1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19 #include "smm.h"
20
21 static bool __read_mostly enable_shadow_vmcs = 1;
22 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
23
24 static bool __read_mostly nested_early_check = 0;
25 module_param(nested_early_check, bool, S_IRUGO);
26
27 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
28
29 /*
30 * Hyper-V requires all of these, so mark them as supported even though
31 * they are just treated the same as all-context.
32 */
33 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
34 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
35 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
36 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
38
39 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
40
41 enum {
42 VMX_VMREAD_BITMAP,
43 VMX_VMWRITE_BITMAP,
44 VMX_BITMAP_NR
45 };
46 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
47
48 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
49 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
50
51 struct shadow_vmcs_field {
52 u16 encoding;
53 u16 offset;
54 };
55 static struct shadow_vmcs_field shadow_read_only_fields[] = {
56 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
57 #include "vmcs_shadow_fields.h"
58 };
59 static int max_shadow_read_only_fields =
60 ARRAY_SIZE(shadow_read_only_fields);
61
62 static struct shadow_vmcs_field shadow_read_write_fields[] = {
63 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
64 #include "vmcs_shadow_fields.h"
65 };
66 static int max_shadow_read_write_fields =
67 ARRAY_SIZE(shadow_read_write_fields);
68
init_vmcs_shadow_fields(void)69 static void init_vmcs_shadow_fields(void)
70 {
71 int i, j;
72
73 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
74 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
75
76 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
77 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
78 u16 field = entry.encoding;
79
80 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
81 (i + 1 == max_shadow_read_only_fields ||
82 shadow_read_only_fields[i + 1].encoding != field + 1))
83 pr_err("Missing field from shadow_read_only_field %x\n",
84 field + 1);
85
86 clear_bit(field, vmx_vmread_bitmap);
87 if (field & 1)
88 #ifdef CONFIG_X86_64
89 continue;
90 #else
91 entry.offset += sizeof(u32);
92 #endif
93 shadow_read_only_fields[j++] = entry;
94 }
95 max_shadow_read_only_fields = j;
96
97 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
98 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
99 u16 field = entry.encoding;
100
101 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
102 (i + 1 == max_shadow_read_write_fields ||
103 shadow_read_write_fields[i + 1].encoding != field + 1))
104 pr_err("Missing field from shadow_read_write_field %x\n",
105 field + 1);
106
107 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
108 field <= GUEST_TR_AR_BYTES,
109 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
110
111 /*
112 * PML and the preemption timer can be emulated, but the
113 * processor cannot vmwrite to fields that don't exist
114 * on bare metal.
115 */
116 switch (field) {
117 case GUEST_PML_INDEX:
118 if (!cpu_has_vmx_pml())
119 continue;
120 break;
121 case VMX_PREEMPTION_TIMER_VALUE:
122 if (!cpu_has_vmx_preemption_timer())
123 continue;
124 break;
125 case GUEST_INTR_STATUS:
126 if (!cpu_has_vmx_apicv())
127 continue;
128 break;
129 default:
130 break;
131 }
132
133 clear_bit(field, vmx_vmwrite_bitmap);
134 clear_bit(field, vmx_vmread_bitmap);
135 if (field & 1)
136 #ifdef CONFIG_X86_64
137 continue;
138 #else
139 entry.offset += sizeof(u32);
140 #endif
141 shadow_read_write_fields[j++] = entry;
142 }
143 max_shadow_read_write_fields = j;
144 }
145
146 /*
147 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
148 * set the success or error code of an emulated VMX instruction (as specified
149 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
150 * instruction.
151 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)152 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
153 {
154 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
155 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
156 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
157 return kvm_skip_emulated_instruction(vcpu);
158 }
159
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)160 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
161 {
162 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
163 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
164 X86_EFLAGS_SF | X86_EFLAGS_OF))
165 | X86_EFLAGS_CF);
166 return kvm_skip_emulated_instruction(vcpu);
167 }
168
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)169 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
170 u32 vm_instruction_error)
171 {
172 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
173 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
174 X86_EFLAGS_SF | X86_EFLAGS_OF))
175 | X86_EFLAGS_ZF);
176 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
177 /*
178 * We don't need to force sync to shadow VMCS because
179 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
180 * fields and thus must be synced.
181 */
182 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
183 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
184
185 return kvm_skip_emulated_instruction(vcpu);
186 }
187
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)188 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
189 {
190 struct vcpu_vmx *vmx = to_vmx(vcpu);
191
192 /*
193 * failValid writes the error number to the current VMCS, which
194 * can't be done if there isn't a current VMCS.
195 */
196 if (vmx->nested.current_vmptr == INVALID_GPA &&
197 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
198 return nested_vmx_failInvalid(vcpu);
199
200 return nested_vmx_failValid(vcpu, vm_instruction_error);
201 }
202
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)203 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
204 {
205 /* TODO: not to reset guest simply here. */
206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
207 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
208 }
209
vmx_control_verify(u32 control,u32 low,u32 high)210 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
211 {
212 return fixed_bits_valid(control, low, high);
213 }
214
vmx_control_msr(u32 low,u32 high)215 static inline u64 vmx_control_msr(u32 low, u32 high)
216 {
217 return low | ((u64)high << 32);
218 }
219
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)220 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
221 {
222 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
223 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
224 vmx->nested.need_vmcs12_to_shadow_sync = false;
225 }
226
nested_release_evmcs(struct kvm_vcpu * vcpu)227 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
228 {
229 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
230 struct vcpu_vmx *vmx = to_vmx(vcpu);
231
232 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
233 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
234 vmx->nested.hv_evmcs = NULL;
235 }
236
237 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
238
239 if (hv_vcpu) {
240 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
241 hv_vcpu->nested.vm_id = 0;
242 hv_vcpu->nested.vp_id = 0;
243 }
244 }
245
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)246 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
247 struct loaded_vmcs *prev)
248 {
249 struct vmcs_host_state *dest, *src;
250
251 if (unlikely(!vmx->guest_state_loaded))
252 return;
253
254 src = &prev->host_state;
255 dest = &vmx->loaded_vmcs->host_state;
256
257 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
258 dest->ldt_sel = src->ldt_sel;
259 #ifdef CONFIG_X86_64
260 dest->ds_sel = src->ds_sel;
261 dest->es_sel = src->es_sel;
262 #endif
263 }
264
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)265 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
266 {
267 struct vcpu_vmx *vmx = to_vmx(vcpu);
268 struct loaded_vmcs *prev;
269 int cpu;
270
271 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
272 return;
273
274 cpu = get_cpu();
275 prev = vmx->loaded_vmcs;
276 vmx->loaded_vmcs = vmcs;
277 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
278 vmx_sync_vmcs_host_state(vmx, prev);
279 put_cpu();
280
281 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
282
283 /*
284 * All lazily updated registers will be reloaded from VMCS12 on both
285 * vmentry and vmexit.
286 */
287 vcpu->arch.regs_dirty = 0;
288 }
289
290 /*
291 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
292 * just stops using VMX.
293 */
free_nested(struct kvm_vcpu * vcpu)294 static void free_nested(struct kvm_vcpu *vcpu)
295 {
296 struct vcpu_vmx *vmx = to_vmx(vcpu);
297
298 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
299 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
300
301 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
302 return;
303
304 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
305
306 vmx->nested.vmxon = false;
307 vmx->nested.smm.vmxon = false;
308 vmx->nested.vmxon_ptr = INVALID_GPA;
309 free_vpid(vmx->nested.vpid02);
310 vmx->nested.posted_intr_nv = -1;
311 vmx->nested.current_vmptr = INVALID_GPA;
312 if (enable_shadow_vmcs) {
313 vmx_disable_shadow_vmcs(vmx);
314 vmcs_clear(vmx->vmcs01.shadow_vmcs);
315 free_vmcs(vmx->vmcs01.shadow_vmcs);
316 vmx->vmcs01.shadow_vmcs = NULL;
317 }
318 kfree(vmx->nested.cached_vmcs12);
319 vmx->nested.cached_vmcs12 = NULL;
320 kfree(vmx->nested.cached_shadow_vmcs12);
321 vmx->nested.cached_shadow_vmcs12 = NULL;
322 /*
323 * Unpin physical memory we referred to in the vmcs02. The APIC access
324 * page's backing page (yeah, confusing) shouldn't actually be accessed,
325 * and if it is written, the contents are irrelevant.
326 */
327 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
328 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
329 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
330 vmx->nested.pi_desc = NULL;
331
332 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
333
334 nested_release_evmcs(vcpu);
335
336 free_loaded_vmcs(&vmx->nested.vmcs02);
337 }
338
339 /*
340 * Ensure that the current vmcs of the logical processor is the
341 * vmcs01 of the vcpu before calling free_nested().
342 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)343 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
344 {
345 vcpu_load(vcpu);
346 vmx_leave_nested(vcpu);
347 vcpu_put(vcpu);
348 }
349
350 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
351
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)352 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
353 {
354 return VALID_PAGE(root_hpa) &&
355 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
356 }
357
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)358 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
359 gpa_t addr)
360 {
361 unsigned long roots = 0;
362 uint i;
363 struct kvm_mmu_root_info *cached_root;
364
365 WARN_ON_ONCE(!mmu_is_nested(vcpu));
366
367 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
368 cached_root = &vcpu->arch.mmu->prev_roots[i];
369
370 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
371 eptp))
372 roots |= KVM_MMU_ROOT_PREVIOUS(i);
373 }
374 if (roots)
375 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
376 }
377
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)378 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
379 struct x86_exception *fault)
380 {
381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382 struct vcpu_vmx *vmx = to_vmx(vcpu);
383 u32 vm_exit_reason;
384 unsigned long exit_qualification = vcpu->arch.exit_qualification;
385
386 if (vmx->nested.pml_full) {
387 vm_exit_reason = EXIT_REASON_PML_FULL;
388 vmx->nested.pml_full = false;
389 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
390 } else {
391 if (fault->error_code & PFERR_RSVD_MASK)
392 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
393 else
394 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
395
396 /*
397 * Although the caller (kvm_inject_emulated_page_fault) would
398 * have already synced the faulting address in the shadow EPT
399 * tables for the current EPTP12, we also need to sync it for
400 * any other cached EPTP02s based on the same EP4TA, since the
401 * TLB associates mappings to the EP4TA rather than the full EPTP.
402 */
403 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
404 fault->address);
405 }
406
407 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
408 vmcs12->guest_physical_address = fault->address;
409 }
410
nested_ept_new_eptp(struct kvm_vcpu * vcpu)411 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
412 {
413 struct vcpu_vmx *vmx = to_vmx(vcpu);
414 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
415 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
416
417 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
418 nested_ept_ad_enabled(vcpu),
419 nested_ept_get_eptp(vcpu));
420 }
421
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)422 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
423 {
424 WARN_ON(mmu_is_nested(vcpu));
425
426 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
427 nested_ept_new_eptp(vcpu);
428 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
429 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
430 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
431
432 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
433 }
434
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)435 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
436 {
437 vcpu->arch.mmu = &vcpu->arch.root_mmu;
438 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
439 }
440
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)441 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
442 u16 error_code)
443 {
444 bool inequality, bit;
445
446 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
447 inequality =
448 (error_code & vmcs12->page_fault_error_code_mask) !=
449 vmcs12->page_fault_error_code_match;
450 return inequality ^ bit;
451 }
452
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)453 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
454 u32 error_code)
455 {
456 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
457
458 /*
459 * Drop bits 31:16 of the error code when performing the #PF mask+match
460 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
461 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
462 * error code. Including the to-be-dropped bits in the check might
463 * result in an "impossible" or missed exit from L1's perspective.
464 */
465 if (vector == PF_VECTOR)
466 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
467
468 return (vmcs12->exception_bitmap & (1u << vector));
469 }
470
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)471 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
472 struct vmcs12 *vmcs12)
473 {
474 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
475 return 0;
476
477 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
478 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
479 return -EINVAL;
480
481 return 0;
482 }
483
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)484 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
485 struct vmcs12 *vmcs12)
486 {
487 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
488 return 0;
489
490 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
491 return -EINVAL;
492
493 return 0;
494 }
495
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)496 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
497 struct vmcs12 *vmcs12)
498 {
499 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
500 return 0;
501
502 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
503 return -EINVAL;
504
505 return 0;
506 }
507
508 /*
509 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
510 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
511 * only the "disable intercept" case needs to be handled.
512 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)513 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
514 unsigned long *msr_bitmap_l0,
515 u32 msr, int type)
516 {
517 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
518 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
519
520 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
521 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
522 }
523
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)524 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
525 {
526 int msr;
527
528 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
529 unsigned word = msr / BITS_PER_LONG;
530
531 msr_bitmap[word] = ~0;
532 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
533 }
534 }
535
536 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
537 static inline \
538 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
539 unsigned long *msr_bitmap_l1, \
540 unsigned long *msr_bitmap_l0, u32 msr) \
541 { \
542 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
543 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
544 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
545 else \
546 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
547 }
548 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)549 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
550
551 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
552 unsigned long *msr_bitmap_l1,
553 unsigned long *msr_bitmap_l0,
554 u32 msr, int types)
555 {
556 if (types & MSR_TYPE_R)
557 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
558 msr_bitmap_l0, msr);
559 if (types & MSR_TYPE_W)
560 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
561 msr_bitmap_l0, msr);
562 }
563
564 /*
565 * Merge L0's and L1's MSR bitmap, return false to indicate that
566 * we do not use the hardware.
567 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)568 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
569 struct vmcs12 *vmcs12)
570 {
571 struct vcpu_vmx *vmx = to_vmx(vcpu);
572 int msr;
573 unsigned long *msr_bitmap_l1;
574 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
575 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
576 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
577
578 /* Nothing to do if the MSR bitmap is not in use. */
579 if (!cpu_has_vmx_msr_bitmap() ||
580 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
581 return false;
582
583 /*
584 * MSR bitmap update can be skipped when:
585 * - MSR bitmap for L1 hasn't changed.
586 * - Nested hypervisor (L1) is attempting to launch the same L2 as
587 * before.
588 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
589 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
590 */
591 if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
592 evmcs->hv_enlightenments_control.msr_bitmap &&
593 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
594 return true;
595
596 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
597 return false;
598
599 msr_bitmap_l1 = (unsigned long *)map->hva;
600
601 /*
602 * To keep the control flow simple, pay eight 8-byte writes (sixteen
603 * 4-byte writes on 32-bit systems) up front to enable intercepts for
604 * the x2APIC MSR range and selectively toggle those relevant to L2.
605 */
606 enable_x2apic_msr_intercepts(msr_bitmap_l0);
607
608 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
609 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
610 /*
611 * L0 need not intercept reads for MSRs between 0x800
612 * and 0x8ff, it just lets the processor take the value
613 * from the virtual-APIC page; take those 256 bits
614 * directly from the L1 bitmap.
615 */
616 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
617 unsigned word = msr / BITS_PER_LONG;
618
619 msr_bitmap_l0[word] = msr_bitmap_l1[word];
620 }
621 }
622
623 nested_vmx_disable_intercept_for_x2apic_msr(
624 msr_bitmap_l1, msr_bitmap_l0,
625 X2APIC_MSR(APIC_TASKPRI),
626 MSR_TYPE_R | MSR_TYPE_W);
627
628 if (nested_cpu_has_vid(vmcs12)) {
629 nested_vmx_disable_intercept_for_x2apic_msr(
630 msr_bitmap_l1, msr_bitmap_l0,
631 X2APIC_MSR(APIC_EOI),
632 MSR_TYPE_W);
633 nested_vmx_disable_intercept_for_x2apic_msr(
634 msr_bitmap_l1, msr_bitmap_l0,
635 X2APIC_MSR(APIC_SELF_IPI),
636 MSR_TYPE_W);
637 }
638 }
639
640 /*
641 * Always check vmcs01's bitmap to honor userspace MSR filters and any
642 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
643 */
644 #ifdef CONFIG_X86_64
645 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
646 MSR_FS_BASE, MSR_TYPE_RW);
647
648 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
649 MSR_GS_BASE, MSR_TYPE_RW);
650
651 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
652 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
653 #endif
654 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
655 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
656
657 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
658 MSR_IA32_PRED_CMD, MSR_TYPE_W);
659
660 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
661 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
662
663 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
664
665 vmx->nested.force_msr_bitmap_recalc = false;
666
667 return true;
668 }
669
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)670 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
671 struct vmcs12 *vmcs12)
672 {
673 struct vcpu_vmx *vmx = to_vmx(vcpu);
674 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
675
676 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
677 vmcs12->vmcs_link_pointer == INVALID_GPA)
678 return;
679
680 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
681 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
682 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
683 return;
684
685 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
686 VMCS12_SIZE);
687 }
688
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)689 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
690 struct vmcs12 *vmcs12)
691 {
692 struct vcpu_vmx *vmx = to_vmx(vcpu);
693 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
694
695 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
696 vmcs12->vmcs_link_pointer == INVALID_GPA)
697 return;
698
699 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
700 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
701 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
702 return;
703
704 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
705 VMCS12_SIZE);
706 }
707
708 /*
709 * In nested virtualization, check if L1 has set
710 * VM_EXIT_ACK_INTR_ON_EXIT
711 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)712 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
713 {
714 return get_vmcs12(vcpu)->vm_exit_controls &
715 VM_EXIT_ACK_INTR_ON_EXIT;
716 }
717
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)718 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
719 struct vmcs12 *vmcs12)
720 {
721 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
722 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
723 return -EINVAL;
724 else
725 return 0;
726 }
727
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)728 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
729 struct vmcs12 *vmcs12)
730 {
731 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
732 !nested_cpu_has_apic_reg_virt(vmcs12) &&
733 !nested_cpu_has_vid(vmcs12) &&
734 !nested_cpu_has_posted_intr(vmcs12))
735 return 0;
736
737 /*
738 * If virtualize x2apic mode is enabled,
739 * virtualize apic access must be disabled.
740 */
741 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
742 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
743 return -EINVAL;
744
745 /*
746 * If virtual interrupt delivery is enabled,
747 * we must exit on external interrupts.
748 */
749 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
750 return -EINVAL;
751
752 /*
753 * bits 15:8 should be zero in posted_intr_nv,
754 * the descriptor address has been already checked
755 * in nested_get_vmcs12_pages.
756 *
757 * bits 5:0 of posted_intr_desc_addr should be zero.
758 */
759 if (nested_cpu_has_posted_intr(vmcs12) &&
760 (CC(!nested_cpu_has_vid(vmcs12)) ||
761 CC(!nested_exit_intr_ack_set(vcpu)) ||
762 CC((vmcs12->posted_intr_nv & 0xff00)) ||
763 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
764 return -EINVAL;
765
766 /* tpr shadow is needed by all apicv features. */
767 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
768 return -EINVAL;
769
770 return 0;
771 }
772
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)773 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
774 u32 count, u64 addr)
775 {
776 if (count == 0)
777 return 0;
778
779 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
780 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
781 return -EINVAL;
782
783 return 0;
784 }
785
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)786 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
787 struct vmcs12 *vmcs12)
788 {
789 if (CC(nested_vmx_check_msr_switch(vcpu,
790 vmcs12->vm_exit_msr_load_count,
791 vmcs12->vm_exit_msr_load_addr)) ||
792 CC(nested_vmx_check_msr_switch(vcpu,
793 vmcs12->vm_exit_msr_store_count,
794 vmcs12->vm_exit_msr_store_addr)))
795 return -EINVAL;
796
797 return 0;
798 }
799
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)800 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
801 struct vmcs12 *vmcs12)
802 {
803 if (CC(nested_vmx_check_msr_switch(vcpu,
804 vmcs12->vm_entry_msr_load_count,
805 vmcs12->vm_entry_msr_load_addr)))
806 return -EINVAL;
807
808 return 0;
809 }
810
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)811 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
812 struct vmcs12 *vmcs12)
813 {
814 if (!nested_cpu_has_pml(vmcs12))
815 return 0;
816
817 if (CC(!nested_cpu_has_ept(vmcs12)) ||
818 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
819 return -EINVAL;
820
821 return 0;
822 }
823
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)824 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
825 struct vmcs12 *vmcs12)
826 {
827 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
828 !nested_cpu_has_ept(vmcs12)))
829 return -EINVAL;
830 return 0;
831 }
832
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)833 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
834 struct vmcs12 *vmcs12)
835 {
836 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
837 !nested_cpu_has_ept(vmcs12)))
838 return -EINVAL;
839 return 0;
840 }
841
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)842 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
843 struct vmcs12 *vmcs12)
844 {
845 if (!nested_cpu_has_shadow_vmcs(vmcs12))
846 return 0;
847
848 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
849 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
850 return -EINVAL;
851
852 return 0;
853 }
854
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)855 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
856 struct vmx_msr_entry *e)
857 {
858 /* x2APIC MSR accesses are not allowed */
859 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
860 return -EINVAL;
861 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
862 CC(e->index == MSR_IA32_UCODE_REV))
863 return -EINVAL;
864 if (CC(e->reserved != 0))
865 return -EINVAL;
866 return 0;
867 }
868
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)869 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
870 struct vmx_msr_entry *e)
871 {
872 if (CC(e->index == MSR_FS_BASE) ||
873 CC(e->index == MSR_GS_BASE) ||
874 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
875 nested_vmx_msr_check_common(vcpu, e))
876 return -EINVAL;
877 return 0;
878 }
879
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)880 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
881 struct vmx_msr_entry *e)
882 {
883 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
884 nested_vmx_msr_check_common(vcpu, e))
885 return -EINVAL;
886 return 0;
887 }
888
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)889 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
890 {
891 struct vcpu_vmx *vmx = to_vmx(vcpu);
892 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
893 vmx->nested.msrs.misc_high);
894
895 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
896 }
897
898 /*
899 * Load guest's/host's msr at nested entry/exit.
900 * return 0 for success, entry index for failure.
901 *
902 * One of the failure modes for MSR load/store is when a list exceeds the
903 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
904 * as possible, process all valid entries before failing rather than precheck
905 * for a capacity violation.
906 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)907 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
908 {
909 u32 i;
910 struct vmx_msr_entry e;
911 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
912
913 for (i = 0; i < count; i++) {
914 if (unlikely(i >= max_msr_list_size))
915 goto fail;
916
917 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
918 &e, sizeof(e))) {
919 pr_debug_ratelimited(
920 "%s cannot read MSR entry (%u, 0x%08llx)\n",
921 __func__, i, gpa + i * sizeof(e));
922 goto fail;
923 }
924 if (nested_vmx_load_msr_check(vcpu, &e)) {
925 pr_debug_ratelimited(
926 "%s check failed (%u, 0x%x, 0x%x)\n",
927 __func__, i, e.index, e.reserved);
928 goto fail;
929 }
930 if (kvm_set_msr(vcpu, e.index, e.value)) {
931 pr_debug_ratelimited(
932 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
933 __func__, i, e.index, e.value);
934 goto fail;
935 }
936 }
937 return 0;
938 fail:
939 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
940 return i + 1;
941 }
942
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)943 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
944 u32 msr_index,
945 u64 *data)
946 {
947 struct vcpu_vmx *vmx = to_vmx(vcpu);
948
949 /*
950 * If the L0 hypervisor stored a more accurate value for the TSC that
951 * does not include the time taken for emulation of the L2->L1
952 * VM-exit in L0, use the more accurate value.
953 */
954 if (msr_index == MSR_IA32_TSC) {
955 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
956 MSR_IA32_TSC);
957
958 if (i >= 0) {
959 u64 val = vmx->msr_autostore.guest.val[i].value;
960
961 *data = kvm_read_l1_tsc(vcpu, val);
962 return true;
963 }
964 }
965
966 if (kvm_get_msr(vcpu, msr_index, data)) {
967 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
968 msr_index);
969 return false;
970 }
971 return true;
972 }
973
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)974 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
975 struct vmx_msr_entry *e)
976 {
977 if (kvm_vcpu_read_guest(vcpu,
978 gpa + i * sizeof(*e),
979 e, 2 * sizeof(u32))) {
980 pr_debug_ratelimited(
981 "%s cannot read MSR entry (%u, 0x%08llx)\n",
982 __func__, i, gpa + i * sizeof(*e));
983 return false;
984 }
985 if (nested_vmx_store_msr_check(vcpu, e)) {
986 pr_debug_ratelimited(
987 "%s check failed (%u, 0x%x, 0x%x)\n",
988 __func__, i, e->index, e->reserved);
989 return false;
990 }
991 return true;
992 }
993
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)994 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
995 {
996 u64 data;
997 u32 i;
998 struct vmx_msr_entry e;
999 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1000
1001 for (i = 0; i < count; i++) {
1002 if (unlikely(i >= max_msr_list_size))
1003 return -EINVAL;
1004
1005 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1006 return -EINVAL;
1007
1008 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1009 return -EINVAL;
1010
1011 if (kvm_vcpu_write_guest(vcpu,
1012 gpa + i * sizeof(e) +
1013 offsetof(struct vmx_msr_entry, value),
1014 &data, sizeof(data))) {
1015 pr_debug_ratelimited(
1016 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1017 __func__, i, e.index, data);
1018 return -EINVAL;
1019 }
1020 }
1021 return 0;
1022 }
1023
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1024 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1025 {
1026 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1027 u32 count = vmcs12->vm_exit_msr_store_count;
1028 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1029 struct vmx_msr_entry e;
1030 u32 i;
1031
1032 for (i = 0; i < count; i++) {
1033 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1034 return false;
1035
1036 if (e.index == msr_index)
1037 return true;
1038 }
1039 return false;
1040 }
1041
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1042 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1043 u32 msr_index)
1044 {
1045 struct vcpu_vmx *vmx = to_vmx(vcpu);
1046 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1047 bool in_vmcs12_store_list;
1048 int msr_autostore_slot;
1049 bool in_autostore_list;
1050 int last;
1051
1052 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1053 in_autostore_list = msr_autostore_slot >= 0;
1054 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1055
1056 if (in_vmcs12_store_list && !in_autostore_list) {
1057 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1058 /*
1059 * Emulated VMEntry does not fail here. Instead a less
1060 * accurate value will be returned by
1061 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1062 * instead of reading the value from the vmcs02 VMExit
1063 * MSR-store area.
1064 */
1065 pr_warn_ratelimited(
1066 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1067 msr_index);
1068 return;
1069 }
1070 last = autostore->nr++;
1071 autostore->val[last].index = msr_index;
1072 } else if (!in_vmcs12_store_list && in_autostore_list) {
1073 last = --autostore->nr;
1074 autostore->val[msr_autostore_slot] = autostore->val[last];
1075 }
1076 }
1077
1078 /*
1079 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1080 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1081 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1082 * @entry_failure_code.
1083 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1084 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1085 bool nested_ept, bool reload_pdptrs,
1086 enum vm_entry_failure_code *entry_failure_code)
1087 {
1088 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1089 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1090 return -EINVAL;
1091 }
1092
1093 /*
1094 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1095 * must not be dereferenced.
1096 */
1097 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1098 CC(!load_pdptrs(vcpu, cr3))) {
1099 *entry_failure_code = ENTRY_FAIL_PDPTE;
1100 return -EINVAL;
1101 }
1102
1103 vcpu->arch.cr3 = cr3;
1104 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1105
1106 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1107 kvm_init_mmu(vcpu);
1108
1109 if (!nested_ept)
1110 kvm_mmu_new_pgd(vcpu, cr3);
1111
1112 return 0;
1113 }
1114
1115 /*
1116 * Returns if KVM is able to config CPU to tag TLB entries
1117 * populated by L2 differently than TLB entries populated
1118 * by L1.
1119 *
1120 * If L0 uses EPT, L1 and L2 run with different EPTP because
1121 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1122 * are tagged with different EPTP.
1123 *
1124 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1125 * with different VPID (L1 entries are tagged with vmx->vpid
1126 * while L2 entries are tagged with vmx->nested.vpid02).
1127 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1128 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1129 {
1130 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1131
1132 return enable_ept ||
1133 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1134 }
1135
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1136 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1137 struct vmcs12 *vmcs12,
1138 bool is_vmenter)
1139 {
1140 struct vcpu_vmx *vmx = to_vmx(vcpu);
1141
1142 /*
1143 * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or
1144 * L2's VP_ID upon request from the guest. Make sure we check for
1145 * pending entries in the right FIFO upon L1/L2 transition as these
1146 * requests are put by other vCPUs asynchronously.
1147 */
1148 if (to_hv_vcpu(vcpu) && enable_ept)
1149 kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu);
1150
1151 /*
1152 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1153 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1154 * full TLB flush from the guest's perspective. This is required even
1155 * if VPID is disabled in the host as KVM may need to synchronize the
1156 * MMU in response to the guest TLB flush.
1157 *
1158 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1159 * EPT is a special snowflake, as guest-physical mappings aren't
1160 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1161 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1162 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1163 * those mappings.
1164 */
1165 if (!nested_cpu_has_vpid(vmcs12)) {
1166 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1167 return;
1168 }
1169
1170 /* L2 should never have a VPID if VPID is disabled. */
1171 WARN_ON(!enable_vpid);
1172
1173 /*
1174 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1175 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1176 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1177 * that the new vpid12 has never been used and thus represents a new
1178 * guest ASID that cannot have entries in the TLB.
1179 */
1180 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1181 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1182 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1183 return;
1184 }
1185
1186 /*
1187 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1188 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1189 * KVM was unable to allocate a VPID for L2, flush the current context
1190 * as the effective ASID is common to both L1 and L2.
1191 */
1192 if (!nested_has_guest_tlb_tag(vcpu))
1193 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1194 }
1195
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1196 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1197 {
1198 superset &= mask;
1199 subset &= mask;
1200
1201 return (superset | subset) == superset;
1202 }
1203
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1204 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1205 {
1206 const u64 feature_and_reserved =
1207 /* feature (except bit 48; see below) */
1208 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1209 /* reserved */
1210 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1211 u64 vmx_basic = vmcs_config.nested.basic;
1212
1213 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1214 return -EINVAL;
1215
1216 /*
1217 * KVM does not emulate a version of VMX that constrains physical
1218 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1219 */
1220 if (data & BIT_ULL(48))
1221 return -EINVAL;
1222
1223 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1224 vmx_basic_vmcs_revision_id(data))
1225 return -EINVAL;
1226
1227 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1228 return -EINVAL;
1229
1230 vmx->nested.msrs.basic = data;
1231 return 0;
1232 }
1233
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1234 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1235 u32 **low, u32 **high)
1236 {
1237 switch (msr_index) {
1238 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1239 *low = &msrs->pinbased_ctls_low;
1240 *high = &msrs->pinbased_ctls_high;
1241 break;
1242 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1243 *low = &msrs->procbased_ctls_low;
1244 *high = &msrs->procbased_ctls_high;
1245 break;
1246 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247 *low = &msrs->exit_ctls_low;
1248 *high = &msrs->exit_ctls_high;
1249 break;
1250 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1251 *low = &msrs->entry_ctls_low;
1252 *high = &msrs->entry_ctls_high;
1253 break;
1254 case MSR_IA32_VMX_PROCBASED_CTLS2:
1255 *low = &msrs->secondary_ctls_low;
1256 *high = &msrs->secondary_ctls_high;
1257 break;
1258 default:
1259 BUG();
1260 }
1261 }
1262
1263 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1264 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1265 {
1266 u32 *lowp, *highp;
1267 u64 supported;
1268
1269 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1270
1271 supported = vmx_control_msr(*lowp, *highp);
1272
1273 /* Check must-be-1 bits are still 1. */
1274 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1275 return -EINVAL;
1276
1277 /* Check must-be-0 bits are still 0. */
1278 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1279 return -EINVAL;
1280
1281 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1282 *lowp = data;
1283 *highp = data >> 32;
1284 return 0;
1285 }
1286
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1287 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1288 {
1289 const u64 feature_and_reserved_bits =
1290 /* feature */
1291 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1292 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1293 /* reserved */
1294 GENMASK_ULL(13, 9) | BIT_ULL(31);
1295 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1296 vmcs_config.nested.misc_high);
1297
1298 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1299 return -EINVAL;
1300
1301 if ((vmx->nested.msrs.pinbased_ctls_high &
1302 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1303 vmx_misc_preemption_timer_rate(data) !=
1304 vmx_misc_preemption_timer_rate(vmx_misc))
1305 return -EINVAL;
1306
1307 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1308 return -EINVAL;
1309
1310 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1311 return -EINVAL;
1312
1313 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1314 return -EINVAL;
1315
1316 vmx->nested.msrs.misc_low = data;
1317 vmx->nested.msrs.misc_high = data >> 32;
1318
1319 return 0;
1320 }
1321
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1322 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1323 {
1324 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1325 vmcs_config.nested.vpid_caps);
1326
1327 /* Every bit is either reserved or a feature bit. */
1328 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1329 return -EINVAL;
1330
1331 vmx->nested.msrs.ept_caps = data;
1332 vmx->nested.msrs.vpid_caps = data >> 32;
1333 return 0;
1334 }
1335
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1336 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1337 {
1338 switch (msr_index) {
1339 case MSR_IA32_VMX_CR0_FIXED0:
1340 return &msrs->cr0_fixed0;
1341 case MSR_IA32_VMX_CR4_FIXED0:
1342 return &msrs->cr4_fixed0;
1343 default:
1344 BUG();
1345 }
1346 }
1347
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1348 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1349 {
1350 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1351
1352 /*
1353 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1354 * must be 1 in the restored value.
1355 */
1356 if (!is_bitwise_subset(data, *msr, -1ULL))
1357 return -EINVAL;
1358
1359 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1360 return 0;
1361 }
1362
1363 /*
1364 * Called when userspace is restoring VMX MSRs.
1365 *
1366 * Returns 0 on success, non-0 otherwise.
1367 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1368 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1369 {
1370 struct vcpu_vmx *vmx = to_vmx(vcpu);
1371
1372 /*
1373 * Don't allow changes to the VMX capability MSRs while the vCPU
1374 * is in VMX operation.
1375 */
1376 if (vmx->nested.vmxon)
1377 return -EBUSY;
1378
1379 switch (msr_index) {
1380 case MSR_IA32_VMX_BASIC:
1381 return vmx_restore_vmx_basic(vmx, data);
1382 case MSR_IA32_VMX_PINBASED_CTLS:
1383 case MSR_IA32_VMX_PROCBASED_CTLS:
1384 case MSR_IA32_VMX_EXIT_CTLS:
1385 case MSR_IA32_VMX_ENTRY_CTLS:
1386 /*
1387 * The "non-true" VMX capability MSRs are generated from the
1388 * "true" MSRs, so we do not support restoring them directly.
1389 *
1390 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1391 * should restore the "true" MSRs with the must-be-1 bits
1392 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1393 * DEFAULT SETTINGS".
1394 */
1395 return -EINVAL;
1396 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1397 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1398 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1399 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1400 case MSR_IA32_VMX_PROCBASED_CTLS2:
1401 return vmx_restore_control_msr(vmx, msr_index, data);
1402 case MSR_IA32_VMX_MISC:
1403 return vmx_restore_vmx_misc(vmx, data);
1404 case MSR_IA32_VMX_CR0_FIXED0:
1405 case MSR_IA32_VMX_CR4_FIXED0:
1406 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1407 case MSR_IA32_VMX_CR0_FIXED1:
1408 case MSR_IA32_VMX_CR4_FIXED1:
1409 /*
1410 * These MSRs are generated based on the vCPU's CPUID, so we
1411 * do not support restoring them directly.
1412 */
1413 return -EINVAL;
1414 case MSR_IA32_VMX_EPT_VPID_CAP:
1415 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1416 case MSR_IA32_VMX_VMCS_ENUM:
1417 vmx->nested.msrs.vmcs_enum = data;
1418 return 0;
1419 case MSR_IA32_VMX_VMFUNC:
1420 if (data & ~vmcs_config.nested.vmfunc_controls)
1421 return -EINVAL;
1422 vmx->nested.msrs.vmfunc_controls = data;
1423 return 0;
1424 default:
1425 /*
1426 * The rest of the VMX capability MSRs do not support restore.
1427 */
1428 return -EINVAL;
1429 }
1430 }
1431
1432 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1433 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1434 {
1435 switch (msr_index) {
1436 case MSR_IA32_VMX_BASIC:
1437 *pdata = msrs->basic;
1438 break;
1439 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1440 case MSR_IA32_VMX_PINBASED_CTLS:
1441 *pdata = vmx_control_msr(
1442 msrs->pinbased_ctls_low,
1443 msrs->pinbased_ctls_high);
1444 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1445 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1446 break;
1447 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1448 case MSR_IA32_VMX_PROCBASED_CTLS:
1449 *pdata = vmx_control_msr(
1450 msrs->procbased_ctls_low,
1451 msrs->procbased_ctls_high);
1452 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1453 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1454 break;
1455 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1456 case MSR_IA32_VMX_EXIT_CTLS:
1457 *pdata = vmx_control_msr(
1458 msrs->exit_ctls_low,
1459 msrs->exit_ctls_high);
1460 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1461 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1462 break;
1463 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1464 case MSR_IA32_VMX_ENTRY_CTLS:
1465 *pdata = vmx_control_msr(
1466 msrs->entry_ctls_low,
1467 msrs->entry_ctls_high);
1468 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1469 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1470 break;
1471 case MSR_IA32_VMX_MISC:
1472 *pdata = vmx_control_msr(
1473 msrs->misc_low,
1474 msrs->misc_high);
1475 break;
1476 case MSR_IA32_VMX_CR0_FIXED0:
1477 *pdata = msrs->cr0_fixed0;
1478 break;
1479 case MSR_IA32_VMX_CR0_FIXED1:
1480 *pdata = msrs->cr0_fixed1;
1481 break;
1482 case MSR_IA32_VMX_CR4_FIXED0:
1483 *pdata = msrs->cr4_fixed0;
1484 break;
1485 case MSR_IA32_VMX_CR4_FIXED1:
1486 *pdata = msrs->cr4_fixed1;
1487 break;
1488 case MSR_IA32_VMX_VMCS_ENUM:
1489 *pdata = msrs->vmcs_enum;
1490 break;
1491 case MSR_IA32_VMX_PROCBASED_CTLS2:
1492 *pdata = vmx_control_msr(
1493 msrs->secondary_ctls_low,
1494 msrs->secondary_ctls_high);
1495 break;
1496 case MSR_IA32_VMX_EPT_VPID_CAP:
1497 *pdata = msrs->ept_caps |
1498 ((u64)msrs->vpid_caps << 32);
1499 break;
1500 case MSR_IA32_VMX_VMFUNC:
1501 *pdata = msrs->vmfunc_controls;
1502 break;
1503 default:
1504 return 1;
1505 }
1506
1507 return 0;
1508 }
1509
1510 /*
1511 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1512 * been modified by the L1 guest. Note, "writable" in this context means
1513 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1514 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1515 * VM-exit information fields (which are actually writable if the vCPU is
1516 * configured to support "VMWRITE to any supported field in the VMCS").
1517 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1518 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1519 {
1520 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1521 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1522 struct shadow_vmcs_field field;
1523 unsigned long val;
1524 int i;
1525
1526 if (WARN_ON(!shadow_vmcs))
1527 return;
1528
1529 preempt_disable();
1530
1531 vmcs_load(shadow_vmcs);
1532
1533 for (i = 0; i < max_shadow_read_write_fields; i++) {
1534 field = shadow_read_write_fields[i];
1535 val = __vmcs_readl(field.encoding);
1536 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1537 }
1538
1539 vmcs_clear(shadow_vmcs);
1540 vmcs_load(vmx->loaded_vmcs->vmcs);
1541
1542 preempt_enable();
1543 }
1544
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1545 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1546 {
1547 const struct shadow_vmcs_field *fields[] = {
1548 shadow_read_write_fields,
1549 shadow_read_only_fields
1550 };
1551 const int max_fields[] = {
1552 max_shadow_read_write_fields,
1553 max_shadow_read_only_fields
1554 };
1555 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1556 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1557 struct shadow_vmcs_field field;
1558 unsigned long val;
1559 int i, q;
1560
1561 if (WARN_ON(!shadow_vmcs))
1562 return;
1563
1564 vmcs_load(shadow_vmcs);
1565
1566 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1567 for (i = 0; i < max_fields[q]; i++) {
1568 field = fields[q][i];
1569 val = vmcs12_read_any(vmcs12, field.encoding,
1570 field.offset);
1571 __vmcs_writel(field.encoding, val);
1572 }
1573 }
1574
1575 vmcs_clear(shadow_vmcs);
1576 vmcs_load(vmx->loaded_vmcs->vmcs);
1577 }
1578
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1579 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1580 {
1581 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1582 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1583 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1584
1585 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1586 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1587 vmcs12->guest_rip = evmcs->guest_rip;
1588
1589 if (unlikely(!(hv_clean_fields &
1590 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1591 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1592 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1593 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1594 }
1595
1596 if (unlikely(!(hv_clean_fields &
1597 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1598 vmcs12->guest_rsp = evmcs->guest_rsp;
1599 vmcs12->guest_rflags = evmcs->guest_rflags;
1600 vmcs12->guest_interruptibility_info =
1601 evmcs->guest_interruptibility_info;
1602 /*
1603 * Not present in struct vmcs12:
1604 * vmcs12->guest_ssp = evmcs->guest_ssp;
1605 */
1606 }
1607
1608 if (unlikely(!(hv_clean_fields &
1609 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1610 vmcs12->cpu_based_vm_exec_control =
1611 evmcs->cpu_based_vm_exec_control;
1612 }
1613
1614 if (unlikely(!(hv_clean_fields &
1615 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1616 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1617 }
1618
1619 if (unlikely(!(hv_clean_fields &
1620 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1621 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1622 }
1623
1624 if (unlikely(!(hv_clean_fields &
1625 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1626 vmcs12->vm_entry_intr_info_field =
1627 evmcs->vm_entry_intr_info_field;
1628 vmcs12->vm_entry_exception_error_code =
1629 evmcs->vm_entry_exception_error_code;
1630 vmcs12->vm_entry_instruction_len =
1631 evmcs->vm_entry_instruction_len;
1632 }
1633
1634 if (unlikely(!(hv_clean_fields &
1635 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1636 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1637 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1638 vmcs12->host_cr0 = evmcs->host_cr0;
1639 vmcs12->host_cr3 = evmcs->host_cr3;
1640 vmcs12->host_cr4 = evmcs->host_cr4;
1641 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1642 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1643 vmcs12->host_rip = evmcs->host_rip;
1644 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1645 vmcs12->host_es_selector = evmcs->host_es_selector;
1646 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1647 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1648 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1649 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1650 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1651 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1652 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1653 /*
1654 * Not present in struct vmcs12:
1655 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1656 * vmcs12->host_ssp = evmcs->host_ssp;
1657 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1658 */
1659 }
1660
1661 if (unlikely(!(hv_clean_fields &
1662 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663 vmcs12->pin_based_vm_exec_control =
1664 evmcs->pin_based_vm_exec_control;
1665 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666 vmcs12->secondary_vm_exec_control =
1667 evmcs->secondary_vm_exec_control;
1668 }
1669
1670 if (unlikely(!(hv_clean_fields &
1671 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674 }
1675
1676 if (unlikely(!(hv_clean_fields &
1677 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679 }
1680
1681 if (unlikely(!(hv_clean_fields &
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683 vmcs12->guest_es_base = evmcs->guest_es_base;
1684 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719 }
1720
1721 if (unlikely(!(hv_clean_fields &
1722 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723 vmcs12->tsc_offset = evmcs->tsc_offset;
1724 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1727 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1728 }
1729
1730 if (unlikely(!(hv_clean_fields &
1731 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1732 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1733 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1734 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1735 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1736 vmcs12->guest_cr0 = evmcs->guest_cr0;
1737 vmcs12->guest_cr3 = evmcs->guest_cr3;
1738 vmcs12->guest_cr4 = evmcs->guest_cr4;
1739 vmcs12->guest_dr7 = evmcs->guest_dr7;
1740 }
1741
1742 if (unlikely(!(hv_clean_fields &
1743 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1744 vmcs12->host_fs_base = evmcs->host_fs_base;
1745 vmcs12->host_gs_base = evmcs->host_gs_base;
1746 vmcs12->host_tr_base = evmcs->host_tr_base;
1747 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1748 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1749 vmcs12->host_rsp = evmcs->host_rsp;
1750 }
1751
1752 if (unlikely(!(hv_clean_fields &
1753 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1754 vmcs12->ept_pointer = evmcs->ept_pointer;
1755 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1756 }
1757
1758 if (unlikely(!(hv_clean_fields &
1759 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1760 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1761 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1762 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1763 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1764 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1765 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1766 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1767 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1768 vmcs12->guest_pending_dbg_exceptions =
1769 evmcs->guest_pending_dbg_exceptions;
1770 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1771 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1772 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1773 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1774 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1775 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1776 /*
1777 * Not present in struct vmcs12:
1778 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1779 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1780 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1781 */
1782 }
1783
1784 /*
1785 * Not used?
1786 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1787 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1788 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1789 * vmcs12->page_fault_error_code_mask =
1790 * evmcs->page_fault_error_code_mask;
1791 * vmcs12->page_fault_error_code_match =
1792 * evmcs->page_fault_error_code_match;
1793 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1794 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1795 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1796 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1797 */
1798
1799 /*
1800 * Read only fields:
1801 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1802 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1803 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1804 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1805 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1806 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1807 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1808 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1809 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1810 * vmcs12->exit_qualification = evmcs->exit_qualification;
1811 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1812 *
1813 * Not present in struct vmcs12:
1814 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1815 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1816 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1817 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1818 */
1819
1820 return;
1821 }
1822
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1823 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1824 {
1825 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1826 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1827
1828 /*
1829 * Should not be changed by KVM:
1830 *
1831 * evmcs->host_es_selector = vmcs12->host_es_selector;
1832 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1833 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1834 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1835 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1836 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1837 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1838 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1839 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1840 * evmcs->host_cr0 = vmcs12->host_cr0;
1841 * evmcs->host_cr3 = vmcs12->host_cr3;
1842 * evmcs->host_cr4 = vmcs12->host_cr4;
1843 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1844 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1845 * evmcs->host_rip = vmcs12->host_rip;
1846 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1847 * evmcs->host_fs_base = vmcs12->host_fs_base;
1848 * evmcs->host_gs_base = vmcs12->host_gs_base;
1849 * evmcs->host_tr_base = vmcs12->host_tr_base;
1850 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1851 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1852 * evmcs->host_rsp = vmcs12->host_rsp;
1853 * sync_vmcs02_to_vmcs12() doesn't read these:
1854 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1855 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1856 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1857 * evmcs->ept_pointer = vmcs12->ept_pointer;
1858 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1859 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1860 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1861 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1862 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1863 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1864 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1865 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1866 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1867 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1868 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1869 * evmcs->page_fault_error_code_mask =
1870 * vmcs12->page_fault_error_code_mask;
1871 * evmcs->page_fault_error_code_match =
1872 * vmcs12->page_fault_error_code_match;
1873 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1874 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1875 * evmcs->tsc_offset = vmcs12->tsc_offset;
1876 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1877 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1878 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1879 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1880 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1881 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1882 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1883 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1884 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1885 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1886 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1887 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1888 *
1889 * Not present in struct vmcs12:
1890 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1891 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1892 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1893 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1894 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1895 * evmcs->host_ssp = vmcs12->host_ssp;
1896 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1897 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1898 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1899 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1900 * evmcs->guest_ssp = vmcs12->guest_ssp;
1901 */
1902
1903 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1904 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1905 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1906 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1907 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1908 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1909 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1910 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1911
1912 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1913 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1914 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1915 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1916 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1917 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1918 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1919 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1920 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1921 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1922
1923 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1924 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1925 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1926 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1927 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1928 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1929 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1930 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1931
1932 evmcs->guest_es_base = vmcs12->guest_es_base;
1933 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1934 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1935 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1936 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1937 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1938 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1939 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1940 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1941 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1942
1943 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1944 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1945
1946 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1947 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1948 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1949 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1950
1951 evmcs->guest_pending_dbg_exceptions =
1952 vmcs12->guest_pending_dbg_exceptions;
1953 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1954 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1955
1956 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1957 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1958
1959 evmcs->guest_cr0 = vmcs12->guest_cr0;
1960 evmcs->guest_cr3 = vmcs12->guest_cr3;
1961 evmcs->guest_cr4 = vmcs12->guest_cr4;
1962 evmcs->guest_dr7 = vmcs12->guest_dr7;
1963
1964 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1965
1966 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1967 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1968 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1969 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1970 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1971 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1972 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1973 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1974
1975 evmcs->exit_qualification = vmcs12->exit_qualification;
1976
1977 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1978 evmcs->guest_rsp = vmcs12->guest_rsp;
1979 evmcs->guest_rflags = vmcs12->guest_rflags;
1980
1981 evmcs->guest_interruptibility_info =
1982 vmcs12->guest_interruptibility_info;
1983 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1984 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1985 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1986 evmcs->vm_entry_exception_error_code =
1987 vmcs12->vm_entry_exception_error_code;
1988 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1989
1990 evmcs->guest_rip = vmcs12->guest_rip;
1991
1992 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1993
1994 return;
1995 }
1996
1997 /*
1998 * This is an equivalent of the nested hypervisor executing the vmptrld
1999 * instruction.
2000 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2001 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2002 struct kvm_vcpu *vcpu, bool from_launch)
2003 {
2004 struct vcpu_vmx *vmx = to_vmx(vcpu);
2005 bool evmcs_gpa_changed = false;
2006 u64 evmcs_gpa;
2007
2008 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2009 return EVMPTRLD_DISABLED;
2010
2011 evmcs_gpa = nested_get_evmptr(vcpu);
2012 if (!evmptr_is_valid(evmcs_gpa)) {
2013 nested_release_evmcs(vcpu);
2014 return EVMPTRLD_DISABLED;
2015 }
2016
2017 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2018 vmx->nested.current_vmptr = INVALID_GPA;
2019
2020 nested_release_evmcs(vcpu);
2021
2022 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2023 &vmx->nested.hv_evmcs_map))
2024 return EVMPTRLD_ERROR;
2025
2026 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2027
2028 /*
2029 * Currently, KVM only supports eVMCS version 1
2030 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2031 * value to first u32 field of eVMCS which should specify eVMCS
2032 * VersionNumber.
2033 *
2034 * Guest should be aware of supported eVMCS versions by host by
2035 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2036 * expected to set this CPUID leaf according to the value
2037 * returned in vmcs_version from nested_enable_evmcs().
2038 *
2039 * However, it turns out that Microsoft Hyper-V fails to comply
2040 * to their own invented interface: When Hyper-V use eVMCS, it
2041 * just sets first u32 field of eVMCS to revision_id specified
2042 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2043 * which is one of the supported versions specified in
2044 * CPUID.0x4000000A.EAX[0:15].
2045 *
2046 * To overcome Hyper-V bug, we accept here either a supported
2047 * eVMCS version or VMCS12 revision_id as valid values for first
2048 * u32 field of eVMCS.
2049 */
2050 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2051 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2052 nested_release_evmcs(vcpu);
2053 return EVMPTRLD_VMFAIL;
2054 }
2055
2056 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2057
2058 evmcs_gpa_changed = true;
2059 /*
2060 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2061 * reloaded from guest's memory (read only fields, fields not
2062 * present in struct hv_enlightened_vmcs, ...). Make sure there
2063 * are no leftovers.
2064 */
2065 if (from_launch) {
2066 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2067 memset(vmcs12, 0, sizeof(*vmcs12));
2068 vmcs12->hdr.revision_id = VMCS12_REVISION;
2069 }
2070
2071 }
2072
2073 /*
2074 * Clean fields data can't be used on VMLAUNCH and when we switch
2075 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2076 */
2077 if (from_launch || evmcs_gpa_changed) {
2078 vmx->nested.hv_evmcs->hv_clean_fields &=
2079 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2080
2081 vmx->nested.force_msr_bitmap_recalc = true;
2082 }
2083
2084 return EVMPTRLD_SUCCEEDED;
2085 }
2086
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2087 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2088 {
2089 struct vcpu_vmx *vmx = to_vmx(vcpu);
2090
2091 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2092 copy_vmcs12_to_enlightened(vmx);
2093 else
2094 copy_vmcs12_to_shadow(vmx);
2095
2096 vmx->nested.need_vmcs12_to_shadow_sync = false;
2097 }
2098
vmx_preemption_timer_fn(struct hrtimer * timer)2099 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2100 {
2101 struct vcpu_vmx *vmx =
2102 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2103
2104 vmx->nested.preemption_timer_expired = true;
2105 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2106 kvm_vcpu_kick(&vmx->vcpu);
2107
2108 return HRTIMER_NORESTART;
2109 }
2110
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2111 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2112 {
2113 struct vcpu_vmx *vmx = to_vmx(vcpu);
2114 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2115
2116 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2117 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2118
2119 if (!vmx->nested.has_preemption_timer_deadline) {
2120 vmx->nested.preemption_timer_deadline =
2121 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2122 vmx->nested.has_preemption_timer_deadline = true;
2123 }
2124 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2125 }
2126
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2127 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2128 u64 preemption_timeout)
2129 {
2130 struct vcpu_vmx *vmx = to_vmx(vcpu);
2131
2132 /*
2133 * A timer value of zero is architecturally guaranteed to cause
2134 * a VMExit prior to executing any instructions in the guest.
2135 */
2136 if (preemption_timeout == 0) {
2137 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2138 return;
2139 }
2140
2141 if (vcpu->arch.virtual_tsc_khz == 0)
2142 return;
2143
2144 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2145 preemption_timeout *= 1000000;
2146 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2147 hrtimer_start(&vmx->nested.preemption_timer,
2148 ktime_add_ns(ktime_get(), preemption_timeout),
2149 HRTIMER_MODE_ABS_PINNED);
2150 }
2151
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2152 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2153 {
2154 if (vmx->nested.nested_run_pending &&
2155 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2156 return vmcs12->guest_ia32_efer;
2157 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2158 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2159 else
2160 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2161 }
2162
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2163 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2164 {
2165 struct kvm *kvm = vmx->vcpu.kvm;
2166
2167 /*
2168 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2169 * according to L0's settings (vmcs12 is irrelevant here). Host
2170 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2171 * will be set as needed prior to VMLAUNCH/VMRESUME.
2172 */
2173 if (vmx->nested.vmcs02_initialized)
2174 return;
2175 vmx->nested.vmcs02_initialized = true;
2176
2177 /*
2178 * We don't care what the EPTP value is we just need to guarantee
2179 * it's valid so we don't get a false positive when doing early
2180 * consistency checks.
2181 */
2182 if (enable_ept && nested_early_check)
2183 vmcs_write64(EPT_POINTER,
2184 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2185
2186 /* All VMFUNCs are currently emulated through L0 vmexits. */
2187 if (cpu_has_vmx_vmfunc())
2188 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2189
2190 if (cpu_has_vmx_posted_intr())
2191 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2192
2193 if (cpu_has_vmx_msr_bitmap())
2194 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2195
2196 /*
2197 * PML is emulated for L2, but never enabled in hardware as the MMU
2198 * handles A/D emulation. Disabling PML for L2 also avoids having to
2199 * deal with filtering out L2 GPAs from the buffer.
2200 */
2201 if (enable_pml) {
2202 vmcs_write64(PML_ADDRESS, 0);
2203 vmcs_write16(GUEST_PML_INDEX, -1);
2204 }
2205
2206 if (cpu_has_vmx_encls_vmexit())
2207 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2208
2209 if (kvm_notify_vmexit_enabled(kvm))
2210 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2211
2212 /*
2213 * Set the MSR load/store lists to match L0's settings. Only the
2214 * addresses are constant (for vmcs02), the counts can change based
2215 * on L2's behavior, e.g. switching to/from long mode.
2216 */
2217 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2218 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2219 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2220
2221 vmx_set_constant_host_state(vmx);
2222 }
2223
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2224 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2225 struct vmcs12 *vmcs12)
2226 {
2227 prepare_vmcs02_constant_state(vmx);
2228
2229 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2230
2231 if (enable_vpid) {
2232 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2233 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2234 else
2235 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2236 }
2237 }
2238
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2239 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2240 struct vmcs12 *vmcs12)
2241 {
2242 u32 exec_control;
2243 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2244
2245 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2246 prepare_vmcs02_early_rare(vmx, vmcs12);
2247
2248 /*
2249 * PIN CONTROLS
2250 */
2251 exec_control = __pin_controls_get(vmcs01);
2252 exec_control |= (vmcs12->pin_based_vm_exec_control &
2253 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2254
2255 /* Posted interrupts setting is only taken from vmcs12. */
2256 vmx->nested.pi_pending = false;
2257 if (nested_cpu_has_posted_intr(vmcs12))
2258 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2259 else
2260 exec_control &= ~PIN_BASED_POSTED_INTR;
2261 pin_controls_set(vmx, exec_control);
2262
2263 /*
2264 * EXEC CONTROLS
2265 */
2266 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2267 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2268 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2269 exec_control &= ~CPU_BASED_TPR_SHADOW;
2270 exec_control |= vmcs12->cpu_based_vm_exec_control;
2271
2272 vmx->nested.l1_tpr_threshold = -1;
2273 if (exec_control & CPU_BASED_TPR_SHADOW)
2274 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2275 #ifdef CONFIG_X86_64
2276 else
2277 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2278 CPU_BASED_CR8_STORE_EXITING;
2279 #endif
2280
2281 /*
2282 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2283 * for I/O port accesses.
2284 */
2285 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2286 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2287
2288 /*
2289 * This bit will be computed in nested_get_vmcs12_pages, because
2290 * we do not have access to L1's MSR bitmap yet. For now, keep
2291 * the same bit as before, hoping to avoid multiple VMWRITEs that
2292 * only set/clear this bit.
2293 */
2294 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2295 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2296
2297 exec_controls_set(vmx, exec_control);
2298
2299 /*
2300 * SECONDARY EXEC CONTROLS
2301 */
2302 if (cpu_has_secondary_exec_ctrls()) {
2303 exec_control = __secondary_exec_controls_get(vmcs01);
2304
2305 /* Take the following fields only from vmcs12 */
2306 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2307 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2308 SECONDARY_EXEC_ENABLE_INVPCID |
2309 SECONDARY_EXEC_ENABLE_RDTSCP |
2310 SECONDARY_EXEC_ENABLE_XSAVES |
2311 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2312 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2313 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2314 SECONDARY_EXEC_ENABLE_VMFUNC |
2315 SECONDARY_EXEC_DESC);
2316
2317 if (nested_cpu_has(vmcs12,
2318 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2319 exec_control |= vmcs12->secondary_vm_exec_control;
2320
2321 /* PML is emulated and never enabled in hardware for L2. */
2322 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2323
2324 /* VMCS shadowing for L2 is emulated for now */
2325 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2326
2327 /*
2328 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2329 * will not have to rewrite the controls just for this bit.
2330 */
2331 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2332 exec_control |= SECONDARY_EXEC_DESC;
2333
2334 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2335 vmcs_write16(GUEST_INTR_STATUS,
2336 vmcs12->guest_intr_status);
2337
2338 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2339 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2340
2341 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2342 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2343
2344 secondary_exec_controls_set(vmx, exec_control);
2345 }
2346
2347 /*
2348 * ENTRY CONTROLS
2349 *
2350 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2351 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2352 * on the related bits (if supported by the CPU) in the hope that
2353 * we can avoid VMWrites during vmx_set_efer().
2354 *
2355 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2356 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2357 * do the same for L2.
2358 */
2359 exec_control = __vm_entry_controls_get(vmcs01);
2360 exec_control |= (vmcs12->vm_entry_controls &
2361 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2362 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2363 if (cpu_has_load_ia32_efer()) {
2364 if (guest_efer & EFER_LMA)
2365 exec_control |= VM_ENTRY_IA32E_MODE;
2366 if (guest_efer != host_efer)
2367 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2368 }
2369 vm_entry_controls_set(vmx, exec_control);
2370
2371 /*
2372 * EXIT CONTROLS
2373 *
2374 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2375 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2376 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2377 */
2378 exec_control = __vm_exit_controls_get(vmcs01);
2379 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2380 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2381 else
2382 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2383 vm_exit_controls_set(vmx, exec_control);
2384
2385 /*
2386 * Interrupt/Exception Fields
2387 */
2388 if (vmx->nested.nested_run_pending) {
2389 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2390 vmcs12->vm_entry_intr_info_field);
2391 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2392 vmcs12->vm_entry_exception_error_code);
2393 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2394 vmcs12->vm_entry_instruction_len);
2395 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2396 vmcs12->guest_interruptibility_info);
2397 vmx->loaded_vmcs->nmi_known_unmasked =
2398 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2399 } else {
2400 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2401 }
2402 }
2403
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2404 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2405 {
2406 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2407
2408 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2409 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2410 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2411 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2412 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2413 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2414 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2415 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2416 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2417 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2418 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2419 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2420 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2421 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2422 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2423 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2424 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2425 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2426 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2427 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2428 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2429 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2430 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2431 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2432 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2433 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2434 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2435 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2436 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2437 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2438 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2439 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2440 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2441 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2442 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2443 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2444 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2445 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2446
2447 vmx->segment_cache.bitmask = 0;
2448 }
2449
2450 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2451 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2452 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2453 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2454 vmcs12->guest_pending_dbg_exceptions);
2455 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2456 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2457
2458 /*
2459 * L1 may access the L2's PDPTR, so save them to construct
2460 * vmcs12
2461 */
2462 if (enable_ept) {
2463 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2464 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2465 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2466 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2467 }
2468
2469 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2470 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2471 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2472 }
2473
2474 if (nested_cpu_has_xsaves(vmcs12))
2475 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2476
2477 /*
2478 * Whether page-faults are trapped is determined by a combination of
2479 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2480 * doesn't care about page faults then we should set all of these to
2481 * L1's desires. However, if L0 does care about (some) page faults, it
2482 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2483 * simply ask to exit on each and every L2 page fault. This is done by
2484 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2485 * Note that below we don't need special code to set EB.PF beyond the
2486 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2487 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2488 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2489 */
2490 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2491 /*
2492 * TODO: if both L0 and L1 need the same MASK and MATCH,
2493 * go ahead and use it?
2494 */
2495 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2496 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2497 } else {
2498 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2499 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2500 }
2501
2502 if (cpu_has_vmx_apicv()) {
2503 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2504 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2505 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2506 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2507 }
2508
2509 /*
2510 * Make sure the msr_autostore list is up to date before we set the
2511 * count in the vmcs02.
2512 */
2513 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2514
2515 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2516 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2517 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2518
2519 set_cr4_guest_host_mask(vmx);
2520 }
2521
2522 /*
2523 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2524 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2525 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2526 * guest in a way that will both be appropriate to L1's requests, and our
2527 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2528 * function also has additional necessary side-effects, like setting various
2529 * vcpu->arch fields.
2530 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2531 * is assigned to entry_failure_code on failure.
2532 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2533 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2534 bool from_vmentry,
2535 enum vm_entry_failure_code *entry_failure_code)
2536 {
2537 struct vcpu_vmx *vmx = to_vmx(vcpu);
2538 bool load_guest_pdptrs_vmcs12 = false;
2539
2540 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2541 prepare_vmcs02_rare(vmx, vmcs12);
2542 vmx->nested.dirty_vmcs12 = false;
2543
2544 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2545 !(vmx->nested.hv_evmcs->hv_clean_fields &
2546 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2547 }
2548
2549 if (vmx->nested.nested_run_pending &&
2550 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2551 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2552 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2553 } else {
2554 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2555 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2556 }
2557 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2558 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2559 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2560 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2561
2562 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2563 * bitwise-or of what L1 wants to trap for L2, and what we want to
2564 * trap. Note that CR0.TS also needs updating - we do this later.
2565 */
2566 vmx_update_exception_bitmap(vcpu);
2567 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2568 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2569
2570 if (vmx->nested.nested_run_pending &&
2571 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2572 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2573 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2574 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2575 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2576 }
2577
2578 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2579 vcpu->arch.l1_tsc_offset,
2580 vmx_get_l2_tsc_offset(vcpu),
2581 vmx_get_l2_tsc_multiplier(vcpu));
2582
2583 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2584 vcpu->arch.l1_tsc_scaling_ratio,
2585 vmx_get_l2_tsc_multiplier(vcpu));
2586
2587 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2588 if (kvm_caps.has_tsc_control)
2589 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2590
2591 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2592
2593 if (nested_cpu_has_ept(vmcs12))
2594 nested_ept_init_mmu_context(vcpu);
2595
2596 /*
2597 * Override the CR0/CR4 read shadows after setting the effective guest
2598 * CR0/CR4. The common helpers also set the shadows, but they don't
2599 * account for vmcs12's cr0/4_guest_host_mask.
2600 */
2601 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2602 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2603
2604 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2605 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2606
2607 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2608 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2609 vmx_set_efer(vcpu, vcpu->arch.efer);
2610
2611 /*
2612 * Guest state is invalid and unrestricted guest is disabled,
2613 * which means L1 attempted VMEntry to L2 with invalid state.
2614 * Fail the VMEntry.
2615 *
2616 * However when force loading the guest state (SMM exit or
2617 * loading nested state after migration, it is possible to
2618 * have invalid guest state now, which will be later fixed by
2619 * restoring L2 register state
2620 */
2621 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2622 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2623 return -EINVAL;
2624 }
2625
2626 /* Shadow page tables on either EPT or shadow page tables. */
2627 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2628 from_vmentry, entry_failure_code))
2629 return -EINVAL;
2630
2631 /*
2632 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2633 * on nested VM-Exit, which can occur without actually running L2 and
2634 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2635 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2636 * transition to HLT instead of running L2.
2637 */
2638 if (enable_ept)
2639 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2640
2641 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2642 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2643 is_pae_paging(vcpu)) {
2644 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2645 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2646 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2647 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2648 }
2649
2650 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2651 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2652 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2653 vmcs12->guest_ia32_perf_global_ctrl))) {
2654 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2655 return -EINVAL;
2656 }
2657
2658 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2659 kvm_rip_write(vcpu, vmcs12->guest_rip);
2660
2661 /*
2662 * It was observed that genuine Hyper-V running in L1 doesn't reset
2663 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2664 * bits when it changes a field in eVMCS. Mark all fields as clean
2665 * here.
2666 */
2667 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2668 vmx->nested.hv_evmcs->hv_clean_fields |=
2669 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2670
2671 return 0;
2672 }
2673
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2674 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2675 {
2676 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2677 nested_cpu_has_virtual_nmis(vmcs12)))
2678 return -EINVAL;
2679
2680 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2681 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2682 return -EINVAL;
2683
2684 return 0;
2685 }
2686
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2687 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2688 {
2689 struct vcpu_vmx *vmx = to_vmx(vcpu);
2690
2691 /* Check for memory type validity */
2692 switch (new_eptp & VMX_EPTP_MT_MASK) {
2693 case VMX_EPTP_MT_UC:
2694 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2695 return false;
2696 break;
2697 case VMX_EPTP_MT_WB:
2698 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2699 return false;
2700 break;
2701 default:
2702 return false;
2703 }
2704
2705 /* Page-walk levels validity. */
2706 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2707 case VMX_EPTP_PWL_5:
2708 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2709 return false;
2710 break;
2711 case VMX_EPTP_PWL_4:
2712 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2713 return false;
2714 break;
2715 default:
2716 return false;
2717 }
2718
2719 /* Reserved bits should not be set */
2720 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2721 return false;
2722
2723 /* AD, if set, should be supported */
2724 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2725 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2726 return false;
2727 }
2728
2729 return true;
2730 }
2731
2732 /*
2733 * Checks related to VM-Execution Control Fields
2734 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2735 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2736 struct vmcs12 *vmcs12)
2737 {
2738 struct vcpu_vmx *vmx = to_vmx(vcpu);
2739
2740 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2741 vmx->nested.msrs.pinbased_ctls_low,
2742 vmx->nested.msrs.pinbased_ctls_high)) ||
2743 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2744 vmx->nested.msrs.procbased_ctls_low,
2745 vmx->nested.msrs.procbased_ctls_high)))
2746 return -EINVAL;
2747
2748 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2749 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2750 vmx->nested.msrs.secondary_ctls_low,
2751 vmx->nested.msrs.secondary_ctls_high)))
2752 return -EINVAL;
2753
2754 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2755 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2756 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2757 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2758 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2759 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2760 nested_vmx_check_nmi_controls(vmcs12) ||
2761 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2762 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2763 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2764 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2765 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2766 return -EINVAL;
2767
2768 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2769 nested_cpu_has_save_preemption_timer(vmcs12))
2770 return -EINVAL;
2771
2772 if (nested_cpu_has_ept(vmcs12) &&
2773 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2774 return -EINVAL;
2775
2776 if (nested_cpu_has_vmfunc(vmcs12)) {
2777 if (CC(vmcs12->vm_function_control &
2778 ~vmx->nested.msrs.vmfunc_controls))
2779 return -EINVAL;
2780
2781 if (nested_cpu_has_eptp_switching(vmcs12)) {
2782 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2783 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2784 return -EINVAL;
2785 }
2786 }
2787
2788 return 0;
2789 }
2790
2791 /*
2792 * Checks related to VM-Exit Control Fields
2793 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2794 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2795 struct vmcs12 *vmcs12)
2796 {
2797 struct vcpu_vmx *vmx = to_vmx(vcpu);
2798
2799 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2800 vmx->nested.msrs.exit_ctls_low,
2801 vmx->nested.msrs.exit_ctls_high)) ||
2802 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2803 return -EINVAL;
2804
2805 return 0;
2806 }
2807
2808 /*
2809 * Checks related to VM-Entry Control Fields
2810 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2811 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2812 struct vmcs12 *vmcs12)
2813 {
2814 struct vcpu_vmx *vmx = to_vmx(vcpu);
2815
2816 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2817 vmx->nested.msrs.entry_ctls_low,
2818 vmx->nested.msrs.entry_ctls_high)))
2819 return -EINVAL;
2820
2821 /*
2822 * From the Intel SDM, volume 3:
2823 * Fields relevant to VM-entry event injection must be set properly.
2824 * These fields are the VM-entry interruption-information field, the
2825 * VM-entry exception error code, and the VM-entry instruction length.
2826 */
2827 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2828 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2829 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2830 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2831 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2832 bool should_have_error_code;
2833 bool urg = nested_cpu_has2(vmcs12,
2834 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2835 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2836
2837 /* VM-entry interruption-info field: interruption type */
2838 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2839 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2840 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2841 return -EINVAL;
2842
2843 /* VM-entry interruption-info field: vector */
2844 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2845 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2846 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2847 return -EINVAL;
2848
2849 /* VM-entry interruption-info field: deliver error code */
2850 should_have_error_code =
2851 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2852 x86_exception_has_error_code(vector);
2853 if (CC(has_error_code != should_have_error_code))
2854 return -EINVAL;
2855
2856 /* VM-entry exception error code */
2857 if (CC(has_error_code &&
2858 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2859 return -EINVAL;
2860
2861 /* VM-entry interruption-info field: reserved bits */
2862 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2863 return -EINVAL;
2864
2865 /* VM-entry instruction length */
2866 switch (intr_type) {
2867 case INTR_TYPE_SOFT_EXCEPTION:
2868 case INTR_TYPE_SOFT_INTR:
2869 case INTR_TYPE_PRIV_SW_EXCEPTION:
2870 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2871 CC(vmcs12->vm_entry_instruction_len == 0 &&
2872 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2873 return -EINVAL;
2874 }
2875 }
2876
2877 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2878 return -EINVAL;
2879
2880 return 0;
2881 }
2882
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2883 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2884 struct vmcs12 *vmcs12)
2885 {
2886 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2887 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2888 nested_check_vm_entry_controls(vcpu, vmcs12))
2889 return -EINVAL;
2890
2891 if (guest_cpuid_has_evmcs(vcpu))
2892 return nested_evmcs_check_controls(vmcs12);
2893
2894 return 0;
2895 }
2896
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2897 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2898 struct vmcs12 *vmcs12)
2899 {
2900 #ifdef CONFIG_X86_64
2901 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2902 !!(vcpu->arch.efer & EFER_LMA)))
2903 return -EINVAL;
2904 #endif
2905 return 0;
2906 }
2907
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2908 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2909 struct vmcs12 *vmcs12)
2910 {
2911 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2912
2913 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2914 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2915 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2916 return -EINVAL;
2917
2918 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2919 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2920 return -EINVAL;
2921
2922 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2923 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2924 return -EINVAL;
2925
2926 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2927 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2928 vmcs12->host_ia32_perf_global_ctrl)))
2929 return -EINVAL;
2930
2931 if (ia32e) {
2932 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2933 return -EINVAL;
2934 } else {
2935 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2936 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2937 CC((vmcs12->host_rip) >> 32))
2938 return -EINVAL;
2939 }
2940
2941 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2942 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2943 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2944 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2945 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2946 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2947 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2948 CC(vmcs12->host_cs_selector == 0) ||
2949 CC(vmcs12->host_tr_selector == 0) ||
2950 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2951 return -EINVAL;
2952
2953 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2954 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2955 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2956 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2957 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2958 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2959 return -EINVAL;
2960
2961 /*
2962 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2963 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2964 * the values of the LMA and LME bits in the field must each be that of
2965 * the host address-space size VM-exit control.
2966 */
2967 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2968 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2969 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2970 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2971 return -EINVAL;
2972 }
2973
2974 return 0;
2975 }
2976
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2977 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2978 struct vmcs12 *vmcs12)
2979 {
2980 struct vcpu_vmx *vmx = to_vmx(vcpu);
2981 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2982 struct vmcs_hdr hdr;
2983
2984 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2985 return 0;
2986
2987 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2988 return -EINVAL;
2989
2990 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2991 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2992 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2993 return -EINVAL;
2994
2995 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2996 offsetof(struct vmcs12, hdr),
2997 sizeof(hdr))))
2998 return -EINVAL;
2999
3000 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3001 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3002 return -EINVAL;
3003
3004 return 0;
3005 }
3006
3007 /*
3008 * Checks related to Guest Non-register State
3009 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3010 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3011 {
3012 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3013 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3014 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3015 return -EINVAL;
3016
3017 return 0;
3018 }
3019
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3020 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3021 struct vmcs12 *vmcs12,
3022 enum vm_entry_failure_code *entry_failure_code)
3023 {
3024 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3025
3026 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3027
3028 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3029 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3030 return -EINVAL;
3031
3032 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3033 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3034 return -EINVAL;
3035
3036 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3037 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3038 return -EINVAL;
3039
3040 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3041 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3042 return -EINVAL;
3043 }
3044
3045 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3046 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3047 vmcs12->guest_ia32_perf_global_ctrl)))
3048 return -EINVAL;
3049
3050 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3051 return -EINVAL;
3052
3053 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3054 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3055 return -EINVAL;
3056
3057 /*
3058 * If the load IA32_EFER VM-entry control is 1, the following checks
3059 * are performed on the field for the IA32_EFER MSR:
3060 * - Bits reserved in the IA32_EFER MSR must be 0.
3061 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3062 * the IA-32e mode guest VM-exit control. It must also be identical
3063 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3064 * CR0.PG) is 1.
3065 */
3066 if (to_vmx(vcpu)->nested.nested_run_pending &&
3067 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3068 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3069 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3070 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3071 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3072 return -EINVAL;
3073 }
3074
3075 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3076 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3077 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3078 return -EINVAL;
3079
3080 if (nested_check_guest_non_reg_state(vmcs12))
3081 return -EINVAL;
3082
3083 return 0;
3084 }
3085
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3086 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3087 {
3088 struct vcpu_vmx *vmx = to_vmx(vcpu);
3089 unsigned long cr3, cr4;
3090 bool vm_fail;
3091
3092 if (!nested_early_check)
3093 return 0;
3094
3095 if (vmx->msr_autoload.host.nr)
3096 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3097 if (vmx->msr_autoload.guest.nr)
3098 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3099
3100 preempt_disable();
3101
3102 vmx_prepare_switch_to_guest(vcpu);
3103
3104 /*
3105 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3106 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3107 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3108 * there is no need to preserve other bits or save/restore the field.
3109 */
3110 vmcs_writel(GUEST_RFLAGS, 0);
3111
3112 cr3 = __get_current_cr3_fast();
3113 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3114 vmcs_writel(HOST_CR3, cr3);
3115 vmx->loaded_vmcs->host_state.cr3 = cr3;
3116 }
3117
3118 cr4 = cr4_read_shadow();
3119 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3120 vmcs_writel(HOST_CR4, cr4);
3121 vmx->loaded_vmcs->host_state.cr4 = cr4;
3122 }
3123
3124 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3125 __vmx_vcpu_run_flags(vmx));
3126
3127 if (vmx->msr_autoload.host.nr)
3128 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3129 if (vmx->msr_autoload.guest.nr)
3130 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3131
3132 if (vm_fail) {
3133 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3134
3135 preempt_enable();
3136
3137 trace_kvm_nested_vmenter_failed(
3138 "early hardware check VM-instruction error: ", error);
3139 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3140 return 1;
3141 }
3142
3143 /*
3144 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3145 */
3146 if (hw_breakpoint_active())
3147 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3148 local_irq_enable();
3149 preempt_enable();
3150
3151 /*
3152 * A non-failing VMEntry means we somehow entered guest mode with
3153 * an illegal RIP, and that's just the tip of the iceberg. There
3154 * is no telling what memory has been modified or what state has
3155 * been exposed to unknown code. Hitting this all but guarantees
3156 * a (very critical) hardware issue.
3157 */
3158 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3159 VMX_EXIT_REASONS_FAILED_VMENTRY));
3160
3161 return 0;
3162 }
3163
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3164 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3165 {
3166 struct vcpu_vmx *vmx = to_vmx(vcpu);
3167
3168 /*
3169 * hv_evmcs may end up being not mapped after migration (when
3170 * L2 was running), map it here to make sure vmcs12 changes are
3171 * properly reflected.
3172 */
3173 if (guest_cpuid_has_evmcs(vcpu) &&
3174 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3175 enum nested_evmptrld_status evmptrld_status =
3176 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3177
3178 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3179 evmptrld_status == EVMPTRLD_ERROR)
3180 return false;
3181
3182 /*
3183 * Post migration VMCS12 always provides the most actual
3184 * information, copy it to eVMCS upon entry.
3185 */
3186 vmx->nested.need_vmcs12_to_shadow_sync = true;
3187 }
3188
3189 return true;
3190 }
3191
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3192 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3193 {
3194 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3195 struct vcpu_vmx *vmx = to_vmx(vcpu);
3196 struct kvm_host_map *map;
3197
3198 if (!vcpu->arch.pdptrs_from_userspace &&
3199 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3200 /*
3201 * Reload the guest's PDPTRs since after a migration
3202 * the guest CR3 might be restored prior to setting the nested
3203 * state which can lead to a load of wrong PDPTRs.
3204 */
3205 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3206 return false;
3207 }
3208
3209
3210 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3211 map = &vmx->nested.apic_access_page_map;
3212
3213 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3214 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3215 } else {
3216 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3217 __func__);
3218 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3219 vcpu->run->internal.suberror =
3220 KVM_INTERNAL_ERROR_EMULATION;
3221 vcpu->run->internal.ndata = 0;
3222 return false;
3223 }
3224 }
3225
3226 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3227 map = &vmx->nested.virtual_apic_map;
3228
3229 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3230 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3231 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3232 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3233 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3234 /*
3235 * The processor will never use the TPR shadow, simply
3236 * clear the bit from the execution control. Such a
3237 * configuration is useless, but it happens in tests.
3238 * For any other configuration, failing the vm entry is
3239 * _not_ what the processor does but it's basically the
3240 * only possibility we have.
3241 */
3242 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3243 } else {
3244 /*
3245 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3246 * force VM-Entry to fail.
3247 */
3248 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3249 }
3250 }
3251
3252 if (nested_cpu_has_posted_intr(vmcs12)) {
3253 map = &vmx->nested.pi_desc_map;
3254
3255 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3256 vmx->nested.pi_desc =
3257 (struct pi_desc *)(((void *)map->hva) +
3258 offset_in_page(vmcs12->posted_intr_desc_addr));
3259 vmcs_write64(POSTED_INTR_DESC_ADDR,
3260 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3261 } else {
3262 /*
3263 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3264 * access the contents of the VMCS12 posted interrupt
3265 * descriptor. (Note that KVM may do this when it
3266 * should not, per the architectural specification.)
3267 */
3268 vmx->nested.pi_desc = NULL;
3269 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3270 }
3271 }
3272 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3273 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3274 else
3275 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3276
3277 return true;
3278 }
3279
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3280 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3281 {
3282 /*
3283 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3284 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3285 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3286 * migration.
3287 */
3288 if (!nested_get_evmcs_page(vcpu)) {
3289 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3290 __func__);
3291 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3292 vcpu->run->internal.suberror =
3293 KVM_INTERNAL_ERROR_EMULATION;
3294 vcpu->run->internal.ndata = 0;
3295
3296 return false;
3297 }
3298
3299 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3300 return false;
3301
3302 return true;
3303 }
3304
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3305 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3306 {
3307 struct vmcs12 *vmcs12;
3308 struct vcpu_vmx *vmx = to_vmx(vcpu);
3309 gpa_t dst;
3310
3311 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3312 return 0;
3313
3314 if (WARN_ON_ONCE(vmx->nested.pml_full))
3315 return 1;
3316
3317 /*
3318 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3319 * set is already checked as part of A/D emulation.
3320 */
3321 vmcs12 = get_vmcs12(vcpu);
3322 if (!nested_cpu_has_pml(vmcs12))
3323 return 0;
3324
3325 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3326 vmx->nested.pml_full = true;
3327 return 1;
3328 }
3329
3330 gpa &= ~0xFFFull;
3331 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3332
3333 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3334 offset_in_page(dst), sizeof(gpa)))
3335 return 0;
3336
3337 vmcs12->guest_pml_index--;
3338
3339 return 0;
3340 }
3341
3342 /*
3343 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3344 * for running VMX instructions (except VMXON, whose prerequisites are
3345 * slightly different). It also specifies what exception to inject otherwise.
3346 * Note that many of these exceptions have priority over VM exits, so they
3347 * don't have to be checked again here.
3348 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3349 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3350 {
3351 if (!to_vmx(vcpu)->nested.vmxon) {
3352 kvm_queue_exception(vcpu, UD_VECTOR);
3353 return 0;
3354 }
3355
3356 if (vmx_get_cpl(vcpu)) {
3357 kvm_inject_gp(vcpu, 0);
3358 return 0;
3359 }
3360
3361 return 1;
3362 }
3363
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3364 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3365 {
3366 u8 rvi = vmx_get_rvi();
3367 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3368
3369 return ((rvi & 0xf0) > (vppr & 0xf0));
3370 }
3371
3372 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3373 struct vmcs12 *vmcs12);
3374
3375 /*
3376 * If from_vmentry is false, this is being called from state restore (either RSM
3377 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3378 *
3379 * Returns:
3380 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3381 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3382 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3383 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3384 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3385 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3386 bool from_vmentry)
3387 {
3388 struct vcpu_vmx *vmx = to_vmx(vcpu);
3389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3390 enum vm_entry_failure_code entry_failure_code;
3391 bool evaluate_pending_interrupts;
3392 union vmx_exit_reason exit_reason = {
3393 .basic = EXIT_REASON_INVALID_STATE,
3394 .failed_vmentry = 1,
3395 };
3396 u32 failed_index;
3397
3398 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3399 vmx->nested.current_vmptr,
3400 vmcs12->guest_rip,
3401 vmcs12->guest_intr_status,
3402 vmcs12->vm_entry_intr_info_field,
3403 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3404 vmcs12->ept_pointer,
3405 vmcs12->guest_cr3,
3406 KVM_ISA_VMX);
3407
3408 kvm_service_local_tlb_flush_requests(vcpu);
3409
3410 evaluate_pending_interrupts = exec_controls_get(vmx) &
3411 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3412 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3413 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3414 if (!evaluate_pending_interrupts)
3415 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3416
3417 if (!vmx->nested.nested_run_pending ||
3418 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3419 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3420 if (kvm_mpx_supported() &&
3421 (!vmx->nested.nested_run_pending ||
3422 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3423 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3424
3425 /*
3426 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3427 * nested early checks are disabled. In the event of a "late" VM-Fail,
3428 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3429 * software model to the pre-VMEntry host state. When EPT is disabled,
3430 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3431 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3432 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3433 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3434 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3435 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3436 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3437 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3438 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3439 * path would need to manually save/restore vmcs01.GUEST_CR3.
3440 */
3441 if (!enable_ept && !nested_early_check)
3442 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3443
3444 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3445
3446 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3447
3448 if (from_vmentry) {
3449 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3450 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3451 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3452 }
3453
3454 if (nested_vmx_check_vmentry_hw(vcpu)) {
3455 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3456 return NVMX_VMENTRY_VMFAIL;
3457 }
3458
3459 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3460 &entry_failure_code)) {
3461 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3462 vmcs12->exit_qualification = entry_failure_code;
3463 goto vmentry_fail_vmexit;
3464 }
3465 }
3466
3467 enter_guest_mode(vcpu);
3468
3469 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3470 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3471 vmcs12->exit_qualification = entry_failure_code;
3472 goto vmentry_fail_vmexit_guest_mode;
3473 }
3474
3475 if (from_vmentry) {
3476 failed_index = nested_vmx_load_msr(vcpu,
3477 vmcs12->vm_entry_msr_load_addr,
3478 vmcs12->vm_entry_msr_load_count);
3479 if (failed_index) {
3480 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3481 vmcs12->exit_qualification = failed_index;
3482 goto vmentry_fail_vmexit_guest_mode;
3483 }
3484 } else {
3485 /*
3486 * The MMU is not initialized to point at the right entities yet and
3487 * "get pages" would need to read data from the guest (i.e. we will
3488 * need to perform gpa to hpa translation). Request a call
3489 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3490 * have already been set at vmentry time and should not be reset.
3491 */
3492 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3493 }
3494
3495 /*
3496 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3497 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3498 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3499 * unconditionally.
3500 */
3501 if (unlikely(evaluate_pending_interrupts))
3502 kvm_make_request(KVM_REQ_EVENT, vcpu);
3503
3504 /*
3505 * Do not start the preemption timer hrtimer until after we know
3506 * we are successful, so that only nested_vmx_vmexit needs to cancel
3507 * the timer.
3508 */
3509 vmx->nested.preemption_timer_expired = false;
3510 if (nested_cpu_has_preemption_timer(vmcs12)) {
3511 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3512 vmx_start_preemption_timer(vcpu, timer_value);
3513 }
3514
3515 /*
3516 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3517 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3518 * returned as far as L1 is concerned. It will only return (and set
3519 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3520 */
3521 return NVMX_VMENTRY_SUCCESS;
3522
3523 /*
3524 * A failed consistency check that leads to a VMExit during L1's
3525 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3526 * 26.7 "VM-entry failures during or after loading guest state".
3527 */
3528 vmentry_fail_vmexit_guest_mode:
3529 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3530 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3531 leave_guest_mode(vcpu);
3532
3533 vmentry_fail_vmexit:
3534 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3535
3536 if (!from_vmentry)
3537 return NVMX_VMENTRY_VMEXIT;
3538
3539 load_vmcs12_host_state(vcpu, vmcs12);
3540 vmcs12->vm_exit_reason = exit_reason.full;
3541 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3542 vmx->nested.need_vmcs12_to_shadow_sync = true;
3543 return NVMX_VMENTRY_VMEXIT;
3544 }
3545
3546 /*
3547 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3548 * for running an L2 nested guest.
3549 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3550 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3551 {
3552 struct vmcs12 *vmcs12;
3553 enum nvmx_vmentry_status status;
3554 struct vcpu_vmx *vmx = to_vmx(vcpu);
3555 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3556 enum nested_evmptrld_status evmptrld_status;
3557
3558 if (!nested_vmx_check_permission(vcpu))
3559 return 1;
3560
3561 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3562 if (evmptrld_status == EVMPTRLD_ERROR) {
3563 kvm_queue_exception(vcpu, UD_VECTOR);
3564 return 1;
3565 }
3566
3567 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3568
3569 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3570 return nested_vmx_failInvalid(vcpu);
3571
3572 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3573 vmx->nested.current_vmptr == INVALID_GPA))
3574 return nested_vmx_failInvalid(vcpu);
3575
3576 vmcs12 = get_vmcs12(vcpu);
3577
3578 /*
3579 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3580 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3581 * rather than RFLAGS.ZF, and no error number is stored to the
3582 * VM-instruction error field.
3583 */
3584 if (CC(vmcs12->hdr.shadow_vmcs))
3585 return nested_vmx_failInvalid(vcpu);
3586
3587 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3588 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3589 /* Enlightened VMCS doesn't have launch state */
3590 vmcs12->launch_state = !launch;
3591 } else if (enable_shadow_vmcs) {
3592 copy_shadow_to_vmcs12(vmx);
3593 }
3594
3595 /*
3596 * The nested entry process starts with enforcing various prerequisites
3597 * on vmcs12 as required by the Intel SDM, and act appropriately when
3598 * they fail: As the SDM explains, some conditions should cause the
3599 * instruction to fail, while others will cause the instruction to seem
3600 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3601 * To speed up the normal (success) code path, we should avoid checking
3602 * for misconfigurations which will anyway be caught by the processor
3603 * when using the merged vmcs02.
3604 */
3605 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3606 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3607
3608 if (CC(vmcs12->launch_state == launch))
3609 return nested_vmx_fail(vcpu,
3610 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3611 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3612
3613 if (nested_vmx_check_controls(vcpu, vmcs12))
3614 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3615
3616 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3617 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3618
3619 if (nested_vmx_check_host_state(vcpu, vmcs12))
3620 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3621
3622 /*
3623 * We're finally done with prerequisite checking, and can start with
3624 * the nested entry.
3625 */
3626 vmx->nested.nested_run_pending = 1;
3627 vmx->nested.has_preemption_timer_deadline = false;
3628 status = nested_vmx_enter_non_root_mode(vcpu, true);
3629 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3630 goto vmentry_failed;
3631
3632 /* Emulate processing of posted interrupts on VM-Enter. */
3633 if (nested_cpu_has_posted_intr(vmcs12) &&
3634 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3635 vmx->nested.pi_pending = true;
3636 kvm_make_request(KVM_REQ_EVENT, vcpu);
3637 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3638 }
3639
3640 /* Hide L1D cache contents from the nested guest. */
3641 vmx->vcpu.arch.l1tf_flush_l1d = true;
3642
3643 /*
3644 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3645 * also be used as part of restoring nVMX state for
3646 * snapshot restore (migration).
3647 *
3648 * In this flow, it is assumed that vmcs12 cache was
3649 * transferred as part of captured nVMX state and should
3650 * therefore not be read from guest memory (which may not
3651 * exist on destination host yet).
3652 */
3653 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3654
3655 switch (vmcs12->guest_activity_state) {
3656 case GUEST_ACTIVITY_HLT:
3657 /*
3658 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3659 * awakened by event injection or by an NMI-window VM-exit or
3660 * by an interrupt-window VM-exit, halt the vcpu.
3661 */
3662 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3663 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3664 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3665 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3666 vmx->nested.nested_run_pending = 0;
3667 return kvm_emulate_halt_noskip(vcpu);
3668 }
3669 break;
3670 case GUEST_ACTIVITY_WAIT_SIPI:
3671 vmx->nested.nested_run_pending = 0;
3672 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3673 break;
3674 default:
3675 break;
3676 }
3677
3678 return 1;
3679
3680 vmentry_failed:
3681 vmx->nested.nested_run_pending = 0;
3682 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3683 return 0;
3684 if (status == NVMX_VMENTRY_VMEXIT)
3685 return 1;
3686 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3687 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3688 }
3689
3690 /*
3691 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3692 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3693 * This function returns the new value we should put in vmcs12.guest_cr0.
3694 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3695 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3696 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3697 * didn't trap the bit, because if L1 did, so would L0).
3698 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3699 * been modified by L2, and L1 knows it. So just leave the old value of
3700 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3701 * isn't relevant, because if L0 traps this bit it can set it to anything.
3702 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3703 * changed these bits, and therefore they need to be updated, but L0
3704 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3705 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3706 */
3707 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3708 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3709 {
3710 return
3711 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3712 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3713 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3714 vcpu->arch.cr0_guest_owned_bits));
3715 }
3716
3717 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3718 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3719 {
3720 return
3721 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3722 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3723 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3724 vcpu->arch.cr4_guest_owned_bits));
3725 }
3726
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3727 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3728 struct vmcs12 *vmcs12,
3729 u32 vm_exit_reason, u32 exit_intr_info)
3730 {
3731 u32 idt_vectoring;
3732 unsigned int nr;
3733
3734 /*
3735 * Per the SDM, VM-Exits due to double and triple faults are never
3736 * considered to occur during event delivery, even if the double/triple
3737 * fault is the result of an escalating vectoring issue.
3738 *
3739 * Note, the SDM qualifies the double fault behavior with "The original
3740 * event results in a double-fault exception". It's unclear why the
3741 * qualification exists since exits due to double fault can occur only
3742 * while vectoring a different exception (injected events are never
3743 * subject to interception), i.e. there's _always_ an original event.
3744 *
3745 * The SDM also uses NMI as a confusing example for the "original event
3746 * causes the VM exit directly" clause. NMI isn't special in any way,
3747 * the same rule applies to all events that cause an exit directly.
3748 * NMI is an odd choice for the example because NMIs can only occur on
3749 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3750 */
3751 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3752 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3753 is_double_fault(exit_intr_info))) {
3754 vmcs12->idt_vectoring_info_field = 0;
3755 } else if (vcpu->arch.exception.injected) {
3756 nr = vcpu->arch.exception.vector;
3757 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3758
3759 if (kvm_exception_is_soft(nr)) {
3760 vmcs12->vm_exit_instruction_len =
3761 vcpu->arch.event_exit_inst_len;
3762 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3763 } else
3764 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3765
3766 if (vcpu->arch.exception.has_error_code) {
3767 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3768 vmcs12->idt_vectoring_error_code =
3769 vcpu->arch.exception.error_code;
3770 }
3771
3772 vmcs12->idt_vectoring_info_field = idt_vectoring;
3773 } else if (vcpu->arch.nmi_injected) {
3774 vmcs12->idt_vectoring_info_field =
3775 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3776 } else if (vcpu->arch.interrupt.injected) {
3777 nr = vcpu->arch.interrupt.nr;
3778 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3779
3780 if (vcpu->arch.interrupt.soft) {
3781 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3782 vmcs12->vm_entry_instruction_len =
3783 vcpu->arch.event_exit_inst_len;
3784 } else
3785 idt_vectoring |= INTR_TYPE_EXT_INTR;
3786
3787 vmcs12->idt_vectoring_info_field = idt_vectoring;
3788 } else {
3789 vmcs12->idt_vectoring_info_field = 0;
3790 }
3791 }
3792
3793
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3794 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3795 {
3796 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3797 gfn_t gfn;
3798
3799 /*
3800 * Don't need to mark the APIC access page dirty; it is never
3801 * written to by the CPU during APIC virtualization.
3802 */
3803
3804 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3805 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3806 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3807 }
3808
3809 if (nested_cpu_has_posted_intr(vmcs12)) {
3810 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3811 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3812 }
3813 }
3814
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3815 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3816 {
3817 struct vcpu_vmx *vmx = to_vmx(vcpu);
3818 int max_irr;
3819 void *vapic_page;
3820 u16 status;
3821
3822 if (!vmx->nested.pi_pending)
3823 return 0;
3824
3825 if (!vmx->nested.pi_desc)
3826 goto mmio_needed;
3827
3828 vmx->nested.pi_pending = false;
3829
3830 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3831 return 0;
3832
3833 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3834 if (max_irr != 256) {
3835 vapic_page = vmx->nested.virtual_apic_map.hva;
3836 if (!vapic_page)
3837 goto mmio_needed;
3838
3839 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3840 vapic_page, &max_irr);
3841 status = vmcs_read16(GUEST_INTR_STATUS);
3842 if ((u8)max_irr > ((u8)status & 0xff)) {
3843 status &= ~0xff;
3844 status |= (u8)max_irr;
3845 vmcs_write16(GUEST_INTR_STATUS, status);
3846 }
3847 }
3848
3849 nested_mark_vmcs12_pages_dirty(vcpu);
3850 return 0;
3851
3852 mmio_needed:
3853 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3854 return -ENXIO;
3855 }
3856
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3857 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3858 {
3859 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3860 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3861 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3862 unsigned long exit_qual;
3863
3864 if (ex->has_payload) {
3865 exit_qual = ex->payload;
3866 } else if (ex->vector == PF_VECTOR) {
3867 exit_qual = vcpu->arch.cr2;
3868 } else if (ex->vector == DB_VECTOR) {
3869 exit_qual = vcpu->arch.dr6;
3870 exit_qual &= ~DR6_BT;
3871 exit_qual ^= DR6_ACTIVE_LOW;
3872 } else {
3873 exit_qual = 0;
3874 }
3875
3876 /*
3877 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3878 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3879 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3880 */
3881 if (ex->has_error_code && is_protmode(vcpu)) {
3882 /*
3883 * Intel CPUs do not generate error codes with bits 31:16 set,
3884 * and more importantly VMX disallows setting bits 31:16 in the
3885 * injected error code for VM-Entry. Drop the bits to mimic
3886 * hardware and avoid inducing failure on nested VM-Entry if L1
3887 * chooses to inject the exception back to L2. AMD CPUs _do_
3888 * generate "full" 32-bit error codes, so KVM allows userspace
3889 * to inject exception error codes with bits 31:16 set.
3890 */
3891 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3892 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3893 }
3894
3895 if (kvm_exception_is_soft(ex->vector))
3896 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3897 else
3898 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3899
3900 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3901 vmx_get_nmi_mask(vcpu))
3902 intr_info |= INTR_INFO_UNBLOCK_NMI;
3903
3904 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3905 }
3906
3907 /*
3908 * Returns true if a debug trap is (likely) pending delivery. Infer the class
3909 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3910 * Using the payload is flawed because code breakpoints (fault-like) and data
3911 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3912 * this will return false positives if a to-be-injected code breakpoint #DB is
3913 * pending (from KVM's perspective, but not "pending" across an instruction
3914 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
3915 * too is trap-like.
3916 *
3917 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3918 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3919 * #DB has already happened), and MTF isn't marked pending on code breakpoints
3920 * from the emulator (because such #DBs are fault-like and thus don't trigger
3921 * actions that fire on instruction retire).
3922 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)3923 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3924 {
3925 if (!ex->pending || ex->vector != DB_VECTOR)
3926 return 0;
3927
3928 /* General Detect #DBs are always fault-like. */
3929 return ex->payload & ~DR6_BD;
3930 }
3931
3932 /*
3933 * Returns true if there's a pending #DB exception that is lower priority than
3934 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
3935 * KVM, but could theoretically be injected by userspace. Note, this code is
3936 * imperfect, see above.
3937 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)3938 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3939 {
3940 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3941 }
3942
3943 /*
3944 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3945 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3946 * represents these debug traps with a payload that is said to be compatible
3947 * with the 'pending debug exceptions' field, write the payload to the VMCS
3948 * field if a VM-exit is delivered before the debug trap.
3949 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3950 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3951 {
3952 unsigned long pending_dbg;
3953
3954 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3955 if (pending_dbg)
3956 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3957 }
3958
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3959 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3960 {
3961 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3962 to_vmx(vcpu)->nested.preemption_timer_expired;
3963 }
3964
vmx_has_nested_events(struct kvm_vcpu * vcpu)3965 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu)
3966 {
3967 return nested_vmx_preemption_timer_pending(vcpu) ||
3968 to_vmx(vcpu)->nested.mtf_pending;
3969 }
3970
3971 /*
3972 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
3973 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
3974 * and less minor edits to splice in the priority of VMX Non-Root specific
3975 * events, e.g. MTF and NMI/INTR-window exiting.
3976 *
3977 * 1 Hardware Reset and Machine Checks
3978 * - RESET
3979 * - Machine Check
3980 *
3981 * 2 Trap on Task Switch
3982 * - T flag in TSS is set (on task switch)
3983 *
3984 * 3 External Hardware Interventions
3985 * - FLUSH
3986 * - STOPCLK
3987 * - SMI
3988 * - INIT
3989 *
3990 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
3991 *
3992 * 4 Traps on Previous Instruction
3993 * - Breakpoints
3994 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
3995 * breakpoint, or #DB due to a split-lock access)
3996 *
3997 * 4.3 VMX-preemption timer expired VM-exit
3998 *
3999 * 4.6 NMI-window exiting VM-exit[2]
4000 *
4001 * 5 Nonmaskable Interrupts (NMI)
4002 *
4003 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4004 *
4005 * 6 Maskable Hardware Interrupts
4006 *
4007 * 7 Code Breakpoint Fault
4008 *
4009 * 8 Faults from Fetching Next Instruction
4010 * - Code-Segment Limit Violation
4011 * - Code Page Fault
4012 * - Control protection exception (missing ENDBRANCH at target of indirect
4013 * call or jump)
4014 *
4015 * 9 Faults from Decoding Next Instruction
4016 * - Instruction length > 15 bytes
4017 * - Invalid Opcode
4018 * - Coprocessor Not Available
4019 *
4020 *10 Faults on Executing Instruction
4021 * - Overflow
4022 * - Bound error
4023 * - Invalid TSS
4024 * - Segment Not Present
4025 * - Stack fault
4026 * - General Protection
4027 * - Data Page Fault
4028 * - Alignment Check
4029 * - x86 FPU Floating-point exception
4030 * - SIMD floating-point exception
4031 * - Virtualization exception
4032 * - Control protection exception
4033 *
4034 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4035 * INIT signals, and higher priority events take priority over MTF VM exits.
4036 * MTF VM exits take priority over debug-trap exceptions and lower priority
4037 * events.
4038 *
4039 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4040 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4041 * timer take priority over VM exits caused by the "NMI-window exiting"
4042 * VM-execution control and lower priority events.
4043 *
4044 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4045 * caused by "NMI-window exiting". VM exits caused by this control take
4046 * priority over non-maskable interrupts (NMIs) and lower priority events.
4047 *
4048 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4049 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4050 * non-maskable interrupts (NMIs) and higher priority events take priority over
4051 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4052 * priority over external interrupts and lower priority events.
4053 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4054 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4055 {
4056 struct kvm_lapic *apic = vcpu->arch.apic;
4057 struct vcpu_vmx *vmx = to_vmx(vcpu);
4058 /*
4059 * Only a pending nested run blocks a pending exception. If there is a
4060 * previously injected event, the pending exception occurred while said
4061 * event was being delivered and thus needs to be handled.
4062 */
4063 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4064 /*
4065 * New events (not exceptions) are only recognized at instruction
4066 * boundaries. If an event needs reinjection, then KVM is handling a
4067 * VM-Exit that occurred _during_ instruction execution; new events are
4068 * blocked until the instruction completes.
4069 */
4070 bool block_nested_events = block_nested_exceptions ||
4071 kvm_event_needs_reinjection(vcpu);
4072
4073 if (lapic_in_kernel(vcpu) &&
4074 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4075 if (block_nested_events)
4076 return -EBUSY;
4077 nested_vmx_update_pending_dbg(vcpu);
4078 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4079 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4080 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4081
4082 /* MTF is discarded if the vCPU is in WFS. */
4083 vmx->nested.mtf_pending = false;
4084 return 0;
4085 }
4086
4087 if (lapic_in_kernel(vcpu) &&
4088 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4089 if (block_nested_events)
4090 return -EBUSY;
4091
4092 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4093 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4094 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4095 apic->sipi_vector & 0xFFUL);
4096 return 0;
4097 }
4098 /* Fallthrough, the SIPI is completely ignored. */
4099 }
4100
4101 /*
4102 * Process exceptions that are higher priority than Monitor Trap Flag:
4103 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4104 * could theoretically come in from userspace), and ICEBP (INT1).
4105 *
4106 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4107 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4108 * across SMI/RSM as it should; that needs to be addressed in order to
4109 * prioritize SMI over MTF and trap-like #DBs.
4110 */
4111 if (vcpu->arch.exception_vmexit.pending &&
4112 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4113 if (block_nested_exceptions)
4114 return -EBUSY;
4115
4116 nested_vmx_inject_exception_vmexit(vcpu);
4117 return 0;
4118 }
4119
4120 if (vcpu->arch.exception.pending &&
4121 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4122 if (block_nested_exceptions)
4123 return -EBUSY;
4124 goto no_vmexit;
4125 }
4126
4127 if (vmx->nested.mtf_pending) {
4128 if (block_nested_events)
4129 return -EBUSY;
4130 nested_vmx_update_pending_dbg(vcpu);
4131 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4132 return 0;
4133 }
4134
4135 if (vcpu->arch.exception_vmexit.pending) {
4136 if (block_nested_exceptions)
4137 return -EBUSY;
4138
4139 nested_vmx_inject_exception_vmexit(vcpu);
4140 return 0;
4141 }
4142
4143 if (vcpu->arch.exception.pending) {
4144 if (block_nested_exceptions)
4145 return -EBUSY;
4146 goto no_vmexit;
4147 }
4148
4149 if (nested_vmx_preemption_timer_pending(vcpu)) {
4150 if (block_nested_events)
4151 return -EBUSY;
4152 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4153 return 0;
4154 }
4155
4156 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4157 if (block_nested_events)
4158 return -EBUSY;
4159 goto no_vmexit;
4160 }
4161
4162 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4163 if (block_nested_events)
4164 return -EBUSY;
4165 if (!nested_exit_on_nmi(vcpu))
4166 goto no_vmexit;
4167
4168 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4169 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4170 INTR_INFO_VALID_MASK, 0);
4171 /*
4172 * The NMI-triggered VM exit counts as injection:
4173 * clear this one and block further NMIs.
4174 */
4175 vcpu->arch.nmi_pending = 0;
4176 vmx_set_nmi_mask(vcpu, true);
4177 return 0;
4178 }
4179
4180 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4181 if (block_nested_events)
4182 return -EBUSY;
4183 if (!nested_exit_on_intr(vcpu))
4184 goto no_vmexit;
4185 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4186 return 0;
4187 }
4188
4189 no_vmexit:
4190 return vmx_complete_nested_posted_interrupt(vcpu);
4191 }
4192
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4193 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4194 {
4195 ktime_t remaining =
4196 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4197 u64 value;
4198
4199 if (ktime_to_ns(remaining) <= 0)
4200 return 0;
4201
4202 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4203 do_div(value, 1000000);
4204 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4205 }
4206
is_vmcs12_ext_field(unsigned long field)4207 static bool is_vmcs12_ext_field(unsigned long field)
4208 {
4209 switch (field) {
4210 case GUEST_ES_SELECTOR:
4211 case GUEST_CS_SELECTOR:
4212 case GUEST_SS_SELECTOR:
4213 case GUEST_DS_SELECTOR:
4214 case GUEST_FS_SELECTOR:
4215 case GUEST_GS_SELECTOR:
4216 case GUEST_LDTR_SELECTOR:
4217 case GUEST_TR_SELECTOR:
4218 case GUEST_ES_LIMIT:
4219 case GUEST_CS_LIMIT:
4220 case GUEST_SS_LIMIT:
4221 case GUEST_DS_LIMIT:
4222 case GUEST_FS_LIMIT:
4223 case GUEST_GS_LIMIT:
4224 case GUEST_LDTR_LIMIT:
4225 case GUEST_TR_LIMIT:
4226 case GUEST_GDTR_LIMIT:
4227 case GUEST_IDTR_LIMIT:
4228 case GUEST_ES_AR_BYTES:
4229 case GUEST_DS_AR_BYTES:
4230 case GUEST_FS_AR_BYTES:
4231 case GUEST_GS_AR_BYTES:
4232 case GUEST_LDTR_AR_BYTES:
4233 case GUEST_TR_AR_BYTES:
4234 case GUEST_ES_BASE:
4235 case GUEST_CS_BASE:
4236 case GUEST_SS_BASE:
4237 case GUEST_DS_BASE:
4238 case GUEST_FS_BASE:
4239 case GUEST_GS_BASE:
4240 case GUEST_LDTR_BASE:
4241 case GUEST_TR_BASE:
4242 case GUEST_GDTR_BASE:
4243 case GUEST_IDTR_BASE:
4244 case GUEST_PENDING_DBG_EXCEPTIONS:
4245 case GUEST_BNDCFGS:
4246 return true;
4247 default:
4248 break;
4249 }
4250
4251 return false;
4252 }
4253
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4254 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4255 struct vmcs12 *vmcs12)
4256 {
4257 struct vcpu_vmx *vmx = to_vmx(vcpu);
4258
4259 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4260 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4261 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4262 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4263 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4264 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4265 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4266 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4267 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4268 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4269 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4270 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4271 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4272 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4273 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4274 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4275 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4276 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4277 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4278 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4279 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4280 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4281 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4282 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4283 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4284 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4285 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4286 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4287 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4288 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4289 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4290 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4291 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4292 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4293 vmcs12->guest_pending_dbg_exceptions =
4294 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4295
4296 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4297 }
4298
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4299 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4300 struct vmcs12 *vmcs12)
4301 {
4302 struct vcpu_vmx *vmx = to_vmx(vcpu);
4303 int cpu;
4304
4305 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4306 return;
4307
4308
4309 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4310
4311 cpu = get_cpu();
4312 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4313 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4314
4315 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4316
4317 vmx->loaded_vmcs = &vmx->vmcs01;
4318 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4319 put_cpu();
4320 }
4321
4322 /*
4323 * Update the guest state fields of vmcs12 to reflect changes that
4324 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4325 * VM-entry controls is also updated, since this is really a guest
4326 * state bit.)
4327 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4328 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4329 {
4330 struct vcpu_vmx *vmx = to_vmx(vcpu);
4331
4332 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4333 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4334
4335 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4336 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4337
4338 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4339 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4340
4341 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4342 vmcs12->guest_rip = kvm_rip_read(vcpu);
4343 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4344
4345 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4346 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4347
4348 vmcs12->guest_interruptibility_info =
4349 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4350
4351 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4352 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4353 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4354 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4355 else
4356 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4357
4358 if (nested_cpu_has_preemption_timer(vmcs12) &&
4359 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4360 !vmx->nested.nested_run_pending)
4361 vmcs12->vmx_preemption_timer_value =
4362 vmx_get_preemption_timer_value(vcpu);
4363
4364 /*
4365 * In some cases (usually, nested EPT), L2 is allowed to change its
4366 * own CR3 without exiting. If it has changed it, we must keep it.
4367 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4368 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4369 *
4370 * Additionally, restore L2's PDPTR to vmcs12.
4371 */
4372 if (enable_ept) {
4373 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4374 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4375 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4376 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4377 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4378 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4379 }
4380 }
4381
4382 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4383
4384 if (nested_cpu_has_vid(vmcs12))
4385 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4386
4387 vmcs12->vm_entry_controls =
4388 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4389 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4390
4391 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4392 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4393
4394 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4395 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4396 }
4397
4398 /*
4399 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4400 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4401 * and this function updates it to reflect the changes to the guest state while
4402 * L2 was running (and perhaps made some exits which were handled directly by L0
4403 * without going back to L1), and to reflect the exit reason.
4404 * Note that we do not have to copy here all VMCS fields, just those that
4405 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4406 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4407 * which already writes to vmcs12 directly.
4408 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4409 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4410 u32 vm_exit_reason, u32 exit_intr_info,
4411 unsigned long exit_qualification)
4412 {
4413 /* update exit information fields: */
4414 vmcs12->vm_exit_reason = vm_exit_reason;
4415 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4416 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4417 vmcs12->exit_qualification = exit_qualification;
4418
4419 /*
4420 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4421 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4422 * exit info fields are unmodified.
4423 */
4424 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4425 vmcs12->launch_state = 1;
4426
4427 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4428 * instead of reading the real value. */
4429 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4430
4431 /*
4432 * Transfer the event that L0 or L1 may wanted to inject into
4433 * L2 to IDT_VECTORING_INFO_FIELD.
4434 */
4435 vmcs12_save_pending_event(vcpu, vmcs12,
4436 vm_exit_reason, exit_intr_info);
4437
4438 vmcs12->vm_exit_intr_info = exit_intr_info;
4439 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4440 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4441
4442 /*
4443 * According to spec, there's no need to store the guest's
4444 * MSRs if the exit is due to a VM-entry failure that occurs
4445 * during or after loading the guest state. Since this exit
4446 * does not fall in that category, we need to save the MSRs.
4447 */
4448 if (nested_vmx_store_msr(vcpu,
4449 vmcs12->vm_exit_msr_store_addr,
4450 vmcs12->vm_exit_msr_store_count))
4451 nested_vmx_abort(vcpu,
4452 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4453 }
4454 }
4455
4456 /*
4457 * A part of what we need to when the nested L2 guest exits and we want to
4458 * run its L1 parent, is to reset L1's guest state to the host state specified
4459 * in vmcs12.
4460 * This function is to be called not only on normal nested exit, but also on
4461 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4462 * Failures During or After Loading Guest State").
4463 * This function should be called when the active VMCS is L1's (vmcs01).
4464 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4465 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4466 struct vmcs12 *vmcs12)
4467 {
4468 enum vm_entry_failure_code ignored;
4469 struct kvm_segment seg;
4470
4471 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4472 vcpu->arch.efer = vmcs12->host_ia32_efer;
4473 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4474 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4475 else
4476 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4477 vmx_set_efer(vcpu, vcpu->arch.efer);
4478
4479 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4480 kvm_rip_write(vcpu, vmcs12->host_rip);
4481 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4482 vmx_set_interrupt_shadow(vcpu, 0);
4483
4484 /*
4485 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4486 * actually changed, because vmx_set_cr0 refers to efer set above.
4487 *
4488 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4489 * (KVM doesn't change it);
4490 */
4491 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4492 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4493
4494 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4495 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4496 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4497
4498 nested_ept_uninit_mmu_context(vcpu);
4499
4500 /*
4501 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4502 * couldn't have changed.
4503 */
4504 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4505 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4506
4507 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4508
4509 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4510 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4511 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4512 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4513 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4514 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4515 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4516
4517 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4518 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4519 vmcs_write64(GUEST_BNDCFGS, 0);
4520
4521 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4522 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4523 vcpu->arch.pat = vmcs12->host_ia32_pat;
4524 }
4525 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4526 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4527 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4528 vmcs12->host_ia32_perf_global_ctrl));
4529
4530 /* Set L1 segment info according to Intel SDM
4531 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4532 seg = (struct kvm_segment) {
4533 .base = 0,
4534 .limit = 0xFFFFFFFF,
4535 .selector = vmcs12->host_cs_selector,
4536 .type = 11,
4537 .present = 1,
4538 .s = 1,
4539 .g = 1
4540 };
4541 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4542 seg.l = 1;
4543 else
4544 seg.db = 1;
4545 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4546 seg = (struct kvm_segment) {
4547 .base = 0,
4548 .limit = 0xFFFFFFFF,
4549 .type = 3,
4550 .present = 1,
4551 .s = 1,
4552 .db = 1,
4553 .g = 1
4554 };
4555 seg.selector = vmcs12->host_ds_selector;
4556 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4557 seg.selector = vmcs12->host_es_selector;
4558 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4559 seg.selector = vmcs12->host_ss_selector;
4560 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4561 seg.selector = vmcs12->host_fs_selector;
4562 seg.base = vmcs12->host_fs_base;
4563 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4564 seg.selector = vmcs12->host_gs_selector;
4565 seg.base = vmcs12->host_gs_base;
4566 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4567 seg = (struct kvm_segment) {
4568 .base = vmcs12->host_tr_base,
4569 .limit = 0x67,
4570 .selector = vmcs12->host_tr_selector,
4571 .type = 11,
4572 .present = 1
4573 };
4574 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4575
4576 memset(&seg, 0, sizeof(seg));
4577 seg.unusable = 1;
4578 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4579
4580 kvm_set_dr(vcpu, 7, 0x400);
4581 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4582
4583 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4584 vmcs12->vm_exit_msr_load_count))
4585 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4586
4587 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4588 }
4589
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4590 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4591 {
4592 struct vmx_uret_msr *efer_msr;
4593 unsigned int i;
4594
4595 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4596 return vmcs_read64(GUEST_IA32_EFER);
4597
4598 if (cpu_has_load_ia32_efer())
4599 return host_efer;
4600
4601 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4602 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4603 return vmx->msr_autoload.guest.val[i].value;
4604 }
4605
4606 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4607 if (efer_msr)
4608 return efer_msr->data;
4609
4610 return host_efer;
4611 }
4612
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4613 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4614 {
4615 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4616 struct vcpu_vmx *vmx = to_vmx(vcpu);
4617 struct vmx_msr_entry g, h;
4618 gpa_t gpa;
4619 u32 i, j;
4620
4621 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4622
4623 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4624 /*
4625 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4626 * as vmcs01.GUEST_DR7 contains a userspace defined value
4627 * and vcpu->arch.dr7 is not squirreled away before the
4628 * nested VMENTER (not worth adding a variable in nested_vmx).
4629 */
4630 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4631 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4632 else
4633 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4634 }
4635
4636 /*
4637 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4638 * handle a variety of side effects to KVM's software model.
4639 */
4640 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4641
4642 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4643 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4644
4645 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4646 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4647
4648 nested_ept_uninit_mmu_context(vcpu);
4649 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4650 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4651
4652 /*
4653 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4654 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4655 * VMFail, like everything else we just need to ensure our
4656 * software model is up-to-date.
4657 */
4658 if (enable_ept && is_pae_paging(vcpu))
4659 ept_save_pdptrs(vcpu);
4660
4661 kvm_mmu_reset_context(vcpu);
4662
4663 /*
4664 * This nasty bit of open coding is a compromise between blindly
4665 * loading L1's MSRs using the exit load lists (incorrect emulation
4666 * of VMFail), leaving the nested VM's MSRs in the software model
4667 * (incorrect behavior) and snapshotting the modified MSRs (too
4668 * expensive since the lists are unbound by hardware). For each
4669 * MSR that was (prematurely) loaded from the nested VMEntry load
4670 * list, reload it from the exit load list if it exists and differs
4671 * from the guest value. The intent is to stuff host state as
4672 * silently as possible, not to fully process the exit load list.
4673 */
4674 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4675 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4676 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4677 pr_debug_ratelimited(
4678 "%s read MSR index failed (%u, 0x%08llx)\n",
4679 __func__, i, gpa);
4680 goto vmabort;
4681 }
4682
4683 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4684 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4685 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4686 pr_debug_ratelimited(
4687 "%s read MSR failed (%u, 0x%08llx)\n",
4688 __func__, j, gpa);
4689 goto vmabort;
4690 }
4691 if (h.index != g.index)
4692 continue;
4693 if (h.value == g.value)
4694 break;
4695
4696 if (nested_vmx_load_msr_check(vcpu, &h)) {
4697 pr_debug_ratelimited(
4698 "%s check failed (%u, 0x%x, 0x%x)\n",
4699 __func__, j, h.index, h.reserved);
4700 goto vmabort;
4701 }
4702
4703 if (kvm_set_msr(vcpu, h.index, h.value)) {
4704 pr_debug_ratelimited(
4705 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4706 __func__, j, h.index, h.value);
4707 goto vmabort;
4708 }
4709 }
4710 }
4711
4712 return;
4713
4714 vmabort:
4715 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4716 }
4717
4718 /*
4719 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4720 * and modify vmcs12 to make it see what it would expect to see there if
4721 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4722 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4723 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4724 u32 exit_intr_info, unsigned long exit_qualification)
4725 {
4726 struct vcpu_vmx *vmx = to_vmx(vcpu);
4727 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4728
4729 /* Pending MTF traps are discarded on VM-Exit. */
4730 vmx->nested.mtf_pending = false;
4731
4732 /* trying to cancel vmlaunch/vmresume is a bug */
4733 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4734
4735 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4736 /*
4737 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4738 * Enlightened VMCS after migration and we still need to
4739 * do that when something is forcing L2->L1 exit prior to
4740 * the first L2 run.
4741 */
4742 (void)nested_get_evmcs_page(vcpu);
4743 }
4744
4745 /* Service pending TLB flush requests for L2 before switching to L1. */
4746 kvm_service_local_tlb_flush_requests(vcpu);
4747
4748 /*
4749 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4750 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4751 * up-to-date before switching to L1.
4752 */
4753 if (enable_ept && is_pae_paging(vcpu))
4754 vmx_ept_load_pdptrs(vcpu);
4755
4756 leave_guest_mode(vcpu);
4757
4758 if (nested_cpu_has_preemption_timer(vmcs12))
4759 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4760
4761 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4762 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4763 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4764 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4765 }
4766
4767 if (likely(!vmx->fail)) {
4768 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4769
4770 if (vm_exit_reason != -1)
4771 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4772 exit_intr_info, exit_qualification);
4773
4774 /*
4775 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4776 * also be used to capture vmcs12 cache as part of
4777 * capturing nVMX state for snapshot (migration).
4778 *
4779 * Otherwise, this flush will dirty guest memory at a
4780 * point it is already assumed by user-space to be
4781 * immutable.
4782 */
4783 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4784 } else {
4785 /*
4786 * The only expected VM-instruction error is "VM entry with
4787 * invalid control field(s)." Anything else indicates a
4788 * problem with L0. And we should never get here with a
4789 * VMFail of any type if early consistency checks are enabled.
4790 */
4791 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4792 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4793 WARN_ON_ONCE(nested_early_check);
4794 }
4795
4796 /*
4797 * Drop events/exceptions that were queued for re-injection to L2
4798 * (picked up via vmx_complete_interrupts()), as well as exceptions
4799 * that were pending for L2. Note, this must NOT be hoisted above
4800 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4801 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4802 */
4803 vcpu->arch.nmi_injected = false;
4804 kvm_clear_exception_queue(vcpu);
4805 kvm_clear_interrupt_queue(vcpu);
4806
4807 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4808
4809 /*
4810 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4811 * branch predictors when transitioning from L2 to L1, as L1 expects
4812 * hardware (KVM in this case) to provide separate predictor modes.
4813 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4814 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4815 * separate modes for L2 vs L1.
4816 */
4817 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4818 indirect_branch_prediction_barrier();
4819
4820 /* Update any VMCS fields that might have changed while L2 ran */
4821 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4822 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4823 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4824 if (kvm_caps.has_tsc_control)
4825 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4826
4827 if (vmx->nested.l1_tpr_threshold != -1)
4828 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4829
4830 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4831 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4832 vmx_set_virtual_apic_mode(vcpu);
4833 }
4834
4835 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4836 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4837 vmx_update_cpu_dirty_logging(vcpu);
4838 }
4839
4840 /* Unpin physical memory we referred to in vmcs02 */
4841 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4842 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4843 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4844 vmx->nested.pi_desc = NULL;
4845
4846 if (vmx->nested.reload_vmcs01_apic_access_page) {
4847 vmx->nested.reload_vmcs01_apic_access_page = false;
4848 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4849 }
4850
4851 if (vmx->nested.update_vmcs01_apicv_status) {
4852 vmx->nested.update_vmcs01_apicv_status = false;
4853 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4854 }
4855
4856 if ((vm_exit_reason != -1) &&
4857 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4858 vmx->nested.need_vmcs12_to_shadow_sync = true;
4859
4860 /* in case we halted in L2 */
4861 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4862
4863 if (likely(!vmx->fail)) {
4864 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4865 nested_exit_intr_ack_set(vcpu)) {
4866 int irq = kvm_cpu_get_interrupt(vcpu);
4867 WARN_ON(irq < 0);
4868 vmcs12->vm_exit_intr_info = irq |
4869 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4870 }
4871
4872 if (vm_exit_reason != -1)
4873 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4874 vmcs12->exit_qualification,
4875 vmcs12->idt_vectoring_info_field,
4876 vmcs12->vm_exit_intr_info,
4877 vmcs12->vm_exit_intr_error_code,
4878 KVM_ISA_VMX);
4879
4880 load_vmcs12_host_state(vcpu, vmcs12);
4881
4882 return;
4883 }
4884
4885 /*
4886 * After an early L2 VM-entry failure, we're now back
4887 * in L1 which thinks it just finished a VMLAUNCH or
4888 * VMRESUME instruction, so we need to set the failure
4889 * flag and the VM-instruction error field of the VMCS
4890 * accordingly, and skip the emulated instruction.
4891 */
4892 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4893
4894 /*
4895 * Restore L1's host state to KVM's software model. We're here
4896 * because a consistency check was caught by hardware, which
4897 * means some amount of guest state has been propagated to KVM's
4898 * model and needs to be unwound to the host's state.
4899 */
4900 nested_vmx_restore_host_state(vcpu);
4901
4902 vmx->fail = 0;
4903 }
4904
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)4905 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4906 {
4907 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4908 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4909 }
4910
4911 /*
4912 * Decode the memory-address operand of a vmx instruction, as recorded on an
4913 * exit caused by such an instruction (run by a guest hypervisor).
4914 * On success, returns 0. When the operand is invalid, returns 1 and throws
4915 * #UD, #GP, or #SS.
4916 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4917 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4918 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4919 {
4920 gva_t off;
4921 bool exn;
4922 struct kvm_segment s;
4923
4924 /*
4925 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4926 * Execution", on an exit, vmx_instruction_info holds most of the
4927 * addressing components of the operand. Only the displacement part
4928 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4929 * For how an actual address is calculated from all these components,
4930 * refer to Vol. 1, "Operand Addressing".
4931 */
4932 int scaling = vmx_instruction_info & 3;
4933 int addr_size = (vmx_instruction_info >> 7) & 7;
4934 bool is_reg = vmx_instruction_info & (1u << 10);
4935 int seg_reg = (vmx_instruction_info >> 15) & 7;
4936 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4937 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4938 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4939 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4940
4941 if (is_reg) {
4942 kvm_queue_exception(vcpu, UD_VECTOR);
4943 return 1;
4944 }
4945
4946 /* Addr = segment_base + offset */
4947 /* offset = base + [index * scale] + displacement */
4948 off = exit_qualification; /* holds the displacement */
4949 if (addr_size == 1)
4950 off = (gva_t)sign_extend64(off, 31);
4951 else if (addr_size == 0)
4952 off = (gva_t)sign_extend64(off, 15);
4953 if (base_is_valid)
4954 off += kvm_register_read(vcpu, base_reg);
4955 if (index_is_valid)
4956 off += kvm_register_read(vcpu, index_reg) << scaling;
4957 vmx_get_segment(vcpu, &s, seg_reg);
4958
4959 /*
4960 * The effective address, i.e. @off, of a memory operand is truncated
4961 * based on the address size of the instruction. Note that this is
4962 * the *effective address*, i.e. the address prior to accounting for
4963 * the segment's base.
4964 */
4965 if (addr_size == 1) /* 32 bit */
4966 off &= 0xffffffff;
4967 else if (addr_size == 0) /* 16 bit */
4968 off &= 0xffff;
4969
4970 /* Checks for #GP/#SS exceptions. */
4971 exn = false;
4972 if (is_long_mode(vcpu)) {
4973 /*
4974 * The virtual/linear address is never truncated in 64-bit
4975 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4976 * address when using FS/GS with a non-zero base.
4977 */
4978 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4979 *ret = s.base + off;
4980 else
4981 *ret = off;
4982
4983 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4984 * non-canonical form. This is the only check on the memory
4985 * destination for long mode!
4986 */
4987 exn = is_noncanonical_address(*ret, vcpu);
4988 } else {
4989 /*
4990 * When not in long mode, the virtual/linear address is
4991 * unconditionally truncated to 32 bits regardless of the
4992 * address size.
4993 */
4994 *ret = (s.base + off) & 0xffffffff;
4995
4996 /* Protected mode: apply checks for segment validity in the
4997 * following order:
4998 * - segment type check (#GP(0) may be thrown)
4999 * - usability check (#GP(0)/#SS(0))
5000 * - limit check (#GP(0)/#SS(0))
5001 */
5002 if (wr)
5003 /* #GP(0) if the destination operand is located in a
5004 * read-only data segment or any code segment.
5005 */
5006 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5007 else
5008 /* #GP(0) if the source operand is located in an
5009 * execute-only code segment
5010 */
5011 exn = ((s.type & 0xa) == 8);
5012 if (exn) {
5013 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5014 return 1;
5015 }
5016 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5017 */
5018 exn = (s.unusable != 0);
5019
5020 /*
5021 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5022 * outside the segment limit. All CPUs that support VMX ignore
5023 * limit checks for flat segments, i.e. segments with base==0,
5024 * limit==0xffffffff and of type expand-up data or code.
5025 */
5026 if (!(s.base == 0 && s.limit == 0xffffffff &&
5027 ((s.type & 8) || !(s.type & 4))))
5028 exn = exn || ((u64)off + len - 1 > s.limit);
5029 }
5030 if (exn) {
5031 kvm_queue_exception_e(vcpu,
5032 seg_reg == VCPU_SREG_SS ?
5033 SS_VECTOR : GP_VECTOR,
5034 0);
5035 return 1;
5036 }
5037
5038 return 0;
5039 }
5040
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5041 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5042 int *ret)
5043 {
5044 gva_t gva;
5045 struct x86_exception e;
5046 int r;
5047
5048 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5049 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5050 sizeof(*vmpointer), &gva)) {
5051 *ret = 1;
5052 return -EINVAL;
5053 }
5054
5055 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5056 if (r != X86EMUL_CONTINUE) {
5057 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5058 return -EINVAL;
5059 }
5060
5061 return 0;
5062 }
5063
5064 /*
5065 * Allocate a shadow VMCS and associate it with the currently loaded
5066 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5067 * VMCS is also VMCLEARed, so that it is ready for use.
5068 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5069 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5070 {
5071 struct vcpu_vmx *vmx = to_vmx(vcpu);
5072 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5073
5074 /*
5075 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5076 * when L1 executes VMXOFF or the vCPU is forced out of nested
5077 * operation. VMXON faults if the CPU is already post-VMXON, so it
5078 * should be impossible to already have an allocated shadow VMCS. KVM
5079 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5080 * always be the loaded VMCS.
5081 */
5082 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5083 return loaded_vmcs->shadow_vmcs;
5084
5085 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5086 if (loaded_vmcs->shadow_vmcs)
5087 vmcs_clear(loaded_vmcs->shadow_vmcs);
5088
5089 return loaded_vmcs->shadow_vmcs;
5090 }
5091
enter_vmx_operation(struct kvm_vcpu * vcpu)5092 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5093 {
5094 struct vcpu_vmx *vmx = to_vmx(vcpu);
5095 int r;
5096
5097 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5098 if (r < 0)
5099 goto out_vmcs02;
5100
5101 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5102 if (!vmx->nested.cached_vmcs12)
5103 goto out_cached_vmcs12;
5104
5105 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5106 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5107 if (!vmx->nested.cached_shadow_vmcs12)
5108 goto out_cached_shadow_vmcs12;
5109
5110 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5111 goto out_shadow_vmcs;
5112
5113 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5114 HRTIMER_MODE_ABS_PINNED);
5115 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5116
5117 vmx->nested.vpid02 = allocate_vpid();
5118
5119 vmx->nested.vmcs02_initialized = false;
5120 vmx->nested.vmxon = true;
5121
5122 if (vmx_pt_mode_is_host_guest()) {
5123 vmx->pt_desc.guest.ctl = 0;
5124 pt_update_intercept_for_msr(vcpu);
5125 }
5126
5127 return 0;
5128
5129 out_shadow_vmcs:
5130 kfree(vmx->nested.cached_shadow_vmcs12);
5131
5132 out_cached_shadow_vmcs12:
5133 kfree(vmx->nested.cached_vmcs12);
5134
5135 out_cached_vmcs12:
5136 free_loaded_vmcs(&vmx->nested.vmcs02);
5137
5138 out_vmcs02:
5139 return -ENOMEM;
5140 }
5141
5142 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5143 static int handle_vmxon(struct kvm_vcpu *vcpu)
5144 {
5145 int ret;
5146 gpa_t vmptr;
5147 uint32_t revision;
5148 struct vcpu_vmx *vmx = to_vmx(vcpu);
5149 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5150 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5151
5152 /*
5153 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5154 * the guest and so cannot rely on hardware to perform the check,
5155 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5156 * for VMXON).
5157 *
5158 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5159 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5160 * force any of the relevant guest state. For a restricted guest, KVM
5161 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5162 * Real Mode, and so there's no need to check CR0.PE manually.
5163 */
5164 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5165 kvm_queue_exception(vcpu, UD_VECTOR);
5166 return 1;
5167 }
5168
5169 /*
5170 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5171 * and has higher priority than the VM-Fail due to being post-VMXON,
5172 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5173 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5174 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5175 * VMX non-root.
5176 *
5177 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5178 * #UD checks (see above), is functionally ok because KVM doesn't allow
5179 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5180 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5181 * missed by hardware due to shadowing CR0 and/or CR4.
5182 */
5183 if (vmx_get_cpl(vcpu)) {
5184 kvm_inject_gp(vcpu, 0);
5185 return 1;
5186 }
5187
5188 if (vmx->nested.vmxon)
5189 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5190
5191 /*
5192 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5193 * only if the vCPU isn't already in VMX operation, i.e. effectively
5194 * have lower priority than the VM-Fail above.
5195 */
5196 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5197 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5198 kvm_inject_gp(vcpu, 0);
5199 return 1;
5200 }
5201
5202 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5203 != VMXON_NEEDED_FEATURES) {
5204 kvm_inject_gp(vcpu, 0);
5205 return 1;
5206 }
5207
5208 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5209 return ret;
5210
5211 /*
5212 * SDM 3: 24.11.5
5213 * The first 4 bytes of VMXON region contain the supported
5214 * VMCS revision identifier
5215 *
5216 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5217 * which replaces physical address width with 32
5218 */
5219 if (!page_address_valid(vcpu, vmptr))
5220 return nested_vmx_failInvalid(vcpu);
5221
5222 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5223 revision != VMCS12_REVISION)
5224 return nested_vmx_failInvalid(vcpu);
5225
5226 vmx->nested.vmxon_ptr = vmptr;
5227 ret = enter_vmx_operation(vcpu);
5228 if (ret)
5229 return ret;
5230
5231 return nested_vmx_succeed(vcpu);
5232 }
5233
nested_release_vmcs12(struct kvm_vcpu * vcpu)5234 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5235 {
5236 struct vcpu_vmx *vmx = to_vmx(vcpu);
5237
5238 if (vmx->nested.current_vmptr == INVALID_GPA)
5239 return;
5240
5241 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5242
5243 if (enable_shadow_vmcs) {
5244 /* copy to memory all shadowed fields in case
5245 they were modified */
5246 copy_shadow_to_vmcs12(vmx);
5247 vmx_disable_shadow_vmcs(vmx);
5248 }
5249 vmx->nested.posted_intr_nv = -1;
5250
5251 /* Flush VMCS12 to guest memory */
5252 kvm_vcpu_write_guest_page(vcpu,
5253 vmx->nested.current_vmptr >> PAGE_SHIFT,
5254 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5255
5256 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5257
5258 vmx->nested.current_vmptr = INVALID_GPA;
5259 }
5260
5261 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5262 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5263 {
5264 if (!nested_vmx_check_permission(vcpu))
5265 return 1;
5266
5267 free_nested(vcpu);
5268
5269 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5270 kvm_make_request(KVM_REQ_EVENT, vcpu);
5271
5272 return nested_vmx_succeed(vcpu);
5273 }
5274
5275 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5276 static int handle_vmclear(struct kvm_vcpu *vcpu)
5277 {
5278 struct vcpu_vmx *vmx = to_vmx(vcpu);
5279 u32 zero = 0;
5280 gpa_t vmptr;
5281 int r;
5282
5283 if (!nested_vmx_check_permission(vcpu))
5284 return 1;
5285
5286 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5287 return r;
5288
5289 if (!page_address_valid(vcpu, vmptr))
5290 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5291
5292 if (vmptr == vmx->nested.vmxon_ptr)
5293 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5294
5295 /*
5296 * When Enlightened VMEntry is enabled on the calling CPU we treat
5297 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5298 * way to distinguish it from VMCS12) and we must not corrupt it by
5299 * writing to the non-existent 'launch_state' field. The area doesn't
5300 * have to be the currently active EVMCS on the calling CPU and there's
5301 * nothing KVM has to do to transition it from 'active' to 'non-active'
5302 * state. It is possible that the area will stay mapped as
5303 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5304 */
5305 if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5306 !evmptr_is_valid(nested_get_evmptr(vcpu)))) {
5307 if (vmptr == vmx->nested.current_vmptr)
5308 nested_release_vmcs12(vcpu);
5309
5310 /*
5311 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5312 * for VMCLEAR includes a "ensure that data for VMCS referenced
5313 * by the operand is in memory" clause that guards writes to
5314 * memory, i.e. doing nothing for I/O is architecturally valid.
5315 *
5316 * FIXME: Suppress failures if and only if no memslot is found,
5317 * i.e. exit to userspace if __copy_to_user() fails.
5318 */
5319 (void)kvm_vcpu_write_guest(vcpu,
5320 vmptr + offsetof(struct vmcs12,
5321 launch_state),
5322 &zero, sizeof(zero));
5323 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5324 nested_release_evmcs(vcpu);
5325 }
5326
5327 return nested_vmx_succeed(vcpu);
5328 }
5329
5330 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5331 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5332 {
5333 return nested_vmx_run(vcpu, true);
5334 }
5335
5336 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5337 static int handle_vmresume(struct kvm_vcpu *vcpu)
5338 {
5339
5340 return nested_vmx_run(vcpu, false);
5341 }
5342
handle_vmread(struct kvm_vcpu * vcpu)5343 static int handle_vmread(struct kvm_vcpu *vcpu)
5344 {
5345 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5346 : get_vmcs12(vcpu);
5347 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5348 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5349 struct vcpu_vmx *vmx = to_vmx(vcpu);
5350 struct x86_exception e;
5351 unsigned long field;
5352 u64 value;
5353 gva_t gva = 0;
5354 short offset;
5355 int len, r;
5356
5357 if (!nested_vmx_check_permission(vcpu))
5358 return 1;
5359
5360 /* Decode instruction info and find the field to read */
5361 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5362
5363 if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5364 /*
5365 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5366 * any VMREAD sets the ALU flags for VMfailInvalid.
5367 */
5368 if (vmx->nested.current_vmptr == INVALID_GPA ||
5369 (is_guest_mode(vcpu) &&
5370 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5371 return nested_vmx_failInvalid(vcpu);
5372
5373 offset = get_vmcs12_field_offset(field);
5374 if (offset < 0)
5375 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5376
5377 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5378 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5379
5380 /* Read the field, zero-extended to a u64 value */
5381 value = vmcs12_read_any(vmcs12, field, offset);
5382 } else {
5383 /*
5384 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5385 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5386 * unsupported. Unfortunately, certain versions of Windows 11
5387 * don't comply with this requirement which is not enforced in
5388 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5389 * workaround, as misbehaving guests will panic on VM-Fail.
5390 * Note, enlightened VMCS is incompatible with shadow VMCS so
5391 * all VMREADs from L2 should go to L1.
5392 */
5393 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5394 return nested_vmx_failInvalid(vcpu);
5395
5396 offset = evmcs_field_offset(field, NULL);
5397 if (offset < 0)
5398 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5399
5400 /* Read the field, zero-extended to a u64 value */
5401 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5402 }
5403
5404 /*
5405 * Now copy part of this value to register or memory, as requested.
5406 * Note that the number of bits actually copied is 32 or 64 depending
5407 * on the guest's mode (32 or 64 bit), not on the given field's length.
5408 */
5409 if (instr_info & BIT(10)) {
5410 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5411 } else {
5412 len = is_64_bit_mode(vcpu) ? 8 : 4;
5413 if (get_vmx_mem_address(vcpu, exit_qualification,
5414 instr_info, true, len, &gva))
5415 return 1;
5416 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5417 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5418 if (r != X86EMUL_CONTINUE)
5419 return kvm_handle_memory_failure(vcpu, r, &e);
5420 }
5421
5422 return nested_vmx_succeed(vcpu);
5423 }
5424
is_shadow_field_rw(unsigned long field)5425 static bool is_shadow_field_rw(unsigned long field)
5426 {
5427 switch (field) {
5428 #define SHADOW_FIELD_RW(x, y) case x:
5429 #include "vmcs_shadow_fields.h"
5430 return true;
5431 default:
5432 break;
5433 }
5434 return false;
5435 }
5436
is_shadow_field_ro(unsigned long field)5437 static bool is_shadow_field_ro(unsigned long field)
5438 {
5439 switch (field) {
5440 #define SHADOW_FIELD_RO(x, y) case x:
5441 #include "vmcs_shadow_fields.h"
5442 return true;
5443 default:
5444 break;
5445 }
5446 return false;
5447 }
5448
handle_vmwrite(struct kvm_vcpu * vcpu)5449 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5450 {
5451 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5452 : get_vmcs12(vcpu);
5453 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5454 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5455 struct vcpu_vmx *vmx = to_vmx(vcpu);
5456 struct x86_exception e;
5457 unsigned long field;
5458 short offset;
5459 gva_t gva;
5460 int len, r;
5461
5462 /*
5463 * The value to write might be 32 or 64 bits, depending on L1's long
5464 * mode, and eventually we need to write that into a field of several
5465 * possible lengths. The code below first zero-extends the value to 64
5466 * bit (value), and then copies only the appropriate number of
5467 * bits into the vmcs12 field.
5468 */
5469 u64 value = 0;
5470
5471 if (!nested_vmx_check_permission(vcpu))
5472 return 1;
5473
5474 /*
5475 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5476 * any VMWRITE sets the ALU flags for VMfailInvalid.
5477 */
5478 if (vmx->nested.current_vmptr == INVALID_GPA ||
5479 (is_guest_mode(vcpu) &&
5480 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5481 return nested_vmx_failInvalid(vcpu);
5482
5483 if (instr_info & BIT(10))
5484 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5485 else {
5486 len = is_64_bit_mode(vcpu) ? 8 : 4;
5487 if (get_vmx_mem_address(vcpu, exit_qualification,
5488 instr_info, false, len, &gva))
5489 return 1;
5490 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5491 if (r != X86EMUL_CONTINUE)
5492 return kvm_handle_memory_failure(vcpu, r, &e);
5493 }
5494
5495 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5496
5497 offset = get_vmcs12_field_offset(field);
5498 if (offset < 0)
5499 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5500
5501 /*
5502 * If the vCPU supports "VMWRITE to any supported field in the
5503 * VMCS," then the "read-only" fields are actually read/write.
5504 */
5505 if (vmcs_field_readonly(field) &&
5506 !nested_cpu_has_vmwrite_any_field(vcpu))
5507 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5508
5509 /*
5510 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5511 * vmcs12, else we may crush a field or consume a stale value.
5512 */
5513 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5514 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5515
5516 /*
5517 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5518 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5519 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5520 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5521 * from L1 will return a different value than VMREAD from L2 (L1 sees
5522 * the stripped down value, L2 sees the full value as stored by KVM).
5523 */
5524 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5525 value &= 0x1f0ff;
5526
5527 vmcs12_write_any(vmcs12, field, offset, value);
5528
5529 /*
5530 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5531 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5532 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5533 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5534 */
5535 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5536 /*
5537 * L1 can read these fields without exiting, ensure the
5538 * shadow VMCS is up-to-date.
5539 */
5540 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5541 preempt_disable();
5542 vmcs_load(vmx->vmcs01.shadow_vmcs);
5543
5544 __vmcs_writel(field, value);
5545
5546 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5547 vmcs_load(vmx->loaded_vmcs->vmcs);
5548 preempt_enable();
5549 }
5550 vmx->nested.dirty_vmcs12 = true;
5551 }
5552
5553 return nested_vmx_succeed(vcpu);
5554 }
5555
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5556 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5557 {
5558 vmx->nested.current_vmptr = vmptr;
5559 if (enable_shadow_vmcs) {
5560 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5561 vmcs_write64(VMCS_LINK_POINTER,
5562 __pa(vmx->vmcs01.shadow_vmcs));
5563 vmx->nested.need_vmcs12_to_shadow_sync = true;
5564 }
5565 vmx->nested.dirty_vmcs12 = true;
5566 vmx->nested.force_msr_bitmap_recalc = true;
5567 }
5568
5569 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5570 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5571 {
5572 struct vcpu_vmx *vmx = to_vmx(vcpu);
5573 gpa_t vmptr;
5574 int r;
5575
5576 if (!nested_vmx_check_permission(vcpu))
5577 return 1;
5578
5579 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5580 return r;
5581
5582 if (!page_address_valid(vcpu, vmptr))
5583 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5584
5585 if (vmptr == vmx->nested.vmxon_ptr)
5586 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5587
5588 /* Forbid normal VMPTRLD if Enlightened version was used */
5589 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5590 return 1;
5591
5592 if (vmx->nested.current_vmptr != vmptr) {
5593 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5594 struct vmcs_hdr hdr;
5595
5596 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5597 /*
5598 * Reads from an unbacked page return all 1s,
5599 * which means that the 32 bits located at the
5600 * given physical address won't match the required
5601 * VMCS12_REVISION identifier.
5602 */
5603 return nested_vmx_fail(vcpu,
5604 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5605 }
5606
5607 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5608 offsetof(struct vmcs12, hdr),
5609 sizeof(hdr))) {
5610 return nested_vmx_fail(vcpu,
5611 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5612 }
5613
5614 if (hdr.revision_id != VMCS12_REVISION ||
5615 (hdr.shadow_vmcs &&
5616 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5617 return nested_vmx_fail(vcpu,
5618 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5619 }
5620
5621 nested_release_vmcs12(vcpu);
5622
5623 /*
5624 * Load VMCS12 from guest memory since it is not already
5625 * cached.
5626 */
5627 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5628 VMCS12_SIZE)) {
5629 return nested_vmx_fail(vcpu,
5630 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5631 }
5632
5633 set_current_vmptr(vmx, vmptr);
5634 }
5635
5636 return nested_vmx_succeed(vcpu);
5637 }
5638
5639 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5640 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5641 {
5642 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5643 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5644 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5645 struct x86_exception e;
5646 gva_t gva;
5647 int r;
5648
5649 if (!nested_vmx_check_permission(vcpu))
5650 return 1;
5651
5652 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5653 return 1;
5654
5655 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5656 true, sizeof(gpa_t), &gva))
5657 return 1;
5658 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5659 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5660 sizeof(gpa_t), &e);
5661 if (r != X86EMUL_CONTINUE)
5662 return kvm_handle_memory_failure(vcpu, r, &e);
5663
5664 return nested_vmx_succeed(vcpu);
5665 }
5666
5667 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5668 static int handle_invept(struct kvm_vcpu *vcpu)
5669 {
5670 struct vcpu_vmx *vmx = to_vmx(vcpu);
5671 u32 vmx_instruction_info, types;
5672 unsigned long type, roots_to_free;
5673 struct kvm_mmu *mmu;
5674 gva_t gva;
5675 struct x86_exception e;
5676 struct {
5677 u64 eptp, gpa;
5678 } operand;
5679 int i, r, gpr_index;
5680
5681 if (!(vmx->nested.msrs.secondary_ctls_high &
5682 SECONDARY_EXEC_ENABLE_EPT) ||
5683 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5684 kvm_queue_exception(vcpu, UD_VECTOR);
5685 return 1;
5686 }
5687
5688 if (!nested_vmx_check_permission(vcpu))
5689 return 1;
5690
5691 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5692 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5693 type = kvm_register_read(vcpu, gpr_index);
5694
5695 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5696
5697 if (type >= 32 || !(types & (1 << type)))
5698 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5699
5700 /* According to the Intel VMX instruction reference, the memory
5701 * operand is read even if it isn't needed (e.g., for type==global)
5702 */
5703 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5704 vmx_instruction_info, false, sizeof(operand), &gva))
5705 return 1;
5706 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5707 if (r != X86EMUL_CONTINUE)
5708 return kvm_handle_memory_failure(vcpu, r, &e);
5709
5710 /*
5711 * Nested EPT roots are always held through guest_mmu,
5712 * not root_mmu.
5713 */
5714 mmu = &vcpu->arch.guest_mmu;
5715
5716 switch (type) {
5717 case VMX_EPT_EXTENT_CONTEXT:
5718 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5719 return nested_vmx_fail(vcpu,
5720 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5721
5722 roots_to_free = 0;
5723 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5724 operand.eptp))
5725 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5726
5727 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5728 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5729 mmu->prev_roots[i].pgd,
5730 operand.eptp))
5731 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5732 }
5733 break;
5734 case VMX_EPT_EXTENT_GLOBAL:
5735 roots_to_free = KVM_MMU_ROOTS_ALL;
5736 break;
5737 default:
5738 BUG();
5739 break;
5740 }
5741
5742 if (roots_to_free)
5743 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5744
5745 return nested_vmx_succeed(vcpu);
5746 }
5747
handle_invvpid(struct kvm_vcpu * vcpu)5748 static int handle_invvpid(struct kvm_vcpu *vcpu)
5749 {
5750 struct vcpu_vmx *vmx = to_vmx(vcpu);
5751 u32 vmx_instruction_info;
5752 unsigned long type, types;
5753 gva_t gva;
5754 struct x86_exception e;
5755 struct {
5756 u64 vpid;
5757 u64 gla;
5758 } operand;
5759 u16 vpid02;
5760 int r, gpr_index;
5761
5762 if (!(vmx->nested.msrs.secondary_ctls_high &
5763 SECONDARY_EXEC_ENABLE_VPID) ||
5764 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5765 kvm_queue_exception(vcpu, UD_VECTOR);
5766 return 1;
5767 }
5768
5769 if (!nested_vmx_check_permission(vcpu))
5770 return 1;
5771
5772 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5773 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5774 type = kvm_register_read(vcpu, gpr_index);
5775
5776 types = (vmx->nested.msrs.vpid_caps &
5777 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5778
5779 if (type >= 32 || !(types & (1 << type)))
5780 return nested_vmx_fail(vcpu,
5781 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5782
5783 /* according to the intel vmx instruction reference, the memory
5784 * operand is read even if it isn't needed (e.g., for type==global)
5785 */
5786 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5787 vmx_instruction_info, false, sizeof(operand), &gva))
5788 return 1;
5789 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5790 if (r != X86EMUL_CONTINUE)
5791 return kvm_handle_memory_failure(vcpu, r, &e);
5792
5793 if (operand.vpid >> 16)
5794 return nested_vmx_fail(vcpu,
5795 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5796
5797 vpid02 = nested_get_vpid02(vcpu);
5798 switch (type) {
5799 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5800 if (!operand.vpid ||
5801 is_noncanonical_address(operand.gla, vcpu))
5802 return nested_vmx_fail(vcpu,
5803 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5804 vpid_sync_vcpu_addr(vpid02, operand.gla);
5805 break;
5806 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5807 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5808 if (!operand.vpid)
5809 return nested_vmx_fail(vcpu,
5810 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5811 vpid_sync_context(vpid02);
5812 break;
5813 case VMX_VPID_EXTENT_ALL_CONTEXT:
5814 vpid_sync_context(vpid02);
5815 break;
5816 default:
5817 WARN_ON_ONCE(1);
5818 return kvm_skip_emulated_instruction(vcpu);
5819 }
5820
5821 /*
5822 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5823 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5824 * roots as VPIDs are not tracked in the MMU role.
5825 *
5826 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5827 * an MMU when EPT is disabled.
5828 *
5829 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5830 */
5831 if (!enable_ept)
5832 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5833
5834 return nested_vmx_succeed(vcpu);
5835 }
5836
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5837 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5838 struct vmcs12 *vmcs12)
5839 {
5840 u32 index = kvm_rcx_read(vcpu);
5841 u64 new_eptp;
5842
5843 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5844 return 1;
5845 if (index >= VMFUNC_EPTP_ENTRIES)
5846 return 1;
5847
5848 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5849 &new_eptp, index * 8, 8))
5850 return 1;
5851
5852 /*
5853 * If the (L2) guest does a vmfunc to the currently
5854 * active ept pointer, we don't have to do anything else
5855 */
5856 if (vmcs12->ept_pointer != new_eptp) {
5857 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5858 return 1;
5859
5860 vmcs12->ept_pointer = new_eptp;
5861 nested_ept_new_eptp(vcpu);
5862
5863 if (!nested_cpu_has_vpid(vmcs12))
5864 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5865 }
5866
5867 return 0;
5868 }
5869
handle_vmfunc(struct kvm_vcpu * vcpu)5870 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5871 {
5872 struct vcpu_vmx *vmx = to_vmx(vcpu);
5873 struct vmcs12 *vmcs12;
5874 u32 function = kvm_rax_read(vcpu);
5875
5876 /*
5877 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5878 * VMFUNC for nested VMs, but not for L1.
5879 */
5880 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5881 kvm_queue_exception(vcpu, UD_VECTOR);
5882 return 1;
5883 }
5884
5885 vmcs12 = get_vmcs12(vcpu);
5886
5887 /*
5888 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5889 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5890 */
5891 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5892 kvm_queue_exception(vcpu, UD_VECTOR);
5893 return 1;
5894 }
5895
5896 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5897 goto fail;
5898
5899 switch (function) {
5900 case 0:
5901 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5902 goto fail;
5903 break;
5904 default:
5905 goto fail;
5906 }
5907 return kvm_skip_emulated_instruction(vcpu);
5908
5909 fail:
5910 /*
5911 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5912 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5913 * EXIT_REASON_VMFUNC as the exit reason.
5914 */
5915 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5916 vmx_get_intr_info(vcpu),
5917 vmx_get_exit_qual(vcpu));
5918 return 1;
5919 }
5920
5921 /*
5922 * Return true if an IO instruction with the specified port and size should cause
5923 * a VM-exit into L1.
5924 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5925 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5926 int size)
5927 {
5928 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5929 gpa_t bitmap, last_bitmap;
5930 u8 b;
5931
5932 last_bitmap = INVALID_GPA;
5933 b = -1;
5934
5935 while (size > 0) {
5936 if (port < 0x8000)
5937 bitmap = vmcs12->io_bitmap_a;
5938 else if (port < 0x10000)
5939 bitmap = vmcs12->io_bitmap_b;
5940 else
5941 return true;
5942 bitmap += (port & 0x7fff) / 8;
5943
5944 if (last_bitmap != bitmap)
5945 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5946 return true;
5947 if (b & (1 << (port & 7)))
5948 return true;
5949
5950 port++;
5951 size--;
5952 last_bitmap = bitmap;
5953 }
5954
5955 return false;
5956 }
5957
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5958 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5959 struct vmcs12 *vmcs12)
5960 {
5961 unsigned long exit_qualification;
5962 unsigned short port;
5963 int size;
5964
5965 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5966 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5967
5968 exit_qualification = vmx_get_exit_qual(vcpu);
5969
5970 port = exit_qualification >> 16;
5971 size = (exit_qualification & 7) + 1;
5972
5973 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5974 }
5975
5976 /*
5977 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5978 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5979 * disinterest in the current event (read or write a specific MSR) by using an
5980 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5981 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5982 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5983 struct vmcs12 *vmcs12,
5984 union vmx_exit_reason exit_reason)
5985 {
5986 u32 msr_index = kvm_rcx_read(vcpu);
5987 gpa_t bitmap;
5988
5989 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5990 return true;
5991
5992 /*
5993 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5994 * for the four combinations of read/write and low/high MSR numbers.
5995 * First we need to figure out which of the four to use:
5996 */
5997 bitmap = vmcs12->msr_bitmap;
5998 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5999 bitmap += 2048;
6000 if (msr_index >= 0xc0000000) {
6001 msr_index -= 0xc0000000;
6002 bitmap += 1024;
6003 }
6004
6005 /* Then read the msr_index'th bit from this bitmap: */
6006 if (msr_index < 1024*8) {
6007 unsigned char b;
6008 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6009 return true;
6010 return 1 & (b >> (msr_index & 7));
6011 } else
6012 return true; /* let L1 handle the wrong parameter */
6013 }
6014
6015 /*
6016 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6017 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6018 * intercept (via guest_host_mask etc.) the current event.
6019 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6020 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6021 struct vmcs12 *vmcs12)
6022 {
6023 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6024 int cr = exit_qualification & 15;
6025 int reg;
6026 unsigned long val;
6027
6028 switch ((exit_qualification >> 4) & 3) {
6029 case 0: /* mov to cr */
6030 reg = (exit_qualification >> 8) & 15;
6031 val = kvm_register_read(vcpu, reg);
6032 switch (cr) {
6033 case 0:
6034 if (vmcs12->cr0_guest_host_mask &
6035 (val ^ vmcs12->cr0_read_shadow))
6036 return true;
6037 break;
6038 case 3:
6039 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6040 return true;
6041 break;
6042 case 4:
6043 if (vmcs12->cr4_guest_host_mask &
6044 (vmcs12->cr4_read_shadow ^ val))
6045 return true;
6046 break;
6047 case 8:
6048 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6049 return true;
6050 break;
6051 }
6052 break;
6053 case 2: /* clts */
6054 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6055 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6056 return true;
6057 break;
6058 case 1: /* mov from cr */
6059 switch (cr) {
6060 case 3:
6061 if (vmcs12->cpu_based_vm_exec_control &
6062 CPU_BASED_CR3_STORE_EXITING)
6063 return true;
6064 break;
6065 case 8:
6066 if (vmcs12->cpu_based_vm_exec_control &
6067 CPU_BASED_CR8_STORE_EXITING)
6068 return true;
6069 break;
6070 }
6071 break;
6072 case 3: /* lmsw */
6073 /*
6074 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6075 * cr0. Other attempted changes are ignored, with no exit.
6076 */
6077 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6078 if (vmcs12->cr0_guest_host_mask & 0xe &
6079 (val ^ vmcs12->cr0_read_shadow))
6080 return true;
6081 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6082 !(vmcs12->cr0_read_shadow & 0x1) &&
6083 (val & 0x1))
6084 return true;
6085 break;
6086 }
6087 return false;
6088 }
6089
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6090 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6091 struct vmcs12 *vmcs12)
6092 {
6093 u32 encls_leaf;
6094
6095 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6096 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6097 return false;
6098
6099 encls_leaf = kvm_rax_read(vcpu);
6100 if (encls_leaf > 62)
6101 encls_leaf = 63;
6102 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6103 }
6104
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6105 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6106 struct vmcs12 *vmcs12, gpa_t bitmap)
6107 {
6108 u32 vmx_instruction_info;
6109 unsigned long field;
6110 u8 b;
6111
6112 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6113 return true;
6114
6115 /* Decode instruction info and find the field to access */
6116 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6117 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6118
6119 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6120 if (field >> 15)
6121 return true;
6122
6123 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6124 return true;
6125
6126 return 1 & (b >> (field & 7));
6127 }
6128
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6129 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6130 {
6131 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6132
6133 if (nested_cpu_has_mtf(vmcs12))
6134 return true;
6135
6136 /*
6137 * An MTF VM-exit may be injected into the guest by setting the
6138 * interruption-type to 7 (other event) and the vector field to 0. Such
6139 * is the case regardless of the 'monitor trap flag' VM-execution
6140 * control.
6141 */
6142 return entry_intr_info == (INTR_INFO_VALID_MASK
6143 | INTR_TYPE_OTHER_EVENT);
6144 }
6145
6146 /*
6147 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6148 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6149 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6150 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6151 union vmx_exit_reason exit_reason)
6152 {
6153 u32 intr_info;
6154
6155 switch ((u16)exit_reason.basic) {
6156 case EXIT_REASON_EXCEPTION_NMI:
6157 intr_info = vmx_get_intr_info(vcpu);
6158 if (is_nmi(intr_info))
6159 return true;
6160 else if (is_page_fault(intr_info))
6161 return vcpu->arch.apf.host_apf_flags ||
6162 vmx_need_pf_intercept(vcpu);
6163 else if (is_debug(intr_info) &&
6164 vcpu->guest_debug &
6165 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6166 return true;
6167 else if (is_breakpoint(intr_info) &&
6168 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6169 return true;
6170 else if (is_alignment_check(intr_info) &&
6171 !vmx_guest_inject_ac(vcpu))
6172 return true;
6173 return false;
6174 case EXIT_REASON_EXTERNAL_INTERRUPT:
6175 return true;
6176 case EXIT_REASON_MCE_DURING_VMENTRY:
6177 return true;
6178 case EXIT_REASON_EPT_VIOLATION:
6179 /*
6180 * L0 always deals with the EPT violation. If nested EPT is
6181 * used, and the nested mmu code discovers that the address is
6182 * missing in the guest EPT table (EPT12), the EPT violation
6183 * will be injected with nested_ept_inject_page_fault()
6184 */
6185 return true;
6186 case EXIT_REASON_EPT_MISCONFIG:
6187 /*
6188 * L2 never uses directly L1's EPT, but rather L0's own EPT
6189 * table (shadow on EPT) or a merged EPT table that L0 built
6190 * (EPT on EPT). So any problems with the structure of the
6191 * table is L0's fault.
6192 */
6193 return true;
6194 case EXIT_REASON_PREEMPTION_TIMER:
6195 return true;
6196 case EXIT_REASON_PML_FULL:
6197 /*
6198 * PML is emulated for an L1 VMM and should never be enabled in
6199 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6200 */
6201 return true;
6202 case EXIT_REASON_VMFUNC:
6203 /* VM functions are emulated through L2->L0 vmexits. */
6204 return true;
6205 case EXIT_REASON_BUS_LOCK:
6206 /*
6207 * At present, bus lock VM exit is never exposed to L1.
6208 * Handle L2's bus locks in L0 directly.
6209 */
6210 return true;
6211 case EXIT_REASON_VMCALL:
6212 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6213 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6214 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6215 kvm_hv_is_tlb_flush_hcall(vcpu);
6216 default:
6217 break;
6218 }
6219 return false;
6220 }
6221
6222 /*
6223 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6224 * is_guest_mode (L2).
6225 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6226 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6227 union vmx_exit_reason exit_reason)
6228 {
6229 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6230 u32 intr_info;
6231
6232 switch ((u16)exit_reason.basic) {
6233 case EXIT_REASON_EXCEPTION_NMI:
6234 intr_info = vmx_get_intr_info(vcpu);
6235 if (is_nmi(intr_info))
6236 return true;
6237 else if (is_page_fault(intr_info))
6238 return true;
6239 return vmcs12->exception_bitmap &
6240 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6241 case EXIT_REASON_EXTERNAL_INTERRUPT:
6242 return nested_exit_on_intr(vcpu);
6243 case EXIT_REASON_TRIPLE_FAULT:
6244 return true;
6245 case EXIT_REASON_INTERRUPT_WINDOW:
6246 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6247 case EXIT_REASON_NMI_WINDOW:
6248 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6249 case EXIT_REASON_TASK_SWITCH:
6250 return true;
6251 case EXIT_REASON_CPUID:
6252 return true;
6253 case EXIT_REASON_HLT:
6254 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6255 case EXIT_REASON_INVD:
6256 return true;
6257 case EXIT_REASON_INVLPG:
6258 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6259 case EXIT_REASON_RDPMC:
6260 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6261 case EXIT_REASON_RDRAND:
6262 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6263 case EXIT_REASON_RDSEED:
6264 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6265 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6266 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6267 case EXIT_REASON_VMREAD:
6268 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6269 vmcs12->vmread_bitmap);
6270 case EXIT_REASON_VMWRITE:
6271 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6272 vmcs12->vmwrite_bitmap);
6273 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6274 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6275 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6276 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6277 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6278 /*
6279 * VMX instructions trap unconditionally. This allows L1 to
6280 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6281 */
6282 return true;
6283 case EXIT_REASON_CR_ACCESS:
6284 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6285 case EXIT_REASON_DR_ACCESS:
6286 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6287 case EXIT_REASON_IO_INSTRUCTION:
6288 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6289 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6290 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6291 case EXIT_REASON_MSR_READ:
6292 case EXIT_REASON_MSR_WRITE:
6293 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6294 case EXIT_REASON_INVALID_STATE:
6295 return true;
6296 case EXIT_REASON_MWAIT_INSTRUCTION:
6297 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6298 case EXIT_REASON_MONITOR_TRAP_FLAG:
6299 return nested_vmx_exit_handled_mtf(vmcs12);
6300 case EXIT_REASON_MONITOR_INSTRUCTION:
6301 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6302 case EXIT_REASON_PAUSE_INSTRUCTION:
6303 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6304 nested_cpu_has2(vmcs12,
6305 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6306 case EXIT_REASON_MCE_DURING_VMENTRY:
6307 return true;
6308 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6309 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6310 case EXIT_REASON_APIC_ACCESS:
6311 case EXIT_REASON_APIC_WRITE:
6312 case EXIT_REASON_EOI_INDUCED:
6313 /*
6314 * The controls for "virtualize APIC accesses," "APIC-
6315 * register virtualization," and "virtual-interrupt
6316 * delivery" only come from vmcs12.
6317 */
6318 return true;
6319 case EXIT_REASON_INVPCID:
6320 return
6321 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6322 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6323 case EXIT_REASON_WBINVD:
6324 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6325 case EXIT_REASON_XSETBV:
6326 return true;
6327 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6328 /*
6329 * This should never happen, since it is not possible to
6330 * set XSS to a non-zero value---neither in L1 nor in L2.
6331 * If if it were, XSS would have to be checked against
6332 * the XSS exit bitmap in vmcs12.
6333 */
6334 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6335 case EXIT_REASON_UMWAIT:
6336 case EXIT_REASON_TPAUSE:
6337 return nested_cpu_has2(vmcs12,
6338 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6339 case EXIT_REASON_ENCLS:
6340 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6341 case EXIT_REASON_NOTIFY:
6342 /* Notify VM exit is not exposed to L1 */
6343 return false;
6344 default:
6345 return true;
6346 }
6347 }
6348
6349 /*
6350 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6351 * reflected into L1.
6352 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6353 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6354 {
6355 struct vcpu_vmx *vmx = to_vmx(vcpu);
6356 union vmx_exit_reason exit_reason = vmx->exit_reason;
6357 unsigned long exit_qual;
6358 u32 exit_intr_info;
6359
6360 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6361
6362 /*
6363 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6364 * has already loaded L2's state.
6365 */
6366 if (unlikely(vmx->fail)) {
6367 trace_kvm_nested_vmenter_failed(
6368 "hardware VM-instruction error: ",
6369 vmcs_read32(VM_INSTRUCTION_ERROR));
6370 exit_intr_info = 0;
6371 exit_qual = 0;
6372 goto reflect_vmexit;
6373 }
6374
6375 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6376
6377 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6378 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6379 return false;
6380
6381 /* If L1 doesn't want the exit, handle it in L0. */
6382 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6383 return false;
6384
6385 /*
6386 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6387 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6388 * need to be synthesized by querying the in-kernel LAPIC, but external
6389 * interrupts are never reflected to L1 so it's a non-issue.
6390 */
6391 exit_intr_info = vmx_get_intr_info(vcpu);
6392 if (is_exception_with_error_code(exit_intr_info)) {
6393 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6394
6395 vmcs12->vm_exit_intr_error_code =
6396 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6397 }
6398 exit_qual = vmx_get_exit_qual(vcpu);
6399
6400 reflect_vmexit:
6401 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6402 return true;
6403 }
6404
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6405 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6406 struct kvm_nested_state __user *user_kvm_nested_state,
6407 u32 user_data_size)
6408 {
6409 struct vcpu_vmx *vmx;
6410 struct vmcs12 *vmcs12;
6411 struct kvm_nested_state kvm_state = {
6412 .flags = 0,
6413 .format = KVM_STATE_NESTED_FORMAT_VMX,
6414 .size = sizeof(kvm_state),
6415 .hdr.vmx.flags = 0,
6416 .hdr.vmx.vmxon_pa = INVALID_GPA,
6417 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6418 .hdr.vmx.preemption_timer_deadline = 0,
6419 };
6420 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6421 &user_kvm_nested_state->data.vmx[0];
6422
6423 if (!vcpu)
6424 return kvm_state.size + sizeof(*user_vmx_nested_state);
6425
6426 vmx = to_vmx(vcpu);
6427 vmcs12 = get_vmcs12(vcpu);
6428
6429 if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6430 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6431 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6432 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6433
6434 if (vmx_has_valid_vmcs12(vcpu)) {
6435 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6436
6437 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6438 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6439 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6440
6441 if (is_guest_mode(vcpu) &&
6442 nested_cpu_has_shadow_vmcs(vmcs12) &&
6443 vmcs12->vmcs_link_pointer != INVALID_GPA)
6444 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6445 }
6446
6447 if (vmx->nested.smm.vmxon)
6448 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6449
6450 if (vmx->nested.smm.guest_mode)
6451 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6452
6453 if (is_guest_mode(vcpu)) {
6454 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6455
6456 if (vmx->nested.nested_run_pending)
6457 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6458
6459 if (vmx->nested.mtf_pending)
6460 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6461
6462 if (nested_cpu_has_preemption_timer(vmcs12) &&
6463 vmx->nested.has_preemption_timer_deadline) {
6464 kvm_state.hdr.vmx.flags |=
6465 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6466 kvm_state.hdr.vmx.preemption_timer_deadline =
6467 vmx->nested.preemption_timer_deadline;
6468 }
6469 }
6470 }
6471
6472 if (user_data_size < kvm_state.size)
6473 goto out;
6474
6475 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6476 return -EFAULT;
6477
6478 if (!vmx_has_valid_vmcs12(vcpu))
6479 goto out;
6480
6481 /*
6482 * When running L2, the authoritative vmcs12 state is in the
6483 * vmcs02. When running L1, the authoritative vmcs12 state is
6484 * in the shadow or enlightened vmcs linked to vmcs01, unless
6485 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6486 * vmcs12 state is in the vmcs12 already.
6487 */
6488 if (is_guest_mode(vcpu)) {
6489 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6490 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6491 } else {
6492 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6493 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6494 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6495 /*
6496 * L1 hypervisor is not obliged to keep eVMCS
6497 * clean fields data always up-to-date while
6498 * not in guest mode, 'hv_clean_fields' is only
6499 * supposed to be actual upon vmentry so we need
6500 * to ignore it here and do full copy.
6501 */
6502 copy_enlightened_to_vmcs12(vmx, 0);
6503 else if (enable_shadow_vmcs)
6504 copy_shadow_to_vmcs12(vmx);
6505 }
6506 }
6507
6508 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6509 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6510
6511 /*
6512 * Copy over the full allocated size of vmcs12 rather than just the size
6513 * of the struct.
6514 */
6515 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6516 return -EFAULT;
6517
6518 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6519 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6520 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6521 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6522 return -EFAULT;
6523 }
6524 out:
6525 return kvm_state.size;
6526 }
6527
vmx_leave_nested(struct kvm_vcpu * vcpu)6528 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6529 {
6530 if (is_guest_mode(vcpu)) {
6531 to_vmx(vcpu)->nested.nested_run_pending = 0;
6532 nested_vmx_vmexit(vcpu, -1, 0, 0);
6533 }
6534 free_nested(vcpu);
6535 }
6536
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6537 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6538 struct kvm_nested_state __user *user_kvm_nested_state,
6539 struct kvm_nested_state *kvm_state)
6540 {
6541 struct vcpu_vmx *vmx = to_vmx(vcpu);
6542 struct vmcs12 *vmcs12;
6543 enum vm_entry_failure_code ignored;
6544 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6545 &user_kvm_nested_state->data.vmx[0];
6546 int ret;
6547
6548 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6549 return -EINVAL;
6550
6551 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6552 if (kvm_state->hdr.vmx.smm.flags)
6553 return -EINVAL;
6554
6555 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6556 return -EINVAL;
6557
6558 /*
6559 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6560 * enable eVMCS capability on vCPU. However, since then
6561 * code was changed such that flag signals vmcs12 should
6562 * be copied into eVMCS in guest memory.
6563 *
6564 * To preserve backwards compatability, allow user
6565 * to set this flag even when there is no VMXON region.
6566 */
6567 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6568 return -EINVAL;
6569 } else {
6570 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6571 return -EINVAL;
6572
6573 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6574 return -EINVAL;
6575 }
6576
6577 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6578 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6579 return -EINVAL;
6580
6581 if (kvm_state->hdr.vmx.smm.flags &
6582 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6583 return -EINVAL;
6584
6585 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6586 return -EINVAL;
6587
6588 /*
6589 * SMM temporarily disables VMX, so we cannot be in guest mode,
6590 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6591 * must be zero.
6592 */
6593 if (is_smm(vcpu) ?
6594 (kvm_state->flags &
6595 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6596 : kvm_state->hdr.vmx.smm.flags)
6597 return -EINVAL;
6598
6599 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6600 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6601 return -EINVAL;
6602
6603 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6604 (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6605 !vmx->nested.enlightened_vmcs_enabled))
6606 return -EINVAL;
6607
6608 vmx_leave_nested(vcpu);
6609
6610 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6611 return 0;
6612
6613 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6614 ret = enter_vmx_operation(vcpu);
6615 if (ret)
6616 return ret;
6617
6618 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6619 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6620 /* See vmx_has_valid_vmcs12. */
6621 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6622 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6623 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6624 return -EINVAL;
6625 else
6626 return 0;
6627 }
6628
6629 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6630 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6631 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6632 return -EINVAL;
6633
6634 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6635 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6636 /*
6637 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6638 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6639 * restored yet. EVMCS will be mapped from
6640 * nested_get_vmcs12_pages().
6641 */
6642 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6643 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6644 } else {
6645 return -EINVAL;
6646 }
6647
6648 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6649 vmx->nested.smm.vmxon = true;
6650 vmx->nested.vmxon = false;
6651
6652 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6653 vmx->nested.smm.guest_mode = true;
6654 }
6655
6656 vmcs12 = get_vmcs12(vcpu);
6657 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6658 return -EFAULT;
6659
6660 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6661 return -EINVAL;
6662
6663 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6664 return 0;
6665
6666 vmx->nested.nested_run_pending =
6667 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6668
6669 vmx->nested.mtf_pending =
6670 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6671
6672 ret = -EINVAL;
6673 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6674 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6675 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6676
6677 if (kvm_state->size <
6678 sizeof(*kvm_state) +
6679 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6680 goto error_guest_mode;
6681
6682 if (copy_from_user(shadow_vmcs12,
6683 user_vmx_nested_state->shadow_vmcs12,
6684 sizeof(*shadow_vmcs12))) {
6685 ret = -EFAULT;
6686 goto error_guest_mode;
6687 }
6688
6689 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6690 !shadow_vmcs12->hdr.shadow_vmcs)
6691 goto error_guest_mode;
6692 }
6693
6694 vmx->nested.has_preemption_timer_deadline = false;
6695 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6696 vmx->nested.has_preemption_timer_deadline = true;
6697 vmx->nested.preemption_timer_deadline =
6698 kvm_state->hdr.vmx.preemption_timer_deadline;
6699 }
6700
6701 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6702 nested_vmx_check_host_state(vcpu, vmcs12) ||
6703 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6704 goto error_guest_mode;
6705
6706 vmx->nested.dirty_vmcs12 = true;
6707 vmx->nested.force_msr_bitmap_recalc = true;
6708 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6709 if (ret)
6710 goto error_guest_mode;
6711
6712 if (vmx->nested.mtf_pending)
6713 kvm_make_request(KVM_REQ_EVENT, vcpu);
6714
6715 return 0;
6716
6717 error_guest_mode:
6718 vmx->nested.nested_run_pending = 0;
6719 return ret;
6720 }
6721
nested_vmx_set_vmcs_shadowing_bitmap(void)6722 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6723 {
6724 if (enable_shadow_vmcs) {
6725 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6726 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6727 }
6728 }
6729
6730 /*
6731 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6732 * that madness to get the encoding for comparison.
6733 */
6734 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6735
nested_vmx_calc_vmcs_enum_msr(void)6736 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6737 {
6738 /*
6739 * Note these are the so called "index" of the VMCS field encoding, not
6740 * the index into vmcs12.
6741 */
6742 unsigned int max_idx, idx;
6743 int i;
6744
6745 /*
6746 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6747 * vmcs12, regardless of whether or not the associated feature is
6748 * exposed to L1. Simply find the field with the highest index.
6749 */
6750 max_idx = 0;
6751 for (i = 0; i < nr_vmcs12_fields; i++) {
6752 /* The vmcs12 table is very, very sparsely populated. */
6753 if (!vmcs12_field_offsets[i])
6754 continue;
6755
6756 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6757 if (idx > max_idx)
6758 max_idx = idx;
6759 }
6760
6761 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6762 }
6763
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6764 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6765 struct nested_vmx_msrs *msrs)
6766 {
6767 msrs->pinbased_ctls_low =
6768 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6769
6770 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6771 msrs->pinbased_ctls_high &=
6772 PIN_BASED_EXT_INTR_MASK |
6773 PIN_BASED_NMI_EXITING |
6774 PIN_BASED_VIRTUAL_NMIS |
6775 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6776 msrs->pinbased_ctls_high |=
6777 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6778 PIN_BASED_VMX_PREEMPTION_TIMER;
6779 }
6780
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6781 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6782 struct nested_vmx_msrs *msrs)
6783 {
6784 msrs->exit_ctls_low =
6785 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6786
6787 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6788 msrs->exit_ctls_high &=
6789 #ifdef CONFIG_X86_64
6790 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6791 #endif
6792 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6793 VM_EXIT_CLEAR_BNDCFGS;
6794 msrs->exit_ctls_high |=
6795 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6796 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6797 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6798 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6799
6800 /* We support free control of debug control saving. */
6801 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6802 }
6803
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6804 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6805 struct nested_vmx_msrs *msrs)
6806 {
6807 msrs->entry_ctls_low =
6808 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6809
6810 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6811 msrs->entry_ctls_high &=
6812 #ifdef CONFIG_X86_64
6813 VM_ENTRY_IA32E_MODE |
6814 #endif
6815 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6816 msrs->entry_ctls_high |=
6817 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6818 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6819
6820 /* We support free control of debug control loading. */
6821 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6822 }
6823
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6824 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6825 struct nested_vmx_msrs *msrs)
6826 {
6827 msrs->procbased_ctls_low =
6828 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6829
6830 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6831 msrs->procbased_ctls_high &=
6832 CPU_BASED_INTR_WINDOW_EXITING |
6833 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6834 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6835 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6836 CPU_BASED_CR3_STORE_EXITING |
6837 #ifdef CONFIG_X86_64
6838 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6839 #endif
6840 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6841 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6842 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6843 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6844 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6845 /*
6846 * We can allow some features even when not supported by the
6847 * hardware. For example, L1 can specify an MSR bitmap - and we
6848 * can use it to avoid exits to L1 - even when L0 runs L2
6849 * without MSR bitmaps.
6850 */
6851 msrs->procbased_ctls_high |=
6852 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6853 CPU_BASED_USE_MSR_BITMAPS;
6854
6855 /* We support free control of CR3 access interception. */
6856 msrs->procbased_ctls_low &=
6857 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6858 }
6859
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6860 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6861 struct vmcs_config *vmcs_conf,
6862 struct nested_vmx_msrs *msrs)
6863 {
6864 msrs->secondary_ctls_low = 0;
6865
6866 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6867 msrs->secondary_ctls_high &=
6868 SECONDARY_EXEC_DESC |
6869 SECONDARY_EXEC_ENABLE_RDTSCP |
6870 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6871 SECONDARY_EXEC_WBINVD_EXITING |
6872 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6873 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6874 SECONDARY_EXEC_RDRAND_EXITING |
6875 SECONDARY_EXEC_ENABLE_INVPCID |
6876 SECONDARY_EXEC_ENABLE_VMFUNC |
6877 SECONDARY_EXEC_RDSEED_EXITING |
6878 SECONDARY_EXEC_ENABLE_XSAVES |
6879 SECONDARY_EXEC_TSC_SCALING |
6880 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6881
6882 /*
6883 * We can emulate "VMCS shadowing," even if the hardware
6884 * doesn't support it.
6885 */
6886 msrs->secondary_ctls_high |=
6887 SECONDARY_EXEC_SHADOW_VMCS;
6888
6889 if (enable_ept) {
6890 /* nested EPT: emulate EPT also to L1 */
6891 msrs->secondary_ctls_high |=
6892 SECONDARY_EXEC_ENABLE_EPT;
6893 msrs->ept_caps =
6894 VMX_EPT_PAGE_WALK_4_BIT |
6895 VMX_EPT_PAGE_WALK_5_BIT |
6896 VMX_EPTP_WB_BIT |
6897 VMX_EPT_INVEPT_BIT |
6898 VMX_EPT_EXECUTE_ONLY_BIT;
6899
6900 msrs->ept_caps &= ept_caps;
6901 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6902 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6903 VMX_EPT_1GB_PAGE_BIT;
6904 if (enable_ept_ad_bits) {
6905 msrs->secondary_ctls_high |=
6906 SECONDARY_EXEC_ENABLE_PML;
6907 msrs->ept_caps |= VMX_EPT_AD_BIT;
6908 }
6909
6910 /*
6911 * Advertise EPTP switching irrespective of hardware support,
6912 * KVM emulates it in software so long as VMFUNC is supported.
6913 */
6914 if (cpu_has_vmx_vmfunc())
6915 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6916 }
6917
6918 /*
6919 * Old versions of KVM use the single-context version without
6920 * checking for support, so declare that it is supported even
6921 * though it is treated as global context. The alternative is
6922 * not failing the single-context invvpid, and it is worse.
6923 */
6924 if (enable_vpid) {
6925 msrs->secondary_ctls_high |=
6926 SECONDARY_EXEC_ENABLE_VPID;
6927 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6928 VMX_VPID_EXTENT_SUPPORTED_MASK;
6929 }
6930
6931 if (enable_unrestricted_guest)
6932 msrs->secondary_ctls_high |=
6933 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6934
6935 if (flexpriority_enabled)
6936 msrs->secondary_ctls_high |=
6937 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6938
6939 if (enable_sgx)
6940 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6941 }
6942
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6943 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6944 struct nested_vmx_msrs *msrs)
6945 {
6946 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6947 msrs->misc_low |=
6948 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6949 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6950 VMX_MISC_ACTIVITY_HLT |
6951 VMX_MISC_ACTIVITY_WAIT_SIPI;
6952 msrs->misc_high = 0;
6953 }
6954
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)6955 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
6956 {
6957 /*
6958 * This MSR reports some information about VMX support. We
6959 * should return information about the VMX we emulate for the
6960 * guest, and the VMCS structure we give it - not about the
6961 * VMX support of the underlying hardware.
6962 */
6963 msrs->basic =
6964 VMCS12_REVISION |
6965 VMX_BASIC_TRUE_CTLS |
6966 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6967 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6968
6969 if (cpu_has_vmx_basic_inout())
6970 msrs->basic |= VMX_BASIC_INOUT;
6971 }
6972
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)6973 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
6974 {
6975 /*
6976 * These MSRs specify bits which the guest must keep fixed on
6977 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6978 * We picked the standard core2 setting.
6979 */
6980 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6981 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6982 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6983 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6984
6985 /* These MSRs specify bits which the guest must keep fixed off. */
6986 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6987 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6988
6989 if (vmx_umip_emulated())
6990 msrs->cr4_fixed1 |= X86_CR4_UMIP;
6991 }
6992
6993 /*
6994 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6995 * returned for the various VMX controls MSRs when nested VMX is enabled.
6996 * The same values should also be used to verify that vmcs12 control fields are
6997 * valid during nested entry from L1 to L2.
6998 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6999 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7000 * bit in the high half is on if the corresponding bit in the control field
7001 * may be on. See also vmx_control_verify().
7002 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7003 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7004 {
7005 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7006
7007 /*
7008 * Note that as a general rule, the high half of the MSRs (bits in
7009 * the control fields which may be 1) should be initialized by the
7010 * intersection of the underlying hardware's MSR (i.e., features which
7011 * can be supported) and the list of features we want to expose -
7012 * because they are known to be properly supported in our code.
7013 * Also, usually, the low half of the MSRs (bits which must be 1) can
7014 * be set to 0, meaning that L1 may turn off any of these bits. The
7015 * reason is that if one of these bits is necessary, it will appear
7016 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7017 * fields of vmcs01 and vmcs02, will turn these bits off - and
7018 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7019 * These rules have exceptions below.
7020 */
7021 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7022
7023 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7024
7025 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7026
7027 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7028
7029 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7030
7031 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7032
7033 nested_vmx_setup_basic(msrs);
7034
7035 nested_vmx_setup_cr_fixed(msrs);
7036
7037 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7038 }
7039
nested_vmx_hardware_unsetup(void)7040 void nested_vmx_hardware_unsetup(void)
7041 {
7042 int i;
7043
7044 if (enable_shadow_vmcs) {
7045 for (i = 0; i < VMX_BITMAP_NR; i++)
7046 free_page((unsigned long)vmx_bitmap[i]);
7047 }
7048 }
7049
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7050 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7051 {
7052 int i;
7053
7054 if (!cpu_has_vmx_shadow_vmcs())
7055 enable_shadow_vmcs = 0;
7056 if (enable_shadow_vmcs) {
7057 for (i = 0; i < VMX_BITMAP_NR; i++) {
7058 /*
7059 * The vmx_bitmap is not tied to a VM and so should
7060 * not be charged to a memcg.
7061 */
7062 vmx_bitmap[i] = (unsigned long *)
7063 __get_free_page(GFP_KERNEL);
7064 if (!vmx_bitmap[i]) {
7065 nested_vmx_hardware_unsetup();
7066 return -ENOMEM;
7067 }
7068 }
7069
7070 init_vmcs_shadow_fields();
7071 }
7072
7073 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7074 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7075 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7076 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7077 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7078 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7079 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7080 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7081 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7082 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7083 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7084 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7085
7086 return 0;
7087 }
7088
7089 struct kvm_x86_nested_ops vmx_nested_ops = {
7090 .leave_nested = vmx_leave_nested,
7091 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7092 .check_events = vmx_check_nested_events,
7093 .has_events = vmx_has_nested_events,
7094 .triple_fault = nested_vmx_triple_fault,
7095 .get_state = vmx_get_nested_state,
7096 .set_state = vmx_set_nested_state,
7097 .get_nested_state_pages = vmx_get_nested_state_pages,
7098 .write_log_dirty = nested_vmx_write_pml_buffer,
7099 .enable_evmcs = nested_enable_evmcs,
7100 .get_evmcs_version = nested_get_evmcs_version,
7101 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7102 };
7103