_PGOFF_RX_RING) {
1517 q = READ_ONCE(xs->rx);
1518 } else if (offset == XDP_PGOFF_TX_RING) {
1519 q = READ_ONCE(xs->tx);
1520 } else {
1521 /* Matches the smp_wmb() in XDP_UMEM_REG */
1522 smp_rmb();
1523 if (offset == XDP_UMEM_PGOFF_FILL_RING)
1524 q = state == XSK_READY ? READ_ONCE(xs->fq_tmp) :
1525 READ_ONCE(xs->pool->fq);
1526 else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
1527 q = state == XSK_READY ? READ_ONCE(xs->cq_tmp) :
1528 READ_ONCE(xs->pool->cq);
1529 }
1530
1531 if (!q)
1532 return -EINVAL;
1533
1534 /* Matches the smp_wmb() in xsk_init_queue */
1535 smp_rmb();
1536 if (size > q->ring_vmalloc_size)
1537 return -EINVAL;
1538
1539 return remap_vmalloc_range(vma, q->ring, 0);
1540 }
1541
xsk_notifier(struct notifier_block * this,unsigned long msg,void * ptr)1542 static int xsk_notifier(struct notifier_block *this,
1543 unsigned long msg, void *ptr)
1544 {
1545 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1546 struct net *net = dev_net(dev);
1547 struct sock *sk;
1548
1549 switch (msg) {
1550 case NETDEV_UNREGISTER:
1551 mutex_lock(&net->xdp.lock);
1552 sk_for_each(sk, &net->xdp.list) {
1553 struct xdp_sock *xs = xdp_sk(sk);
1554
1555 mutex_lock(&xs->mutex);
1556 if (xs->dev == dev) {
1557 sk->sk_err = ENETDOWN;
1558 if (!sock_flag(sk, SOCK_DEAD))
1559 sk_error_report(sk);
1560
1561 xsk_unbind_dev(xs);
1562
1563 /* Clear device references. */
1564 xp_clear_dev(xs->pool);
1565 }
1566 mutex_unlock(&xs->mutex);
1567 }
1568 mutex_unlock(&net->xdp.lock);
1569 break;
1570 }
1571 return NOTIFY_DONE;
1572 }
1573
1574 static struct proto xsk_proto = {
1575 .name = "XDP",
1576 .owner = THIS_MODULE,
1577 .obj_size = sizeof(struct xdp_sock),
1578 };
1579
1580 static const struct proto_ops xsk_proto_ops = {
1581 .family = PF_XDP,
1582 .owner = THIS_MODULE,
1583 .release = xsk_release,
1584 .bind = xsk_bind,
1585 .connect = sock_no_connect,
1586 .socketpair = sock_no_socketpair,
1587 .accept = sock_no_accept,
1588 .getname = sock_no_getname,
1589 .poll = xsk_poll,
1590 .ioctl = sock_no_ioctl,
1591 .listen = sock_no_listen,
1592 .shutdown = sock_no_shutdown,
1593 .setsockopt = xsk_setsockopt,
1594 .getsockopt = xsk_getsockopt,
1595 .sendmsg = xsk_sendmsg,
1596 .recvmsg = xsk_recvmsg,
1597 .mmap = xsk_mmap,
1598 };
1599
xsk_destruct(struct sock * sk)1600 static void xsk_destruct(struct sock *sk)
1601 {
1602 struct xdp_sock *xs = xdp_sk(sk);
1603
1604 if (!sock_flag(sk, SOCK_DEAD))
1605 return;
1606
1607 if (!xp_put_pool(xs->pool))
1608 xdp_put_umem(xs->umem, !xs->pool);
1609 }
1610
xsk_create(struct net * net,struct socket * sock,int protocol,int kern)1611 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1612 int kern)
1613 {
1614 struct xdp_sock *xs;
1615 struct sock *sk;
1616
1617 if (!ns_capable(net->user_ns, CAP_NET_RAW))
1618 return -EPERM;
1619 if (sock->type != SOCK_RAW)
1620 return -ESOCKTNOSUPPORT;
1621
1622 if (protocol)
1623 return -EPROTONOSUPPORT;
1624
1625 sock->state = SS_UNCONNECTED;
1626
1627 sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1628 if (!sk)
1629 return -ENOBUFS;
1630
1631 sock->ops = &xsk_proto_ops;
1632
1633 sock_init_data(sock, sk);
1634
1635 sk->sk_family = PF_XDP;
1636
1637 sk->sk_destruct = xsk_destruct;
1638
1639 sock_set_flag(sk, SOCK_RCU_FREE);
1640
1641 xs = xdp_sk(sk);
1642 xs->state = XSK_READY;
1643 mutex_init(&xs->mutex);
1644 spin_lock_init(&xs->rx_lock);
1645
1646 INIT_LIST_HEAD(&xs->map_list);
1647 spin_lock_init(&xs->map_list_lock);
1648
1649 mutex_lock(&net->xdp.lock);
1650 sk_add_node_rcu(sk, &net->xdp.list);
1651 mutex_unlock(&net->xdp.lock);
1652
1653 sock_prot_inuse_add(net, &xsk_proto, 1);
1654
1655 return 0;
1656 }
1657
1658 static const struct net_proto_family xsk_family_ops = {
1659 .family = PF_XDP,
1660 .create = xsk_create,
1661 .owner = THIS_MODULE,
1662 };
1663
1664 static struct notifier_block xsk_netdev_notifier = {
1665 .notifier_call = xsk_notifier,
1666 };
1667
xsk_net_init(struct net * net)1668 static int __net_init xsk_net_init(struct net *net)
1669 {
1670 mutex_init(&net->xdp.lock);
1671 INIT_HLIST_HEAD(&net->xdp.list);
1672 return 0;
1673 }
1674
xsk_net_exit(struct net * net)1675 static void __net_exit xsk_net_exit(struct net *net)
1676 {
1677 WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1678 }
1679
1680 static struct pernet_operations xsk_net_ops = {
1681 .init = xsk_net_init,
1682 .exit = xsk_net_exit,
1683 };
1684
xsk_init(void)1685 static int __init xsk_init(void)
1686 {
1687 int err, cpu;
1688
1689 err = proto_register(&xsk_proto, 0 /* no slab */);
1690 if (err)
1691 goto out;
1692
1693 err = sock_register(&xsk_family_ops);
1694 if (err)
1695 goto out_proto;
1696
1697 err = register_pernet_subsys(&xsk_net_ops);
1698 if (err)
1699 goto out_sk;
1700
1701 err = register_netdevice_notifier(&xsk_netdev_notifier);
1702 if (err)
1703 goto out_pernet;
1704
1705 for_each_possible_cpu(cpu)
1706 INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
1707 return 0;
1708
1709 out_pernet:
1710 unregister_pernet_subsys(&xsk_net_ops);
1711 out_sk:
1712 sock_unregister(PF_XDP);
1713 out_proto:
1714 proto_unregister(&xsk_proto);
1715 out:
1716 return err;
1717 }
1718
1719 fs_initcall(xsk_init);
1720