1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include "x86.h"
23 #include "lapic.h"
24 #include "ioapic.h"
25 #include "cpuid.h"
26 #include "hyperv.h"
27 #include "mmu.h"
28 #include "xen.h"
29
30 #include <linux/cpu.h>
31 #include <linux/kvm_host.h>
32 #include <linux/highmem.h>
33 #include <linux/sched/cputime.h>
34 #include <linux/spinlock.h>
35 #include <linux/eventfd.h>
36
37 #include <asm/apicdef.h>
38 #include <asm/mshyperv.h>
39 #include <trace/events/kvm.h>
40
41 #include "trace.h"
42 #include "irq.h"
43 #include "fpu.h"
44
45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
46
47 /*
48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50 * where each bit tells which extended hypercall is available besides
51 * HvExtCallQueryCapabilities.
52 *
53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54 * assigned.
55 *
56 * 0x8002 - Bit 0
57 * 0x8003 - Bit 1
58 * ..
59 * 0x8041 - Bit 63
60 *
61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62 */
63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64
65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66 bool vcpu_kick);
67
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)68 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69 {
70 return atomic64_read(&synic->sint[sint]);
71 }
72
synic_get_sint_vector(u64 sint_value)73 static inline int synic_get_sint_vector(u64 sint_value)
74 {
75 if (sint_value & HV_SYNIC_SINT_MASKED)
76 return -1;
77 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78 }
79
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81 int vector)
82 {
83 int i;
84
85 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
87 return true;
88 }
89 return false;
90 }
91
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93 int vector)
94 {
95 int i;
96 u64 sint_value;
97
98 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99 sint_value = synic_read_sint(synic, i);
100 if (synic_get_sint_vector(sint_value) == vector &&
101 sint_value & HV_SYNIC_SINT_AUTO_EOI)
102 return true;
103 }
104 return false;
105 }
106
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)107 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108 int vector)
109 {
110 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
112 bool auto_eoi_old, auto_eoi_new;
113
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115 return;
116
117 if (synic_has_vector_connected(synic, vector))
118 __set_bit(vector, synic->vec_bitmap);
119 else
120 __clear_bit(vector, synic->vec_bitmap);
121
122 auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
123
124 if (synic_has_vector_auto_eoi(synic, vector))
125 __set_bit(vector, synic->auto_eoi_bitmap);
126 else
127 __clear_bit(vector, synic->auto_eoi_bitmap);
128
129 auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
130
131 if (auto_eoi_old == auto_eoi_new)
132 return;
133
134 if (!enable_apicv)
135 return;
136
137 down_write(&vcpu->kvm->arch.apicv_update_lock);
138
139 if (auto_eoi_new)
140 hv->synic_auto_eoi_used++;
141 else
142 hv->synic_auto_eoi_used--;
143
144 /*
145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 * the hypervisor to manually inject IRQs.
147 */
148 __kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
149 APICV_INHIBIT_REASON_HYPERV,
150 !!hv->synic_auto_eoi_used);
151
152 up_write(&vcpu->kvm->arch.apicv_update_lock);
153 }
154
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)155 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156 u64 data, bool host)
157 {
158 int vector, old_vector;
159 bool masked;
160
161 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
162 masked = data & HV_SYNIC_SINT_MASKED;
163
164 /*
165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 * default '0x10000' value on boot and this should not #GP. We need to
167 * allow zero-initing the register from host as well.
168 */
169 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
170 return 1;
171 /*
172 * Guest may configure multiple SINTs to use the same vector, so
173 * we maintain a bitmap of vectors handled by synic, and a
174 * bitmap of vectors with auto-eoi behavior. The bitmaps are
175 * updated here, and atomically queried on fast paths.
176 */
177 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
178
179 atomic64_set(&synic->sint[sint], data);
180
181 synic_update_vector(synic, old_vector);
182
183 synic_update_vector(synic, vector);
184
185 /* Load SynIC vectors into EOI exit bitmap */
186 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
187 return 0;
188 }
189
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)190 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191 {
192 struct kvm_vcpu *vcpu = NULL;
193 unsigned long i;
194
195 if (vpidx >= KVM_MAX_VCPUS)
196 return NULL;
197
198 vcpu = kvm_get_vcpu(kvm, vpidx);
199 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
200 return vcpu;
201 kvm_for_each_vcpu(i, vcpu, kvm)
202 if (kvm_hv_get_vpindex(vcpu) == vpidx)
203 return vcpu;
204 return NULL;
205 }
206
synic_get(struct kvm * kvm,u32 vpidx)207 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
208 {
209 struct kvm_vcpu *vcpu;
210 struct kvm_vcpu_hv_synic *synic;
211
212 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
213 if (!vcpu || !to_hv_vcpu(vcpu))
214 return NULL;
215 synic = to_hv_synic(vcpu);
216 return (synic->active) ? synic : NULL;
217 }
218
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220 {
221 struct kvm *kvm = vcpu->kvm;
222 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
223 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
224 struct kvm_vcpu_hv_stimer *stimer;
225 int gsi, idx;
226
227 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
228
229 /* Try to deliver pending Hyper-V SynIC timers messages */
230 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231 stimer = &hv_vcpu->stimer[idx];
232 if (stimer->msg_pending && stimer->config.enable &&
233 !stimer->config.direct_mode &&
234 stimer->config.sintx == sint)
235 stimer_mark_pending(stimer, false);
236 }
237
238 idx = srcu_read_lock(&kvm->irq_srcu);
239 gsi = atomic_read(&synic->sint_to_gsi[sint]);
240 if (gsi != -1)
241 kvm_notify_acked_gsi(kvm, gsi);
242 srcu_read_unlock(&kvm->irq_srcu, idx);
243 }
244
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)245 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246 {
247 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
249
250 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251 hv_vcpu->exit.u.synic.msr = msr;
252 hv_vcpu->exit.u.synic.control = synic->control;
253 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255
256 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257 }
258
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)259 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260 u32 msr, u64 data, bool host)
261 {
262 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
263 int ret;
264
265 if (!synic->active && (!host || data))
266 return 1;
267
268 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
269
270 ret = 0;
271 switch (msr) {
272 case HV_X64_MSR_SCONTROL:
273 synic->control = data;
274 if (!host)
275 synic_exit(synic, msr);
276 break;
277 case HV_X64_MSR_SVERSION:
278 if (!host) {
279 ret = 1;
280 break;
281 }
282 synic->version = data;
283 break;
284 case HV_X64_MSR_SIEFP:
285 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286 !synic->dont_zero_synic_pages)
287 if (kvm_clear_guest(vcpu->kvm,
288 data & PAGE_MASK, PAGE_SIZE)) {
289 ret = 1;
290 break;
291 }
292 synic->evt_page = data;
293 if (!host)
294 synic_exit(synic, msr);
295 break;
296 case HV_X64_MSR_SIMP:
297 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298 !synic->dont_zero_synic_pages)
299 if (kvm_clear_guest(vcpu->kvm,
300 data & PAGE_MASK, PAGE_SIZE)) {
301 ret = 1;
302 break;
303 }
304 synic->msg_page = data;
305 if (!host)
306 synic_exit(synic, msr);
307 break;
308 case HV_X64_MSR_EOM: {
309 int i;
310
311 if (!synic->active)
312 break;
313
314 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315 kvm_hv_notify_acked_sint(vcpu, i);
316 break;
317 }
318 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
319 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
320 break;
321 default:
322 ret = 1;
323 break;
324 }
325 return ret;
326 }
327
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329 {
330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
331
332 return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
334 }
335
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337 {
338 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
339
340 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341 hv->hv_syndbg.control.status =
342 vcpu->run->hyperv.u.syndbg.status;
343 return 1;
344 }
345
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)346 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347 {
348 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
350
351 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352 hv_vcpu->exit.u.syndbg.msr = msr;
353 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357 vcpu->arch.complete_userspace_io =
358 kvm_hv_syndbg_complete_userspace;
359
360 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361 }
362
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)363 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364 {
365 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
366
367 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368 return 1;
369
370 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
371 to_hv_vcpu(vcpu)->vp_index, msr, data);
372 switch (msr) {
373 case HV_X64_MSR_SYNDBG_CONTROL:
374 syndbg->control.control = data;
375 if (!host)
376 syndbg_exit(vcpu, msr);
377 break;
378 case HV_X64_MSR_SYNDBG_STATUS:
379 syndbg->control.status = data;
380 break;
381 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382 syndbg->control.send_page = data;
383 break;
384 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385 syndbg->control.recv_page = data;
386 break;
387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388 syndbg->control.pending_page = data;
389 if (!host)
390 syndbg_exit(vcpu, msr);
391 break;
392 case HV_X64_MSR_SYNDBG_OPTIONS:
393 syndbg->options = data;
394 break;
395 default:
396 break;
397 }
398
399 return 0;
400 }
401
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)402 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403 {
404 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
405
406 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407 return 1;
408
409 switch (msr) {
410 case HV_X64_MSR_SYNDBG_CONTROL:
411 *pdata = syndbg->control.control;
412 break;
413 case HV_X64_MSR_SYNDBG_STATUS:
414 *pdata = syndbg->control.status;
415 break;
416 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417 *pdata = syndbg->control.send_page;
418 break;
419 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420 *pdata = syndbg->control.recv_page;
421 break;
422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423 *pdata = syndbg->control.pending_page;
424 break;
425 case HV_X64_MSR_SYNDBG_OPTIONS:
426 *pdata = syndbg->options;
427 break;
428 default:
429 break;
430 }
431
432 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
433
434 return 0;
435 }
436
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)437 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438 bool host)
439 {
440 int ret;
441
442 if (!synic->active && !host)
443 return 1;
444
445 ret = 0;
446 switch (msr) {
447 case HV_X64_MSR_SCONTROL:
448 *pdata = synic->control;
449 break;
450 case HV_X64_MSR_SVERSION:
451 *pdata = synic->version;
452 break;
453 case HV_X64_MSR_SIEFP:
454 *pdata = synic->evt_page;
455 break;
456 case HV_X64_MSR_SIMP:
457 *pdata = synic->msg_page;
458 break;
459 case HV_X64_MSR_EOM:
460 *pdata = 0;
461 break;
462 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
464 break;
465 default:
466 ret = 1;
467 break;
468 }
469 return ret;
470 }
471
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)472 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
473 {
474 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
475 struct kvm_lapic_irq irq;
476 int ret, vector;
477
478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479 return -EINVAL;
480
481 if (sint >= ARRAY_SIZE(synic->sint))
482 return -EINVAL;
483
484 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
485 if (vector < 0)
486 return -ENOENT;
487
488 memset(&irq, 0, sizeof(irq));
489 irq.shorthand = APIC_DEST_SELF;
490 irq.dest_mode = APIC_DEST_PHYSICAL;
491 irq.delivery_mode = APIC_DM_FIXED;
492 irq.vector = vector;
493 irq.level = 1;
494
495 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
496 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
497 return ret;
498 }
499
kvm_hv_synic_set_irq(struct kvm * kvm,u32 vpidx,u32 sint)500 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
501 {
502 struct kvm_vcpu_hv_synic *synic;
503
504 synic = synic_get(kvm, vpidx);
505 if (!synic)
506 return -EINVAL;
507
508 return synic_set_irq(synic, sint);
509 }
510
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)511 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
512 {
513 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
514 int i;
515
516 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
517
518 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
519 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
520 kvm_hv_notify_acked_sint(vcpu, i);
521 }
522
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)523 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
524 {
525 struct kvm_vcpu_hv_synic *synic;
526
527 synic = synic_get(kvm, vpidx);
528 if (!synic)
529 return -EINVAL;
530
531 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
532 return -EINVAL;
533
534 atomic_set(&synic->sint_to_gsi[sint], gsi);
535 return 0;
536 }
537
kvm_hv_irq_routing_update(struct kvm * kvm)538 void kvm_hv_irq_routing_update(struct kvm *kvm)
539 {
540 struct kvm_irq_routing_table *irq_rt;
541 struct kvm_kernel_irq_routing_entry *e;
542 u32 gsi;
543
544 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
545 lockdep_is_held(&kvm->irq_lock));
546
547 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
548 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
549 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
550 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
551 e->hv_sint.sint, gsi);
552 }
553 }
554 }
555
synic_init(struct kvm_vcpu_hv_synic * synic)556 static void synic_init(struct kvm_vcpu_hv_synic *synic)
557 {
558 int i;
559
560 memset(synic, 0, sizeof(*synic));
561 synic->version = HV_SYNIC_VERSION_1;
562 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
563 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
564 atomic_set(&synic->sint_to_gsi[i], -1);
565 }
566 }
567
get_time_ref_counter(struct kvm * kvm)568 static u64 get_time_ref_counter(struct kvm *kvm)
569 {
570 struct kvm_hv *hv = to_kvm_hv(kvm);
571 struct kvm_vcpu *vcpu;
572 u64 tsc;
573
574 /*
575 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
576 * is broken, disabled or being updated.
577 */
578 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
579 return div_u64(get_kvmclock_ns(kvm), 100);
580
581 vcpu = kvm_get_vcpu(kvm, 0);
582 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
583 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
584 + hv->tsc_ref.tsc_offset;
585 }
586
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)587 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
588 bool vcpu_kick)
589 {
590 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
591
592 set_bit(stimer->index,
593 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
594 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
595 if (vcpu_kick)
596 kvm_vcpu_kick(vcpu);
597 }
598
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)599 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
600 {
601 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
602
603 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
604 stimer->index);
605
606 hrtimer_cancel(&stimer->timer);
607 clear_bit(stimer->index,
608 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
609 stimer->msg_pending = false;
610 stimer->exp_time = 0;
611 }
612
stimer_timer_callback(struct hrtimer * timer)613 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
614 {
615 struct kvm_vcpu_hv_stimer *stimer;
616
617 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
618 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
619 stimer->index);
620 stimer_mark_pending(stimer, true);
621
622 return HRTIMER_NORESTART;
623 }
624
625 /*
626 * stimer_start() assumptions:
627 * a) stimer->count is not equal to 0
628 * b) stimer->config has HV_STIMER_ENABLE flag
629 */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)630 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
631 {
632 u64 time_now;
633 ktime_t ktime_now;
634
635 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
636 ktime_now = ktime_get();
637
638 if (stimer->config.periodic) {
639 if (stimer->exp_time) {
640 if (time_now >= stimer->exp_time) {
641 u64 remainder;
642
643 div64_u64_rem(time_now - stimer->exp_time,
644 stimer->count, &remainder);
645 stimer->exp_time =
646 time_now + (stimer->count - remainder);
647 }
648 } else
649 stimer->exp_time = time_now + stimer->count;
650
651 trace_kvm_hv_stimer_start_periodic(
652 hv_stimer_to_vcpu(stimer)->vcpu_id,
653 stimer->index,
654 time_now, stimer->exp_time);
655
656 hrtimer_start(&stimer->timer,
657 ktime_add_ns(ktime_now,
658 100 * (stimer->exp_time - time_now)),
659 HRTIMER_MODE_ABS);
660 return 0;
661 }
662 stimer->exp_time = stimer->count;
663 if (time_now >= stimer->count) {
664 /*
665 * Expire timer according to Hypervisor Top-Level Functional
666 * specification v4(15.3.1):
667 * "If a one shot is enabled and the specified count is in
668 * the past, it will expire immediately."
669 */
670 stimer_mark_pending(stimer, false);
671 return 0;
672 }
673
674 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
675 stimer->index,
676 time_now, stimer->count);
677
678 hrtimer_start(&stimer->timer,
679 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
680 HRTIMER_MODE_ABS);
681 return 0;
682 }
683
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)684 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
685 bool host)
686 {
687 union hv_stimer_config new_config = {.as_uint64 = config},
688 old_config = {.as_uint64 = stimer->config.as_uint64};
689 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
691 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
692
693 if (!synic->active && (!host || config))
694 return 1;
695
696 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
697 !(hv_vcpu->cpuid_cache.features_edx &
698 HV_STIMER_DIRECT_MODE_AVAILABLE)))
699 return 1;
700
701 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
702 stimer->index, config, host);
703
704 stimer_cleanup(stimer);
705 if (old_config.enable &&
706 !new_config.direct_mode && new_config.sintx == 0)
707 new_config.enable = 0;
708 stimer->config.as_uint64 = new_config.as_uint64;
709
710 if (stimer->config.enable)
711 stimer_mark_pending(stimer, false);
712
713 return 0;
714 }
715
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)716 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
717 bool host)
718 {
719 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
720 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
721
722 if (!synic->active && (!host || count))
723 return 1;
724
725 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
726 stimer->index, count, host);
727
728 stimer_cleanup(stimer);
729 stimer->count = count;
730 if (stimer->count == 0)
731 stimer->config.enable = 0;
732 else if (stimer->config.auto_enable)
733 stimer->config.enable = 1;
734
735 if (stimer->config.enable)
736 stimer_mark_pending(stimer, false);
737
738 return 0;
739 }
740
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)741 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
742 {
743 *pconfig = stimer->config.as_uint64;
744 return 0;
745 }
746
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)747 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
748 {
749 *pcount = stimer->count;
750 return 0;
751 }
752
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)753 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
754 struct hv_message *src_msg, bool no_retry)
755 {
756 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
757 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
758 gfn_t msg_page_gfn;
759 struct hv_message_header hv_hdr;
760 int r;
761
762 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
763 return -ENOENT;
764
765 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
766
767 /*
768 * Strictly following the spec-mandated ordering would assume setting
769 * .msg_pending before checking .message_type. However, this function
770 * is only called in vcpu context so the entire update is atomic from
771 * guest POV and thus the exact order here doesn't matter.
772 */
773 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
774 msg_off + offsetof(struct hv_message,
775 header.message_type),
776 sizeof(hv_hdr.message_type));
777 if (r < 0)
778 return r;
779
780 if (hv_hdr.message_type != HVMSG_NONE) {
781 if (no_retry)
782 return 0;
783
784 hv_hdr.message_flags.msg_pending = 1;
785 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
786 &hv_hdr.message_flags,
787 msg_off +
788 offsetof(struct hv_message,
789 header.message_flags),
790 sizeof(hv_hdr.message_flags));
791 if (r < 0)
792 return r;
793 return -EAGAIN;
794 }
795
796 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
797 sizeof(src_msg->header) +
798 src_msg->header.payload_size);
799 if (r < 0)
800 return r;
801
802 r = synic_set_irq(synic, sint);
803 if (r < 0)
804 return r;
805 if (r == 0)
806 return -EFAULT;
807 return 0;
808 }
809
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)810 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
811 {
812 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
813 struct hv_message *msg = &stimer->msg;
814 struct hv_timer_message_payload *payload =
815 (struct hv_timer_message_payload *)&msg->u.payload;
816
817 /*
818 * To avoid piling up periodic ticks, don't retry message
819 * delivery for them (within "lazy" lost ticks policy).
820 */
821 bool no_retry = stimer->config.periodic;
822
823 payload->expiration_time = stimer->exp_time;
824 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
825 return synic_deliver_msg(to_hv_synic(vcpu),
826 stimer->config.sintx, msg,
827 no_retry);
828 }
829
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)830 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
831 {
832 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
833 struct kvm_lapic_irq irq = {
834 .delivery_mode = APIC_DM_FIXED,
835 .vector = stimer->config.apic_vector
836 };
837
838 if (lapic_in_kernel(vcpu))
839 return !kvm_apic_set_irq(vcpu, &irq, NULL);
840 return 0;
841 }
842
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)843 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
844 {
845 int r, direct = stimer->config.direct_mode;
846
847 stimer->msg_pending = true;
848 if (!direct)
849 r = stimer_send_msg(stimer);
850 else
851 r = stimer_notify_direct(stimer);
852 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
853 stimer->index, direct, r);
854 if (!r) {
855 stimer->msg_pending = false;
856 if (!(stimer->config.periodic))
857 stimer->config.enable = 0;
858 }
859 }
860
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)861 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
862 {
863 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
864 struct kvm_vcpu_hv_stimer *stimer;
865 u64 time_now, exp_time;
866 int i;
867
868 if (!hv_vcpu)
869 return;
870
871 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
872 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
873 stimer = &hv_vcpu->stimer[i];
874 if (stimer->config.enable) {
875 exp_time = stimer->exp_time;
876
877 if (exp_time) {
878 time_now =
879 get_time_ref_counter(vcpu->kvm);
880 if (time_now >= exp_time)
881 stimer_expiration(stimer);
882 }
883
884 if ((stimer->config.enable) &&
885 stimer->count) {
886 if (!stimer->msg_pending)
887 stimer_start(stimer);
888 } else
889 stimer_cleanup(stimer);
890 }
891 }
892 }
893
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)894 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
895 {
896 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
897 int i;
898
899 if (!hv_vcpu)
900 return;
901
902 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
903 stimer_cleanup(&hv_vcpu->stimer[i]);
904
905 kfree(hv_vcpu);
906 vcpu->arch.hyperv = NULL;
907 }
908
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)909 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
910 {
911 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
912
913 if (!hv_vcpu)
914 return false;
915
916 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
917 return false;
918 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
919 }
920 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
921
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu)922 int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
923 {
924 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
925
926 if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
927 return -EFAULT;
928
929 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
930 &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
931 }
932 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
933
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)934 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
935 {
936 struct hv_message *msg = &stimer->msg;
937 struct hv_timer_message_payload *payload =
938 (struct hv_timer_message_payload *)&msg->u.payload;
939
940 memset(&msg->header, 0, sizeof(msg->header));
941 msg->header.message_type = HVMSG_TIMER_EXPIRED;
942 msg->header.payload_size = sizeof(*payload);
943
944 payload->timer_index = stimer->index;
945 payload->expiration_time = 0;
946 payload->delivery_time = 0;
947 }
948
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)949 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
950 {
951 memset(stimer, 0, sizeof(*stimer));
952 stimer->index = timer_index;
953 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
954 stimer->timer.function = stimer_timer_callback;
955 stimer_prepare_msg(stimer);
956 }
957
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)958 int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
959 {
960 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
961 int i;
962
963 if (hv_vcpu)
964 return 0;
965
966 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
967 if (!hv_vcpu)
968 return -ENOMEM;
969
970 vcpu->arch.hyperv = hv_vcpu;
971 hv_vcpu->vcpu = vcpu;
972
973 synic_init(&hv_vcpu->synic);
974
975 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
976 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
977 stimer_init(&hv_vcpu->stimer[i], i);
978
979 hv_vcpu->vp_index = vcpu->vcpu_idx;
980
981 for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
982 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
983 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
984 }
985
986 return 0;
987 }
988
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)989 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
990 {
991 struct kvm_vcpu_hv_synic *synic;
992 int r;
993
994 r = kvm_hv_vcpu_init(vcpu);
995 if (r)
996 return r;
997
998 synic = to_hv_synic(vcpu);
999
1000 synic->active = true;
1001 synic->dont_zero_synic_pages = dont_zero_synic_pages;
1002 synic->control = HV_SYNIC_CONTROL_ENABLE;
1003 return 0;
1004 }
1005
kvm_hv_msr_partition_wide(u32 msr)1006 static bool kvm_hv_msr_partition_wide(u32 msr)
1007 {
1008 bool r = false;
1009
1010 switch (msr) {
1011 case HV_X64_MSR_GUEST_OS_ID:
1012 case HV_X64_MSR_HYPERCALL:
1013 case HV_X64_MSR_REFERENCE_TSC:
1014 case HV_X64_MSR_TIME_REF_COUNT:
1015 case HV_X64_MSR_CRASH_CTL:
1016 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1017 case HV_X64_MSR_RESET:
1018 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1019 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1020 case HV_X64_MSR_TSC_EMULATION_STATUS:
1021 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1022 case HV_X64_MSR_SYNDBG_OPTIONS:
1023 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1024 r = true;
1025 break;
1026 }
1027
1028 return r;
1029 }
1030
kvm_hv_msr_get_crash_data(struct kvm * kvm,u32 index,u64 * pdata)1031 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
1032 {
1033 struct kvm_hv *hv = to_kvm_hv(kvm);
1034 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1035
1036 if (WARN_ON_ONCE(index >= size))
1037 return -EINVAL;
1038
1039 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
1040 return 0;
1041 }
1042
kvm_hv_msr_get_crash_ctl(struct kvm * kvm,u64 * pdata)1043 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1044 {
1045 struct kvm_hv *hv = to_kvm_hv(kvm);
1046
1047 *pdata = hv->hv_crash_ctl;
1048 return 0;
1049 }
1050
kvm_hv_msr_set_crash_ctl(struct kvm * kvm,u64 data)1051 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1052 {
1053 struct kvm_hv *hv = to_kvm_hv(kvm);
1054
1055 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1056
1057 return 0;
1058 }
1059
kvm_hv_msr_set_crash_data(struct kvm * kvm,u32 index,u64 data)1060 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1061 {
1062 struct kvm_hv *hv = to_kvm_hv(kvm);
1063 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1064
1065 if (WARN_ON_ONCE(index >= size))
1066 return -EINVAL;
1067
1068 hv->hv_crash_param[array_index_nospec(index, size)] = data;
1069 return 0;
1070 }
1071
1072 /*
1073 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1074 * between them is possible:
1075 *
1076 * kvmclock formula:
1077 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1078 * + system_time
1079 *
1080 * Hyper-V formula:
1081 * nsec/100 = ticks * scale / 2^64 + offset
1082 *
1083 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1084 * By dividing the kvmclock formula by 100 and equating what's left we get:
1085 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1086 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1087 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1088 *
1089 * Now expand the kvmclock formula and divide by 100:
1090 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1091 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1092 * + system_time
1093 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1094 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1095 * + system_time / 100
1096 *
1097 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1098 * nsec/100 = ticks * scale / 2^64
1099 * - tsc_timestamp * scale / 2^64
1100 * + system_time / 100
1101 *
1102 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1103 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1104 *
1105 * These two equivalencies are implemented in this function.
1106 */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1107 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1108 struct ms_hyperv_tsc_page *tsc_ref)
1109 {
1110 u64 max_mul;
1111
1112 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1113 return false;
1114
1115 /*
1116 * check if scale would overflow, if so we use the time ref counter
1117 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1118 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1119 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1120 */
1121 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1122 if (hv_clock->tsc_to_system_mul >= max_mul)
1123 return false;
1124
1125 /*
1126 * Otherwise compute the scale and offset according to the formulas
1127 * derived above.
1128 */
1129 tsc_ref->tsc_scale =
1130 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1131 hv_clock->tsc_to_system_mul,
1132 100);
1133
1134 tsc_ref->tsc_offset = hv_clock->system_time;
1135 do_div(tsc_ref->tsc_offset, 100);
1136 tsc_ref->tsc_offset -=
1137 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1138 return true;
1139 }
1140
1141 /*
1142 * Don't touch TSC page values if the guest has opted for TSC emulation after
1143 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1144 * access emulation and Hyper-V is known to expect the values in TSC page to
1145 * stay constant before TSC access emulation is disabled from guest side
1146 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1147 * frequency and guest visible TSC value across migration (and prevent it when
1148 * TSC scaling is unsupported).
1149 */
tsc_page_update_unsafe(struct kvm_hv * hv)1150 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1151 {
1152 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1153 hv->hv_tsc_emulation_control;
1154 }
1155
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1156 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1157 struct pvclock_vcpu_time_info *hv_clock)
1158 {
1159 struct kvm_hv *hv = to_kvm_hv(kvm);
1160 u32 tsc_seq;
1161 u64 gfn;
1162
1163 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1164 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1165
1166 mutex_lock(&hv->hv_lock);
1167
1168 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1169 hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
1170 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1171 goto out_unlock;
1172
1173 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1174 goto out_unlock;
1175
1176 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1177 /*
1178 * Because the TSC parameters only vary when there is a
1179 * change in the master clock, do not bother with caching.
1180 */
1181 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1182 &tsc_seq, sizeof(tsc_seq))))
1183 goto out_err;
1184
1185 if (tsc_seq && tsc_page_update_unsafe(hv)) {
1186 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1187 goto out_err;
1188
1189 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1190 goto out_unlock;
1191 }
1192
1193 /*
1194 * While we're computing and writing the parameters, force the
1195 * guest to use the time reference count MSR.
1196 */
1197 hv->tsc_ref.tsc_sequence = 0;
1198 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1199 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1200 goto out_err;
1201
1202 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1203 goto out_err;
1204
1205 /* Ensure sequence is zero before writing the rest of the struct. */
1206 smp_wmb();
1207 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1208 goto out_err;
1209
1210 /*
1211 * Now switch to the TSC page mechanism by writing the sequence.
1212 */
1213 tsc_seq++;
1214 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1215 tsc_seq = 1;
1216
1217 /* Write the struct entirely before the non-zero sequence. */
1218 smp_wmb();
1219
1220 hv->tsc_ref.tsc_sequence = tsc_seq;
1221 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1222 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1223 goto out_err;
1224
1225 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1226 goto out_unlock;
1227
1228 out_err:
1229 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1230 out_unlock:
1231 mutex_unlock(&hv->hv_lock);
1232 }
1233
kvm_hv_request_tsc_page_update(struct kvm * kvm)1234 void kvm_hv_request_tsc_page_update(struct kvm *kvm)
1235 {
1236 struct kvm_hv *hv = to_kvm_hv(kvm);
1237
1238 mutex_lock(&hv->hv_lock);
1239
1240 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1241 !tsc_page_update_unsafe(hv))
1242 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1243
1244 mutex_unlock(&hv->hv_lock);
1245 }
1246
hv_check_msr_access(struct kvm_vcpu_hv * hv_vcpu,u32 msr)1247 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1248 {
1249 if (!hv_vcpu->enforce_cpuid)
1250 return true;
1251
1252 switch (msr) {
1253 case HV_X64_MSR_GUEST_OS_ID:
1254 case HV_X64_MSR_HYPERCALL:
1255 return hv_vcpu->cpuid_cache.features_eax &
1256 HV_MSR_HYPERCALL_AVAILABLE;
1257 case HV_X64_MSR_VP_RUNTIME:
1258 return hv_vcpu->cpuid_cache.features_eax &
1259 HV_MSR_VP_RUNTIME_AVAILABLE;
1260 case HV_X64_MSR_TIME_REF_COUNT:
1261 return hv_vcpu->cpuid_cache.features_eax &
1262 HV_MSR_TIME_REF_COUNT_AVAILABLE;
1263 case HV_X64_MSR_VP_INDEX:
1264 return hv_vcpu->cpuid_cache.features_eax &
1265 HV_MSR_VP_INDEX_AVAILABLE;
1266 case HV_X64_MSR_RESET:
1267 return hv_vcpu->cpuid_cache.features_eax &
1268 HV_MSR_RESET_AVAILABLE;
1269 case HV_X64_MSR_REFERENCE_TSC:
1270 return hv_vcpu->cpuid_cache.features_eax &
1271 HV_MSR_REFERENCE_TSC_AVAILABLE;
1272 case HV_X64_MSR_SCONTROL:
1273 case HV_X64_MSR_SVERSION:
1274 case HV_X64_MSR_SIEFP:
1275 case HV_X64_MSR_SIMP:
1276 case HV_X64_MSR_EOM:
1277 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1278 return hv_vcpu->cpuid_cache.features_eax &
1279 HV_MSR_SYNIC_AVAILABLE;
1280 case HV_X64_MSR_STIMER0_CONFIG:
1281 case HV_X64_MSR_STIMER1_CONFIG:
1282 case HV_X64_MSR_STIMER2_CONFIG:
1283 case HV_X64_MSR_STIMER3_CONFIG:
1284 case HV_X64_MSR_STIMER0_COUNT:
1285 case HV_X64_MSR_STIMER1_COUNT:
1286 case HV_X64_MSR_STIMER2_COUNT:
1287 case HV_X64_MSR_STIMER3_COUNT:
1288 return hv_vcpu->cpuid_cache.features_eax &
1289 HV_MSR_SYNTIMER_AVAILABLE;
1290 case HV_X64_MSR_EOI:
1291 case HV_X64_MSR_ICR:
1292 case HV_X64_MSR_TPR:
1293 case HV_X64_MSR_VP_ASSIST_PAGE:
1294 return hv_vcpu->cpuid_cache.features_eax &
1295 HV_MSR_APIC_ACCESS_AVAILABLE;
1296 case HV_X64_MSR_TSC_FREQUENCY:
1297 case HV_X64_MSR_APIC_FREQUENCY:
1298 return hv_vcpu->cpuid_cache.features_eax &
1299 HV_ACCESS_FREQUENCY_MSRS;
1300 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1301 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1302 case HV_X64_MSR_TSC_EMULATION_STATUS:
1303 return hv_vcpu->cpuid_cache.features_eax &
1304 HV_ACCESS_REENLIGHTENMENT;
1305 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1306 return hv_vcpu->cpuid_cache.features_eax &
1307 HV_ACCESS_TSC_INVARIANT;
1308 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1309 case HV_X64_MSR_CRASH_CTL:
1310 return hv_vcpu->cpuid_cache.features_edx &
1311 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1312 case HV_X64_MSR_SYNDBG_OPTIONS:
1313 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1314 return hv_vcpu->cpuid_cache.features_edx &
1315 HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1316 default:
1317 break;
1318 }
1319
1320 return false;
1321 }
1322
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1323 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1324 bool host)
1325 {
1326 struct kvm *kvm = vcpu->kvm;
1327 struct kvm_hv *hv = to_kvm_hv(kvm);
1328
1329 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1330 return 1;
1331
1332 switch (msr) {
1333 case HV_X64_MSR_GUEST_OS_ID:
1334 hv->hv_guest_os_id = data;
1335 /* setting guest os id to zero disables hypercall page */
1336 if (!hv->hv_guest_os_id)
1337 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1338 break;
1339 case HV_X64_MSR_HYPERCALL: {
1340 u8 instructions[9];
1341 int i = 0;
1342 u64 addr;
1343
1344 /* if guest os id is not set hypercall should remain disabled */
1345 if (!hv->hv_guest_os_id)
1346 break;
1347 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1348 hv->hv_hypercall = data;
1349 break;
1350 }
1351
1352 /*
1353 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1354 * the same way Xen itself does, by setting the bit 31 of EAX
1355 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1356 * going to be clobbered on 64-bit.
1357 */
1358 if (kvm_xen_hypercall_enabled(kvm)) {
1359 /* orl $0x80000000, %eax */
1360 instructions[i++] = 0x0d;
1361 instructions[i++] = 0x00;
1362 instructions[i++] = 0x00;
1363 instructions[i++] = 0x00;
1364 instructions[i++] = 0x80;
1365 }
1366
1367 /* vmcall/vmmcall */
1368 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1369 i += 3;
1370
1371 /* ret */
1372 ((unsigned char *)instructions)[i++] = 0xc3;
1373
1374 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1375 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1376 return 1;
1377 hv->hv_hypercall = data;
1378 break;
1379 }
1380 case HV_X64_MSR_REFERENCE_TSC:
1381 hv->hv_tsc_page = data;
1382 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1383 if (!host)
1384 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1385 else
1386 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1387 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1388 } else {
1389 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1390 }
1391 break;
1392 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1393 return kvm_hv_msr_set_crash_data(kvm,
1394 msr - HV_X64_MSR_CRASH_P0,
1395 data);
1396 case HV_X64_MSR_CRASH_CTL:
1397 if (host)
1398 return kvm_hv_msr_set_crash_ctl(kvm, data);
1399
1400 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1401 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1402 hv->hv_crash_param[0],
1403 hv->hv_crash_param[1],
1404 hv->hv_crash_param[2],
1405 hv->hv_crash_param[3],
1406 hv->hv_crash_param[4]);
1407
1408 /* Send notification about crash to user space */
1409 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1410 }
1411 break;
1412 case HV_X64_MSR_RESET:
1413 if (data == 1) {
1414 vcpu_debug(vcpu, "hyper-v reset requested\n");
1415 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1416 }
1417 break;
1418 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1419 hv->hv_reenlightenment_control = data;
1420 break;
1421 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1422 hv->hv_tsc_emulation_control = data;
1423 break;
1424 case HV_X64_MSR_TSC_EMULATION_STATUS:
1425 if (data && !host)
1426 return 1;
1427
1428 hv->hv_tsc_emulation_status = data;
1429 break;
1430 case HV_X64_MSR_TIME_REF_COUNT:
1431 /* read-only, but still ignore it if host-initiated */
1432 if (!host)
1433 return 1;
1434 break;
1435 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1436 /* Only bit 0 is supported */
1437 if (data & ~HV_EXPOSE_INVARIANT_TSC)
1438 return 1;
1439
1440 /* The feature can't be disabled from the guest */
1441 if (!host && hv->hv_invtsc_control && !data)
1442 return 1;
1443
1444 hv->hv_invtsc_control = data;
1445 break;
1446 case HV_X64_MSR_SYNDBG_OPTIONS:
1447 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1448 return syndbg_set_msr(vcpu, msr, data, host);
1449 default:
1450 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1451 return 1;
1452 }
1453 return 0;
1454 }
1455
1456 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1457 static u64 current_task_runtime_100ns(void)
1458 {
1459 u64 utime, stime;
1460
1461 task_cputime_adjusted(current, &utime, &stime);
1462
1463 return div_u64(utime + stime, 100);
1464 }
1465
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1466 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1467 {
1468 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1469
1470 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1471 return 1;
1472
1473 switch (msr) {
1474 case HV_X64_MSR_VP_INDEX: {
1475 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1476 u32 new_vp_index = (u32)data;
1477
1478 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1479 return 1;
1480
1481 if (new_vp_index == hv_vcpu->vp_index)
1482 return 0;
1483
1484 /*
1485 * The VP index is initialized to vcpu_index by
1486 * kvm_hv_vcpu_postcreate so they initially match. Now the
1487 * VP index is changing, adjust num_mismatched_vp_indexes if
1488 * it now matches or no longer matches vcpu_idx.
1489 */
1490 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1491 atomic_inc(&hv->num_mismatched_vp_indexes);
1492 else if (new_vp_index == vcpu->vcpu_idx)
1493 atomic_dec(&hv->num_mismatched_vp_indexes);
1494
1495 hv_vcpu->vp_index = new_vp_index;
1496 break;
1497 }
1498 case HV_X64_MSR_VP_ASSIST_PAGE: {
1499 u64 gfn;
1500 unsigned long addr;
1501
1502 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1503 hv_vcpu->hv_vapic = data;
1504 if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
1505 return 1;
1506 break;
1507 }
1508 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1509 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1510 if (kvm_is_error_hva(addr))
1511 return 1;
1512
1513 /*
1514 * Clear apic_assist portion of struct hv_vp_assist_page
1515 * only, there can be valuable data in the rest which needs
1516 * to be preserved e.g. on migration.
1517 */
1518 if (__put_user(0, (u32 __user *)addr))
1519 return 1;
1520 hv_vcpu->hv_vapic = data;
1521 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1522 if (kvm_lapic_set_pv_eoi(vcpu,
1523 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1524 sizeof(struct hv_vp_assist_page)))
1525 return 1;
1526 break;
1527 }
1528 case HV_X64_MSR_EOI:
1529 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1530 case HV_X64_MSR_ICR:
1531 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1532 case HV_X64_MSR_TPR:
1533 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1534 case HV_X64_MSR_VP_RUNTIME:
1535 if (!host)
1536 return 1;
1537 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1538 break;
1539 case HV_X64_MSR_SCONTROL:
1540 case HV_X64_MSR_SVERSION:
1541 case HV_X64_MSR_SIEFP:
1542 case HV_X64_MSR_SIMP:
1543 case HV_X64_MSR_EOM:
1544 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1545 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1546 case HV_X64_MSR_STIMER0_CONFIG:
1547 case HV_X64_MSR_STIMER1_CONFIG:
1548 case HV_X64_MSR_STIMER2_CONFIG:
1549 case HV_X64_MSR_STIMER3_CONFIG: {
1550 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1551
1552 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1553 data, host);
1554 }
1555 case HV_X64_MSR_STIMER0_COUNT:
1556 case HV_X64_MSR_STIMER1_COUNT:
1557 case HV_X64_MSR_STIMER2_COUNT:
1558 case HV_X64_MSR_STIMER3_COUNT: {
1559 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1560
1561 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1562 data, host);
1563 }
1564 case HV_X64_MSR_TSC_FREQUENCY:
1565 case HV_X64_MSR_APIC_FREQUENCY:
1566 /* read-only, but still ignore it if host-initiated */
1567 if (!host)
1568 return 1;
1569 break;
1570 default:
1571 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1572 return 1;
1573 }
1574
1575 return 0;
1576 }
1577
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1578 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1579 bool host)
1580 {
1581 u64 data = 0;
1582 struct kvm *kvm = vcpu->kvm;
1583 struct kvm_hv *hv = to_kvm_hv(kvm);
1584
1585 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1586 return 1;
1587
1588 switch (msr) {
1589 case HV_X64_MSR_GUEST_OS_ID:
1590 data = hv->hv_guest_os_id;
1591 break;
1592 case HV_X64_MSR_HYPERCALL:
1593 data = hv->hv_hypercall;
1594 break;
1595 case HV_X64_MSR_TIME_REF_COUNT:
1596 data = get_time_ref_counter(kvm);
1597 break;
1598 case HV_X64_MSR_REFERENCE_TSC:
1599 data = hv->hv_tsc_page;
1600 break;
1601 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1602 return kvm_hv_msr_get_crash_data(kvm,
1603 msr - HV_X64_MSR_CRASH_P0,
1604 pdata);
1605 case HV_X64_MSR_CRASH_CTL:
1606 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1607 case HV_X64_MSR_RESET:
1608 data = 0;
1609 break;
1610 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1611 data = hv->hv_reenlightenment_control;
1612 break;
1613 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1614 data = hv->hv_tsc_emulation_control;
1615 break;
1616 case HV_X64_MSR_TSC_EMULATION_STATUS:
1617 data = hv->hv_tsc_emulation_status;
1618 break;
1619 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1620 data = hv->hv_invtsc_control;
1621 break;
1622 case HV_X64_MSR_SYNDBG_OPTIONS:
1623 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1624 return syndbg_get_msr(vcpu, msr, pdata, host);
1625 default:
1626 kvm_pr_unimpl_rdmsr(vcpu, msr);
1627 return 1;
1628 }
1629
1630 *pdata = data;
1631 return 0;
1632 }
1633
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1634 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1635 bool host)
1636 {
1637 u64 data = 0;
1638 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1639
1640 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1641 return 1;
1642
1643 switch (msr) {
1644 case HV_X64_MSR_VP_INDEX:
1645 data = hv_vcpu->vp_index;
1646 break;
1647 case HV_X64_MSR_EOI:
1648 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1649 case HV_X64_MSR_ICR:
1650 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1651 case HV_X64_MSR_TPR:
1652 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1653 case HV_X64_MSR_VP_ASSIST_PAGE:
1654 data = hv_vcpu->hv_vapic;
1655 break;
1656 case HV_X64_MSR_VP_RUNTIME:
1657 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1658 break;
1659 case HV_X64_MSR_SCONTROL:
1660 case HV_X64_MSR_SVERSION:
1661 case HV_X64_MSR_SIEFP:
1662 case HV_X64_MSR_SIMP:
1663 case HV_X64_MSR_EOM:
1664 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1665 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1666 case HV_X64_MSR_STIMER0_CONFIG:
1667 case HV_X64_MSR_STIMER1_CONFIG:
1668 case HV_X64_MSR_STIMER2_CONFIG:
1669 case HV_X64_MSR_STIMER3_CONFIG: {
1670 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1671
1672 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1673 pdata);
1674 }
1675 case HV_X64_MSR_STIMER0_COUNT:
1676 case HV_X64_MSR_STIMER1_COUNT:
1677 case HV_X64_MSR_STIMER2_COUNT:
1678 case HV_X64_MSR_STIMER3_COUNT: {
1679 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1680
1681 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1682 pdata);
1683 }
1684 case HV_X64_MSR_TSC_FREQUENCY:
1685 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1686 break;
1687 case HV_X64_MSR_APIC_FREQUENCY:
1688 data = APIC_BUS_FREQUENCY;
1689 break;
1690 default:
1691 kvm_pr_unimpl_rdmsr(vcpu, msr);
1692 return 1;
1693 }
1694 *pdata = data;
1695 return 0;
1696 }
1697
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1698 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1699 {
1700 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1701
1702 if (!host && !vcpu->arch.hyperv_enabled)
1703 return 1;
1704
1705 if (kvm_hv_vcpu_init(vcpu))
1706 return 1;
1707
1708 if (kvm_hv_msr_partition_wide(msr)) {
1709 int r;
1710
1711 mutex_lock(&hv->hv_lock);
1712 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1713 mutex_unlock(&hv->hv_lock);
1714 return r;
1715 } else
1716 return kvm_hv_set_msr(vcpu, msr, data, host);
1717 }
1718
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1719 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1720 {
1721 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1722
1723 if (!host && !vcpu->arch.hyperv_enabled)
1724 return 1;
1725
1726 if (kvm_hv_vcpu_init(vcpu))
1727 return 1;
1728
1729 if (kvm_hv_msr_partition_wide(msr)) {
1730 int r;
1731
1732 mutex_lock(&hv->hv_lock);
1733 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1734 mutex_unlock(&hv->hv_lock);
1735 return r;
1736 } else
1737 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1738 }
1739
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,unsigned long * vcpu_mask)1740 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1741 u64 valid_bank_mask, unsigned long *vcpu_mask)
1742 {
1743 struct kvm_hv *hv = to_kvm_hv(kvm);
1744 bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
1745 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1746 struct kvm_vcpu *vcpu;
1747 int bank, sbank = 0;
1748 unsigned long i;
1749 u64 *bitmap;
1750
1751 BUILD_BUG_ON(sizeof(vp_bitmap) >
1752 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1753
1754 /*
1755 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1756 * fill a temporary buffer and manually test each vCPU's VP index.
1757 */
1758 if (likely(!has_mismatch))
1759 bitmap = (u64 *)vcpu_mask;
1760 else
1761 bitmap = vp_bitmap;
1762
1763 /*
1764 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1765 * having a '1' for each bank that exists in sparse_banks. Sets must
1766 * be in ascending order, i.e. bank0..bankN.
1767 */
1768 memset(bitmap, 0, sizeof(vp_bitmap));
1769 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1770 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1771 bitmap[bank] = sparse_banks[sbank++];
1772
1773 if (likely(!has_mismatch))
1774 return;
1775
1776 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
1777 kvm_for_each_vcpu(i, vcpu, kvm) {
1778 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1779 __set_bit(i, vcpu_mask);
1780 }
1781 }
1782
hv_is_vp_in_sparse_set(u32 vp_id,u64 valid_bank_mask,u64 sparse_banks[])1783 static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1784 {
1785 int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1786 unsigned long sbank;
1787
1788 if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1789 return false;
1790
1791 /*
1792 * The index into the sparse bank is the number of preceding bits in
1793 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the
1794 * fancy math if there can't possibly be preceding bits.
1795 */
1796 if (valid_bit_nr)
1797 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1798 else
1799 sbank = 0;
1800
1801 return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1802 (unsigned long *)&sparse_banks[sbank]);
1803 }
1804
1805 struct kvm_hv_hcall {
1806 /* Hypercall input data */
1807 u64 param;
1808 u64 ingpa;
1809 u64 outgpa;
1810 u16 code;
1811 u16 var_cnt;
1812 u16 rep_cnt;
1813 u16 rep_idx;
1814 bool fast;
1815 bool rep;
1816 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1817
1818 /*
1819 * Current read offset when KVM reads hypercall input data gradually,
1820 * either offset in bytes from 'ingpa' for regular hypercalls or the
1821 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1822 */
1823 union {
1824 gpa_t data_offset;
1825 int consumed_xmm_halves;
1826 };
1827 };
1828
1829
kvm_hv_get_hc_data(struct kvm * kvm,struct kvm_hv_hcall * hc,u16 orig_cnt,u16 cnt_cap,u64 * data)1830 static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
1831 u16 orig_cnt, u16 cnt_cap, u64 *data)
1832 {
1833 /*
1834 * Preserve the original count when ignoring entries via a "cap", KVM
1835 * still needs to validate the guest input (though the non-XMM path
1836 * punts on the checks).
1837 */
1838 u16 cnt = min(orig_cnt, cnt_cap);
1839 int i, j;
1840
1841 if (hc->fast) {
1842 /*
1843 * Each XMM holds two sparse banks, but do not count halves that
1844 * have already been consumed for hypercall parameters.
1845 */
1846 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
1847 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1848
1849 for (i = 0; i < cnt; i++) {
1850 j = i + hc->consumed_xmm_halves;
1851 if (j % 2)
1852 data[i] = sse128_hi(hc->xmm[j / 2]);
1853 else
1854 data[i] = sse128_lo(hc->xmm[j / 2]);
1855 }
1856 return 0;
1857 }
1858
1859 return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
1860 cnt * sizeof(*data));
1861 }
1862
kvm_get_sparse_vp_set(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 * sparse_banks)1863 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
1864 u64 *sparse_banks)
1865 {
1866 if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
1867 return -EINVAL;
1868
1869 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1870 return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
1871 sparse_banks);
1872 }
1873
kvm_hv_get_tlb_flush_entries(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 entries[])1874 static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
1875 {
1876 return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
1877 }
1878
hv_tlb_flush_enqueue(struct kvm_vcpu * vcpu,struct kvm_vcpu_hv_tlb_flush_fifo * tlb_flush_fifo,u64 * entries,int count)1879 static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1880 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1881 u64 *entries, int count)
1882 {
1883 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1884 u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1885
1886 if (!hv_vcpu)
1887 return;
1888
1889 spin_lock(&tlb_flush_fifo->write_lock);
1890
1891 /*
1892 * All entries should fit on the fifo leaving one free for 'flush all'
1893 * entry in case another request comes in. In case there's not enough
1894 * space, just put 'flush all' entry there.
1895 */
1896 if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1897 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1898 goto out_unlock;
1899 }
1900
1901 /*
1902 * Note: full fifo always contains 'flush all' entry, no need to check the
1903 * return value.
1904 */
1905 kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1906
1907 out_unlock:
1908 spin_unlock(&tlb_flush_fifo->write_lock);
1909 }
1910
kvm_hv_vcpu_flush_tlb(struct kvm_vcpu * vcpu)1911 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1912 {
1913 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1914 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1915 u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1916 int i, j, count;
1917 gva_t gva;
1918
1919 if (!tdp_enabled || !hv_vcpu)
1920 return -EINVAL;
1921
1922 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
1923
1924 count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1925
1926 for (i = 0; i < count; i++) {
1927 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1928 goto out_flush_all;
1929
1930 /*
1931 * Lower 12 bits of 'address' encode the number of additional
1932 * pages to flush.
1933 */
1934 gva = entries[i] & PAGE_MASK;
1935 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1936 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1937
1938 ++vcpu->stat.tlb_flush;
1939 }
1940 return 0;
1941
1942 out_flush_all:
1943 kfifo_reset_out(&tlb_flush_fifo->entries);
1944
1945 /* Fall back to full flush. */
1946 return -ENOSPC;
1947 }
1948
kvm_hv_flush_tlb(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)1949 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
1950 {
1951 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1952 u64 *sparse_banks = hv_vcpu->sparse_banks;
1953 struct kvm *kvm = vcpu->kvm;
1954 struct hv_tlb_flush_ex flush_ex;
1955 struct hv_tlb_flush flush;
1956 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
1957 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1958 /*
1959 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
1960 * entries on the TLB flush fifo. The last entry, however, needs to be
1961 * always left free for 'flush all' entry which gets placed when
1962 * there is not enough space to put all the requested entries.
1963 */
1964 u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
1965 u64 *tlb_flush_entries;
1966 u64 valid_bank_mask;
1967 struct kvm_vcpu *v;
1968 unsigned long i;
1969 bool all_cpus;
1970
1971 /*
1972 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
1973 * sparse banks. Fail the build if KVM's max allowed number of
1974 * vCPUs (>4096) exceeds this limit.
1975 */
1976 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
1977
1978 /*
1979 * 'Slow' hypercall's first parameter is the address in guest's memory
1980 * where hypercall parameters are placed. This is either a GPA or a
1981 * nested GPA when KVM is handling the call from L2 ('direct' TLB
1982 * flush). Translate the address here so the memory can be uniformly
1983 * read with kvm_read_guest().
1984 */
1985 if (!hc->fast && is_guest_mode(vcpu)) {
1986 hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
1987 if (unlikely(hc->ingpa == INVALID_GPA))
1988 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1989 }
1990
1991 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
1992 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
1993 if (hc->fast) {
1994 flush.address_space = hc->ingpa;
1995 flush.flags = hc->outgpa;
1996 flush.processor_mask = sse128_lo(hc->xmm[0]);
1997 hc->consumed_xmm_halves = 1;
1998 } else {
1999 if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2000 &flush, sizeof(flush))))
2001 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2002 hc->data_offset = sizeof(flush);
2003 }
2004
2005 trace_kvm_hv_flush_tlb(flush.processor_mask,
2006 flush.address_space, flush.flags,
2007 is_guest_mode(vcpu));
2008
2009 valid_bank_mask = BIT_ULL(0);
2010 sparse_banks[0] = flush.processor_mask;
2011
2012 /*
2013 * Work around possible WS2012 bug: it sends hypercalls
2014 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2015 * while also expecting us to flush something and crashing if
2016 * we don't. Let's treat processor_mask == 0 same as
2017 * HV_FLUSH_ALL_PROCESSORS.
2018 */
2019 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2020 flush.processor_mask == 0;
2021 } else {
2022 if (hc->fast) {
2023 flush_ex.address_space = hc->ingpa;
2024 flush_ex.flags = hc->outgpa;
2025 memcpy(&flush_ex.hv_vp_set,
2026 &hc->xmm[0], sizeof(hc->xmm[0]));
2027 hc->consumed_xmm_halves = 2;
2028 } else {
2029 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2030 sizeof(flush_ex))))
2031 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2032 hc->data_offset = sizeof(flush_ex);
2033 }
2034
2035 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
2036 flush_ex.hv_vp_set.format,
2037 flush_ex.address_space,
2038 flush_ex.flags, is_guest_mode(vcpu));
2039
2040 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2041 all_cpus = flush_ex.hv_vp_set.format !=
2042 HV_GENERIC_SET_SPARSE_4K;
2043
2044 if (hc->var_cnt != hweight64(valid_bank_mask))
2045 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2046
2047 if (!all_cpus) {
2048 if (!hc->var_cnt)
2049 goto ret_success;
2050
2051 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2052 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2053 }
2054
2055 /*
2056 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2057 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2058 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and
2059 * consumed_xmm_halves to make sure TLB flush entries are read
2060 * from the correct offset.
2061 */
2062 if (hc->fast)
2063 hc->consumed_xmm_halves += hc->var_cnt;
2064 else
2065 hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
2066 }
2067
2068 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2069 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2070 hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2071 tlb_flush_entries = NULL;
2072 } else {
2073 if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
2074 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2075 tlb_flush_entries = __tlb_flush_entries;
2076 }
2077
2078 /*
2079 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2080 * analyze it here, flush TLB regardless of the specified address space.
2081 */
2082 if (all_cpus && !is_guest_mode(vcpu)) {
2083 kvm_for_each_vcpu(i, v, kvm) {
2084 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2085 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2086 tlb_flush_entries, hc->rep_cnt);
2087 }
2088
2089 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
2090 } else if (!is_guest_mode(vcpu)) {
2091 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
2092
2093 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2094 v = kvm_get_vcpu(kvm, i);
2095 if (!v)
2096 continue;
2097 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2098 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2099 tlb_flush_entries, hc->rep_cnt);
2100 }
2101
2102 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2103 } else {
2104 struct kvm_vcpu_hv *hv_v;
2105
2106 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
2107
2108 kvm_for_each_vcpu(i, v, kvm) {
2109 hv_v = to_hv_vcpu(v);
2110
2111 /*
2112 * The following check races with nested vCPUs entering/exiting
2113 * and/or migrating between L1's vCPUs, however the only case when
2114 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2115 * running on the same L1 vCPU from the moment of the request until
2116 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2117 * cases, e.g. when the target L2 vCPU migrates to a different L1
2118 * vCPU or when the corresponding L1 vCPU temporary switches to a
2119 * different L2 vCPU while the request is being processed.
2120 */
2121 if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2122 continue;
2123
2124 if (!all_cpus &&
2125 !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
2126 sparse_banks))
2127 continue;
2128
2129 __set_bit(i, vcpu_mask);
2130 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
2131 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2132 tlb_flush_entries, hc->rep_cnt);
2133 }
2134
2135 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2136 }
2137
2138 ret_success:
2139 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2140 return (u64)HV_STATUS_SUCCESS |
2141 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
2142 }
2143
kvm_hv_send_ipi_to_many(struct kvm * kvm,u32 vector,u64 * sparse_banks,u64 valid_bank_mask)2144 static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2145 u64 *sparse_banks, u64 valid_bank_mask)
2146 {
2147 struct kvm_lapic_irq irq = {
2148 .delivery_mode = APIC_DM_FIXED,
2149 .vector = vector
2150 };
2151 struct kvm_vcpu *vcpu;
2152 unsigned long i;
2153
2154 kvm_for_each_vcpu(i, vcpu, kvm) {
2155 if (sparse_banks &&
2156 !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
2157 valid_bank_mask, sparse_banks))
2158 continue;
2159
2160 /* We fail only when APIC is disabled */
2161 kvm_apic_set_irq(vcpu, &irq, NULL);
2162 }
2163 }
2164
kvm_hv_send_ipi(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2165 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2166 {
2167 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2168 u64 *sparse_banks = hv_vcpu->sparse_banks;
2169 struct kvm *kvm = vcpu->kvm;
2170 struct hv_send_ipi_ex send_ipi_ex;
2171 struct hv_send_ipi send_ipi;
2172 u64 valid_bank_mask;
2173 u32 vector;
2174 bool all_cpus;
2175
2176 if (hc->code == HVCALL_SEND_IPI) {
2177 if (!hc->fast) {
2178 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
2179 sizeof(send_ipi))))
2180 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2181 sparse_banks[0] = send_ipi.cpu_mask;
2182 vector = send_ipi.vector;
2183 } else {
2184 /* 'reserved' part of hv_send_ipi should be 0 */
2185 if (unlikely(hc->ingpa >> 32 != 0))
2186 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2187 sparse_banks[0] = hc->outgpa;
2188 vector = (u32)hc->ingpa;
2189 }
2190 all_cpus = false;
2191 valid_bank_mask = BIT_ULL(0);
2192
2193 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
2194 } else {
2195 if (!hc->fast) {
2196 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2197 sizeof(send_ipi_ex))))
2198 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2199 } else {
2200 send_ipi_ex.vector = (u32)hc->ingpa;
2201 send_ipi_ex.vp_set.format = hc->outgpa;
2202 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2203 }
2204
2205 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
2206 send_ipi_ex.vp_set.format,
2207 send_ipi_ex.vp_set.valid_bank_mask);
2208
2209 vector = send_ipi_ex.vector;
2210 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
2211 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2212
2213 if (hc->var_cnt != hweight64(valid_bank_mask))
2214 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2215
2216 if (all_cpus)
2217 goto check_and_send_ipi;
2218
2219 if (!hc->var_cnt)
2220 goto ret_success;
2221
2222 if (!hc->fast)
2223 hc->data_offset = offsetof(struct hv_send_ipi_ex,
2224 vp_set.bank_contents);
2225 else
2226 hc->consumed_xmm_halves = 1;
2227
2228 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2229 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2230 }
2231
2232 check_and_send_ipi:
2233 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
2234 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2235
2236 if (all_cpus)
2237 kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
2238 else
2239 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
2240
2241 ret_success:
2242 return HV_STATUS_SUCCESS;
2243 }
2244
kvm_hv_set_cpuid(struct kvm_vcpu * vcpu,bool hyperv_enabled)2245 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
2246 {
2247 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2248 struct kvm_cpuid_entry2 *entry;
2249
2250 vcpu->arch.hyperv_enabled = hyperv_enabled;
2251
2252 if (!hv_vcpu) {
2253 /*
2254 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2255 * enabled in CPUID.
2256 */
2257 WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
2258 return;
2259 }
2260
2261 memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2262
2263 if (!vcpu->arch.hyperv_enabled)
2264 return;
2265
2266 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
2267 if (entry) {
2268 hv_vcpu->cpuid_cache.features_eax = entry->eax;
2269 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2270 hv_vcpu->cpuid_cache.features_edx = entry->edx;
2271 }
2272
2273 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
2274 if (entry) {
2275 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2276 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
2277 }
2278
2279 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
2280 if (entry)
2281 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
2282
2283 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2284 if (entry) {
2285 hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2286 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2287 }
2288 }
2289
kvm_hv_set_enforce_cpuid(struct kvm_vcpu * vcpu,bool enforce)2290 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2291 {
2292 struct kvm_vcpu_hv *hv_vcpu;
2293 int ret = 0;
2294
2295 if (!to_hv_vcpu(vcpu)) {
2296 if (enforce) {
2297 ret = kvm_hv_vcpu_init(vcpu);
2298 if (ret)
2299 return ret;
2300 } else {
2301 return 0;
2302 }
2303 }
2304
2305 hv_vcpu = to_hv_vcpu(vcpu);
2306 hv_vcpu->enforce_cpuid = enforce;
2307
2308 return ret;
2309 }
2310
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)2311 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2312 {
2313 bool longmode;
2314
2315 longmode = is_64_bit_hypercall(vcpu);
2316 if (longmode)
2317 kvm_rax_write(vcpu, result);
2318 else {
2319 kvm_rdx_write(vcpu, result >> 32);
2320 kvm_rax_write(vcpu, result & 0xffffffff);
2321 }
2322 }
2323
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)2324 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2325 {
2326 u32 tlb_lock_count = 0;
2327 int ret;
2328
2329 if (hv_result_success(result) && is_guest_mode(vcpu) &&
2330 kvm_hv_is_tlb_flush_hcall(vcpu) &&
2331 kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2332 &tlb_lock_count, sizeof(tlb_lock_count)))
2333 result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2334
2335 trace_kvm_hv_hypercall_done(result);
2336 kvm_hv_hypercall_set_result(vcpu, result);
2337 ++vcpu->stat.hypercalls;
2338
2339 ret = kvm_skip_emulated_instruction(vcpu);
2340
2341 if (tlb_lock_count)
2342 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2343
2344 return ret;
2345 }
2346
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)2347 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2348 {
2349 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2350 }
2351
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2352 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2353 {
2354 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2355 struct eventfd_ctx *eventfd;
2356
2357 if (unlikely(!hc->fast)) {
2358 int ret;
2359 gpa_t gpa = hc->ingpa;
2360
2361 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2362 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2363 return HV_STATUS_INVALID_ALIGNMENT;
2364
2365 ret = kvm_vcpu_read_guest(vcpu, gpa,
2366 &hc->ingpa, sizeof(hc->ingpa));
2367 if (ret < 0)
2368 return HV_STATUS_INVALID_ALIGNMENT;
2369 }
2370
2371 /*
2372 * Per spec, bits 32-47 contain the extra "flag number". However, we
2373 * have no use for it, and in all known usecases it is zero, so just
2374 * report lookup failure if it isn't.
2375 */
2376 if (hc->ingpa & 0xffff00000000ULL)
2377 return HV_STATUS_INVALID_PORT_ID;
2378 /* remaining bits are reserved-zero */
2379 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2380 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2381
2382 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2383 rcu_read_lock();
2384 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2385 rcu_read_unlock();
2386 if (!eventfd)
2387 return HV_STATUS_INVALID_PORT_ID;
2388
2389 eventfd_signal(eventfd, 1);
2390 return HV_STATUS_SUCCESS;
2391 }
2392
is_xmm_fast_hypercall(struct kvm_hv_hcall * hc)2393 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2394 {
2395 switch (hc->code) {
2396 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2397 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2398 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2399 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2400 case HVCALL_SEND_IPI_EX:
2401 return true;
2402 }
2403
2404 return false;
2405 }
2406
kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall * hc)2407 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2408 {
2409 int reg;
2410
2411 kvm_fpu_get();
2412 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2413 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2414 kvm_fpu_put();
2415 }
2416
hv_check_hypercall_access(struct kvm_vcpu_hv * hv_vcpu,u16 code)2417 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2418 {
2419 if (!hv_vcpu->enforce_cpuid)
2420 return true;
2421
2422 switch (code) {
2423 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2424 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2425 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2426 case HVCALL_POST_MESSAGE:
2427 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2428 case HVCALL_SIGNAL_EVENT:
2429 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2430 case HVCALL_POST_DEBUG_DATA:
2431 case HVCALL_RETRIEVE_DEBUG_DATA:
2432 case HVCALL_RESET_DEBUG_SESSION:
2433 /*
2434 * Return 'true' when SynDBG is disabled so the resulting code
2435 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2436 */
2437 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2438 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2439 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2440 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2441 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2442 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2443 return false;
2444 fallthrough;
2445 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2446 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2447 return hv_vcpu->cpuid_cache.enlightenments_eax &
2448 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2449 case HVCALL_SEND_IPI_EX:
2450 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2451 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2452 return false;
2453 fallthrough;
2454 case HVCALL_SEND_IPI:
2455 return hv_vcpu->cpuid_cache.enlightenments_eax &
2456 HV_X64_CLUSTER_IPI_RECOMMENDED;
2457 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2458 return hv_vcpu->cpuid_cache.features_ebx &
2459 HV_ENABLE_EXTENDED_HYPERCALLS;
2460 default:
2461 break;
2462 }
2463
2464 return true;
2465 }
2466
kvm_hv_hypercall(struct kvm_vcpu * vcpu)2467 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2468 {
2469 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2470 struct kvm_hv_hcall hc;
2471 u64 ret = HV_STATUS_SUCCESS;
2472
2473 /*
2474 * hypercall generates UD from non zero cpl and real mode
2475 * per HYPER-V spec
2476 */
2477 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2478 kvm_queue_exception(vcpu, UD_VECTOR);
2479 return 1;
2480 }
2481
2482 #ifdef CONFIG_X86_64
2483 if (is_64_bit_hypercall(vcpu)) {
2484 hc.param = kvm_rcx_read(vcpu);
2485 hc.ingpa = kvm_rdx_read(vcpu);
2486 hc.outgpa = kvm_r8_read(vcpu);
2487 } else
2488 #endif
2489 {
2490 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2491 (kvm_rax_read(vcpu) & 0xffffffff);
2492 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2493 (kvm_rcx_read(vcpu) & 0xffffffff);
2494 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2495 (kvm_rsi_read(vcpu) & 0xffffffff);
2496 }
2497
2498 hc.code = hc.param & 0xffff;
2499 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
2500 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2501 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2502 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2503 hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2504
2505 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
2506 hc.rep_idx, hc.ingpa, hc.outgpa);
2507
2508 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2509 ret = HV_STATUS_ACCESS_DENIED;
2510 goto hypercall_complete;
2511 }
2512
2513 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2514 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2515 goto hypercall_complete;
2516 }
2517
2518 if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2519 if (unlikely(hv_vcpu->enforce_cpuid &&
2520 !(hv_vcpu->cpuid_cache.features_edx &
2521 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2522 kvm_queue_exception(vcpu, UD_VECTOR);
2523 return 1;
2524 }
2525
2526 kvm_hv_hypercall_read_xmm(&hc);
2527 }
2528
2529 switch (hc.code) {
2530 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2531 if (unlikely(hc.rep || hc.var_cnt)) {
2532 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2533 break;
2534 }
2535 kvm_vcpu_on_spin(vcpu, true);
2536 break;
2537 case HVCALL_SIGNAL_EVENT:
2538 if (unlikely(hc.rep || hc.var_cnt)) {
2539 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2540 break;
2541 }
2542 ret = kvm_hvcall_signal_event(vcpu, &hc);
2543 if (ret != HV_STATUS_INVALID_PORT_ID)
2544 break;
2545 fallthrough; /* maybe userspace knows this conn_id */
2546 case HVCALL_POST_MESSAGE:
2547 /* don't bother userspace if it has no way to handle it */
2548 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
2549 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2550 break;
2551 }
2552 goto hypercall_userspace_exit;
2553 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2554 if (unlikely(hc.var_cnt)) {
2555 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2556 break;
2557 }
2558 fallthrough;
2559 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2560 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2561 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2562 break;
2563 }
2564 ret = kvm_hv_flush_tlb(vcpu, &hc);
2565 break;
2566 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2567 if (unlikely(hc.var_cnt)) {
2568 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2569 break;
2570 }
2571 fallthrough;
2572 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2573 if (unlikely(hc.rep)) {
2574 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2575 break;
2576 }
2577 ret = kvm_hv_flush_tlb(vcpu, &hc);
2578 break;
2579 case HVCALL_SEND_IPI:
2580 if (unlikely(hc.var_cnt)) {
2581 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2582 break;
2583 }
2584 fallthrough;
2585 case HVCALL_SEND_IPI_EX:
2586 if (unlikely(hc.rep)) {
2587 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2588 break;
2589 }
2590 ret = kvm_hv_send_ipi(vcpu, &hc);
2591 break;
2592 case HVCALL_POST_DEBUG_DATA:
2593 case HVCALL_RETRIEVE_DEBUG_DATA:
2594 if (unlikely(hc.fast)) {
2595 ret = HV_STATUS_INVALID_PARAMETER;
2596 break;
2597 }
2598 fallthrough;
2599 case HVCALL_RESET_DEBUG_SESSION: {
2600 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2601
2602 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2603 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2604 break;
2605 }
2606
2607 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2608 ret = HV_STATUS_OPERATION_DENIED;
2609 break;
2610 }
2611 goto hypercall_userspace_exit;
2612 }
2613 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2614 if (unlikely(hc.fast)) {
2615 ret = HV_STATUS_INVALID_PARAMETER;
2616 break;
2617 }
2618 goto hypercall_userspace_exit;
2619 default:
2620 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2621 break;
2622 }
2623
2624 hypercall_complete:
2625 return kvm_hv_hypercall_complete(vcpu, ret);
2626
2627 hypercall_userspace_exit:
2628 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2629 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2630 vcpu->run->hyperv.u.hcall.input = hc.param;
2631 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2632 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2633 vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2634 return 0;
2635 }
2636
kvm_hv_init_vm(struct kvm * kvm)2637 void kvm_hv_init_vm(struct kvm *kvm)
2638 {
2639 struct kvm_hv *hv = to_kvm_hv(kvm);
2640
2641 mutex_init(&hv->hv_lock);
2642 idr_init(&hv->conn_to_evt);
2643 }
2644
kvm_hv_destroy_vm(struct kvm * kvm)2645 void kvm_hv_destroy_vm(struct kvm *kvm)
2646 {
2647 struct kvm_hv *hv = to_kvm_hv(kvm);
2648 struct eventfd_ctx *eventfd;
2649 int i;
2650
2651 idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2652 eventfd_ctx_put(eventfd);
2653 idr_destroy(&hv->conn_to_evt);
2654 }
2655
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)2656 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2657 {
2658 struct kvm_hv *hv = to_kvm_hv(kvm);
2659 struct eventfd_ctx *eventfd;
2660 int ret;
2661
2662 eventfd = eventfd_ctx_fdget(fd);
2663 if (IS_ERR(eventfd))
2664 return PTR_ERR(eventfd);
2665
2666 mutex_lock(&hv->hv_lock);
2667 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2668 GFP_KERNEL_ACCOUNT);
2669 mutex_unlock(&hv->hv_lock);
2670
2671 if (ret >= 0)
2672 return 0;
2673
2674 if (ret == -ENOSPC)
2675 ret = -EEXIST;
2676 eventfd_ctx_put(eventfd);
2677 return ret;
2678 }
2679
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)2680 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2681 {
2682 struct kvm_hv *hv = to_kvm_hv(kvm);
2683 struct eventfd_ctx *eventfd;
2684
2685 mutex_lock(&hv->hv_lock);
2686 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2687 mutex_unlock(&hv->hv_lock);
2688
2689 if (!eventfd)
2690 return -ENOENT;
2691
2692 synchronize_srcu(&kvm->srcu);
2693 eventfd_ctx_put(eventfd);
2694 return 0;
2695 }
2696
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)2697 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2698 {
2699 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2700 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2701 return -EINVAL;
2702
2703 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2704 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2705 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2706 }
2707
kvm_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2708 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2709 struct kvm_cpuid_entry2 __user *entries)
2710 {
2711 uint16_t evmcs_ver = 0;
2712 struct kvm_cpuid_entry2 cpuid_entries[] = {
2713 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2714 { .function = HYPERV_CPUID_INTERFACE },
2715 { .function = HYPERV_CPUID_VERSION },
2716 { .function = HYPERV_CPUID_FEATURES },
2717 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2718 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2719 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2720 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2721 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2722 { .function = HYPERV_CPUID_NESTED_FEATURES },
2723 };
2724 int i, nent = ARRAY_SIZE(cpuid_entries);
2725
2726 if (kvm_x86_ops.nested_ops->get_evmcs_version)
2727 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2728
2729 if (cpuid->nent < nent)
2730 return -E2BIG;
2731
2732 if (cpuid->nent > nent)
2733 cpuid->nent = nent;
2734
2735 for (i = 0; i < nent; i++) {
2736 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2737 u32 signature[3];
2738
2739 switch (ent->function) {
2740 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2741 memcpy(signature, "Linux KVM Hv", 12);
2742
2743 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2744 ent->ebx = signature[0];
2745 ent->ecx = signature[1];
2746 ent->edx = signature[2];
2747 break;
2748
2749 case HYPERV_CPUID_INTERFACE:
2750 ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2751 break;
2752
2753 case HYPERV_CPUID_VERSION:
2754 /*
2755 * We implement some Hyper-V 2016 functions so let's use
2756 * this version.
2757 */
2758 ent->eax = 0x00003839;
2759 ent->ebx = 0x000A0000;
2760 break;
2761
2762 case HYPERV_CPUID_FEATURES:
2763 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2764 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2765 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2766 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2767 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2768 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2769 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2770 ent->eax |= HV_MSR_RESET_AVAILABLE;
2771 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2772 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2773 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2774 ent->eax |= HV_ACCESS_TSC_INVARIANT;
2775
2776 ent->ebx |= HV_POST_MESSAGES;
2777 ent->ebx |= HV_SIGNAL_EVENTS;
2778 ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2779
2780 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2781 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2782 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2783
2784 ent->ebx |= HV_DEBUGGING;
2785 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2786 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2787 ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
2788
2789 /*
2790 * Direct Synthetic timers only make sense with in-kernel
2791 * LAPIC
2792 */
2793 if (!vcpu || lapic_in_kernel(vcpu))
2794 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2795
2796 break;
2797
2798 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2799 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2800 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2801 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2802 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2803 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2804 if (evmcs_ver)
2805 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2806 if (!cpu_smt_possible())
2807 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2808
2809 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2810 /*
2811 * Default number of spinlock retry attempts, matches
2812 * HyperV 2016.
2813 */
2814 ent->ebx = 0x00000FFF;
2815
2816 break;
2817
2818 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2819 /* Maximum number of virtual processors */
2820 ent->eax = KVM_MAX_VCPUS;
2821 /*
2822 * Maximum number of logical processors, matches
2823 * HyperV 2016.
2824 */
2825 ent->ebx = 64;
2826
2827 break;
2828
2829 case HYPERV_CPUID_NESTED_FEATURES:
2830 ent->eax = evmcs_ver;
2831 ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
2832 ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2833 ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2834 break;
2835
2836 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2837 memcpy(signature, "Linux KVM Hv", 12);
2838
2839 ent->eax = 0;
2840 ent->ebx = signature[0];
2841 ent->ecx = signature[1];
2842 ent->edx = signature[2];
2843 break;
2844
2845 case HYPERV_CPUID_SYNDBG_INTERFACE:
2846 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2847 ent->eax = signature[0];
2848 break;
2849
2850 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2851 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2852 break;
2853
2854 default:
2855 break;
2856 }
2857 }
2858
2859 if (copy_to_user(entries, cpuid_entries,
2860 nent * sizeof(struct kvm_cpuid_entry2)))
2861 return -EFAULT;
2862
2863 return 0;
2864 }
2865