1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *
4   * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5   *
6   */
7  
8  #include <linux/blkdev.h>
9  #include <linux/fs.h>
10  #include <linux/random.h>
11  #include <linux/slab.h>
12  
13  #include "debug.h"
14  #include "ntfs.h"
15  #include "ntfs_fs.h"
16  
17  /*
18   * LOG FILE structs
19   */
20  
21  // clang-format off
22  
23  #define MaxLogFileSize     0x100000000ull
24  #define DefaultLogPageSize 4096
25  #define MinLogRecordPages  0x30
26  
27  struct RESTART_HDR {
28  	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29  	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30  	__le32 page_size;     // 0x14: Log page size used for this log file.
31  	__le16 ra_off;        // 0x18:
32  	__le16 minor_ver;     // 0x1A:
33  	__le16 major_ver;     // 0x1C:
34  	__le16 fixups[];
35  };
36  
37  #define LFS_NO_CLIENT 0xffff
38  #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39  
40  struct CLIENT_REC {
41  	__le64 oldest_lsn;
42  	__le64 restart_lsn; // 0x08:
43  	__le16 prev_client; // 0x10:
44  	__le16 next_client; // 0x12:
45  	__le16 seq_num;     // 0x14:
46  	u8 align[6];        // 0x16:
47  	__le32 name_bytes;  // 0x1C: In bytes.
48  	__le16 name[32];    // 0x20: Name of client.
49  };
50  
51  static_assert(sizeof(struct CLIENT_REC) == 0x60);
52  
53  /* Two copies of these will exist at the beginning of the log file */
54  struct RESTART_AREA {
55  	__le64 current_lsn;    // 0x00: Current logical end of log file.
56  	__le16 log_clients;    // 0x08: Maximum number of clients.
57  	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58  	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59  	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60  	__le16 ra_len;         // 0x14:
61  	__le16 client_off;     // 0x16:
62  	__le64 l_size;         // 0x18: Usable log file size.
63  	__le32 last_lsn_data_len; // 0x20:
64  	__le16 rec_hdr_len;    // 0x24: Log page data offset.
65  	__le16 data_off;       // 0x26: Log page data length.
66  	__le32 open_log_count; // 0x28:
67  	__le32 align[5];       // 0x2C:
68  	struct CLIENT_REC clients[]; // 0x40:
69  };
70  
71  struct LOG_REC_HDR {
72  	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73  	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74  	__le16 redo_off;     // 0x04:  Offset to Redo record.
75  	__le16 redo_len;     // 0x06:  Redo length.
76  	__le16 undo_off;     // 0x08:  Offset to Undo record.
77  	__le16 undo_len;     // 0x0A:  Undo length.
78  	__le16 target_attr;  // 0x0C:
79  	__le16 lcns_follow;  // 0x0E:
80  	__le16 record_off;   // 0x10:
81  	__le16 attr_off;     // 0x12:
82  	__le16 cluster_off;  // 0x14:
83  	__le16 reserved;     // 0x16:
84  	__le64 target_vcn;   // 0x18:
85  	__le64 page_lcns[];  // 0x20:
86  };
87  
88  static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89  
90  #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91  #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92  
93  struct RESTART_TABLE {
94  	__le16 size;       // 0x00: In bytes
95  	__le16 used;       // 0x02: Entries
96  	__le16 total;      // 0x04: Entries
97  	__le16 res[3];     // 0x06:
98  	__le32 free_goal;  // 0x0C:
99  	__le32 first_free; // 0x10:
100  	__le32 last_free;  // 0x14:
101  
102  };
103  
104  static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105  
106  struct ATTR_NAME_ENTRY {
107  	__le16 off; // Offset in the Open attribute Table.
108  	__le16 name_bytes;
109  	__le16 name[];
110  };
111  
112  struct OPEN_ATTR_ENRTY {
113  	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114  	__le32 bytes_per_index; // 0x04:
115  	enum ATTR_TYPE type;    // 0x08:
116  	u8 is_dirty_pages;      // 0x0C:
117  	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118  	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119  	u8 res;
120  	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121  	__le64 open_record_lsn; // 0x18:
122  	void *ptr;              // 0x20:
123  };
124  
125  /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126  struct OPEN_ATTR_ENRTY_32 {
127  	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128  	__le32 ptr;             // 0x04:
129  	struct MFT_REF ref;     // 0x08:
130  	__le64 open_record_lsn; // 0x10:
131  	u8 is_dirty_pages;      // 0x18:
132  	u8 is_attr_name;        // 0x19:
133  	u8 res1[2];
134  	enum ATTR_TYPE type;    // 0x1C:
135  	u8 name_len;            // 0x20: In wchar
136  	u8 res2[3];
137  	__le32 AttributeName;   // 0x24:
138  	__le32 bytes_per_index; // 0x28:
139  };
140  
141  #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142  // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143  static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144  
145  /*
146   * One entry exists in the Dirty Pages Table for each page which is dirty at
147   * the time the Restart Area is written.
148   */
149  struct DIR_PAGE_ENTRY {
150  	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151  	__le32 target_attr;  // 0x04: Index into the Open attribute Table
152  	__le32 transfer_len; // 0x08:
153  	__le32 lcns_follow;  // 0x0C:
154  	__le64 vcn;          // 0x10: Vcn of dirty page
155  	__le64 oldest_lsn;   // 0x18:
156  	__le64 page_lcns[];  // 0x20:
157  };
158  
159  static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160  
161  /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162  struct DIR_PAGE_ENTRY_32 {
163  	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
164  	__le32 target_attr;	// 0x04: Index into the Open attribute Table
165  	__le32 transfer_len;	// 0x08:
166  	__le32 lcns_follow;	// 0x0C:
167  	__le32 reserved;	// 0x10:
168  	__le32 vcn_low;		// 0x14: Vcn of dirty page
169  	__le32 vcn_hi;		// 0x18: Vcn of dirty page
170  	__le32 oldest_lsn_low;	// 0x1C:
171  	__le32 oldest_lsn_hi;	// 0x1C:
172  	__le32 page_lcns_low;	// 0x24:
173  	__le32 page_lcns_hi;	// 0x24:
174  };
175  
176  static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177  static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178  
179  enum transact_state {
180  	TransactionUninitialized = 0,
181  	TransactionActive,
182  	TransactionPrepared,
183  	TransactionCommitted
184  };
185  
186  struct TRANSACTION_ENTRY {
187  	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188  	u8 transact_state;    // 0x04:
189  	u8 reserved[3];       // 0x05:
190  	__le64 first_lsn;     // 0x08:
191  	__le64 prev_lsn;      // 0x10:
192  	__le64 undo_next_lsn; // 0x18:
193  	__le32 undo_records;  // 0x20: Number of undo log records pending abort
194  	__le32 undo_len;      // 0x24: Total undo size
195  };
196  
197  static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198  
199  struct NTFS_RESTART {
200  	__le32 major_ver;             // 0x00:
201  	__le32 minor_ver;             // 0x04:
202  	__le64 check_point_start;     // 0x08:
203  	__le64 open_attr_table_lsn;   // 0x10:
204  	__le64 attr_names_lsn;        // 0x18:
205  	__le64 dirty_pages_table_lsn; // 0x20:
206  	__le64 transact_table_lsn;    // 0x28:
207  	__le32 open_attr_len;         // 0x30: In bytes
208  	__le32 attr_names_len;        // 0x34: In bytes
209  	__le32 dirty_pages_len;       // 0x38: In bytes
210  	__le32 transact_table_len;    // 0x3C: In bytes
211  };
212  
213  static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214  
215  struct NEW_ATTRIBUTE_SIZES {
216  	__le64 alloc_size;
217  	__le64 valid_size;
218  	__le64 data_size;
219  	__le64 total_size;
220  };
221  
222  struct BITMAP_RANGE {
223  	__le32 bitmap_off;
224  	__le32 bits;
225  };
226  
227  struct LCN_RANGE {
228  	__le64 lcn;
229  	__le64 len;
230  };
231  
232  /* The following type defines the different log record types. */
233  #define LfsClientRecord  cpu_to_le32(1)
234  #define LfsClientRestart cpu_to_le32(2)
235  
236  /* This is used to uniquely identify a client for a particular log file. */
237  struct CLIENT_ID {
238  	__le16 seq_num;
239  	__le16 client_idx;
240  };
241  
242  /* This is the header that begins every Log Record in the log file. */
243  struct LFS_RECORD_HDR {
244  	__le64 this_lsn;		// 0x00:
245  	__le64 client_prev_lsn;		// 0x08:
246  	__le64 client_undo_next_lsn;	// 0x10:
247  	__le32 client_data_len;		// 0x18:
248  	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
249  	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
250  	__le32 transact_id;		// 0x24:
251  	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
252  	u8 align[6];			// 0x2A:
253  };
254  
255  #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256  
257  static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258  
259  struct LFS_RECORD {
260  	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
261  	u8 align[6];		// 0x02:
262  	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
263  };
264  
265  static_assert(sizeof(struct LFS_RECORD) == 0x10);
266  
267  struct RECORD_PAGE_HDR {
268  	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
269  	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
270  	__le16 page_count;		// 0x14:
271  	__le16 page_pos;		// 0x16:
272  	struct LFS_RECORD record_hdr;	// 0x18:
273  	__le16 fixups[10];		// 0x28:
274  	__le32 file_off;		// 0x3c: Used when major version >= 2
275  };
276  
277  // clang-format on
278  
279  // Page contains the end of a log record.
280  #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281  
is_log_record_end(const struct RECORD_PAGE_HDR * hdr)282  static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283  {
284  	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285  }
286  
287  static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288  
289  /*
290   * END of NTFS LOG structures
291   */
292  
293  /* Define some tuning parameters to keep the restart tables a reasonable size. */
294  #define INITIAL_NUMBER_TRANSACTIONS 5
295  
296  enum NTFS_LOG_OPERATION {
297  
298  	Noop = 0x00,
299  	CompensationLogRecord = 0x01,
300  	InitializeFileRecordSegment = 0x02,
301  	DeallocateFileRecordSegment = 0x03,
302  	WriteEndOfFileRecordSegment = 0x04,
303  	CreateAttribute = 0x05,
304  	DeleteAttribute = 0x06,
305  	UpdateResidentValue = 0x07,
306  	UpdateNonresidentValue = 0x08,
307  	UpdateMappingPairs = 0x09,
308  	DeleteDirtyClusters = 0x0A,
309  	SetNewAttributeSizes = 0x0B,
310  	AddIndexEntryRoot = 0x0C,
311  	DeleteIndexEntryRoot = 0x0D,
312  	AddIndexEntryAllocation = 0x0E,
313  	DeleteIndexEntryAllocation = 0x0F,
314  	WriteEndOfIndexBuffer = 0x10,
315  	SetIndexEntryVcnRoot = 0x11,
316  	SetIndexEntryVcnAllocation = 0x12,
317  	UpdateFileNameRoot = 0x13,
318  	UpdateFileNameAllocation = 0x14,
319  	SetBitsInNonresidentBitMap = 0x15,
320  	ClearBitsInNonresidentBitMap = 0x16,
321  	HotFix = 0x17,
322  	EndTopLevelAction = 0x18,
323  	PrepareTransaction = 0x19,
324  	CommitTransaction = 0x1A,
325  	ForgetTransaction = 0x1B,
326  	OpenNonresidentAttribute = 0x1C,
327  	OpenAttributeTableDump = 0x1D,
328  	AttributeNamesDump = 0x1E,
329  	DirtyPageTableDump = 0x1F,
330  	TransactionTableDump = 0x20,
331  	UpdateRecordDataRoot = 0x21,
332  	UpdateRecordDataAllocation = 0x22,
333  
334  	UpdateRelativeDataInIndex =
335  		0x23, // NtOfsRestartUpdateRelativeDataInIndex
336  	UpdateRelativeDataInIndex2 = 0x24,
337  	ZeroEndOfFileRecord = 0x25,
338  };
339  
340  /*
341   * Array for log records which require a target attribute.
342   * A true indicates that the corresponding restart operation
343   * requires a target attribute.
344   */
345  static const u8 AttributeRequired[] = {
346  	0xFC, 0xFB, 0xFF, 0x10, 0x06,
347  };
348  
is_target_required(u16 op)349  static inline bool is_target_required(u16 op)
350  {
351  	bool ret = op <= UpdateRecordDataAllocation &&
352  		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
353  	return ret;
354  }
355  
can_skip_action(enum NTFS_LOG_OPERATION op)356  static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357  {
358  	switch (op) {
359  	case Noop:
360  	case DeleteDirtyClusters:
361  	case HotFix:
362  	case EndTopLevelAction:
363  	case PrepareTransaction:
364  	case CommitTransaction:
365  	case ForgetTransaction:
366  	case CompensationLogRecord:
367  	case OpenNonresidentAttribute:
368  	case OpenAttributeTableDump:
369  	case AttributeNamesDump:
370  	case DirtyPageTableDump:
371  	case TransactionTableDump:
372  		return true;
373  	default:
374  		return false;
375  	}
376  }
377  
378  enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379  
380  /* Bytes per restart table. */
bytes_per_rt(const struct RESTART_TABLE * rt)381  static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382  {
383  	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384  	       sizeof(struct RESTART_TABLE);
385  }
386  
387  /* Log record length. */
lrh_length(const struct LOG_REC_HDR * lr)388  static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389  {
390  	u16 t16 = le16_to_cpu(lr->lcns_follow);
391  
392  	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393  }
394  
395  struct lcb {
396  	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397  	struct LOG_REC_HDR *log_rec;
398  	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399  	struct CLIENT_ID client;
400  	bool alloc; // If true the we should deallocate 'log_rec'.
401  };
402  
lcb_put(struct lcb * lcb)403  static void lcb_put(struct lcb *lcb)
404  {
405  	if (lcb->alloc)
406  		kfree(lcb->log_rec);
407  	kfree(lcb->lrh);
408  	kfree(lcb);
409  }
410  
411  /* Find the oldest lsn from active clients. */
oldest_client_lsn(const struct CLIENT_REC * ca,__le16 next_client,u64 * oldest_lsn)412  static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413  				     __le16 next_client, u64 *oldest_lsn)
414  {
415  	while (next_client != LFS_NO_CLIENT_LE) {
416  		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417  		u64 lsn = le64_to_cpu(cr->oldest_lsn);
418  
419  		/* Ignore this block if it's oldest lsn is 0. */
420  		if (lsn && lsn < *oldest_lsn)
421  			*oldest_lsn = lsn;
422  
423  		next_client = cr->next_client;
424  	}
425  }
426  
is_rst_page_hdr_valid(u32 file_off,const struct RESTART_HDR * rhdr)427  static inline bool is_rst_page_hdr_valid(u32 file_off,
428  					 const struct RESTART_HDR *rhdr)
429  {
430  	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431  	u32 page_size = le32_to_cpu(rhdr->page_size);
432  	u32 end_usa;
433  	u16 ro;
434  
435  	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436  	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437  		return false;
438  	}
439  
440  	/* Check that if the file offset isn't 0, it is the system page size. */
441  	if (file_off && file_off != sys_page)
442  		return false;
443  
444  	/* Check support version 1.1+. */
445  	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446  		return false;
447  
448  	if (le16_to_cpu(rhdr->major_ver) > 2)
449  		return false;
450  
451  	ro = le16_to_cpu(rhdr->ra_off);
452  	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453  		return false;
454  
455  	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456  	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457  
458  	if (ro < end_usa)
459  		return false;
460  
461  	return true;
462  }
463  
is_rst_area_valid(const struct RESTART_HDR * rhdr)464  static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465  {
466  	const struct RESTART_AREA *ra;
467  	u16 cl, fl, ul;
468  	u32 off, l_size, file_dat_bits, file_size_round;
469  	u16 ro = le16_to_cpu(rhdr->ra_off);
470  	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471  
472  	if (ro + offsetof(struct RESTART_AREA, l_size) >
473  	    SECTOR_SIZE - sizeof(short))
474  		return false;
475  
476  	ra = Add2Ptr(rhdr, ro);
477  	cl = le16_to_cpu(ra->log_clients);
478  
479  	if (cl > 1)
480  		return false;
481  
482  	off = le16_to_cpu(ra->client_off);
483  
484  	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485  		return false;
486  
487  	off += cl * sizeof(struct CLIENT_REC);
488  
489  	if (off > sys_page)
490  		return false;
491  
492  	/*
493  	 * Check the restart length field and whether the entire
494  	 * restart area is contained that length.
495  	 */
496  	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497  	    off > le16_to_cpu(ra->ra_len)) {
498  		return false;
499  	}
500  
501  	/*
502  	 * As a final check make sure that the use list and the free list
503  	 * are either empty or point to a valid client.
504  	 */
505  	fl = le16_to_cpu(ra->client_idx[0]);
506  	ul = le16_to_cpu(ra->client_idx[1]);
507  	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508  	    (ul != LFS_NO_CLIENT && ul >= cl))
509  		return false;
510  
511  	/* Make sure the sequence number bits match the log file size. */
512  	l_size = le64_to_cpu(ra->l_size);
513  
514  	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515  	file_size_round = 1u << (file_dat_bits + 3);
516  	if (file_size_round != l_size &&
517  	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
518  		return false;
519  	}
520  
521  	/* The log page data offset and record header length must be quad-aligned. */
522  	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523  	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
524  		return false;
525  
526  	return true;
527  }
528  
is_client_area_valid(const struct RESTART_HDR * rhdr,bool usa_error)529  static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
530  					bool usa_error)
531  {
532  	u16 ro = le16_to_cpu(rhdr->ra_off);
533  	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534  	u16 ra_len = le16_to_cpu(ra->ra_len);
535  	const struct CLIENT_REC *ca;
536  	u32 i;
537  
538  	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
539  		return false;
540  
541  	/* Find the start of the client array. */
542  	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
543  
544  	/*
545  	 * Start with the free list.
546  	 * Check that all the clients are valid and that there isn't a cycle.
547  	 * Do the in-use list on the second pass.
548  	 */
549  	for (i = 0; i < 2; i++) {
550  		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551  		bool first_client = true;
552  		u16 clients = le16_to_cpu(ra->log_clients);
553  
554  		while (client_idx != LFS_NO_CLIENT) {
555  			const struct CLIENT_REC *cr;
556  
557  			if (!clients ||
558  			    client_idx >= le16_to_cpu(ra->log_clients))
559  				return false;
560  
561  			clients -= 1;
562  			cr = ca + client_idx;
563  
564  			client_idx = le16_to_cpu(cr->next_client);
565  
566  			if (first_client) {
567  				first_client = false;
568  				if (cr->prev_client != LFS_NO_CLIENT_LE)
569  					return false;
570  			}
571  		}
572  	}
573  
574  	return true;
575  }
576  
577  /*
578   * remove_client
579   *
580   * Remove a client record from a client record list an restart area.
581   */
remove_client(struct CLIENT_REC * ca,const struct CLIENT_REC * cr,__le16 * head)582  static inline void remove_client(struct CLIENT_REC *ca,
583  				 const struct CLIENT_REC *cr, __le16 *head)
584  {
585  	if (cr->prev_client == LFS_NO_CLIENT_LE)
586  		*head = cr->next_client;
587  	else
588  		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
589  
590  	if (cr->next_client != LFS_NO_CLIENT_LE)
591  		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
592  }
593  
594  /*
595   * add_client - Add a client record to the start of a list.
596   */
add_client(struct CLIENT_REC * ca,u16 index,__le16 * head)597  static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
598  {
599  	struct CLIENT_REC *cr = ca + index;
600  
601  	cr->prev_client = LFS_NO_CLIENT_LE;
602  	cr->next_client = *head;
603  
604  	if (*head != LFS_NO_CLIENT_LE)
605  		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
606  
607  	*head = cpu_to_le16(index);
608  }
609  
enum_rstbl(struct RESTART_TABLE * t,void * c)610  static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
611  {
612  	__le32 *e;
613  	u32 bprt;
614  	u16 rsize = t ? le16_to_cpu(t->size) : 0;
615  
616  	if (!c) {
617  		if (!t || !t->total)
618  			return NULL;
619  		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
620  	} else {
621  		e = Add2Ptr(c, rsize);
622  	}
623  
624  	/* Loop until we hit the first one allocated, or the end of the list. */
625  	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626  	     e = Add2Ptr(e, rsize)) {
627  		if (*e == RESTART_ENTRY_ALLOCATED_LE)
628  			return e;
629  	}
630  	return NULL;
631  }
632  
633  /*
634   * find_dp - Search for a @vcn in Dirty Page Table.
635   */
find_dp(struct RESTART_TABLE * dptbl,u32 target_attr,u64 vcn)636  static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637  					     u32 target_attr, u64 vcn)
638  {
639  	__le32 ta = cpu_to_le32(target_attr);
640  	struct DIR_PAGE_ENTRY *dp = NULL;
641  
642  	while ((dp = enum_rstbl(dptbl, dp))) {
643  		u64 dp_vcn = le64_to_cpu(dp->vcn);
644  
645  		if (dp->target_attr == ta && vcn >= dp_vcn &&
646  		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
647  			return dp;
648  		}
649  	}
650  	return NULL;
651  }
652  
norm_file_page(u32 page_size,u32 * l_size,bool use_default)653  static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
654  {
655  	if (use_default)
656  		page_size = DefaultLogPageSize;
657  
658  	/* Round the file size down to a system page boundary. */
659  	*l_size &= ~(page_size - 1);
660  
661  	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
662  	if (*l_size < (MinLogRecordPages + 2) * page_size)
663  		return 0;
664  
665  	return page_size;
666  }
667  
check_log_rec(const struct LOG_REC_HDR * lr,u32 bytes,u32 tr,u32 bytes_per_attr_entry)668  static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669  			  u32 bytes_per_attr_entry)
670  {
671  	u16 t16;
672  
673  	if (bytes < sizeof(struct LOG_REC_HDR))
674  		return false;
675  	if (!tr)
676  		return false;
677  
678  	if ((tr - sizeof(struct RESTART_TABLE)) %
679  	    sizeof(struct TRANSACTION_ENTRY))
680  		return false;
681  
682  	if (le16_to_cpu(lr->redo_off) & 7)
683  		return false;
684  
685  	if (le16_to_cpu(lr->undo_off) & 7)
686  		return false;
687  
688  	if (lr->target_attr)
689  		goto check_lcns;
690  
691  	if (is_target_required(le16_to_cpu(lr->redo_op)))
692  		return false;
693  
694  	if (is_target_required(le16_to_cpu(lr->undo_op)))
695  		return false;
696  
697  check_lcns:
698  	if (!lr->lcns_follow)
699  		goto check_length;
700  
701  	t16 = le16_to_cpu(lr->target_attr);
702  	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
703  		return false;
704  
705  check_length:
706  	if (bytes < lrh_length(lr))
707  		return false;
708  
709  	return true;
710  }
711  
check_rstbl(const struct RESTART_TABLE * rt,size_t bytes)712  static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
713  {
714  	u32 ts;
715  	u32 i, off;
716  	u16 rsize = le16_to_cpu(rt->size);
717  	u16 ne = le16_to_cpu(rt->used);
718  	u32 ff = le32_to_cpu(rt->first_free);
719  	u32 lf = le32_to_cpu(rt->last_free);
720  
721  	ts = rsize * ne + sizeof(struct RESTART_TABLE);
722  
723  	if (!rsize || rsize > bytes ||
724  	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725  	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726  	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
727  	    (lf && lf < sizeof(struct RESTART_TABLE))) {
728  		return false;
729  	}
730  
731  	/*
732  	 * Verify each entry is either allocated or points
733  	 * to a valid offset the table.
734  	 */
735  	for (i = 0; i < ne; i++) {
736  		off = le32_to_cpu(*(__le32 *)Add2Ptr(
737  			rt, i * rsize + sizeof(struct RESTART_TABLE)));
738  
739  		if (off != RESTART_ENTRY_ALLOCATED && off &&
740  		    (off < sizeof(struct RESTART_TABLE) ||
741  		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
742  			return false;
743  		}
744  	}
745  
746  	/*
747  	 * Walk through the list headed by the first entry to make
748  	 * sure none of the entries are currently being used.
749  	 */
750  	for (off = ff; off;) {
751  		if (off == RESTART_ENTRY_ALLOCATED)
752  			return false;
753  
754  		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
755  	}
756  
757  	return true;
758  }
759  
760  /*
761   * free_rsttbl_idx - Free a previously allocated index a Restart Table.
762   */
free_rsttbl_idx(struct RESTART_TABLE * rt,u32 off)763  static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
764  {
765  	__le32 *e;
766  	u32 lf = le32_to_cpu(rt->last_free);
767  	__le32 off_le = cpu_to_le32(off);
768  
769  	e = Add2Ptr(rt, off);
770  
771  	if (off < le32_to_cpu(rt->free_goal)) {
772  		*e = rt->first_free;
773  		rt->first_free = off_le;
774  		if (!lf)
775  			rt->last_free = off_le;
776  	} else {
777  		if (lf)
778  			*(__le32 *)Add2Ptr(rt, lf) = off_le;
779  		else
780  			rt->first_free = off_le;
781  
782  		rt->last_free = off_le;
783  		*e = 0;
784  	}
785  
786  	le16_sub_cpu(&rt->total, 1);
787  }
788  
init_rsttbl(u16 esize,u16 used)789  static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
790  {
791  	__le32 *e, *last_free;
792  	u32 off;
793  	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794  	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
795  	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
796  
797  	if (!t)
798  		return NULL;
799  
800  	t->size = cpu_to_le16(esize);
801  	t->used = cpu_to_le16(used);
802  	t->free_goal = cpu_to_le32(~0u);
803  	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804  	t->last_free = cpu_to_le32(lf);
805  
806  	e = (__le32 *)(t + 1);
807  	last_free = Add2Ptr(t, lf);
808  
809  	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810  	     e = Add2Ptr(e, esize), off += esize) {
811  		*e = cpu_to_le32(off);
812  	}
813  	return t;
814  }
815  
extend_rsttbl(struct RESTART_TABLE * tbl,u32 add,u32 free_goal)816  static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817  						  u32 add, u32 free_goal)
818  {
819  	u16 esize = le16_to_cpu(tbl->size);
820  	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821  	u32 used = le16_to_cpu(tbl->used);
822  	struct RESTART_TABLE *rt;
823  
824  	rt = init_rsttbl(esize, used + add);
825  	if (!rt)
826  		return NULL;
827  
828  	memcpy(rt + 1, tbl + 1, esize * used);
829  
830  	rt->free_goal = free_goal == ~0u ?
831  				cpu_to_le32(~0u) :
832  				cpu_to_le32(sizeof(struct RESTART_TABLE) +
833  					    free_goal * esize);
834  
835  	if (tbl->first_free) {
836  		rt->first_free = tbl->first_free;
837  		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
838  	} else {
839  		rt->first_free = osize;
840  	}
841  
842  	rt->total = tbl->total;
843  
844  	kfree(tbl);
845  	return rt;
846  }
847  
848  /*
849   * alloc_rsttbl_idx
850   *
851   * Allocate an index from within a previously initialized Restart Table.
852   */
alloc_rsttbl_idx(struct RESTART_TABLE ** tbl)853  static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
854  {
855  	u32 off;
856  	__le32 *e;
857  	struct RESTART_TABLE *t = *tbl;
858  
859  	if (!t->first_free) {
860  		*tbl = t = extend_rsttbl(t, 16, ~0u);
861  		if (!t)
862  			return NULL;
863  	}
864  
865  	off = le32_to_cpu(t->first_free);
866  
867  	/* Dequeue this entry and zero it. */
868  	e = Add2Ptr(t, off);
869  
870  	t->first_free = *e;
871  
872  	memset(e, 0, le16_to_cpu(t->size));
873  
874  	*e = RESTART_ENTRY_ALLOCATED_LE;
875  
876  	/* If list is going empty, then we fix the last_free as well. */
877  	if (!t->first_free)
878  		t->last_free = 0;
879  
880  	le16_add_cpu(&t->total, 1);
881  
882  	return Add2Ptr(t, off);
883  }
884  
885  /*
886   * alloc_rsttbl_from_idx
887   *
888   * Allocate a specific index from within a previously initialized Restart Table.
889   */
alloc_rsttbl_from_idx(struct RESTART_TABLE ** tbl,u32 vbo)890  static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
891  {
892  	u32 off;
893  	__le32 *e;
894  	struct RESTART_TABLE *rt = *tbl;
895  	u32 bytes = bytes_per_rt(rt);
896  	u16 esize = le16_to_cpu(rt->size);
897  
898  	/* If the entry is not the table, we will have to extend the table. */
899  	if (vbo >= bytes) {
900  		/*
901  		 * Extend the size by computing the number of entries between
902  		 * the existing size and the desired index and adding 1 to that.
903  		 */
904  		u32 bytes2idx = vbo - bytes;
905  
906  		/*
907  		 * There should always be an integral number of entries
908  		 * being added. Now extend the table.
909  		 */
910  		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
911  		if (!rt)
912  			return NULL;
913  	}
914  
915  	/* See if the entry is already allocated, and just return if it is. */
916  	e = Add2Ptr(rt, vbo);
917  
918  	if (*e == RESTART_ENTRY_ALLOCATED_LE)
919  		return e;
920  
921  	/*
922  	 * Walk through the table, looking for the entry we're
923  	 * interested and the previous entry.
924  	 */
925  	off = le32_to_cpu(rt->first_free);
926  	e = Add2Ptr(rt, off);
927  
928  	if (off == vbo) {
929  		/* this is a match */
930  		rt->first_free = *e;
931  		goto skip_looking;
932  	}
933  
934  	/*
935  	 * Need to walk through the list looking for the predecessor
936  	 * of our entry.
937  	 */
938  	for (;;) {
939  		/* Remember the entry just found */
940  		u32 last_off = off;
941  		__le32 *last_e = e;
942  
943  		/* Should never run of entries. */
944  
945  		/* Lookup up the next entry the list. */
946  		off = le32_to_cpu(*last_e);
947  		e = Add2Ptr(rt, off);
948  
949  		/* If this is our match we are done. */
950  		if (off == vbo) {
951  			*last_e = *e;
952  
953  			/*
954  			 * If this was the last entry, we update that
955  			 * table as well.
956  			 */
957  			if (le32_to_cpu(rt->last_free) == off)
958  				rt->last_free = cpu_to_le32(last_off);
959  			break;
960  		}
961  	}
962  
963  skip_looking:
964  	/* If the list is now empty, we fix the last_free as well. */
965  	if (!rt->first_free)
966  		rt->last_free = 0;
967  
968  	/* Zero this entry. */
969  	memset(e, 0, esize);
970  	*e = RESTART_ENTRY_ALLOCATED_LE;
971  
972  	le16_add_cpu(&rt->total, 1);
973  
974  	return e;
975  }
976  
977  #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
978  
979  #define NTFSLOG_WRAPPED 0x00000001
980  #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
981  #define NTFSLOG_NO_LAST_LSN 0x00000004
982  #define NTFSLOG_REUSE_TAIL 0x00000010
983  #define NTFSLOG_NO_OLDEST_LSN 0x00000020
984  
985  /* Helper struct to work with NTFS $LogFile. */
986  struct ntfs_log {
987  	struct ntfs_inode *ni;
988  
989  	u32 l_size;
990  	u32 sys_page_size;
991  	u32 sys_page_mask;
992  	u32 page_size;
993  	u32 page_mask; // page_size - 1
994  	u8 page_bits;
995  	struct RECORD_PAGE_HDR *one_page_buf;
996  
997  	struct RESTART_TABLE *open_attr_tbl;
998  	u32 transaction_id;
999  	u32 clst_per_page;
1000  
1001  	u32 first_page;
1002  	u32 next_page;
1003  	u32 ra_off;
1004  	u32 data_off;
1005  	u32 restart_size;
1006  	u32 data_size;
1007  	u16 record_header_len;
1008  	u64 seq_num;
1009  	u32 seq_num_bits;
1010  	u32 file_data_bits;
1011  	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1012  
1013  	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014  	u32 ra_size; /* The usable size of the restart area. */
1015  
1016  	/*
1017  	 * If true, then the in-memory restart area is to be written
1018  	 * to the first position on the disk.
1019  	 */
1020  	bool init_ra;
1021  	bool set_dirty; /* True if we need to set dirty flag. */
1022  
1023  	u64 oldest_lsn;
1024  
1025  	u32 oldest_lsn_off;
1026  	u64 last_lsn;
1027  
1028  	u32 total_avail;
1029  	u32 total_avail_pages;
1030  	u32 total_undo_commit;
1031  	u32 max_current_avail;
1032  	u32 current_avail;
1033  	u32 reserved;
1034  
1035  	short major_ver;
1036  	short minor_ver;
1037  
1038  	u32 l_flags; /* See NTFSLOG_XXX */
1039  	u32 current_openlog_count; /* On-disk value for open_log_count. */
1040  
1041  	struct CLIENT_ID client_id;
1042  	u32 client_undo_commit;
1043  };
1044  
lsn_to_vbo(struct ntfs_log * log,const u64 lsn)1045  static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1046  {
1047  	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1048  
1049  	return vbo;
1050  }
1051  
1052  /* Compute the offset in the log file of the next log page. */
next_page_off(struct ntfs_log * log,u32 off)1053  static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1054  {
1055  	off = (off & ~log->sys_page_mask) + log->page_size;
1056  	return off >= log->l_size ? log->first_page : off;
1057  }
1058  
lsn_to_page_off(struct ntfs_log * log,u64 lsn)1059  static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1060  {
1061  	return (((u32)lsn) << 3) & log->page_mask;
1062  }
1063  
vbo_to_lsn(struct ntfs_log * log,u32 off,u64 Seq)1064  static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1065  {
1066  	return (off >> 3) + (Seq << log->file_data_bits);
1067  }
1068  
is_lsn_in_file(struct ntfs_log * log,u64 lsn)1069  static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1070  {
1071  	return lsn >= log->oldest_lsn &&
1072  	       lsn <= le64_to_cpu(log->ra->current_lsn);
1073  }
1074  
hdr_file_off(struct ntfs_log * log,struct RECORD_PAGE_HDR * hdr)1075  static inline u32 hdr_file_off(struct ntfs_log *log,
1076  			       struct RECORD_PAGE_HDR *hdr)
1077  {
1078  	if (log->major_ver < 2)
1079  		return le64_to_cpu(hdr->rhdr.lsn);
1080  
1081  	return le32_to_cpu(hdr->file_off);
1082  }
1083  
base_lsn(struct ntfs_log * log,const struct RECORD_PAGE_HDR * hdr,u64 lsn)1084  static inline u64 base_lsn(struct ntfs_log *log,
1085  			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1086  {
1087  	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088  	u64 ret = (((h_lsn >> log->file_data_bits) +
1089  		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090  		   << log->file_data_bits) +
1091  		  ((((is_log_record_end(hdr) &&
1092  		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1093  			     le16_to_cpu(hdr->record_hdr.next_record_off) :
1094  			     log->page_size) +
1095  		    lsn) >>
1096  		   3);
1097  
1098  	return ret;
1099  }
1100  
verify_client_lsn(struct ntfs_log * log,const struct CLIENT_REC * client,u64 lsn)1101  static inline bool verify_client_lsn(struct ntfs_log *log,
1102  				     const struct CLIENT_REC *client, u64 lsn)
1103  {
1104  	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105  	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1106  }
1107  
1108  struct restart_info {
1109  	u64 last_lsn;
1110  	struct RESTART_HDR *r_page;
1111  	u32 vbo;
1112  	bool chkdsk_was_run;
1113  	bool valid_page;
1114  	bool initialized;
1115  	bool restart;
1116  };
1117  
read_log_page(struct ntfs_log * log,u32 vbo,struct RECORD_PAGE_HDR ** buffer,bool * usa_error)1118  static int read_log_page(struct ntfs_log *log, u32 vbo,
1119  			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1120  {
1121  	int err = 0;
1122  	u32 page_idx = vbo >> log->page_bits;
1123  	u32 page_off = vbo & log->page_mask;
1124  	u32 bytes = log->page_size - page_off;
1125  	void *to_free = NULL;
1126  	u32 page_vbo = page_idx << log->page_bits;
1127  	struct RECORD_PAGE_HDR *page_buf;
1128  	struct ntfs_inode *ni = log->ni;
1129  	bool bBAAD;
1130  
1131  	if (vbo >= log->l_size)
1132  		return -EINVAL;
1133  
1134  	if (!*buffer) {
1135  		to_free = kmalloc(log->page_size, GFP_NOFS);
1136  		if (!to_free)
1137  			return -ENOMEM;
1138  		*buffer = to_free;
1139  	}
1140  
1141  	page_buf = page_off ? log->one_page_buf : *buffer;
1142  
1143  	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144  			       log->page_size, NULL);
1145  	if (err)
1146  		goto out;
1147  
1148  	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149  		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1150  
1151  	if (page_buf != *buffer)
1152  		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1153  
1154  	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1155  
1156  	if (usa_error)
1157  		*usa_error = bBAAD;
1158  	/* Check that the update sequence array for this page is valid */
1159  	/* If we don't allow errors, raise an error status */
1160  	else if (bBAAD)
1161  		err = -EINVAL;
1162  
1163  out:
1164  	if (err && to_free) {
1165  		kfree(to_free);
1166  		*buffer = NULL;
1167  	}
1168  
1169  	return err;
1170  }
1171  
1172  /*
1173   * log_read_rst
1174   *
1175   * It walks through 512 blocks of the file looking for a valid
1176   * restart page header. It will stop the first time we find a
1177   * valid page header.
1178   */
log_read_rst(struct ntfs_log * log,u32 l_size,bool first,struct restart_info * info)1179  static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180  			struct restart_info *info)
1181  {
1182  	u32 skip, vbo;
1183  	struct RESTART_HDR *r_page = NULL;
1184  
1185  	/* Determine which restart area we are looking for. */
1186  	if (first) {
1187  		vbo = 0;
1188  		skip = 512;
1189  	} else {
1190  		vbo = 512;
1191  		skip = 0;
1192  	}
1193  
1194  	/* Loop continuously until we succeed. */
1195  	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1196  		bool usa_error;
1197  		bool brst, bchk;
1198  		struct RESTART_AREA *ra;
1199  
1200  		/* Read a page header at the current offset. */
1201  		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1202  				  &usa_error)) {
1203  			/* Ignore any errors. */
1204  			continue;
1205  		}
1206  
1207  		/* Exit if the signature is a log record page. */
1208  		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1209  			info->initialized = true;
1210  			break;
1211  		}
1212  
1213  		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1214  		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1215  
1216  		if (!bchk && !brst) {
1217  			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1218  				/*
1219  				 * Remember if the signature does not
1220  				 * indicate uninitialized file.
1221  				 */
1222  				info->initialized = true;
1223  			}
1224  			continue;
1225  		}
1226  
1227  		ra = NULL;
1228  		info->valid_page = false;
1229  		info->initialized = true;
1230  		info->vbo = vbo;
1231  
1232  		/* Let's check the restart area if this is a valid page. */
1233  		if (!is_rst_page_hdr_valid(vbo, r_page))
1234  			goto check_result;
1235  		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1236  
1237  		if (!is_rst_area_valid(r_page))
1238  			goto check_result;
1239  
1240  		/*
1241  		 * We have a valid restart page header and restart area.
1242  		 * If chkdsk was run or we have no clients then we have
1243  		 * no more checking to do.
1244  		 */
1245  		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1246  			info->valid_page = true;
1247  			goto check_result;
1248  		}
1249  
1250  		if (is_client_area_valid(r_page, usa_error)) {
1251  			info->valid_page = true;
1252  			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1253  		}
1254  
1255  check_result:
1256  		/*
1257  		 * If chkdsk was run then update the caller's
1258  		 * values and return.
1259  		 */
1260  		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1261  			info->chkdsk_was_run = true;
1262  			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1263  			info->restart = true;
1264  			info->r_page = r_page;
1265  			return 0;
1266  		}
1267  
1268  		/*
1269  		 * If we have a valid page then copy the values
1270  		 * we need from it.
1271  		 */
1272  		if (info->valid_page) {
1273  			info->last_lsn = le64_to_cpu(ra->current_lsn);
1274  			info->restart = true;
1275  			info->r_page = r_page;
1276  			return 0;
1277  		}
1278  	}
1279  
1280  	kfree(r_page);
1281  
1282  	return 0;
1283  }
1284  
1285  /*
1286   * Ilog_init_pg_hdr - Init @log from restart page header.
1287   */
log_init_pg_hdr(struct ntfs_log * log,u32 sys_page_size,u32 page_size,u16 major_ver,u16 minor_ver)1288  static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1289  			    u32 page_size, u16 major_ver, u16 minor_ver)
1290  {
1291  	log->sys_page_size = sys_page_size;
1292  	log->sys_page_mask = sys_page_size - 1;
1293  	log->page_size = page_size;
1294  	log->page_mask = page_size - 1;
1295  	log->page_bits = blksize_bits(page_size);
1296  
1297  	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1298  	if (!log->clst_per_page)
1299  		log->clst_per_page = 1;
1300  
1301  	log->first_page = major_ver >= 2 ?
1302  				  0x22 * page_size :
1303  				  ((sys_page_size << 1) + (page_size << 1));
1304  	log->major_ver = major_ver;
1305  	log->minor_ver = minor_ver;
1306  }
1307  
1308  /*
1309   * log_create - Init @log in cases when we don't have a restart area to use.
1310   */
log_create(struct ntfs_log * log,u32 l_size,const u64 last_lsn,u32 open_log_count,bool wrapped,bool use_multi_page)1311  static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1312  		       u32 open_log_count, bool wrapped, bool use_multi_page)
1313  {
1314  	log->l_size = l_size;
1315  	/* All file offsets must be quadword aligned. */
1316  	log->file_data_bits = blksize_bits(l_size) - 3;
1317  	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1318  	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1319  	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1320  	log->next_page = log->first_page;
1321  	log->oldest_lsn = log->seq_num << log->file_data_bits;
1322  	log->oldest_lsn_off = 0;
1323  	log->last_lsn = log->oldest_lsn;
1324  
1325  	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1326  
1327  	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1328  	if (wrapped)
1329  		log->l_flags |= NTFSLOG_WRAPPED;
1330  
1331  	if (use_multi_page)
1332  		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1333  
1334  	/* Compute the log page values. */
1335  	log->data_off = ALIGN(
1336  		offsetof(struct RECORD_PAGE_HDR, fixups) +
1337  			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1338  		8);
1339  	log->data_size = log->page_size - log->data_off;
1340  	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1341  
1342  	/* Remember the different page sizes for reservation. */
1343  	log->reserved = log->data_size - log->record_header_len;
1344  
1345  	/* Compute the restart page values. */
1346  	log->ra_off = ALIGN(
1347  		offsetof(struct RESTART_HDR, fixups) +
1348  			sizeof(short) *
1349  				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1350  		8);
1351  	log->restart_size = log->sys_page_size - log->ra_off;
1352  	log->ra_size = struct_size(log->ra, clients, 1);
1353  	log->current_openlog_count = open_log_count;
1354  
1355  	/*
1356  	 * The total available log file space is the number of
1357  	 * log file pages times the space available on each page.
1358  	 */
1359  	log->total_avail_pages = log->l_size - log->first_page;
1360  	log->total_avail = log->total_avail_pages >> log->page_bits;
1361  
1362  	/*
1363  	 * We assume that we can't use the end of the page less than
1364  	 * the file record size.
1365  	 * Then we won't need to reserve more than the caller asks for.
1366  	 */
1367  	log->max_current_avail = log->total_avail * log->reserved;
1368  	log->total_avail = log->total_avail * log->data_size;
1369  	log->current_avail = log->max_current_avail;
1370  }
1371  
1372  /*
1373   * log_create_ra - Fill a restart area from the values stored in @log.
1374   */
log_create_ra(struct ntfs_log * log)1375  static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1376  {
1377  	struct CLIENT_REC *cr;
1378  	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1379  
1380  	if (!ra)
1381  		return NULL;
1382  
1383  	ra->current_lsn = cpu_to_le64(log->last_lsn);
1384  	ra->log_clients = cpu_to_le16(1);
1385  	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1386  	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1387  		ra->flags = RESTART_SINGLE_PAGE_IO;
1388  	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1389  	ra->ra_len = cpu_to_le16(log->ra_size);
1390  	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1391  	ra->l_size = cpu_to_le64(log->l_size);
1392  	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1393  	ra->data_off = cpu_to_le16(log->data_off);
1394  	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1395  
1396  	cr = ra->clients;
1397  
1398  	cr->prev_client = LFS_NO_CLIENT_LE;
1399  	cr->next_client = LFS_NO_CLIENT_LE;
1400  
1401  	return ra;
1402  }
1403  
final_log_off(struct ntfs_log * log,u64 lsn,u32 data_len)1404  static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1405  {
1406  	u32 base_vbo = lsn << 3;
1407  	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1408  	u32 page_off = base_vbo & log->page_mask;
1409  	u32 tail = log->page_size - page_off;
1410  
1411  	page_off -= 1;
1412  
1413  	/* Add the length of the header. */
1414  	data_len += log->record_header_len;
1415  
1416  	/*
1417  	 * If this lsn is contained this log page we are done.
1418  	 * Otherwise we need to walk through several log pages.
1419  	 */
1420  	if (data_len > tail) {
1421  		data_len -= tail;
1422  		tail = log->data_size;
1423  		page_off = log->data_off - 1;
1424  
1425  		for (;;) {
1426  			final_log_off = next_page_off(log, final_log_off);
1427  
1428  			/*
1429  			 * We are done if the remaining bytes
1430  			 * fit on this page.
1431  			 */
1432  			if (data_len <= tail)
1433  				break;
1434  			data_len -= tail;
1435  		}
1436  	}
1437  
1438  	/*
1439  	 * We add the remaining bytes to our starting position on this page
1440  	 * and then add that value to the file offset of this log page.
1441  	 */
1442  	return final_log_off + data_len + page_off;
1443  }
1444  
next_log_lsn(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,u64 * lsn)1445  static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1446  			u64 *lsn)
1447  {
1448  	int err;
1449  	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1450  	u32 vbo = lsn_to_vbo(log, this_lsn);
1451  	u32 end =
1452  		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1453  	u32 hdr_off = end & ~log->sys_page_mask;
1454  	u64 seq = this_lsn >> log->file_data_bits;
1455  	struct RECORD_PAGE_HDR *page = NULL;
1456  
1457  	/* Remember if we wrapped. */
1458  	if (end <= vbo)
1459  		seq += 1;
1460  
1461  	/* Log page header for this page. */
1462  	err = read_log_page(log, hdr_off, &page, NULL);
1463  	if (err)
1464  		return err;
1465  
1466  	/*
1467  	 * If the lsn we were given was not the last lsn on this page,
1468  	 * then the starting offset for the next lsn is on a quad word
1469  	 * boundary following the last file offset for the current lsn.
1470  	 * Otherwise the file offset is the start of the data on the next page.
1471  	 */
1472  	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1473  		/* If we wrapped, we need to increment the sequence number. */
1474  		hdr_off = next_page_off(log, hdr_off);
1475  		if (hdr_off == log->first_page)
1476  			seq += 1;
1477  
1478  		vbo = hdr_off + log->data_off;
1479  	} else {
1480  		vbo = ALIGN(end, 8);
1481  	}
1482  
1483  	/* Compute the lsn based on the file offset and the sequence count. */
1484  	*lsn = vbo_to_lsn(log, vbo, seq);
1485  
1486  	/*
1487  	 * If this lsn is within the legal range for the file, we return true.
1488  	 * Otherwise false indicates that there are no more lsn's.
1489  	 */
1490  	if (!is_lsn_in_file(log, *lsn))
1491  		*lsn = 0;
1492  
1493  	kfree(page);
1494  
1495  	return 0;
1496  }
1497  
1498  /*
1499   * current_log_avail - Calculate the number of bytes available for log records.
1500   */
current_log_avail(struct ntfs_log * log)1501  static u32 current_log_avail(struct ntfs_log *log)
1502  {
1503  	u32 oldest_off, next_free_off, free_bytes;
1504  
1505  	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1506  		/* The entire file is available. */
1507  		return log->max_current_avail;
1508  	}
1509  
1510  	/*
1511  	 * If there is a last lsn the restart area then we know that we will
1512  	 * have to compute the free range.
1513  	 * If there is no oldest lsn then start at the first page of the file.
1514  	 */
1515  	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1516  			     log->first_page :
1517  			     (log->oldest_lsn_off & ~log->sys_page_mask);
1518  
1519  	/*
1520  	 * We will use the next log page offset to compute the next free page.
1521  	 * If we are going to reuse this page go to the next page.
1522  	 * If we are at the first page then use the end of the file.
1523  	 */
1524  	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1525  				log->next_page + log->page_size :
1526  			log->next_page == log->first_page ? log->l_size :
1527  							    log->next_page;
1528  
1529  	/* If the two offsets are the same then there is no available space. */
1530  	if (oldest_off == next_free_off)
1531  		return 0;
1532  	/*
1533  	 * If the free offset follows the oldest offset then subtract
1534  	 * this range from the total available pages.
1535  	 */
1536  	free_bytes =
1537  		oldest_off < next_free_off ?
1538  			log->total_avail_pages - (next_free_off - oldest_off) :
1539  			oldest_off - next_free_off;
1540  
1541  	free_bytes >>= log->page_bits;
1542  	return free_bytes * log->reserved;
1543  }
1544  
check_subseq_log_page(struct ntfs_log * log,const struct RECORD_PAGE_HDR * rp,u32 vbo,u64 seq)1545  static bool check_subseq_log_page(struct ntfs_log *log,
1546  				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1547  				  u64 seq)
1548  {
1549  	u64 lsn_seq;
1550  	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1551  	u64 lsn = le64_to_cpu(rhdr->lsn);
1552  
1553  	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1554  		return false;
1555  
1556  	/*
1557  	 * If the last lsn on the page occurs was written after the page
1558  	 * that caused the original error then we have a fatal error.
1559  	 */
1560  	lsn_seq = lsn >> log->file_data_bits;
1561  
1562  	/*
1563  	 * If the sequence number for the lsn the page is equal or greater
1564  	 * than lsn we expect, then this is a subsequent write.
1565  	 */
1566  	return lsn_seq >= seq ||
1567  	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1568  		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1569  }
1570  
1571  /*
1572   * last_log_lsn
1573   *
1574   * Walks through the log pages for a file, searching for the
1575   * last log page written to the file.
1576   */
last_log_lsn(struct ntfs_log * log)1577  static int last_log_lsn(struct ntfs_log *log)
1578  {
1579  	int err;
1580  	bool usa_error = false;
1581  	bool replace_page = false;
1582  	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1583  	bool wrapped_file, wrapped;
1584  
1585  	u32 page_cnt = 1, page_pos = 1;
1586  	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1587  	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1588  	u32 first_file_off = 0, second_file_off = 0;
1589  	u32 part_io_count = 0;
1590  	u32 tails = 0;
1591  	u32 this_off, curpage_off, nextpage_off, remain_pages;
1592  
1593  	u64 expected_seq, seq_base = 0, lsn_base = 0;
1594  	u64 best_lsn, best_lsn1, best_lsn2;
1595  	u64 lsn_cur, lsn1, lsn2;
1596  	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1597  
1598  	u16 cur_pos, best_page_pos;
1599  
1600  	struct RECORD_PAGE_HDR *page = NULL;
1601  	struct RECORD_PAGE_HDR *tst_page = NULL;
1602  	struct RECORD_PAGE_HDR *first_tail = NULL;
1603  	struct RECORD_PAGE_HDR *second_tail = NULL;
1604  	struct RECORD_PAGE_HDR *tail_page = NULL;
1605  	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1606  	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1607  	struct RECORD_PAGE_HDR *page_bufs = NULL;
1608  	struct RECORD_PAGE_HDR *best_page;
1609  
1610  	if (log->major_ver >= 2) {
1611  		final_off = 0x02 * log->page_size;
1612  		second_off = 0x12 * log->page_size;
1613  
1614  		// 0x10 == 0x12 - 0x2
1615  		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1616  		if (!page_bufs)
1617  			return -ENOMEM;
1618  	} else {
1619  		second_off = log->first_page - log->page_size;
1620  		final_off = second_off - log->page_size;
1621  	}
1622  
1623  next_tail:
1624  	/* Read second tail page (at pos 3/0x12000). */
1625  	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1626  	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1627  		kfree(second_tail);
1628  		second_tail = NULL;
1629  		second_file_off = 0;
1630  		lsn2 = 0;
1631  	} else {
1632  		second_file_off = hdr_file_off(log, second_tail);
1633  		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1634  	}
1635  
1636  	/* Read first tail page (at pos 2/0x2000). */
1637  	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1638  	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1639  		kfree(first_tail);
1640  		first_tail = NULL;
1641  		first_file_off = 0;
1642  		lsn1 = 0;
1643  	} else {
1644  		first_file_off = hdr_file_off(log, first_tail);
1645  		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1646  	}
1647  
1648  	if (log->major_ver < 2) {
1649  		int best_page;
1650  
1651  		first_tail_prev = first_tail;
1652  		final_off_prev = first_file_off;
1653  		second_tail_prev = second_tail;
1654  		second_off_prev = second_file_off;
1655  		tails = 1;
1656  
1657  		if (!first_tail && !second_tail)
1658  			goto tail_read;
1659  
1660  		if (first_tail && second_tail)
1661  			best_page = lsn1 < lsn2 ? 1 : 0;
1662  		else if (first_tail)
1663  			best_page = 0;
1664  		else
1665  			best_page = 1;
1666  
1667  		page_off = best_page ? second_file_off : first_file_off;
1668  		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1669  		goto tail_read;
1670  	}
1671  
1672  	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1673  	best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1674  				  0;
1675  
1676  	if (first_tail && second_tail) {
1677  		if (best_lsn1 > best_lsn2) {
1678  			best_lsn = best_lsn1;
1679  			best_page = first_tail;
1680  			this_off = first_file_off;
1681  		} else {
1682  			best_lsn = best_lsn2;
1683  			best_page = second_tail;
1684  			this_off = second_file_off;
1685  		}
1686  	} else if (first_tail) {
1687  		best_lsn = best_lsn1;
1688  		best_page = first_tail;
1689  		this_off = first_file_off;
1690  	} else if (second_tail) {
1691  		best_lsn = best_lsn2;
1692  		best_page = second_tail;
1693  		this_off = second_file_off;
1694  	} else {
1695  		goto tail_read;
1696  	}
1697  
1698  	best_page_pos = le16_to_cpu(best_page->page_pos);
1699  
1700  	if (!tails) {
1701  		if (best_page_pos == page_pos) {
1702  			seq_base = best_lsn >> log->file_data_bits;
1703  			saved_off = page_off = le32_to_cpu(best_page->file_off);
1704  			lsn_base = best_lsn;
1705  
1706  			memmove(page_bufs, best_page, log->page_size);
1707  
1708  			page_cnt = le16_to_cpu(best_page->page_count);
1709  			if (page_cnt > 1)
1710  				page_pos += 1;
1711  
1712  			tails = 1;
1713  		}
1714  	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1715  		   saved_off + log->page_size == this_off &&
1716  		   lsn_base < best_lsn &&
1717  		   (page_pos != page_cnt || best_page_pos == page_pos ||
1718  		    best_page_pos == 1) &&
1719  		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1720  		u16 bppc = le16_to_cpu(best_page->page_count);
1721  
1722  		saved_off += log->page_size;
1723  		lsn_base = best_lsn;
1724  
1725  		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1726  			log->page_size);
1727  
1728  		tails += 1;
1729  
1730  		if (best_page_pos != bppc) {
1731  			page_cnt = bppc;
1732  			page_pos = best_page_pos;
1733  
1734  			if (page_cnt > 1)
1735  				page_pos += 1;
1736  		} else {
1737  			page_pos = page_cnt = 1;
1738  		}
1739  	} else {
1740  		kfree(first_tail);
1741  		kfree(second_tail);
1742  		goto tail_read;
1743  	}
1744  
1745  	kfree(first_tail_prev);
1746  	first_tail_prev = first_tail;
1747  	final_off_prev = first_file_off;
1748  	first_tail = NULL;
1749  
1750  	kfree(second_tail_prev);
1751  	second_tail_prev = second_tail;
1752  	second_off_prev = second_file_off;
1753  	second_tail = NULL;
1754  
1755  	final_off += log->page_size;
1756  	second_off += log->page_size;
1757  
1758  	if (tails < 0x10)
1759  		goto next_tail;
1760  tail_read:
1761  	first_tail = first_tail_prev;
1762  	final_off = final_off_prev;
1763  
1764  	second_tail = second_tail_prev;
1765  	second_off = second_off_prev;
1766  
1767  	page_cnt = page_pos = 1;
1768  
1769  	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1770  						 log->next_page;
1771  
1772  	wrapped_file =
1773  		curpage_off == log->first_page &&
1774  		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1775  
1776  	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1777  
1778  	nextpage_off = curpage_off;
1779  
1780  next_page:
1781  	tail_page = NULL;
1782  	/* Read the next log page. */
1783  	err = read_log_page(log, curpage_off, &page, &usa_error);
1784  
1785  	/* Compute the next log page offset the file. */
1786  	nextpage_off = next_page_off(log, curpage_off);
1787  	wrapped = nextpage_off == log->first_page;
1788  
1789  	if (tails > 1) {
1790  		struct RECORD_PAGE_HDR *cur_page =
1791  			Add2Ptr(page_bufs, curpage_off - page_off);
1792  
1793  		if (curpage_off == saved_off) {
1794  			tail_page = cur_page;
1795  			goto use_tail_page;
1796  		}
1797  
1798  		if (page_off > curpage_off || curpage_off >= saved_off)
1799  			goto use_tail_page;
1800  
1801  		if (page_off1)
1802  			goto use_cur_page;
1803  
1804  		if (!err && !usa_error &&
1805  		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1806  		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1807  		    cur_page->record_hdr.next_record_off ==
1808  			    page->record_hdr.next_record_off &&
1809  		    ((page_pos == page_cnt &&
1810  		      le16_to_cpu(page->page_pos) == 1) ||
1811  		     (page_pos != page_cnt &&
1812  		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1813  		      le16_to_cpu(page->page_count) == page_cnt))) {
1814  			cur_page = NULL;
1815  			goto use_tail_page;
1816  		}
1817  
1818  		page_off1 = page_off;
1819  
1820  use_cur_page:
1821  
1822  		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1823  
1824  		if (last_ok_lsn !=
1825  			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1826  		    ((lsn_cur >> log->file_data_bits) +
1827  		     ((curpage_off <
1828  		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1829  			      1 :
1830  			      0)) != expected_seq) {
1831  			goto check_tail;
1832  		}
1833  
1834  		if (!is_log_record_end(cur_page)) {
1835  			tail_page = NULL;
1836  			last_ok_lsn = lsn_cur;
1837  			goto next_page_1;
1838  		}
1839  
1840  		log->seq_num = expected_seq;
1841  		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1842  		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1843  		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1844  
1845  		if (log->record_header_len <=
1846  		    log->page_size -
1847  			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1848  			log->l_flags |= NTFSLOG_REUSE_TAIL;
1849  			log->next_page = curpage_off;
1850  		} else {
1851  			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1852  			log->next_page = nextpage_off;
1853  		}
1854  
1855  		if (wrapped_file)
1856  			log->l_flags |= NTFSLOG_WRAPPED;
1857  
1858  		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1859  		goto next_page_1;
1860  	}
1861  
1862  	/*
1863  	 * If we are at the expected first page of a transfer check to see
1864  	 * if either tail copy is at this offset.
1865  	 * If this page is the last page of a transfer, check if we wrote
1866  	 * a subsequent tail copy.
1867  	 */
1868  	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1869  		/*
1870  		 * Check if the offset matches either the first or second
1871  		 * tail copy. It is possible it will match both.
1872  		 */
1873  		if (curpage_off == final_off)
1874  			tail_page = first_tail;
1875  
1876  		/*
1877  		 * If we already matched on the first page then
1878  		 * check the ending lsn's.
1879  		 */
1880  		if (curpage_off == second_off) {
1881  			if (!tail_page ||
1882  			    (second_tail &&
1883  			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1884  				     le64_to_cpu(first_tail->record_hdr
1885  							 .last_end_lsn))) {
1886  				tail_page = second_tail;
1887  			}
1888  		}
1889  	}
1890  
1891  use_tail_page:
1892  	if (tail_page) {
1893  		/* We have a candidate for a tail copy. */
1894  		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1895  
1896  		if (last_ok_lsn < lsn_cur) {
1897  			/*
1898  			 * If the sequence number is not expected,
1899  			 * then don't use the tail copy.
1900  			 */
1901  			if (expected_seq != (lsn_cur >> log->file_data_bits))
1902  				tail_page = NULL;
1903  		} else if (last_ok_lsn > lsn_cur) {
1904  			/*
1905  			 * If the last lsn is greater than the one on
1906  			 * this page then forget this tail.
1907  			 */
1908  			tail_page = NULL;
1909  		}
1910  	}
1911  
1912  	/*
1913  	 *If we have an error on the current page,
1914  	 * we will break of this loop.
1915  	 */
1916  	if (err || usa_error)
1917  		goto check_tail;
1918  
1919  	/*
1920  	 * Done if the last lsn on this page doesn't match the previous known
1921  	 * last lsn or the sequence number is not expected.
1922  	 */
1923  	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1924  	if (last_ok_lsn != lsn_cur &&
1925  	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1926  		goto check_tail;
1927  	}
1928  
1929  	/*
1930  	 * Check that the page position and page count values are correct.
1931  	 * If this is the first page of a transfer the position must be 1
1932  	 * and the count will be unknown.
1933  	 */
1934  	if (page_cnt == page_pos) {
1935  		if (page->page_pos != cpu_to_le16(1) &&
1936  		    (!reuse_page || page->page_pos != page->page_count)) {
1937  			/*
1938  			 * If the current page is the first page we are
1939  			 * looking at and we are reusing this page then
1940  			 * it can be either the first or last page of a
1941  			 * transfer. Otherwise it can only be the first.
1942  			 */
1943  			goto check_tail;
1944  		}
1945  	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1946  		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1947  		/*
1948  		 * The page position better be 1 more than the last page
1949  		 * position and the page count better match.
1950  		 */
1951  		goto check_tail;
1952  	}
1953  
1954  	/*
1955  	 * We have a valid page the file and may have a valid page
1956  	 * the tail copy area.
1957  	 * If the tail page was written after the page the file then
1958  	 * break of the loop.
1959  	 */
1960  	if (tail_page &&
1961  	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1962  		/* Remember if we will replace the page. */
1963  		replace_page = true;
1964  		goto check_tail;
1965  	}
1966  
1967  	tail_page = NULL;
1968  
1969  	if (is_log_record_end(page)) {
1970  		/*
1971  		 * Since we have read this page we know the sequence number
1972  		 * is the same as our expected value.
1973  		 */
1974  		log->seq_num = expected_seq;
1975  		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1976  		log->ra->current_lsn = page->record_hdr.last_end_lsn;
1977  		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1978  
1979  		/*
1980  		 * If there is room on this page for another header then
1981  		 * remember we want to reuse the page.
1982  		 */
1983  		if (log->record_header_len <=
1984  		    log->page_size -
1985  			    le16_to_cpu(page->record_hdr.next_record_off)) {
1986  			log->l_flags |= NTFSLOG_REUSE_TAIL;
1987  			log->next_page = curpage_off;
1988  		} else {
1989  			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1990  			log->next_page = nextpage_off;
1991  		}
1992  
1993  		/* Remember if we wrapped the log file. */
1994  		if (wrapped_file)
1995  			log->l_flags |= NTFSLOG_WRAPPED;
1996  	}
1997  
1998  	/*
1999  	 * Remember the last page count and position.
2000  	 * Also remember the last known lsn.
2001  	 */
2002  	page_cnt = le16_to_cpu(page->page_count);
2003  	page_pos = le16_to_cpu(page->page_pos);
2004  	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2005  
2006  next_page_1:
2007  
2008  	if (wrapped) {
2009  		expected_seq += 1;
2010  		wrapped_file = 1;
2011  	}
2012  
2013  	curpage_off = nextpage_off;
2014  	kfree(page);
2015  	page = NULL;
2016  	reuse_page = 0;
2017  	goto next_page;
2018  
2019  check_tail:
2020  	if (tail_page) {
2021  		log->seq_num = expected_seq;
2022  		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2023  		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2024  		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2025  
2026  		if (log->page_size -
2027  			    le16_to_cpu(
2028  				    tail_page->record_hdr.next_record_off) >=
2029  		    log->record_header_len) {
2030  			log->l_flags |= NTFSLOG_REUSE_TAIL;
2031  			log->next_page = curpage_off;
2032  		} else {
2033  			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2034  			log->next_page = nextpage_off;
2035  		}
2036  
2037  		if (wrapped)
2038  			log->l_flags |= NTFSLOG_WRAPPED;
2039  	}
2040  
2041  	/* Remember that the partial IO will start at the next page. */
2042  	second_off = nextpage_off;
2043  
2044  	/*
2045  	 * If the next page is the first page of the file then update
2046  	 * the sequence number for log records which begon the next page.
2047  	 */
2048  	if (wrapped)
2049  		expected_seq += 1;
2050  
2051  	/*
2052  	 * If we have a tail copy or are performing single page I/O we can
2053  	 * immediately look at the next page.
2054  	 */
2055  	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2056  		page_cnt = 2;
2057  		page_pos = 1;
2058  		goto check_valid;
2059  	}
2060  
2061  	if (page_pos != page_cnt)
2062  		goto check_valid;
2063  	/*
2064  	 * If the next page causes us to wrap to the beginning of the log
2065  	 * file then we know which page to check next.
2066  	 */
2067  	if (wrapped) {
2068  		page_cnt = 2;
2069  		page_pos = 1;
2070  		goto check_valid;
2071  	}
2072  
2073  	cur_pos = 2;
2074  
2075  next_test_page:
2076  	kfree(tst_page);
2077  	tst_page = NULL;
2078  
2079  	/* Walk through the file, reading log pages. */
2080  	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2081  
2082  	/*
2083  	 * If we get a USA error then assume that we correctly found
2084  	 * the end of the original transfer.
2085  	 */
2086  	if (usa_error)
2087  		goto file_is_valid;
2088  
2089  	/*
2090  	 * If we were able to read the page, we examine it to see if it
2091  	 * is the same or different Io block.
2092  	 */
2093  	if (err)
2094  		goto next_test_page_1;
2095  
2096  	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2097  	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2098  		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2099  		page_pos = le16_to_cpu(tst_page->page_pos);
2100  		goto check_valid;
2101  	} else {
2102  		goto file_is_valid;
2103  	}
2104  
2105  next_test_page_1:
2106  
2107  	nextpage_off = next_page_off(log, curpage_off);
2108  	wrapped = nextpage_off == log->first_page;
2109  
2110  	if (wrapped) {
2111  		expected_seq += 1;
2112  		page_cnt = 2;
2113  		page_pos = 1;
2114  	}
2115  
2116  	cur_pos += 1;
2117  	part_io_count += 1;
2118  	if (!wrapped)
2119  		goto next_test_page;
2120  
2121  check_valid:
2122  	/* Skip over the remaining pages this transfer. */
2123  	remain_pages = page_cnt - page_pos - 1;
2124  	part_io_count += remain_pages;
2125  
2126  	while (remain_pages--) {
2127  		nextpage_off = next_page_off(log, curpage_off);
2128  		wrapped = nextpage_off == log->first_page;
2129  
2130  		if (wrapped)
2131  			expected_seq += 1;
2132  	}
2133  
2134  	/* Call our routine to check this log page. */
2135  	kfree(tst_page);
2136  	tst_page = NULL;
2137  
2138  	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2139  	if (!err && !usa_error &&
2140  	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2141  		err = -EINVAL;
2142  		goto out;
2143  	}
2144  
2145  file_is_valid:
2146  
2147  	/* We have a valid file. */
2148  	if (page_off1 || tail_page) {
2149  		struct RECORD_PAGE_HDR *tmp_page;
2150  
2151  		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2152  			err = -EROFS;
2153  			goto out;
2154  		}
2155  
2156  		if (page_off1) {
2157  			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2158  			tails -= (page_off1 - page_off) / log->page_size;
2159  			if (!tail_page)
2160  				tails -= 1;
2161  		} else {
2162  			tmp_page = tail_page;
2163  			tails = 1;
2164  		}
2165  
2166  		while (tails--) {
2167  			u64 off = hdr_file_off(log, tmp_page);
2168  
2169  			if (!page) {
2170  				page = kmalloc(log->page_size, GFP_NOFS);
2171  				if (!page) {
2172  					err = -ENOMEM;
2173  					goto out;
2174  				}
2175  			}
2176  
2177  			/*
2178  			 * Correct page and copy the data from this page
2179  			 * into it and flush it to disk.
2180  			 */
2181  			memcpy(page, tmp_page, log->page_size);
2182  
2183  			/* Fill last flushed lsn value flush the page. */
2184  			if (log->major_ver < 2)
2185  				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2186  			else
2187  				page->file_off = 0;
2188  
2189  			page->page_pos = page->page_count = cpu_to_le16(1);
2190  
2191  			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2192  
2193  			err = ntfs_sb_write_run(log->ni->mi.sbi,
2194  						&log->ni->file.run, off, page,
2195  						log->page_size, 0);
2196  
2197  			if (err)
2198  				goto out;
2199  
2200  			if (part_io_count && second_off == off) {
2201  				second_off += log->page_size;
2202  				part_io_count -= 1;
2203  			}
2204  
2205  			tmp_page = Add2Ptr(tmp_page, log->page_size);
2206  		}
2207  	}
2208  
2209  	if (part_io_count) {
2210  		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2211  			err = -EROFS;
2212  			goto out;
2213  		}
2214  	}
2215  
2216  out:
2217  	kfree(second_tail);
2218  	kfree(first_tail);
2219  	kfree(page);
2220  	kfree(tst_page);
2221  	kfree(page_bufs);
2222  
2223  	return err;
2224  }
2225  
2226  /*
2227   * read_log_rec_buf - Copy a log record from the file to a buffer.
2228   *
2229   * The log record may span several log pages and may even wrap the file.
2230   */
read_log_rec_buf(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,void * buffer)2231  static int read_log_rec_buf(struct ntfs_log *log,
2232  			    const struct LFS_RECORD_HDR *rh, void *buffer)
2233  {
2234  	int err;
2235  	struct RECORD_PAGE_HDR *ph = NULL;
2236  	u64 lsn = le64_to_cpu(rh->this_lsn);
2237  	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2238  	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2239  	u32 data_len = le32_to_cpu(rh->client_data_len);
2240  
2241  	/*
2242  	 * While there are more bytes to transfer,
2243  	 * we continue to attempt to perform the read.
2244  	 */
2245  	for (;;) {
2246  		bool usa_error;
2247  		u32 tail = log->page_size - off;
2248  
2249  		if (tail >= data_len)
2250  			tail = data_len;
2251  
2252  		data_len -= tail;
2253  
2254  		err = read_log_page(log, vbo, &ph, &usa_error);
2255  		if (err)
2256  			goto out;
2257  
2258  		/*
2259  		 * The last lsn on this page better be greater or equal
2260  		 * to the lsn we are copying.
2261  		 */
2262  		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2263  			err = -EINVAL;
2264  			goto out;
2265  		}
2266  
2267  		memcpy(buffer, Add2Ptr(ph, off), tail);
2268  
2269  		/* If there are no more bytes to transfer, we exit the loop. */
2270  		if (!data_len) {
2271  			if (!is_log_record_end(ph) ||
2272  			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2273  				err = -EINVAL;
2274  				goto out;
2275  			}
2276  			break;
2277  		}
2278  
2279  		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2280  		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2281  			err = -EINVAL;
2282  			goto out;
2283  		}
2284  
2285  		vbo = next_page_off(log, vbo);
2286  		off = log->data_off;
2287  
2288  		/*
2289  		 * Adjust our pointer the user's buffer to transfer
2290  		 * the next block to.
2291  		 */
2292  		buffer = Add2Ptr(buffer, tail);
2293  	}
2294  
2295  out:
2296  	kfree(ph);
2297  	return err;
2298  }
2299  
read_rst_area(struct ntfs_log * log,struct NTFS_RESTART ** rst_,u64 * lsn)2300  static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2301  			 u64 *lsn)
2302  {
2303  	int err;
2304  	struct LFS_RECORD_HDR *rh = NULL;
2305  	const struct CLIENT_REC *cr =
2306  		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2307  	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2308  	u32 len;
2309  	struct NTFS_RESTART *rst;
2310  
2311  	*lsn = 0;
2312  	*rst_ = NULL;
2313  
2314  	/* If the client doesn't have a restart area, go ahead and exit now. */
2315  	if (!lsnc)
2316  		return 0;
2317  
2318  	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2319  			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2320  	if (err)
2321  		return err;
2322  
2323  	rst = NULL;
2324  	lsnr = le64_to_cpu(rh->this_lsn);
2325  
2326  	if (lsnc != lsnr) {
2327  		/* If the lsn values don't match, then the disk is corrupt. */
2328  		err = -EINVAL;
2329  		goto out;
2330  	}
2331  
2332  	*lsn = lsnr;
2333  	len = le32_to_cpu(rh->client_data_len);
2334  
2335  	if (!len) {
2336  		err = 0;
2337  		goto out;
2338  	}
2339  
2340  	if (len < sizeof(struct NTFS_RESTART)) {
2341  		err = -EINVAL;
2342  		goto out;
2343  	}
2344  
2345  	rst = kmalloc(len, GFP_NOFS);
2346  	if (!rst) {
2347  		err = -ENOMEM;
2348  		goto out;
2349  	}
2350  
2351  	/* Copy the data into the 'rst' buffer. */
2352  	err = read_log_rec_buf(log, rh, rst);
2353  	if (err)
2354  		goto out;
2355  
2356  	*rst_ = rst;
2357  	rst = NULL;
2358  
2359  out:
2360  	kfree(rh);
2361  	kfree(rst);
2362  
2363  	return err;
2364  }
2365  
find_log_rec(struct ntfs_log * log,u64 lsn,struct lcb * lcb)2366  static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2367  {
2368  	int err;
2369  	struct LFS_RECORD_HDR *rh = lcb->lrh;
2370  	u32 rec_len, len;
2371  
2372  	/* Read the record header for this lsn. */
2373  	if (!rh) {
2374  		err = read_log_page(log, lsn_to_vbo(log, lsn),
2375  				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2376  
2377  		lcb->lrh = rh;
2378  		if (err)
2379  			return err;
2380  	}
2381  
2382  	/*
2383  	 * If the lsn the log record doesn't match the desired
2384  	 * lsn then the disk is corrupt.
2385  	 */
2386  	if (lsn != le64_to_cpu(rh->this_lsn))
2387  		return -EINVAL;
2388  
2389  	len = le32_to_cpu(rh->client_data_len);
2390  
2391  	/*
2392  	 * Check that the length field isn't greater than the total
2393  	 * available space the log file.
2394  	 */
2395  	rec_len = len + log->record_header_len;
2396  	if (rec_len >= log->total_avail)
2397  		return -EINVAL;
2398  
2399  	/*
2400  	 * If the entire log record is on this log page,
2401  	 * put a pointer to the log record the context block.
2402  	 */
2403  	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2404  		void *lr = kmalloc(len, GFP_NOFS);
2405  
2406  		if (!lr)
2407  			return -ENOMEM;
2408  
2409  		lcb->log_rec = lr;
2410  		lcb->alloc = true;
2411  
2412  		/* Copy the data into the buffer returned. */
2413  		err = read_log_rec_buf(log, rh, lr);
2414  		if (err)
2415  			return err;
2416  	} else {
2417  		/* If beyond the end of the current page -> an error. */
2418  		u32 page_off = lsn_to_page_off(log, lsn);
2419  
2420  		if (page_off + len + log->record_header_len > log->page_size)
2421  			return -EINVAL;
2422  
2423  		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2424  		lcb->alloc = false;
2425  	}
2426  
2427  	return 0;
2428  }
2429  
2430  /*
2431   * read_log_rec_lcb - Init the query operation.
2432   */
read_log_rec_lcb(struct ntfs_log * log,u64 lsn,u32 ctx_mode,struct lcb ** lcb_)2433  static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2434  			    struct lcb **lcb_)
2435  {
2436  	int err;
2437  	const struct CLIENT_REC *cr;
2438  	struct lcb *lcb;
2439  
2440  	switch (ctx_mode) {
2441  	case lcb_ctx_undo_next:
2442  	case lcb_ctx_prev:
2443  	case lcb_ctx_next:
2444  		break;
2445  	default:
2446  		return -EINVAL;
2447  	}
2448  
2449  	/* Check that the given lsn is the legal range for this client. */
2450  	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2451  
2452  	if (!verify_client_lsn(log, cr, lsn))
2453  		return -EINVAL;
2454  
2455  	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2456  	if (!lcb)
2457  		return -ENOMEM;
2458  	lcb->client = log->client_id;
2459  	lcb->ctx_mode = ctx_mode;
2460  
2461  	/* Find the log record indicated by the given lsn. */
2462  	err = find_log_rec(log, lsn, lcb);
2463  	if (err)
2464  		goto out;
2465  
2466  	*lcb_ = lcb;
2467  	return 0;
2468  
2469  out:
2470  	lcb_put(lcb);
2471  	*lcb_ = NULL;
2472  	return err;
2473  }
2474  
2475  /*
2476   * find_client_next_lsn
2477   *
2478   * Attempt to find the next lsn to return to a client based on the context mode.
2479   */
find_client_next_lsn(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2480  static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2481  {
2482  	int err;
2483  	u64 next_lsn;
2484  	struct LFS_RECORD_HDR *hdr;
2485  
2486  	hdr = lcb->lrh;
2487  	*lsn = 0;
2488  
2489  	if (lcb_ctx_next != lcb->ctx_mode)
2490  		goto check_undo_next;
2491  
2492  	/* Loop as long as another lsn can be found. */
2493  	for (;;) {
2494  		u64 current_lsn;
2495  
2496  		err = next_log_lsn(log, hdr, &current_lsn);
2497  		if (err)
2498  			goto out;
2499  
2500  		if (!current_lsn)
2501  			break;
2502  
2503  		if (hdr != lcb->lrh)
2504  			kfree(hdr);
2505  
2506  		hdr = NULL;
2507  		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2508  				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2509  		if (err)
2510  			goto out;
2511  
2512  		if (memcmp(&hdr->client, &lcb->client,
2513  			   sizeof(struct CLIENT_ID))) {
2514  			/*err = -EINVAL; */
2515  		} else if (LfsClientRecord == hdr->record_type) {
2516  			kfree(lcb->lrh);
2517  			lcb->lrh = hdr;
2518  			*lsn = current_lsn;
2519  			return 0;
2520  		}
2521  	}
2522  
2523  out:
2524  	if (hdr != lcb->lrh)
2525  		kfree(hdr);
2526  	return err;
2527  
2528  check_undo_next:
2529  	if (lcb_ctx_undo_next == lcb->ctx_mode)
2530  		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2531  	else if (lcb_ctx_prev == lcb->ctx_mode)
2532  		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2533  	else
2534  		return 0;
2535  
2536  	if (!next_lsn)
2537  		return 0;
2538  
2539  	if (!verify_client_lsn(
2540  		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2541  		    next_lsn))
2542  		return 0;
2543  
2544  	hdr = NULL;
2545  	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2546  			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2547  	if (err)
2548  		return err;
2549  	kfree(lcb->lrh);
2550  	lcb->lrh = hdr;
2551  
2552  	*lsn = next_lsn;
2553  
2554  	return 0;
2555  }
2556  
read_next_log_rec(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2557  static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2558  {
2559  	int err;
2560  
2561  	err = find_client_next_lsn(log, lcb, lsn);
2562  	if (err)
2563  		return err;
2564  
2565  	if (!*lsn)
2566  		return 0;
2567  
2568  	if (lcb->alloc)
2569  		kfree(lcb->log_rec);
2570  
2571  	lcb->log_rec = NULL;
2572  	lcb->alloc = false;
2573  	kfree(lcb->lrh);
2574  	lcb->lrh = NULL;
2575  
2576  	return find_log_rec(log, *lsn, lcb);
2577  }
2578  
check_index_header(const struct INDEX_HDR * hdr,size_t bytes)2579  bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2580  {
2581  	__le16 mask;
2582  	u32 min_de, de_off, used, total;
2583  	const struct NTFS_DE *e;
2584  
2585  	if (hdr_has_subnode(hdr)) {
2586  		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2587  		mask = NTFS_IE_HAS_SUBNODES;
2588  	} else {
2589  		min_de = sizeof(struct NTFS_DE);
2590  		mask = 0;
2591  	}
2592  
2593  	de_off = le32_to_cpu(hdr->de_off);
2594  	used = le32_to_cpu(hdr->used);
2595  	total = le32_to_cpu(hdr->total);
2596  
2597  	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2598  	    de_off + min_de > used || used > total) {
2599  		return false;
2600  	}
2601  
2602  	e = Add2Ptr(hdr, de_off);
2603  	for (;;) {
2604  		u16 esize = le16_to_cpu(e->size);
2605  		struct NTFS_DE *next = Add2Ptr(e, esize);
2606  
2607  		if (esize < min_de || PtrOffset(hdr, next) > used ||
2608  		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2609  			return false;
2610  		}
2611  
2612  		if (de_is_last(e))
2613  			break;
2614  
2615  		e = next;
2616  	}
2617  
2618  	return true;
2619  }
2620  
check_index_buffer(const struct INDEX_BUFFER * ib,u32 bytes)2621  static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2622  {
2623  	u16 fo;
2624  	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2625  
2626  	if (r->sign != NTFS_INDX_SIGNATURE)
2627  		return false;
2628  
2629  	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2630  
2631  	if (le16_to_cpu(r->fix_off) > fo)
2632  		return false;
2633  
2634  	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2635  		return false;
2636  
2637  	return check_index_header(&ib->ihdr,
2638  				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2639  }
2640  
check_index_root(const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2641  static inline bool check_index_root(const struct ATTRIB *attr,
2642  				    struct ntfs_sb_info *sbi)
2643  {
2644  	bool ret;
2645  	const struct INDEX_ROOT *root = resident_data(attr);
2646  	u8 index_bits = le32_to_cpu(root->index_block_size) >=
2647  					sbi->cluster_size ?
2648  				sbi->cluster_bits :
2649  				SECTOR_SHIFT;
2650  	u8 block_clst = root->index_block_clst;
2651  
2652  	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2653  	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2654  	    (root->type == ATTR_NAME &&
2655  	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2656  	    (le32_to_cpu(root->index_block_size) !=
2657  	     (block_clst << index_bits)) ||
2658  	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2659  	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2660  	     block_clst != 0x40 && block_clst != 0x80)) {
2661  		return false;
2662  	}
2663  
2664  	ret = check_index_header(&root->ihdr,
2665  				 le32_to_cpu(attr->res.data_size) -
2666  					 offsetof(struct INDEX_ROOT, ihdr));
2667  	return ret;
2668  }
2669  
check_attr(const struct MFT_REC * rec,const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2670  static inline bool check_attr(const struct MFT_REC *rec,
2671  			      const struct ATTRIB *attr,
2672  			      struct ntfs_sb_info *sbi)
2673  {
2674  	u32 asize = le32_to_cpu(attr->size);
2675  	u32 rsize = 0;
2676  	u64 dsize, svcn, evcn;
2677  	u16 run_off;
2678  
2679  	/* Check the fixed part of the attribute record header. */
2680  	if (asize >= sbi->record_size ||
2681  	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2682  	    (attr->name_len &&
2683  	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2684  		     asize)) {
2685  		return false;
2686  	}
2687  
2688  	/* Check the attribute fields. */
2689  	switch (attr->non_res) {
2690  	case 0:
2691  		rsize = le32_to_cpu(attr->res.data_size);
2692  		if (rsize >= asize ||
2693  		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2694  			return false;
2695  		}
2696  		break;
2697  
2698  	case 1:
2699  		dsize = le64_to_cpu(attr->nres.data_size);
2700  		svcn = le64_to_cpu(attr->nres.svcn);
2701  		evcn = le64_to_cpu(attr->nres.evcn);
2702  		run_off = le16_to_cpu(attr->nres.run_off);
2703  
2704  		if (svcn > evcn + 1 || run_off >= asize ||
2705  		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2706  		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2707  			return false;
2708  		}
2709  
2710  		if (run_off > asize)
2711  			return false;
2712  
2713  		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2714  			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2715  			return false;
2716  		}
2717  
2718  		return true;
2719  
2720  	default:
2721  		return false;
2722  	}
2723  
2724  	switch (attr->type) {
2725  	case ATTR_NAME:
2726  		if (fname_full_size(Add2Ptr(
2727  			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2728  			return false;
2729  		}
2730  		break;
2731  
2732  	case ATTR_ROOT:
2733  		return check_index_root(attr, sbi);
2734  
2735  	case ATTR_STD:
2736  		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2737  		    rsize != sizeof(struct ATTR_STD_INFO)) {
2738  			return false;
2739  		}
2740  		break;
2741  
2742  	case ATTR_LIST:
2743  	case ATTR_ID:
2744  	case ATTR_SECURE:
2745  	case ATTR_LABEL:
2746  	case ATTR_VOL_INFO:
2747  	case ATTR_DATA:
2748  	case ATTR_ALLOC:
2749  	case ATTR_BITMAP:
2750  	case ATTR_REPARSE:
2751  	case ATTR_EA_INFO:
2752  	case ATTR_EA:
2753  	case ATTR_PROPERTYSET:
2754  	case ATTR_LOGGED_UTILITY_STREAM:
2755  		break;
2756  
2757  	default:
2758  		return false;
2759  	}
2760  
2761  	return true;
2762  }
2763  
check_file_record(const struct MFT_REC * rec,const struct MFT_REC * rec2,struct ntfs_sb_info * sbi)2764  static inline bool check_file_record(const struct MFT_REC *rec,
2765  				     const struct MFT_REC *rec2,
2766  				     struct ntfs_sb_info *sbi)
2767  {
2768  	const struct ATTRIB *attr;
2769  	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2770  	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2771  	u16 ao = le16_to_cpu(rec->attr_off);
2772  	u32 rs = sbi->record_size;
2773  
2774  	/* Check the file record header for consistency. */
2775  	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2776  	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2777  	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2778  	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2779  	    le32_to_cpu(rec->total) != rs) {
2780  		return false;
2781  	}
2782  
2783  	/* Loop to check all of the attributes. */
2784  	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2785  	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2786  		if (check_attr(rec, attr, sbi))
2787  			continue;
2788  		return false;
2789  	}
2790  
2791  	return true;
2792  }
2793  
check_lsn(const struct NTFS_RECORD_HEADER * hdr,const u64 * rlsn)2794  static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2795  			    const u64 *rlsn)
2796  {
2797  	u64 lsn;
2798  
2799  	if (!rlsn)
2800  		return true;
2801  
2802  	lsn = le64_to_cpu(hdr->lsn);
2803  
2804  	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2805  		return false;
2806  
2807  	if (*rlsn > lsn)
2808  		return true;
2809  
2810  	return false;
2811  }
2812  
check_if_attr(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2813  static inline bool check_if_attr(const struct MFT_REC *rec,
2814  				 const struct LOG_REC_HDR *lrh)
2815  {
2816  	u16 ro = le16_to_cpu(lrh->record_off);
2817  	u16 o = le16_to_cpu(rec->attr_off);
2818  	const struct ATTRIB *attr = Add2Ptr(rec, o);
2819  
2820  	while (o < ro) {
2821  		u32 asize;
2822  
2823  		if (attr->type == ATTR_END)
2824  			break;
2825  
2826  		asize = le32_to_cpu(attr->size);
2827  		if (!asize)
2828  			break;
2829  
2830  		o += asize;
2831  		attr = Add2Ptr(attr, asize);
2832  	}
2833  
2834  	return o == ro;
2835  }
2836  
check_if_index_root(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2837  static inline bool check_if_index_root(const struct MFT_REC *rec,
2838  				       const struct LOG_REC_HDR *lrh)
2839  {
2840  	u16 ro = le16_to_cpu(lrh->record_off);
2841  	u16 o = le16_to_cpu(rec->attr_off);
2842  	const struct ATTRIB *attr = Add2Ptr(rec, o);
2843  
2844  	while (o < ro) {
2845  		u32 asize;
2846  
2847  		if (attr->type == ATTR_END)
2848  			break;
2849  
2850  		asize = le32_to_cpu(attr->size);
2851  		if (!asize)
2852  			break;
2853  
2854  		o += asize;
2855  		attr = Add2Ptr(attr, asize);
2856  	}
2857  
2858  	return o == ro && attr->type == ATTR_ROOT;
2859  }
2860  
check_if_root_index(const struct ATTRIB * attr,const struct INDEX_HDR * hdr,const struct LOG_REC_HDR * lrh)2861  static inline bool check_if_root_index(const struct ATTRIB *attr,
2862  				       const struct INDEX_HDR *hdr,
2863  				       const struct LOG_REC_HDR *lrh)
2864  {
2865  	u16 ao = le16_to_cpu(lrh->attr_off);
2866  	u32 de_off = le32_to_cpu(hdr->de_off);
2867  	u32 o = PtrOffset(attr, hdr) + de_off;
2868  	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2869  	u32 asize = le32_to_cpu(attr->size);
2870  
2871  	while (o < ao) {
2872  		u16 esize;
2873  
2874  		if (o >= asize)
2875  			break;
2876  
2877  		esize = le16_to_cpu(e->size);
2878  		if (!esize)
2879  			break;
2880  
2881  		o += esize;
2882  		e = Add2Ptr(e, esize);
2883  	}
2884  
2885  	return o == ao;
2886  }
2887  
check_if_alloc_index(const struct INDEX_HDR * hdr,u32 attr_off)2888  static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2889  					u32 attr_off)
2890  {
2891  	u32 de_off = le32_to_cpu(hdr->de_off);
2892  	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2893  	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2894  	u32 used = le32_to_cpu(hdr->used);
2895  
2896  	while (o < attr_off) {
2897  		u16 esize;
2898  
2899  		if (de_off >= used)
2900  			break;
2901  
2902  		esize = le16_to_cpu(e->size);
2903  		if (!esize)
2904  			break;
2905  
2906  		o += esize;
2907  		de_off += esize;
2908  		e = Add2Ptr(e, esize);
2909  	}
2910  
2911  	return o == attr_off;
2912  }
2913  
change_attr_size(struct MFT_REC * rec,struct ATTRIB * attr,u32 nsize)2914  static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2915  				    u32 nsize)
2916  {
2917  	u32 asize = le32_to_cpu(attr->size);
2918  	int dsize = nsize - asize;
2919  	u8 *next = Add2Ptr(attr, asize);
2920  	u32 used = le32_to_cpu(rec->used);
2921  
2922  	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2923  
2924  	rec->used = cpu_to_le32(used + dsize);
2925  	attr->size = cpu_to_le32(nsize);
2926  }
2927  
2928  struct OpenAttr {
2929  	struct ATTRIB *attr;
2930  	struct runs_tree *run1;
2931  	struct runs_tree run0;
2932  	struct ntfs_inode *ni;
2933  	// CLST rno;
2934  };
2935  
2936  /*
2937   * cmp_type_and_name
2938   *
2939   * Return: 0 if 'attr' has the same type and name.
2940   */
cmp_type_and_name(const struct ATTRIB * a1,const struct ATTRIB * a2)2941  static inline int cmp_type_and_name(const struct ATTRIB *a1,
2942  				    const struct ATTRIB *a2)
2943  {
2944  	return a1->type != a2->type || a1->name_len != a2->name_len ||
2945  	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2946  				       a1->name_len * sizeof(short)));
2947  }
2948  
find_loaded_attr(struct ntfs_log * log,const struct ATTRIB * attr,CLST rno)2949  static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2950  					 const struct ATTRIB *attr, CLST rno)
2951  {
2952  	struct OPEN_ATTR_ENRTY *oe = NULL;
2953  
2954  	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2955  		struct OpenAttr *op_attr;
2956  
2957  		if (ino_get(&oe->ref) != rno)
2958  			continue;
2959  
2960  		op_attr = (struct OpenAttr *)oe->ptr;
2961  		if (!cmp_type_and_name(op_attr->attr, attr))
2962  			return op_attr;
2963  	}
2964  	return NULL;
2965  }
2966  
attr_create_nonres_log(struct ntfs_sb_info * sbi,enum ATTR_TYPE type,u64 size,const u16 * name,size_t name_len,__le16 flags)2967  static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2968  					     enum ATTR_TYPE type, u64 size,
2969  					     const u16 *name, size_t name_len,
2970  					     __le16 flags)
2971  {
2972  	struct ATTRIB *attr;
2973  	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2974  	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2975  	u32 asize = name_size +
2976  		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2977  
2978  	attr = kzalloc(asize, GFP_NOFS);
2979  	if (!attr)
2980  		return NULL;
2981  
2982  	attr->type = type;
2983  	attr->size = cpu_to_le32(asize);
2984  	attr->flags = flags;
2985  	attr->non_res = 1;
2986  	attr->name_len = name_len;
2987  
2988  	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2989  	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2990  	attr->nres.data_size = cpu_to_le64(size);
2991  	attr->nres.valid_size = attr->nres.data_size;
2992  	if (is_ext) {
2993  		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2994  		if (is_attr_compressed(attr))
2995  			attr->nres.c_unit = COMPRESSION_UNIT;
2996  
2997  		attr->nres.run_off =
2998  			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2999  		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3000  		       name_len * sizeof(short));
3001  	} else {
3002  		attr->name_off = SIZEOF_NONRESIDENT_LE;
3003  		attr->nres.run_off =
3004  			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3005  		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3006  		       name_len * sizeof(short));
3007  	}
3008  
3009  	return attr;
3010  }
3011  
3012  /*
3013   * do_action - Common routine for the Redo and Undo Passes.
3014   * @rlsn: If it is NULL then undo.
3015   */
do_action(struct ntfs_log * log,struct OPEN_ATTR_ENRTY * oe,const struct LOG_REC_HDR * lrh,u32 op,void * data,u32 dlen,u32 rec_len,const u64 * rlsn)3016  static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3017  		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3018  		     u32 dlen, u32 rec_len, const u64 *rlsn)
3019  {
3020  	int err = 0;
3021  	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3022  	struct inode *inode = NULL, *inode_parent;
3023  	struct mft_inode *mi = NULL, *mi2_child = NULL;
3024  	CLST rno = 0, rno_base = 0;
3025  	struct INDEX_BUFFER *ib = NULL;
3026  	struct MFT_REC *rec = NULL;
3027  	struct ATTRIB *attr = NULL, *attr2;
3028  	struct INDEX_HDR *hdr;
3029  	struct INDEX_ROOT *root;
3030  	struct NTFS_DE *e, *e1, *e2;
3031  	struct NEW_ATTRIBUTE_SIZES *new_sz;
3032  	struct ATTR_FILE_NAME *fname;
3033  	struct OpenAttr *oa, *oa2;
3034  	u32 nsize, t32, asize, used, esize, off, bits;
3035  	u16 id, id2;
3036  	u32 record_size = sbi->record_size;
3037  	u64 t64;
3038  	u16 roff = le16_to_cpu(lrh->record_off);
3039  	u16 aoff = le16_to_cpu(lrh->attr_off);
3040  	u64 lco = 0;
3041  	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3042  	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3043  	u64 vbo = cbo + tvo;
3044  	void *buffer_le = NULL;
3045  	u32 bytes = 0;
3046  	bool a_dirty = false;
3047  	u16 data_off;
3048  
3049  	oa = oe->ptr;
3050  
3051  	/* Big switch to prepare. */
3052  	switch (op) {
3053  	/* ============================================================
3054  	 * Process MFT records, as described by the current log record.
3055  	 * ============================================================
3056  	 */
3057  	case InitializeFileRecordSegment:
3058  	case DeallocateFileRecordSegment:
3059  	case WriteEndOfFileRecordSegment:
3060  	case CreateAttribute:
3061  	case DeleteAttribute:
3062  	case UpdateResidentValue:
3063  	case UpdateMappingPairs:
3064  	case SetNewAttributeSizes:
3065  	case AddIndexEntryRoot:
3066  	case DeleteIndexEntryRoot:
3067  	case SetIndexEntryVcnRoot:
3068  	case UpdateFileNameRoot:
3069  	case UpdateRecordDataRoot:
3070  	case ZeroEndOfFileRecord:
3071  		rno = vbo >> sbi->record_bits;
3072  		inode = ilookup(sbi->sb, rno);
3073  		if (inode) {
3074  			mi = &ntfs_i(inode)->mi;
3075  		} else if (op == InitializeFileRecordSegment) {
3076  			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3077  			if (!mi)
3078  				return -ENOMEM;
3079  			err = mi_format_new(mi, sbi, rno, 0, false);
3080  			if (err)
3081  				goto out;
3082  		} else {
3083  			/* Read from disk. */
3084  			err = mi_get(sbi, rno, &mi);
3085  			if (err)
3086  				return err;
3087  		}
3088  		rec = mi->mrec;
3089  
3090  		if (op == DeallocateFileRecordSegment)
3091  			goto skip_load_parent;
3092  
3093  		if (InitializeFileRecordSegment != op) {
3094  			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3095  				goto dirty_vol;
3096  			if (!check_lsn(&rec->rhdr, rlsn))
3097  				goto out;
3098  			if (!check_file_record(rec, NULL, sbi))
3099  				goto dirty_vol;
3100  			attr = Add2Ptr(rec, roff);
3101  		}
3102  
3103  		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3104  			rno_base = rno;
3105  			goto skip_load_parent;
3106  		}
3107  
3108  		rno_base = ino_get(&rec->parent_ref);
3109  		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3110  		if (IS_ERR(inode_parent))
3111  			goto skip_load_parent;
3112  
3113  		if (is_bad_inode(inode_parent)) {
3114  			iput(inode_parent);
3115  			goto skip_load_parent;
3116  		}
3117  
3118  		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3119  			iput(inode_parent);
3120  		} else {
3121  			if (mi2_child->mrec != mi->mrec)
3122  				memcpy(mi2_child->mrec, mi->mrec,
3123  				       sbi->record_size);
3124  
3125  			if (inode)
3126  				iput(inode);
3127  			else if (mi)
3128  				mi_put(mi);
3129  
3130  			inode = inode_parent;
3131  			mi = mi2_child;
3132  			rec = mi2_child->mrec;
3133  			attr = Add2Ptr(rec, roff);
3134  		}
3135  
3136  skip_load_parent:
3137  		inode_parent = NULL;
3138  		break;
3139  
3140  	/*
3141  	 * Process attributes, as described by the current log record.
3142  	 */
3143  	case UpdateNonresidentValue:
3144  	case AddIndexEntryAllocation:
3145  	case DeleteIndexEntryAllocation:
3146  	case WriteEndOfIndexBuffer:
3147  	case SetIndexEntryVcnAllocation:
3148  	case UpdateFileNameAllocation:
3149  	case SetBitsInNonresidentBitMap:
3150  	case ClearBitsInNonresidentBitMap:
3151  	case UpdateRecordDataAllocation:
3152  		attr = oa->attr;
3153  		bytes = UpdateNonresidentValue == op ? dlen : 0;
3154  		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3155  
3156  		if (attr->type == ATTR_ALLOC) {
3157  			t32 = le32_to_cpu(oe->bytes_per_index);
3158  			if (bytes < t32)
3159  				bytes = t32;
3160  		}
3161  
3162  		if (!bytes)
3163  			bytes = lco - cbo;
3164  
3165  		bytes += roff;
3166  		if (attr->type == ATTR_ALLOC)
3167  			bytes = (bytes + 511) & ~511; // align
3168  
3169  		buffer_le = kmalloc(bytes, GFP_NOFS);
3170  		if (!buffer_le)
3171  			return -ENOMEM;
3172  
3173  		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3174  				       NULL);
3175  		if (err)
3176  			goto out;
3177  
3178  		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3179  			ntfs_fix_post_read(buffer_le, bytes, false);
3180  		break;
3181  
3182  	default:
3183  		WARN_ON(1);
3184  	}
3185  
3186  	/* Big switch to do operation. */
3187  	switch (op) {
3188  	case InitializeFileRecordSegment:
3189  		if (roff + dlen > record_size)
3190  			goto dirty_vol;
3191  
3192  		memcpy(Add2Ptr(rec, roff), data, dlen);
3193  		mi->dirty = true;
3194  		break;
3195  
3196  	case DeallocateFileRecordSegment:
3197  		clear_rec_inuse(rec);
3198  		le16_add_cpu(&rec->seq, 1);
3199  		mi->dirty = true;
3200  		break;
3201  
3202  	case WriteEndOfFileRecordSegment:
3203  		attr2 = (struct ATTRIB *)data;
3204  		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3205  			goto dirty_vol;
3206  
3207  		memmove(attr, attr2, dlen);
3208  		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3209  
3210  		mi->dirty = true;
3211  		break;
3212  
3213  	case CreateAttribute:
3214  		attr2 = (struct ATTRIB *)data;
3215  		asize = le32_to_cpu(attr2->size);
3216  		used = le32_to_cpu(rec->used);
3217  
3218  		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3219  		    !IS_ALIGNED(asize, 8) ||
3220  		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3221  		    dlen > record_size - used) {
3222  			goto dirty_vol;
3223  		}
3224  
3225  		memmove(Add2Ptr(attr, asize), attr, used - roff);
3226  		memcpy(attr, attr2, asize);
3227  
3228  		rec->used = cpu_to_le32(used + asize);
3229  		id = le16_to_cpu(rec->next_attr_id);
3230  		id2 = le16_to_cpu(attr2->id);
3231  		if (id <= id2)
3232  			rec->next_attr_id = cpu_to_le16(id2 + 1);
3233  		if (is_attr_indexed(attr))
3234  			le16_add_cpu(&rec->hard_links, 1);
3235  
3236  		oa2 = find_loaded_attr(log, attr, rno_base);
3237  		if (oa2) {
3238  			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3239  					   GFP_NOFS);
3240  			if (p2) {
3241  				// run_close(oa2->run1);
3242  				kfree(oa2->attr);
3243  				oa2->attr = p2;
3244  			}
3245  		}
3246  
3247  		mi->dirty = true;
3248  		break;
3249  
3250  	case DeleteAttribute:
3251  		asize = le32_to_cpu(attr->size);
3252  		used = le32_to_cpu(rec->used);
3253  
3254  		if (!check_if_attr(rec, lrh))
3255  			goto dirty_vol;
3256  
3257  		rec->used = cpu_to_le32(used - asize);
3258  		if (is_attr_indexed(attr))
3259  			le16_add_cpu(&rec->hard_links, -1);
3260  
3261  		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3262  
3263  		mi->dirty = true;
3264  		break;
3265  
3266  	case UpdateResidentValue:
3267  		nsize = aoff + dlen;
3268  
3269  		if (!check_if_attr(rec, lrh))
3270  			goto dirty_vol;
3271  
3272  		asize = le32_to_cpu(attr->size);
3273  		used = le32_to_cpu(rec->used);
3274  
3275  		if (lrh->redo_len == lrh->undo_len) {
3276  			if (nsize > asize)
3277  				goto dirty_vol;
3278  			goto move_data;
3279  		}
3280  
3281  		if (nsize > asize && nsize - asize > record_size - used)
3282  			goto dirty_vol;
3283  
3284  		nsize = ALIGN(nsize, 8);
3285  		data_off = le16_to_cpu(attr->res.data_off);
3286  
3287  		if (nsize < asize) {
3288  			memmove(Add2Ptr(attr, aoff), data, dlen);
3289  			data = NULL; // To skip below memmove().
3290  		}
3291  
3292  		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3293  			used - le16_to_cpu(lrh->record_off) - asize);
3294  
3295  		rec->used = cpu_to_le32(used + nsize - asize);
3296  		attr->size = cpu_to_le32(nsize);
3297  		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3298  
3299  move_data:
3300  		if (data)
3301  			memmove(Add2Ptr(attr, aoff), data, dlen);
3302  
3303  		oa2 = find_loaded_attr(log, attr, rno_base);
3304  		if (oa2) {
3305  			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3306  					   GFP_NOFS);
3307  			if (p2) {
3308  				// run_close(&oa2->run0);
3309  				oa2->run1 = &oa2->run0;
3310  				kfree(oa2->attr);
3311  				oa2->attr = p2;
3312  			}
3313  		}
3314  
3315  		mi->dirty = true;
3316  		break;
3317  
3318  	case UpdateMappingPairs:
3319  		nsize = aoff + dlen;
3320  		asize = le32_to_cpu(attr->size);
3321  		used = le32_to_cpu(rec->used);
3322  
3323  		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3324  		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3325  		    (nsize > asize && nsize - asize > record_size - used)) {
3326  			goto dirty_vol;
3327  		}
3328  
3329  		nsize = ALIGN(nsize, 8);
3330  
3331  		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3332  			used - le16_to_cpu(lrh->record_off) - asize);
3333  		rec->used = cpu_to_le32(used + nsize - asize);
3334  		attr->size = cpu_to_le32(nsize);
3335  		memmove(Add2Ptr(attr, aoff), data, dlen);
3336  
3337  		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3338  					attr_run(attr), &t64)) {
3339  			goto dirty_vol;
3340  		}
3341  
3342  		attr->nres.evcn = cpu_to_le64(t64);
3343  		oa2 = find_loaded_attr(log, attr, rno_base);
3344  		if (oa2 && oa2->attr->non_res)
3345  			oa2->attr->nres.evcn = attr->nres.evcn;
3346  
3347  		mi->dirty = true;
3348  		break;
3349  
3350  	case SetNewAttributeSizes:
3351  		new_sz = data;
3352  		if (!check_if_attr(rec, lrh) || !attr->non_res)
3353  			goto dirty_vol;
3354  
3355  		attr->nres.alloc_size = new_sz->alloc_size;
3356  		attr->nres.data_size = new_sz->data_size;
3357  		attr->nres.valid_size = new_sz->valid_size;
3358  
3359  		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3360  			attr->nres.total_size = new_sz->total_size;
3361  
3362  		oa2 = find_loaded_attr(log, attr, rno_base);
3363  		if (oa2) {
3364  			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3365  					   GFP_NOFS);
3366  			if (p2) {
3367  				kfree(oa2->attr);
3368  				oa2->attr = p2;
3369  			}
3370  		}
3371  		mi->dirty = true;
3372  		break;
3373  
3374  	case AddIndexEntryRoot:
3375  		e = (struct NTFS_DE *)data;
3376  		esize = le16_to_cpu(e->size);
3377  		root = resident_data(attr);
3378  		hdr = &root->ihdr;
3379  		used = le32_to_cpu(hdr->used);
3380  
3381  		if (!check_if_index_root(rec, lrh) ||
3382  		    !check_if_root_index(attr, hdr, lrh) ||
3383  		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3384  		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3385  			goto dirty_vol;
3386  		}
3387  
3388  		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3389  
3390  		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3391  
3392  		memmove(Add2Ptr(e1, esize), e1,
3393  			PtrOffset(e1, Add2Ptr(hdr, used)));
3394  		memmove(e1, e, esize);
3395  
3396  		le32_add_cpu(&attr->res.data_size, esize);
3397  		hdr->used = cpu_to_le32(used + esize);
3398  		le32_add_cpu(&hdr->total, esize);
3399  
3400  		mi->dirty = true;
3401  		break;
3402  
3403  	case DeleteIndexEntryRoot:
3404  		root = resident_data(attr);
3405  		hdr = &root->ihdr;
3406  		used = le32_to_cpu(hdr->used);
3407  
3408  		if (!check_if_index_root(rec, lrh) ||
3409  		    !check_if_root_index(attr, hdr, lrh)) {
3410  			goto dirty_vol;
3411  		}
3412  
3413  		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3414  		esize = le16_to_cpu(e1->size);
3415  		e2 = Add2Ptr(e1, esize);
3416  
3417  		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3418  
3419  		le32_sub_cpu(&attr->res.data_size, esize);
3420  		hdr->used = cpu_to_le32(used - esize);
3421  		le32_sub_cpu(&hdr->total, esize);
3422  
3423  		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3424  
3425  		mi->dirty = true;
3426  		break;
3427  
3428  	case SetIndexEntryVcnRoot:
3429  		root = resident_data(attr);
3430  		hdr = &root->ihdr;
3431  
3432  		if (!check_if_index_root(rec, lrh) ||
3433  		    !check_if_root_index(attr, hdr, lrh)) {
3434  			goto dirty_vol;
3435  		}
3436  
3437  		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3438  
3439  		de_set_vbn_le(e, *(__le64 *)data);
3440  		mi->dirty = true;
3441  		break;
3442  
3443  	case UpdateFileNameRoot:
3444  		root = resident_data(attr);
3445  		hdr = &root->ihdr;
3446  
3447  		if (!check_if_index_root(rec, lrh) ||
3448  		    !check_if_root_index(attr, hdr, lrh)) {
3449  			goto dirty_vol;
3450  		}
3451  
3452  		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3453  		fname = (struct ATTR_FILE_NAME *)(e + 1);
3454  		memmove(&fname->dup, data, sizeof(fname->dup)); //
3455  		mi->dirty = true;
3456  		break;
3457  
3458  	case UpdateRecordDataRoot:
3459  		root = resident_data(attr);
3460  		hdr = &root->ihdr;
3461  
3462  		if (!check_if_index_root(rec, lrh) ||
3463  		    !check_if_root_index(attr, hdr, lrh)) {
3464  			goto dirty_vol;
3465  		}
3466  
3467  		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3468  
3469  		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3470  
3471  		mi->dirty = true;
3472  		break;
3473  
3474  	case ZeroEndOfFileRecord:
3475  		if (roff + dlen > record_size)
3476  			goto dirty_vol;
3477  
3478  		memset(attr, 0, dlen);
3479  		mi->dirty = true;
3480  		break;
3481  
3482  	case UpdateNonresidentValue:
3483  		if (lco < cbo + roff + dlen)
3484  			goto dirty_vol;
3485  
3486  		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3487  
3488  		a_dirty = true;
3489  		if (attr->type == ATTR_ALLOC)
3490  			ntfs_fix_pre_write(buffer_le, bytes);
3491  		break;
3492  
3493  	case AddIndexEntryAllocation:
3494  		ib = Add2Ptr(buffer_le, roff);
3495  		hdr = &ib->ihdr;
3496  		e = data;
3497  		esize = le16_to_cpu(e->size);
3498  		e1 = Add2Ptr(ib, aoff);
3499  
3500  		if (is_baad(&ib->rhdr))
3501  			goto dirty_vol;
3502  		if (!check_lsn(&ib->rhdr, rlsn))
3503  			goto out;
3504  
3505  		used = le32_to_cpu(hdr->used);
3506  
3507  		if (!check_index_buffer(ib, bytes) ||
3508  		    !check_if_alloc_index(hdr, aoff) ||
3509  		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3510  		    used + esize > le32_to_cpu(hdr->total)) {
3511  			goto dirty_vol;
3512  		}
3513  
3514  		memmove(Add2Ptr(e1, esize), e1,
3515  			PtrOffset(e1, Add2Ptr(hdr, used)));
3516  		memcpy(e1, e, esize);
3517  
3518  		hdr->used = cpu_to_le32(used + esize);
3519  
3520  		a_dirty = true;
3521  
3522  		ntfs_fix_pre_write(&ib->rhdr, bytes);
3523  		break;
3524  
3525  	case DeleteIndexEntryAllocation:
3526  		ib = Add2Ptr(buffer_le, roff);
3527  		hdr = &ib->ihdr;
3528  		e = Add2Ptr(ib, aoff);
3529  		esize = le16_to_cpu(e->size);
3530  
3531  		if (is_baad(&ib->rhdr))
3532  			goto dirty_vol;
3533  		if (!check_lsn(&ib->rhdr, rlsn))
3534  			goto out;
3535  
3536  		if (!check_index_buffer(ib, bytes) ||
3537  		    !check_if_alloc_index(hdr, aoff)) {
3538  			goto dirty_vol;
3539  		}
3540  
3541  		e1 = Add2Ptr(e, esize);
3542  		nsize = esize;
3543  		used = le32_to_cpu(hdr->used);
3544  
3545  		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3546  
3547  		hdr->used = cpu_to_le32(used - nsize);
3548  
3549  		a_dirty = true;
3550  
3551  		ntfs_fix_pre_write(&ib->rhdr, bytes);
3552  		break;
3553  
3554  	case WriteEndOfIndexBuffer:
3555  		ib = Add2Ptr(buffer_le, roff);
3556  		hdr = &ib->ihdr;
3557  		e = Add2Ptr(ib, aoff);
3558  
3559  		if (is_baad(&ib->rhdr))
3560  			goto dirty_vol;
3561  		if (!check_lsn(&ib->rhdr, rlsn))
3562  			goto out;
3563  		if (!check_index_buffer(ib, bytes) ||
3564  		    !check_if_alloc_index(hdr, aoff) ||
3565  		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3566  					  le32_to_cpu(hdr->total)) {
3567  			goto dirty_vol;
3568  		}
3569  
3570  		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3571  		memmove(e, data, dlen);
3572  
3573  		a_dirty = true;
3574  		ntfs_fix_pre_write(&ib->rhdr, bytes);
3575  		break;
3576  
3577  	case SetIndexEntryVcnAllocation:
3578  		ib = Add2Ptr(buffer_le, roff);
3579  		hdr = &ib->ihdr;
3580  		e = Add2Ptr(ib, aoff);
3581  
3582  		if (is_baad(&ib->rhdr))
3583  			goto dirty_vol;
3584  
3585  		if (!check_lsn(&ib->rhdr, rlsn))
3586  			goto out;
3587  		if (!check_index_buffer(ib, bytes) ||
3588  		    !check_if_alloc_index(hdr, aoff)) {
3589  			goto dirty_vol;
3590  		}
3591  
3592  		de_set_vbn_le(e, *(__le64 *)data);
3593  
3594  		a_dirty = true;
3595  		ntfs_fix_pre_write(&ib->rhdr, bytes);
3596  		break;
3597  
3598  	case UpdateFileNameAllocation:
3599  		ib = Add2Ptr(buffer_le, roff);
3600  		hdr = &ib->ihdr;
3601  		e = Add2Ptr(ib, aoff);
3602  
3603  		if (is_baad(&ib->rhdr))
3604  			goto dirty_vol;
3605  
3606  		if (!check_lsn(&ib->rhdr, rlsn))
3607  			goto out;
3608  		if (!check_index_buffer(ib, bytes) ||
3609  		    !check_if_alloc_index(hdr, aoff)) {
3610  			goto dirty_vol;
3611  		}
3612  
3613  		fname = (struct ATTR_FILE_NAME *)(e + 1);
3614  		memmove(&fname->dup, data, sizeof(fname->dup));
3615  
3616  		a_dirty = true;
3617  		ntfs_fix_pre_write(&ib->rhdr, bytes);
3618  		break;
3619  
3620  	case SetBitsInNonresidentBitMap:
3621  		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3622  		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3623  
3624  		if (cbo + (off + 7) / 8 > lco ||
3625  		    cbo + ((off + bits + 7) / 8) > lco) {
3626  			goto dirty_vol;
3627  		}
3628  
3629  		ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3630  		a_dirty = true;
3631  		break;
3632  
3633  	case ClearBitsInNonresidentBitMap:
3634  		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3635  		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3636  
3637  		if (cbo + (off + 7) / 8 > lco ||
3638  		    cbo + ((off + bits + 7) / 8) > lco) {
3639  			goto dirty_vol;
3640  		}
3641  
3642  		ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3643  		a_dirty = true;
3644  		break;
3645  
3646  	case UpdateRecordDataAllocation:
3647  		ib = Add2Ptr(buffer_le, roff);
3648  		hdr = &ib->ihdr;
3649  		e = Add2Ptr(ib, aoff);
3650  
3651  		if (is_baad(&ib->rhdr))
3652  			goto dirty_vol;
3653  
3654  		if (!check_lsn(&ib->rhdr, rlsn))
3655  			goto out;
3656  		if (!check_index_buffer(ib, bytes) ||
3657  		    !check_if_alloc_index(hdr, aoff)) {
3658  			goto dirty_vol;
3659  		}
3660  
3661  		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3662  
3663  		a_dirty = true;
3664  		ntfs_fix_pre_write(&ib->rhdr, bytes);
3665  		break;
3666  
3667  	default:
3668  		WARN_ON(1);
3669  	}
3670  
3671  	if (rlsn) {
3672  		__le64 t64 = cpu_to_le64(*rlsn);
3673  
3674  		if (rec)
3675  			rec->rhdr.lsn = t64;
3676  		if (ib)
3677  			ib->rhdr.lsn = t64;
3678  	}
3679  
3680  	if (mi && mi->dirty) {
3681  		err = mi_write(mi, 0);
3682  		if (err)
3683  			goto out;
3684  	}
3685  
3686  	if (a_dirty) {
3687  		attr = oa->attr;
3688  		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3689  					0);
3690  		if (err)
3691  			goto out;
3692  	}
3693  
3694  out:
3695  
3696  	if (inode)
3697  		iput(inode);
3698  	else if (mi != mi2_child)
3699  		mi_put(mi);
3700  
3701  	kfree(buffer_le);
3702  
3703  	return err;
3704  
3705  dirty_vol:
3706  	log->set_dirty = true;
3707  	goto out;
3708  }
3709  
3710  /*
3711   * log_replay - Replays log and empties it.
3712   *
3713   * This function is called during mount operation.
3714   * It replays log and empties it.
3715   * Initialized is set false if logfile contains '-1'.
3716   */
log_replay(struct ntfs_inode * ni,bool * initialized)3717  int log_replay(struct ntfs_inode *ni, bool *initialized)
3718  {
3719  	int err;
3720  	struct ntfs_sb_info *sbi = ni->mi.sbi;
3721  	struct ntfs_log *log;
3722  
3723  	struct restart_info rst_info, rst_info2;
3724  	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3725  	struct ATTR_NAME_ENTRY *attr_names = NULL;
3726  	struct ATTR_NAME_ENTRY *ane;
3727  	struct RESTART_TABLE *dptbl = NULL;
3728  	struct RESTART_TABLE *trtbl = NULL;
3729  	const struct RESTART_TABLE *rt;
3730  	struct RESTART_TABLE *oatbl = NULL;
3731  	struct inode *inode;
3732  	struct OpenAttr *oa;
3733  	struct ntfs_inode *ni_oe;
3734  	struct ATTRIB *attr = NULL;
3735  	u64 size, vcn, undo_next_lsn;
3736  	CLST rno, lcn, lcn0, len0, clen;
3737  	void *data;
3738  	struct NTFS_RESTART *rst = NULL;
3739  	struct lcb *lcb = NULL;
3740  	struct OPEN_ATTR_ENRTY *oe;
3741  	struct TRANSACTION_ENTRY *tr;
3742  	struct DIR_PAGE_ENTRY *dp;
3743  	u32 i, bytes_per_attr_entry;
3744  	u32 l_size = ni->vfs_inode.i_size;
3745  	u32 orig_file_size = l_size;
3746  	u32 page_size, vbo, tail, off, dlen;
3747  	u32 saved_len, rec_len, transact_id;
3748  	bool use_second_page;
3749  	struct RESTART_AREA *ra2, *ra = NULL;
3750  	struct CLIENT_REC *ca, *cr;
3751  	__le16 client;
3752  	struct RESTART_HDR *rh;
3753  	const struct LFS_RECORD_HDR *frh;
3754  	const struct LOG_REC_HDR *lrh;
3755  	bool is_mapped;
3756  	bool is_ro = sb_rdonly(sbi->sb);
3757  	u64 t64;
3758  	u16 t16;
3759  	u32 t32;
3760  
3761  	/* Get the size of page. NOTE: To replay we can use default page. */
3762  #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3763  	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3764  #else
3765  	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3766  #endif
3767  	if (!page_size)
3768  		return -EINVAL;
3769  
3770  	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3771  	if (!log)
3772  		return -ENOMEM;
3773  
3774  	log->ni = ni;
3775  	log->l_size = l_size;
3776  	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3777  
3778  	if (!log->one_page_buf) {
3779  		err = -ENOMEM;
3780  		goto out;
3781  	}
3782  
3783  	log->page_size = page_size;
3784  	log->page_mask = page_size - 1;
3785  	log->page_bits = blksize_bits(page_size);
3786  
3787  	/* Look for a restart area on the disk. */
3788  	memset(&rst_info, 0, sizeof(struct restart_info));
3789  	err = log_read_rst(log, l_size, true, &rst_info);
3790  	if (err)
3791  		goto out;
3792  
3793  	/* remember 'initialized' */
3794  	*initialized = rst_info.initialized;
3795  
3796  	if (!rst_info.restart) {
3797  		if (rst_info.initialized) {
3798  			/* No restart area but the file is not initialized. */
3799  			err = -EINVAL;
3800  			goto out;
3801  		}
3802  
3803  		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3804  		log_create(log, l_size, 0, get_random_u32(), false, false);
3805  
3806  		log->ra = ra;
3807  
3808  		ra = log_create_ra(log);
3809  		if (!ra) {
3810  			err = -ENOMEM;
3811  			goto out;
3812  		}
3813  		log->ra = ra;
3814  		log->init_ra = true;
3815  
3816  		goto process_log;
3817  	}
3818  
3819  	/*
3820  	 * If the restart offset above wasn't zero then we won't
3821  	 * look for a second restart.
3822  	 */
3823  	if (rst_info.vbo)
3824  		goto check_restart_area;
3825  
3826  	memset(&rst_info2, 0, sizeof(struct restart_info));
3827  	err = log_read_rst(log, l_size, false, &rst_info2);
3828  	if (err)
3829  		goto out;
3830  
3831  	/* Determine which restart area to use. */
3832  	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3833  		goto use_first_page;
3834  
3835  	use_second_page = true;
3836  
3837  	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3838  		struct RECORD_PAGE_HDR *sp = NULL;
3839  		bool usa_error;
3840  
3841  		if (!read_log_page(log, page_size, &sp, &usa_error) &&
3842  		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3843  			use_second_page = false;
3844  		}
3845  		kfree(sp);
3846  	}
3847  
3848  	if (use_second_page) {
3849  		kfree(rst_info.r_page);
3850  		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3851  		rst_info2.r_page = NULL;
3852  	}
3853  
3854  use_first_page:
3855  	kfree(rst_info2.r_page);
3856  
3857  check_restart_area:
3858  	/*
3859  	 * If the restart area is at offset 0, we want
3860  	 * to write the second restart area first.
3861  	 */
3862  	log->init_ra = !!rst_info.vbo;
3863  
3864  	/* If we have a valid page then grab a pointer to the restart area. */
3865  	ra2 = rst_info.valid_page ?
3866  		      Add2Ptr(rst_info.r_page,
3867  			      le16_to_cpu(rst_info.r_page->ra_off)) :
3868  		      NULL;
3869  
3870  	if (rst_info.chkdsk_was_run ||
3871  	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3872  		bool wrapped = false;
3873  		bool use_multi_page = false;
3874  		u32 open_log_count;
3875  
3876  		/* Do some checks based on whether we have a valid log page. */
3877  		if (!rst_info.valid_page) {
3878  			open_log_count = get_random_u32();
3879  			goto init_log_instance;
3880  		}
3881  		open_log_count = le32_to_cpu(ra2->open_log_count);
3882  
3883  		/*
3884  		 * If the restart page size isn't changing then we want to
3885  		 * check how much work we need to do.
3886  		 */
3887  		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3888  			goto init_log_instance;
3889  
3890  init_log_instance:
3891  		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3892  
3893  		log_create(log, l_size, rst_info.last_lsn, open_log_count,
3894  			   wrapped, use_multi_page);
3895  
3896  		ra = log_create_ra(log);
3897  		if (!ra) {
3898  			err = -ENOMEM;
3899  			goto out;
3900  		}
3901  		log->ra = ra;
3902  
3903  		/* Put the restart areas and initialize
3904  		 * the log file as required.
3905  		 */
3906  		goto process_log;
3907  	}
3908  
3909  	if (!ra2) {
3910  		err = -EINVAL;
3911  		goto out;
3912  	}
3913  
3914  	/*
3915  	 * If the log page or the system page sizes have changed, we can't
3916  	 * use the log file. We must use the system page size instead of the
3917  	 * default size if there is not a clean shutdown.
3918  	 */
3919  	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3920  	if (page_size != t32) {
3921  		l_size = orig_file_size;
3922  		page_size =
3923  			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3924  	}
3925  
3926  	if (page_size != t32 ||
3927  	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3928  		err = -EINVAL;
3929  		goto out;
3930  	}
3931  
3932  	/* If the file size has shrunk then we won't mount it. */
3933  	if (l_size < le64_to_cpu(ra2->l_size)) {
3934  		err = -EINVAL;
3935  		goto out;
3936  	}
3937  
3938  	log_init_pg_hdr(log, page_size, page_size,
3939  			le16_to_cpu(rst_info.r_page->major_ver),
3940  			le16_to_cpu(rst_info.r_page->minor_ver));
3941  
3942  	log->l_size = le64_to_cpu(ra2->l_size);
3943  	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3944  	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3945  	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3946  	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3947  	log->seq_num = log->last_lsn >> log->file_data_bits;
3948  	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3949  	log->restart_size = log->sys_page_size - log->ra_off;
3950  	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3951  	log->ra_size = le16_to_cpu(ra2->ra_len);
3952  	log->data_off = le16_to_cpu(ra2->data_off);
3953  	log->data_size = log->page_size - log->data_off;
3954  	log->reserved = log->data_size - log->record_header_len;
3955  
3956  	vbo = lsn_to_vbo(log, log->last_lsn);
3957  
3958  	if (vbo < log->first_page) {
3959  		/* This is a pseudo lsn. */
3960  		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3961  		log->next_page = log->first_page;
3962  		goto find_oldest;
3963  	}
3964  
3965  	/* Find the end of this log record. */
3966  	off = final_log_off(log, log->last_lsn,
3967  			    le32_to_cpu(ra2->last_lsn_data_len));
3968  
3969  	/* If we wrapped the file then increment the sequence number. */
3970  	if (off <= vbo) {
3971  		log->seq_num += 1;
3972  		log->l_flags |= NTFSLOG_WRAPPED;
3973  	}
3974  
3975  	/* Now compute the next log page to use. */
3976  	vbo &= ~log->sys_page_mask;
3977  	tail = log->page_size - (off & log->page_mask) - 1;
3978  
3979  	/*
3980  	 *If we can fit another log record on the page,
3981  	 * move back a page the log file.
3982  	 */
3983  	if (tail >= log->record_header_len) {
3984  		log->l_flags |= NTFSLOG_REUSE_TAIL;
3985  		log->next_page = vbo;
3986  	} else {
3987  		log->next_page = next_page_off(log, vbo);
3988  	}
3989  
3990  find_oldest:
3991  	/*
3992  	 * Find the oldest client lsn. Use the last
3993  	 * flushed lsn as a starting point.
3994  	 */
3995  	log->oldest_lsn = log->last_lsn;
3996  	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3997  			  ra2->client_idx[1], &log->oldest_lsn);
3998  	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3999  
4000  	if (log->oldest_lsn_off < log->first_page)
4001  		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4002  
4003  	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4004  		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4005  
4006  	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4007  	log->total_avail_pages = log->l_size - log->first_page;
4008  	log->total_avail = log->total_avail_pages >> log->page_bits;
4009  	log->max_current_avail = log->total_avail * log->reserved;
4010  	log->total_avail = log->total_avail * log->data_size;
4011  
4012  	log->current_avail = current_log_avail(log);
4013  
4014  	ra = kzalloc(log->restart_size, GFP_NOFS);
4015  	if (!ra) {
4016  		err = -ENOMEM;
4017  		goto out;
4018  	}
4019  	log->ra = ra;
4020  
4021  	t16 = le16_to_cpu(ra2->client_off);
4022  	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4023  		memcpy(ra, ra2, log->ra_size);
4024  	} else {
4025  		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4026  		memcpy(ra->clients, Add2Ptr(ra2, t16),
4027  		       le16_to_cpu(ra2->ra_len) - t16);
4028  
4029  		log->current_openlog_count = get_random_u32();
4030  		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4031  		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4032  			       sizeof(struct CLIENT_REC);
4033  		ra->client_off =
4034  			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4035  		ra->ra_len = cpu_to_le16(log->ra_size);
4036  	}
4037  
4038  	le32_add_cpu(&ra->open_log_count, 1);
4039  
4040  	/* Now we need to walk through looking for the last lsn. */
4041  	err = last_log_lsn(log);
4042  	if (err)
4043  		goto out;
4044  
4045  	log->current_avail = current_log_avail(log);
4046  
4047  	/* Remember which restart area to write first. */
4048  	log->init_ra = rst_info.vbo;
4049  
4050  process_log:
4051  	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4052  	switch ((log->major_ver << 16) + log->minor_ver) {
4053  	case 0x10000:
4054  	case 0x10001:
4055  	case 0x20000:
4056  		break;
4057  	default:
4058  		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4059  			  log->major_ver, log->minor_ver);
4060  		err = -EOPNOTSUPP;
4061  		log->set_dirty = true;
4062  		goto out;
4063  	}
4064  
4065  	/* One client "NTFS" per logfile. */
4066  	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4067  
4068  	for (client = ra->client_idx[1];; client = cr->next_client) {
4069  		if (client == LFS_NO_CLIENT_LE) {
4070  			/* Insert "NTFS" client LogFile. */
4071  			client = ra->client_idx[0];
4072  			if (client == LFS_NO_CLIENT_LE) {
4073  				err = -EINVAL;
4074  				goto out;
4075  			}
4076  
4077  			t16 = le16_to_cpu(client);
4078  			cr = ca + t16;
4079  
4080  			remove_client(ca, cr, &ra->client_idx[0]);
4081  
4082  			cr->restart_lsn = 0;
4083  			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4084  			cr->name_bytes = cpu_to_le32(8);
4085  			cr->name[0] = cpu_to_le16('N');
4086  			cr->name[1] = cpu_to_le16('T');
4087  			cr->name[2] = cpu_to_le16('F');
4088  			cr->name[3] = cpu_to_le16('S');
4089  
4090  			add_client(ca, t16, &ra->client_idx[1]);
4091  			break;
4092  		}
4093  
4094  		cr = ca + le16_to_cpu(client);
4095  
4096  		if (cpu_to_le32(8) == cr->name_bytes &&
4097  		    cpu_to_le16('N') == cr->name[0] &&
4098  		    cpu_to_le16('T') == cr->name[1] &&
4099  		    cpu_to_le16('F') == cr->name[2] &&
4100  		    cpu_to_le16('S') == cr->name[3])
4101  			break;
4102  	}
4103  
4104  	/* Update the client handle with the client block information. */
4105  	log->client_id.seq_num = cr->seq_num;
4106  	log->client_id.client_idx = client;
4107  
4108  	err = read_rst_area(log, &rst, &ra_lsn);
4109  	if (err)
4110  		goto out;
4111  
4112  	if (!rst)
4113  		goto out;
4114  
4115  	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4116  
4117  	checkpt_lsn = le64_to_cpu(rst->check_point_start);
4118  	if (!checkpt_lsn)
4119  		checkpt_lsn = ra_lsn;
4120  
4121  	/* Allocate and Read the Transaction Table. */
4122  	if (!rst->transact_table_len)
4123  		goto check_dirty_page_table;
4124  
4125  	t64 = le64_to_cpu(rst->transact_table_lsn);
4126  	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4127  	if (err)
4128  		goto out;
4129  
4130  	lrh = lcb->log_rec;
4131  	frh = lcb->lrh;
4132  	rec_len = le32_to_cpu(frh->client_data_len);
4133  
4134  	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4135  			   bytes_per_attr_entry)) {
4136  		err = -EINVAL;
4137  		goto out;
4138  	}
4139  
4140  	t16 = le16_to_cpu(lrh->redo_off);
4141  
4142  	rt = Add2Ptr(lrh, t16);
4143  	t32 = rec_len - t16;
4144  
4145  	/* Now check that this is a valid restart table. */
4146  	if (!check_rstbl(rt, t32)) {
4147  		err = -EINVAL;
4148  		goto out;
4149  	}
4150  
4151  	trtbl = kmemdup(rt, t32, GFP_NOFS);
4152  	if (!trtbl) {
4153  		err = -ENOMEM;
4154  		goto out;
4155  	}
4156  
4157  	lcb_put(lcb);
4158  	lcb = NULL;
4159  
4160  check_dirty_page_table:
4161  	/* The next record back should be the Dirty Pages Table. */
4162  	if (!rst->dirty_pages_len)
4163  		goto check_attribute_names;
4164  
4165  	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4166  	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4167  	if (err)
4168  		goto out;
4169  
4170  	lrh = lcb->log_rec;
4171  	frh = lcb->lrh;
4172  	rec_len = le32_to_cpu(frh->client_data_len);
4173  
4174  	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4175  			   bytes_per_attr_entry)) {
4176  		err = -EINVAL;
4177  		goto out;
4178  	}
4179  
4180  	t16 = le16_to_cpu(lrh->redo_off);
4181  
4182  	rt = Add2Ptr(lrh, t16);
4183  	t32 = rec_len - t16;
4184  
4185  	/* Now check that this is a valid restart table. */
4186  	if (!check_rstbl(rt, t32)) {
4187  		err = -EINVAL;
4188  		goto out;
4189  	}
4190  
4191  	dptbl = kmemdup(rt, t32, GFP_NOFS);
4192  	if (!dptbl) {
4193  		err = -ENOMEM;
4194  		goto out;
4195  	}
4196  
4197  	/* Convert Ra version '0' into version '1'. */
4198  	if (rst->major_ver)
4199  		goto end_conv_1;
4200  
4201  	dp = NULL;
4202  	while ((dp = enum_rstbl(dptbl, dp))) {
4203  		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4204  		// NOTE: Danger. Check for of boundary.
4205  		memmove(&dp->vcn, &dp0->vcn_low,
4206  			2 * sizeof(u64) +
4207  				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4208  	}
4209  
4210  end_conv_1:
4211  	lcb_put(lcb);
4212  	lcb = NULL;
4213  
4214  	/*
4215  	 * Go through the table and remove the duplicates,
4216  	 * remembering the oldest lsn values.
4217  	 */
4218  	if (sbi->cluster_size <= log->page_size)
4219  		goto trace_dp_table;
4220  
4221  	dp = NULL;
4222  	while ((dp = enum_rstbl(dptbl, dp))) {
4223  		struct DIR_PAGE_ENTRY *next = dp;
4224  
4225  		while ((next = enum_rstbl(dptbl, next))) {
4226  			if (next->target_attr == dp->target_attr &&
4227  			    next->vcn == dp->vcn) {
4228  				if (le64_to_cpu(next->oldest_lsn) <
4229  				    le64_to_cpu(dp->oldest_lsn)) {
4230  					dp->oldest_lsn = next->oldest_lsn;
4231  				}
4232  
4233  				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4234  			}
4235  		}
4236  	}
4237  trace_dp_table:
4238  check_attribute_names:
4239  	/* The next record should be the Attribute Names. */
4240  	if (!rst->attr_names_len)
4241  		goto check_attr_table;
4242  
4243  	t64 = le64_to_cpu(rst->attr_names_lsn);
4244  	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4245  	if (err)
4246  		goto out;
4247  
4248  	lrh = lcb->log_rec;
4249  	frh = lcb->lrh;
4250  	rec_len = le32_to_cpu(frh->client_data_len);
4251  
4252  	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4253  			   bytes_per_attr_entry)) {
4254  		err = -EINVAL;
4255  		goto out;
4256  	}
4257  
4258  	t32 = lrh_length(lrh);
4259  	rec_len -= t32;
4260  
4261  	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4262  	if (!attr_names) {
4263  		err = -ENOMEM;
4264  		goto out;
4265  	}
4266  
4267  	lcb_put(lcb);
4268  	lcb = NULL;
4269  
4270  check_attr_table:
4271  	/* The next record should be the attribute Table. */
4272  	if (!rst->open_attr_len)
4273  		goto check_attribute_names2;
4274  
4275  	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4276  	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4277  	if (err)
4278  		goto out;
4279  
4280  	lrh = lcb->log_rec;
4281  	frh = lcb->lrh;
4282  	rec_len = le32_to_cpu(frh->client_data_len);
4283  
4284  	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4285  			   bytes_per_attr_entry)) {
4286  		err = -EINVAL;
4287  		goto out;
4288  	}
4289  
4290  	t16 = le16_to_cpu(lrh->redo_off);
4291  
4292  	rt = Add2Ptr(lrh, t16);
4293  	t32 = rec_len - t16;
4294  
4295  	if (!check_rstbl(rt, t32)) {
4296  		err = -EINVAL;
4297  		goto out;
4298  	}
4299  
4300  	oatbl = kmemdup(rt, t32, GFP_NOFS);
4301  	if (!oatbl) {
4302  		err = -ENOMEM;
4303  		goto out;
4304  	}
4305  
4306  	log->open_attr_tbl = oatbl;
4307  
4308  	/* Clear all of the Attr pointers. */
4309  	oe = NULL;
4310  	while ((oe = enum_rstbl(oatbl, oe))) {
4311  		if (!rst->major_ver) {
4312  			struct OPEN_ATTR_ENRTY_32 oe0;
4313  
4314  			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4315  			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4316  
4317  			oe->bytes_per_index = oe0.bytes_per_index;
4318  			oe->type = oe0.type;
4319  			oe->is_dirty_pages = oe0.is_dirty_pages;
4320  			oe->name_len = 0;
4321  			oe->ref = oe0.ref;
4322  			oe->open_record_lsn = oe0.open_record_lsn;
4323  		}
4324  
4325  		oe->is_attr_name = 0;
4326  		oe->ptr = NULL;
4327  	}
4328  
4329  	lcb_put(lcb);
4330  	lcb = NULL;
4331  
4332  check_attribute_names2:
4333  	if (!rst->attr_names_len)
4334  		goto trace_attribute_table;
4335  
4336  	ane = attr_names;
4337  	if (!oatbl)
4338  		goto trace_attribute_table;
4339  	while (ane->off) {
4340  		/* TODO: Clear table on exit! */
4341  		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4342  		t16 = le16_to_cpu(ane->name_bytes);
4343  		oe->name_len = t16 / sizeof(short);
4344  		oe->ptr = ane->name;
4345  		oe->is_attr_name = 2;
4346  		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4347  	}
4348  
4349  trace_attribute_table:
4350  	/*
4351  	 * If the checkpt_lsn is zero, then this is a freshly
4352  	 * formatted disk and we have no work to do.
4353  	 */
4354  	if (!checkpt_lsn) {
4355  		err = 0;
4356  		goto out;
4357  	}
4358  
4359  	if (!oatbl) {
4360  		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4361  		if (!oatbl) {
4362  			err = -ENOMEM;
4363  			goto out;
4364  		}
4365  	}
4366  
4367  	log->open_attr_tbl = oatbl;
4368  
4369  	/* Start the analysis pass from the Checkpoint lsn. */
4370  	rec_lsn = checkpt_lsn;
4371  
4372  	/* Read the first lsn. */
4373  	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4374  	if (err)
4375  		goto out;
4376  
4377  	/* Loop to read all subsequent records to the end of the log file. */
4378  next_log_record_analyze:
4379  	err = read_next_log_rec(log, lcb, &rec_lsn);
4380  	if (err)
4381  		goto out;
4382  
4383  	if (!rec_lsn)
4384  		goto end_log_records_enumerate;
4385  
4386  	frh = lcb->lrh;
4387  	transact_id = le32_to_cpu(frh->transact_id);
4388  	rec_len = le32_to_cpu(frh->client_data_len);
4389  	lrh = lcb->log_rec;
4390  
4391  	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4392  		err = -EINVAL;
4393  		goto out;
4394  	}
4395  
4396  	/*
4397  	 * The first lsn after the previous lsn remembered
4398  	 * the checkpoint is the first candidate for the rlsn.
4399  	 */
4400  	if (!rlsn)
4401  		rlsn = rec_lsn;
4402  
4403  	if (LfsClientRecord != frh->record_type)
4404  		goto next_log_record_analyze;
4405  
4406  	/*
4407  	 * Now update the Transaction Table for this transaction. If there
4408  	 * is no entry present or it is unallocated we allocate the entry.
4409  	 */
4410  	if (!trtbl) {
4411  		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4412  				    INITIAL_NUMBER_TRANSACTIONS);
4413  		if (!trtbl) {
4414  			err = -ENOMEM;
4415  			goto out;
4416  		}
4417  	}
4418  
4419  	tr = Add2Ptr(trtbl, transact_id);
4420  
4421  	if (transact_id >= bytes_per_rt(trtbl) ||
4422  	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4423  		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4424  		if (!tr) {
4425  			err = -ENOMEM;
4426  			goto out;
4427  		}
4428  		tr->transact_state = TransactionActive;
4429  		tr->first_lsn = cpu_to_le64(rec_lsn);
4430  	}
4431  
4432  	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4433  
4434  	/*
4435  	 * If this is a compensation log record, then change
4436  	 * the undo_next_lsn to be the undo_next_lsn of this record.
4437  	 */
4438  	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4439  		tr->undo_next_lsn = frh->client_undo_next_lsn;
4440  
4441  	/* Dispatch to handle log record depending on type. */
4442  	switch (le16_to_cpu(lrh->redo_op)) {
4443  	case InitializeFileRecordSegment:
4444  	case DeallocateFileRecordSegment:
4445  	case WriteEndOfFileRecordSegment:
4446  	case CreateAttribute:
4447  	case DeleteAttribute:
4448  	case UpdateResidentValue:
4449  	case UpdateNonresidentValue:
4450  	case UpdateMappingPairs:
4451  	case SetNewAttributeSizes:
4452  	case AddIndexEntryRoot:
4453  	case DeleteIndexEntryRoot:
4454  	case AddIndexEntryAllocation:
4455  	case DeleteIndexEntryAllocation:
4456  	case WriteEndOfIndexBuffer:
4457  	case SetIndexEntryVcnRoot:
4458  	case SetIndexEntryVcnAllocation:
4459  	case UpdateFileNameRoot:
4460  	case UpdateFileNameAllocation:
4461  	case SetBitsInNonresidentBitMap:
4462  	case ClearBitsInNonresidentBitMap:
4463  	case UpdateRecordDataRoot:
4464  	case UpdateRecordDataAllocation:
4465  	case ZeroEndOfFileRecord:
4466  		t16 = le16_to_cpu(lrh->target_attr);
4467  		t64 = le64_to_cpu(lrh->target_vcn);
4468  		dp = find_dp(dptbl, t16, t64);
4469  
4470  		if (dp)
4471  			goto copy_lcns;
4472  
4473  		/*
4474  		 * Calculate the number of clusters per page the system
4475  		 * which wrote the checkpoint, possibly creating the table.
4476  		 */
4477  		if (dptbl) {
4478  			t32 = (le16_to_cpu(dptbl->size) -
4479  			       sizeof(struct DIR_PAGE_ENTRY)) /
4480  			      sizeof(u64);
4481  		} else {
4482  			t32 = log->clst_per_page;
4483  			kfree(dptbl);
4484  			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4485  					    32);
4486  			if (!dptbl) {
4487  				err = -ENOMEM;
4488  				goto out;
4489  			}
4490  		}
4491  
4492  		dp = alloc_rsttbl_idx(&dptbl);
4493  		if (!dp) {
4494  			err = -ENOMEM;
4495  			goto out;
4496  		}
4497  		dp->target_attr = cpu_to_le32(t16);
4498  		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4499  		dp->lcns_follow = cpu_to_le32(t32);
4500  		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4501  		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4502  
4503  copy_lcns:
4504  		/*
4505  		 * Copy the Lcns from the log record into the Dirty Page Entry.
4506  		 * TODO: For different page size support, must somehow make
4507  		 * whole routine a loop, case Lcns do not fit below.
4508  		 */
4509  		t16 = le16_to_cpu(lrh->lcns_follow);
4510  		for (i = 0; i < t16; i++) {
4511  			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4512  					    le64_to_cpu(dp->vcn));
4513  			dp->page_lcns[j + i] = lrh->page_lcns[i];
4514  		}
4515  
4516  		goto next_log_record_analyze;
4517  
4518  	case DeleteDirtyClusters: {
4519  		u32 range_count =
4520  			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4521  		const struct LCN_RANGE *r =
4522  			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4523  
4524  		/* Loop through all of the Lcn ranges this log record. */
4525  		for (i = 0; i < range_count; i++, r++) {
4526  			u64 lcn0 = le64_to_cpu(r->lcn);
4527  			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4528  
4529  			dp = NULL;
4530  			while ((dp = enum_rstbl(dptbl, dp))) {
4531  				u32 j;
4532  
4533  				t32 = le32_to_cpu(dp->lcns_follow);
4534  				for (j = 0; j < t32; j++) {
4535  					t64 = le64_to_cpu(dp->page_lcns[j]);
4536  					if (t64 >= lcn0 && t64 <= lcn_e)
4537  						dp->page_lcns[j] = 0;
4538  				}
4539  			}
4540  		}
4541  		goto next_log_record_analyze;
4542  		;
4543  	}
4544  
4545  	case OpenNonresidentAttribute:
4546  		t16 = le16_to_cpu(lrh->target_attr);
4547  		if (t16 >= bytes_per_rt(oatbl)) {
4548  			/*
4549  			 * Compute how big the table needs to be.
4550  			 * Add 10 extra entries for some cushion.
4551  			 */
4552  			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4553  
4554  			new_e += 10 - le16_to_cpu(oatbl->used);
4555  
4556  			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4557  			log->open_attr_tbl = oatbl;
4558  			if (!oatbl) {
4559  				err = -ENOMEM;
4560  				goto out;
4561  			}
4562  		}
4563  
4564  		/* Point to the entry being opened. */
4565  		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4566  		log->open_attr_tbl = oatbl;
4567  		if (!oe) {
4568  			err = -ENOMEM;
4569  			goto out;
4570  		}
4571  
4572  		/* Initialize this entry from the log record. */
4573  		t16 = le16_to_cpu(lrh->redo_off);
4574  		if (!rst->major_ver) {
4575  			/* Convert version '0' into version '1'. */
4576  			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4577  
4578  			oe->bytes_per_index = oe0->bytes_per_index;
4579  			oe->type = oe0->type;
4580  			oe->is_dirty_pages = oe0->is_dirty_pages;
4581  			oe->name_len = 0; //oe0.name_len;
4582  			oe->ref = oe0->ref;
4583  			oe->open_record_lsn = oe0->open_record_lsn;
4584  		} else {
4585  			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4586  		}
4587  
4588  		t16 = le16_to_cpu(lrh->undo_len);
4589  		if (t16) {
4590  			oe->ptr = kmalloc(t16, GFP_NOFS);
4591  			if (!oe->ptr) {
4592  				err = -ENOMEM;
4593  				goto out;
4594  			}
4595  			oe->name_len = t16 / sizeof(short);
4596  			memcpy(oe->ptr,
4597  			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4598  			oe->is_attr_name = 1;
4599  		} else {
4600  			oe->ptr = NULL;
4601  			oe->is_attr_name = 0;
4602  		}
4603  
4604  		goto next_log_record_analyze;
4605  
4606  	case HotFix:
4607  		t16 = le16_to_cpu(lrh->target_attr);
4608  		t64 = le64_to_cpu(lrh->target_vcn);
4609  		dp = find_dp(dptbl, t16, t64);
4610  		if (dp) {
4611  			size_t j = le64_to_cpu(lrh->target_vcn) -
4612  				   le64_to_cpu(dp->vcn);
4613  			if (dp->page_lcns[j])
4614  				dp->page_lcns[j] = lrh->page_lcns[0];
4615  		}
4616  		goto next_log_record_analyze;
4617  
4618  	case EndTopLevelAction:
4619  		tr = Add2Ptr(trtbl, transact_id);
4620  		tr->prev_lsn = cpu_to_le64(rec_lsn);
4621  		tr->undo_next_lsn = frh->client_undo_next_lsn;
4622  		goto next_log_record_analyze;
4623  
4624  	case PrepareTransaction:
4625  		tr = Add2Ptr(trtbl, transact_id);
4626  		tr->transact_state = TransactionPrepared;
4627  		goto next_log_record_analyze;
4628  
4629  	case CommitTransaction:
4630  		tr = Add2Ptr(trtbl, transact_id);
4631  		tr->transact_state = TransactionCommitted;
4632  		goto next_log_record_analyze;
4633  
4634  	case ForgetTransaction:
4635  		free_rsttbl_idx(trtbl, transact_id);
4636  		goto next_log_record_analyze;
4637  
4638  	case Noop:
4639  	case OpenAttributeTableDump:
4640  	case AttributeNamesDump:
4641  	case DirtyPageTableDump:
4642  	case TransactionTableDump:
4643  		/* The following cases require no action the Analysis Pass. */
4644  		goto next_log_record_analyze;
4645  
4646  	default:
4647  		/*
4648  		 * All codes will be explicitly handled.
4649  		 * If we see a code we do not expect, then we are trouble.
4650  		 */
4651  		goto next_log_record_analyze;
4652  	}
4653  
4654  end_log_records_enumerate:
4655  	lcb_put(lcb);
4656  	lcb = NULL;
4657  
4658  	/*
4659  	 * Scan the Dirty Page Table and Transaction Table for
4660  	 * the lowest lsn, and return it as the Redo lsn.
4661  	 */
4662  	dp = NULL;
4663  	while ((dp = enum_rstbl(dptbl, dp))) {
4664  		t64 = le64_to_cpu(dp->oldest_lsn);
4665  		if (t64 && t64 < rlsn)
4666  			rlsn = t64;
4667  	}
4668  
4669  	tr = NULL;
4670  	while ((tr = enum_rstbl(trtbl, tr))) {
4671  		t64 = le64_to_cpu(tr->first_lsn);
4672  		if (t64 && t64 < rlsn)
4673  			rlsn = t64;
4674  	}
4675  
4676  	/*
4677  	 * Only proceed if the Dirty Page Table or Transaction
4678  	 * table are not empty.
4679  	 */
4680  	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4681  		goto end_reply;
4682  
4683  	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4684  	if (is_ro)
4685  		goto out;
4686  
4687  	/* Reopen all of the attributes with dirty pages. */
4688  	oe = NULL;
4689  next_open_attribute:
4690  
4691  	oe = enum_rstbl(oatbl, oe);
4692  	if (!oe) {
4693  		err = 0;
4694  		dp = NULL;
4695  		goto next_dirty_page;
4696  	}
4697  
4698  	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4699  	if (!oa) {
4700  		err = -ENOMEM;
4701  		goto out;
4702  	}
4703  
4704  	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4705  	if (IS_ERR(inode))
4706  		goto fake_attr;
4707  
4708  	if (is_bad_inode(inode)) {
4709  		iput(inode);
4710  fake_attr:
4711  		if (oa->ni) {
4712  			iput(&oa->ni->vfs_inode);
4713  			oa->ni = NULL;
4714  		}
4715  
4716  		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4717  					      oe->name_len, 0);
4718  		if (!attr) {
4719  			kfree(oa);
4720  			err = -ENOMEM;
4721  			goto out;
4722  		}
4723  		oa->attr = attr;
4724  		oa->run1 = &oa->run0;
4725  		goto final_oe;
4726  	}
4727  
4728  	ni_oe = ntfs_i(inode);
4729  	oa->ni = ni_oe;
4730  
4731  	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4732  			    NULL, NULL);
4733  
4734  	if (!attr)
4735  		goto fake_attr;
4736  
4737  	t32 = le32_to_cpu(attr->size);
4738  	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4739  	if (!oa->attr)
4740  		goto fake_attr;
4741  
4742  	if (!S_ISDIR(inode->i_mode)) {
4743  		if (attr->type == ATTR_DATA && !attr->name_len) {
4744  			oa->run1 = &ni_oe->file.run;
4745  			goto final_oe;
4746  		}
4747  	} else {
4748  		if (attr->type == ATTR_ALLOC &&
4749  		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4750  		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4751  			oa->run1 = &ni_oe->dir.alloc_run;
4752  			goto final_oe;
4753  		}
4754  	}
4755  
4756  	if (attr->non_res) {
4757  		u16 roff = le16_to_cpu(attr->nres.run_off);
4758  		CLST svcn = le64_to_cpu(attr->nres.svcn);
4759  
4760  		if (roff > t32) {
4761  			kfree(oa->attr);
4762  			oa->attr = NULL;
4763  			goto fake_attr;
4764  		}
4765  
4766  		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4767  				 le64_to_cpu(attr->nres.evcn), svcn,
4768  				 Add2Ptr(attr, roff), t32 - roff);
4769  		if (err < 0) {
4770  			kfree(oa->attr);
4771  			oa->attr = NULL;
4772  			goto fake_attr;
4773  		}
4774  		err = 0;
4775  	}
4776  	oa->run1 = &oa->run0;
4777  	attr = oa->attr;
4778  
4779  final_oe:
4780  	if (oe->is_attr_name == 1)
4781  		kfree(oe->ptr);
4782  	oe->is_attr_name = 0;
4783  	oe->ptr = oa;
4784  	oe->name_len = attr->name_len;
4785  
4786  	goto next_open_attribute;
4787  
4788  	/*
4789  	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4790  	 * Mapping that we have, and insert it into the appropriate run.
4791  	 */
4792  next_dirty_page:
4793  	dp = enum_rstbl(dptbl, dp);
4794  	if (!dp)
4795  		goto do_redo_1;
4796  
4797  	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4798  
4799  	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4800  		goto next_dirty_page;
4801  
4802  	oa = oe->ptr;
4803  	if (!oa)
4804  		goto next_dirty_page;
4805  
4806  	i = -1;
4807  next_dirty_page_vcn:
4808  	i += 1;
4809  	if (i >= le32_to_cpu(dp->lcns_follow))
4810  		goto next_dirty_page;
4811  
4812  	vcn = le64_to_cpu(dp->vcn) + i;
4813  	size = (vcn + 1) << sbi->cluster_bits;
4814  
4815  	if (!dp->page_lcns[i])
4816  		goto next_dirty_page_vcn;
4817  
4818  	rno = ino_get(&oe->ref);
4819  	if (rno <= MFT_REC_MIRR &&
4820  	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4821  	    oe->type == ATTR_DATA) {
4822  		goto next_dirty_page_vcn;
4823  	}
4824  
4825  	lcn = le64_to_cpu(dp->page_lcns[i]);
4826  
4827  	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4828  	     lcn0 != lcn) &&
4829  	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4830  		err = -ENOMEM;
4831  		goto out;
4832  	}
4833  	attr = oa->attr;
4834  	if (size > le64_to_cpu(attr->nres.alloc_size)) {
4835  		attr->nres.valid_size = attr->nres.data_size =
4836  			attr->nres.alloc_size = cpu_to_le64(size);
4837  	}
4838  	goto next_dirty_page_vcn;
4839  
4840  do_redo_1:
4841  	/*
4842  	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4843  	 * contents that they had immediately before the crash. If the dirty
4844  	 * page table is empty, then we can skip the entire Redo Pass.
4845  	 */
4846  	if (!dptbl || !dptbl->total)
4847  		goto do_undo_action;
4848  
4849  	rec_lsn = rlsn;
4850  
4851  	/*
4852  	 * Read the record at the Redo lsn, before falling
4853  	 * into common code to handle each record.
4854  	 */
4855  	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4856  	if (err)
4857  		goto out;
4858  
4859  	/*
4860  	 * Now loop to read all of our log records forwards, until
4861  	 * we hit the end of the file, cleaning up at the end.
4862  	 */
4863  do_action_next:
4864  	frh = lcb->lrh;
4865  
4866  	if (LfsClientRecord != frh->record_type)
4867  		goto read_next_log_do_action;
4868  
4869  	transact_id = le32_to_cpu(frh->transact_id);
4870  	rec_len = le32_to_cpu(frh->client_data_len);
4871  	lrh = lcb->log_rec;
4872  
4873  	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4874  		err = -EINVAL;
4875  		goto out;
4876  	}
4877  
4878  	/* Ignore log records that do not update pages. */
4879  	if (lrh->lcns_follow)
4880  		goto find_dirty_page;
4881  
4882  	goto read_next_log_do_action;
4883  
4884  find_dirty_page:
4885  	t16 = le16_to_cpu(lrh->target_attr);
4886  	t64 = le64_to_cpu(lrh->target_vcn);
4887  	dp = find_dp(dptbl, t16, t64);
4888  
4889  	if (!dp)
4890  		goto read_next_log_do_action;
4891  
4892  	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4893  		goto read_next_log_do_action;
4894  
4895  	t16 = le16_to_cpu(lrh->target_attr);
4896  	if (t16 >= bytes_per_rt(oatbl)) {
4897  		err = -EINVAL;
4898  		goto out;
4899  	}
4900  
4901  	oe = Add2Ptr(oatbl, t16);
4902  
4903  	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4904  		err = -EINVAL;
4905  		goto out;
4906  	}
4907  
4908  	oa = oe->ptr;
4909  
4910  	if (!oa) {
4911  		err = -EINVAL;
4912  		goto out;
4913  	}
4914  	attr = oa->attr;
4915  
4916  	vcn = le64_to_cpu(lrh->target_vcn);
4917  
4918  	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4919  	    lcn == SPARSE_LCN) {
4920  		goto read_next_log_do_action;
4921  	}
4922  
4923  	/* Point to the Redo data and get its length. */
4924  	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4925  	dlen = le16_to_cpu(lrh->redo_len);
4926  
4927  	/* Shorten length by any Lcns which were deleted. */
4928  	saved_len = dlen;
4929  
4930  	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4931  		size_t j;
4932  		u32 alen, voff;
4933  
4934  		voff = le16_to_cpu(lrh->record_off) +
4935  		       le16_to_cpu(lrh->attr_off);
4936  		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4937  
4938  		/* If the Vcn question is allocated, we can just get out. */
4939  		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4940  		if (dp->page_lcns[j + i - 1])
4941  			break;
4942  
4943  		if (!saved_len)
4944  			saved_len = 1;
4945  
4946  		/*
4947  		 * Calculate the allocated space left relative to the
4948  		 * log record Vcn, after removing this unallocated Vcn.
4949  		 */
4950  		alen = (i - 1) << sbi->cluster_bits;
4951  
4952  		/*
4953  		 * If the update described this log record goes beyond
4954  		 * the allocated space, then we will have to reduce the length.
4955  		 */
4956  		if (voff >= alen)
4957  			dlen = 0;
4958  		else if (voff + dlen > alen)
4959  			dlen = alen - voff;
4960  	}
4961  
4962  	/*
4963  	 * If the resulting dlen from above is now zero,
4964  	 * we can skip this log record.
4965  	 */
4966  	if (!dlen && saved_len)
4967  		goto read_next_log_do_action;
4968  
4969  	t16 = le16_to_cpu(lrh->redo_op);
4970  	if (can_skip_action(t16))
4971  		goto read_next_log_do_action;
4972  
4973  	/* Apply the Redo operation a common routine. */
4974  	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4975  	if (err)
4976  		goto out;
4977  
4978  	/* Keep reading and looping back until end of file. */
4979  read_next_log_do_action:
4980  	err = read_next_log_rec(log, lcb, &rec_lsn);
4981  	if (!err && rec_lsn)
4982  		goto do_action_next;
4983  
4984  	lcb_put(lcb);
4985  	lcb = NULL;
4986  
4987  do_undo_action:
4988  	/* Scan Transaction Table. */
4989  	tr = NULL;
4990  transaction_table_next:
4991  	tr = enum_rstbl(trtbl, tr);
4992  	if (!tr)
4993  		goto undo_action_done;
4994  
4995  	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4996  		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4997  		goto transaction_table_next;
4998  	}
4999  
5000  	log->transaction_id = PtrOffset(trtbl, tr);
5001  	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5002  
5003  	/*
5004  	 * We only have to do anything if the transaction has
5005  	 * something its undo_next_lsn field.
5006  	 */
5007  	if (!undo_next_lsn)
5008  		goto commit_undo;
5009  
5010  	/* Read the first record to be undone by this transaction. */
5011  	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5012  	if (err)
5013  		goto out;
5014  
5015  	/*
5016  	 * Now loop to read all of our log records forwards,
5017  	 * until we hit the end of the file, cleaning up at the end.
5018  	 */
5019  undo_action_next:
5020  
5021  	lrh = lcb->log_rec;
5022  	frh = lcb->lrh;
5023  	transact_id = le32_to_cpu(frh->transact_id);
5024  	rec_len = le32_to_cpu(frh->client_data_len);
5025  
5026  	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5027  		err = -EINVAL;
5028  		goto out;
5029  	}
5030  
5031  	if (lrh->undo_op == cpu_to_le16(Noop))
5032  		goto read_next_log_undo_action;
5033  
5034  	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5035  	oa = oe->ptr;
5036  
5037  	t16 = le16_to_cpu(lrh->lcns_follow);
5038  	if (!t16)
5039  		goto add_allocated_vcns;
5040  
5041  	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5042  				     &lcn, &clen, NULL);
5043  
5044  	/*
5045  	 * If the mapping isn't already the table or the  mapping
5046  	 * corresponds to a hole the mapping, we need to make sure
5047  	 * there is no partial page already memory.
5048  	 */
5049  	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5050  		goto add_allocated_vcns;
5051  
5052  	vcn = le64_to_cpu(lrh->target_vcn);
5053  	vcn &= ~(u64)(log->clst_per_page - 1);
5054  
5055  add_allocated_vcns:
5056  	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5057  	    size = (vcn + 1) << sbi->cluster_bits;
5058  	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5059  		attr = oa->attr;
5060  		if (!attr->non_res) {
5061  			if (size > le32_to_cpu(attr->res.data_size))
5062  				attr->res.data_size = cpu_to_le32(size);
5063  		} else {
5064  			if (size > le64_to_cpu(attr->nres.data_size))
5065  				attr->nres.valid_size = attr->nres.data_size =
5066  					attr->nres.alloc_size =
5067  						cpu_to_le64(size);
5068  		}
5069  	}
5070  
5071  	t16 = le16_to_cpu(lrh->undo_op);
5072  	if (can_skip_action(t16))
5073  		goto read_next_log_undo_action;
5074  
5075  	/* Point to the Redo data and get its length. */
5076  	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5077  	dlen = le16_to_cpu(lrh->undo_len);
5078  
5079  	/* It is time to apply the undo action. */
5080  	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5081  
5082  read_next_log_undo_action:
5083  	/*
5084  	 * Keep reading and looping back until we have read the
5085  	 * last record for this transaction.
5086  	 */
5087  	err = read_next_log_rec(log, lcb, &rec_lsn);
5088  	if (err)
5089  		goto out;
5090  
5091  	if (rec_lsn)
5092  		goto undo_action_next;
5093  
5094  	lcb_put(lcb);
5095  	lcb = NULL;
5096  
5097  commit_undo:
5098  	free_rsttbl_idx(trtbl, log->transaction_id);
5099  
5100  	log->transaction_id = 0;
5101  
5102  	goto transaction_table_next;
5103  
5104  undo_action_done:
5105  
5106  	ntfs_update_mftmirr(sbi, 0);
5107  
5108  	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5109  
5110  end_reply:
5111  
5112  	err = 0;
5113  	if (is_ro)
5114  		goto out;
5115  
5116  	rh = kzalloc(log->page_size, GFP_NOFS);
5117  	if (!rh) {
5118  		err = -ENOMEM;
5119  		goto out;
5120  	}
5121  
5122  	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5123  	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5124  	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5125  	rh->rhdr.fix_num = cpu_to_le16(t16);
5126  	rh->sys_page_size = cpu_to_le32(log->page_size);
5127  	rh->page_size = cpu_to_le32(log->page_size);
5128  
5129  	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5130  		    8);
5131  	rh->ra_off = cpu_to_le16(t16);
5132  	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5133  	rh->major_ver = cpu_to_le16(1); // 0x1C:
5134  
5135  	ra2 = Add2Ptr(rh, t16);
5136  	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5137  
5138  	ra2->client_idx[0] = 0;
5139  	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5140  	ra2->flags = cpu_to_le16(2);
5141  
5142  	le32_add_cpu(&ra2->open_log_count, 1);
5143  
5144  	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5145  
5146  	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5147  	if (!err)
5148  		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5149  					rh, log->page_size, 0);
5150  
5151  	kfree(rh);
5152  	if (err)
5153  		goto out;
5154  
5155  out:
5156  	kfree(rst);
5157  	if (lcb)
5158  		lcb_put(lcb);
5159  
5160  	/*
5161  	 * Scan the Open Attribute Table to close all of
5162  	 * the open attributes.
5163  	 */
5164  	oe = NULL;
5165  	while ((oe = enum_rstbl(oatbl, oe))) {
5166  		rno = ino_get(&oe->ref);
5167  
5168  		if (oe->is_attr_name == 1) {
5169  			kfree(oe->ptr);
5170  			oe->ptr = NULL;
5171  			continue;
5172  		}
5173  
5174  		if (oe->is_attr_name)
5175  			continue;
5176  
5177  		oa = oe->ptr;
5178  		if (!oa)
5179  			continue;
5180  
5181  		run_close(&oa->run0);
5182  		kfree(oa->attr);
5183  		if (oa->ni)
5184  			iput(&oa->ni->vfs_inode);
5185  		kfree(oa);
5186  	}
5187  
5188  	kfree(trtbl);
5189  	kfree(oatbl);
5190  	kfree(dptbl);
5191  	kfree(attr_names);
5192  	kfree(rst_info.r_page);
5193  
5194  	kfree(ra);
5195  	kfree(log->one_page_buf);
5196  
5197  	if (err)
5198  		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5199  
5200  	if (err == -EROFS)
5201  		err = 0;
5202  	else if (log->set_dirty)
5203  		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5204  
5205  	kfree(log);
5206  
5207  	return err;
5208  }
5209