1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/file.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/file.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * ext4 fs regular file handling primitives
17 *
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * (jj@sunsite.ms.mff.cuni.cz)
20 */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40 * Returns %true if the given DIO request should be attempted with DIO, or
41 * %false if it should fall back to buffered I/O.
42 *
43 * DIO isn't well specified; when it's unsupported (either due to the request
44 * being misaligned, or due to the file not supporting DIO at all), filesystems
45 * either fall back to buffered I/O or return EINVAL. For files that don't use
46 * any special features like encryption or verity, ext4 has traditionally
47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too.
48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49 *
50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51 * traditionally falls back to buffered I/O.
52 *
53 * This function implements the traditional ext4 behavior in all these cases.
54 */
ext4_should_use_dio(struct kiocb * iocb,struct iov_iter * iter)55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 struct inode *inode = file_inode(iocb->ki_filp);
58 u32 dio_align = ext4_dio_alignment(inode);
59
60 if (dio_align == 0)
61 return false;
62
63 if (dio_align == 1)
64 return true;
65
66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 ssize_t ret;
72 struct inode *inode = file_inode(iocb->ki_filp);
73
74 if (iocb->ki_flags & IOCB_NOWAIT) {
75 if (!inode_trylock_shared(inode))
76 return -EAGAIN;
77 } else {
78 inode_lock_shared(inode);
79 }
80
81 if (!ext4_should_use_dio(iocb, to)) {
82 inode_unlock_shared(inode);
83 /*
84 * Fallback to buffered I/O if the operation being performed on
85 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 * flag needs to be cleared here in order to ensure that the
87 * direct I/O path within generic_file_read_iter() is not
88 * taken.
89 */
90 iocb->ki_flags &= ~IOCB_DIRECT;
91 return generic_file_read_iter(iocb, to);
92 }
93
94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 inode_unlock_shared(inode);
96
97 file_accessed(iocb->ki_filp);
98 return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 struct inode *inode = file_inode(iocb->ki_filp);
105 ssize_t ret;
106
107 if (iocb->ki_flags & IOCB_NOWAIT) {
108 if (!inode_trylock_shared(inode))
109 return -EAGAIN;
110 } else {
111 inode_lock_shared(inode);
112 }
113 /*
114 * Recheck under inode lock - at this point we are sure it cannot
115 * change anymore
116 */
117 if (!IS_DAX(inode)) {
118 inode_unlock_shared(inode);
119 /* Fallback to buffered IO in case we cannot support DAX */
120 return generic_file_read_iter(iocb, to);
121 }
122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 inode_unlock_shared(inode);
124
125 file_accessed(iocb->ki_filp);
126 return ret;
127 }
128 #endif
129
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 struct inode *inode = file_inode(iocb->ki_filp);
133
134 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135 return -EIO;
136
137 if (!iov_iter_count(to))
138 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141 if (IS_DAX(inode))
142 return ext4_dax_read_iter(iocb, to);
143 #endif
144 if (iocb->ki_flags & IOCB_DIRECT)
145 return ext4_dio_read_iter(iocb, to);
146
147 return generic_file_read_iter(iocb, to);
148 }
149
ext4_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151 struct pipe_inode_info *pipe,
152 size_t len, unsigned int flags)
153 {
154 struct inode *inode = file_inode(in);
155
156 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157 return -EIO;
158 return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160
161 /*
162 * Called when an inode is released. Note that this is different
163 * from ext4_file_open: open gets called at every open, but release
164 * gets called only when /all/ the files are closed.
165 */
ext4_release_file(struct inode * inode,struct file * filp)166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169 ext4_alloc_da_blocks(inode);
170 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171 }
172 /* if we are the last writer on the inode, drop the block reservation */
173 if ((filp->f_mode & FMODE_WRITE) &&
174 (atomic_read(&inode->i_writecount) == 1) &&
175 !EXT4_I(inode)->i_reserved_data_blocks) {
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode, 0);
178 up_write(&EXT4_I(inode)->i_data_sem);
179 }
180 if (is_dx(inode) && filp->private_data)
181 ext4_htree_free_dir_info(filp->private_data);
182
183 return 0;
184 }
185
186 /*
187 * This tests whether the IO in question is block-aligned or not.
188 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189 * are converted to written only after the IO is complete. Until they are
190 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191 * it needs to zero out portions of the start and/or end block. If 2 AIO
192 * threads are at work on the same unwritten block, they must be synchronized
193 * or one thread will zero the other's data, causing corruption.
194 */
195 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198 struct super_block *sb = inode->i_sb;
199 unsigned long blockmask = sb->s_blocksize - 1;
200
201 if ((pos | iov_iter_alignment(from)) & blockmask)
202 return true;
203
204 return false;
205 }
206
207 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210 if (offset + len > i_size_read(inode) ||
211 offset + len > EXT4_I(inode)->i_disksize)
212 return true;
213 return false;
214 }
215
216 /* Is IO overwriting allocated or initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len,bool * unwritten)217 static bool ext4_overwrite_io(struct inode *inode,
218 loff_t pos, loff_t len, bool *unwritten)
219 {
220 struct ext4_map_blocks map;
221 unsigned int blkbits = inode->i_blkbits;
222 int err, blklen;
223
224 if (pos + len > i_size_read(inode))
225 return false;
226
227 map.m_lblk = pos >> blkbits;
228 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229 blklen = map.m_len;
230
231 err = ext4_map_blocks(NULL, inode, &map, 0);
232 if (err != blklen)
233 return false;
234 /*
235 * 'err==len' means that all of the blocks have been preallocated,
236 * regardless of whether they have been initialized or not. We need to
237 * check m_flags to distinguish the unwritten extents.
238 */
239 *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240 return true;
241 }
242
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244 struct iov_iter *from)
245 {
246 struct inode *inode = file_inode(iocb->ki_filp);
247 ssize_t ret;
248
249 if (unlikely(IS_IMMUTABLE(inode)))
250 return -EPERM;
251
252 ret = generic_write_checks(iocb, from);
253 if (ret <= 0)
254 return ret;
255
256 /*
257 * If we have encountered a bitmap-format file, the size limit
258 * is smaller than s_maxbytes, which is for extent-mapped files.
259 */
260 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262
263 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264 return -EFBIG;
265 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266 }
267
268 return iov_iter_count(from);
269 }
270
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273 ssize_t ret, count;
274
275 count = ext4_generic_write_checks(iocb, from);
276 if (count <= 0)
277 return count;
278
279 ret = file_modified(iocb->ki_filp);
280 if (ret)
281 return ret;
282 return count;
283 }
284
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286 struct iov_iter *from)
287 {
288 ssize_t ret;
289 struct inode *inode = file_inode(iocb->ki_filp);
290
291 if (iocb->ki_flags & IOCB_NOWAIT)
292 return -EOPNOTSUPP;
293
294 inode_lock(inode);
295 ret = ext4_write_checks(iocb, from);
296 if (ret <= 0)
297 goto out;
298
299 ret = generic_perform_write(iocb, from);
300
301 out:
302 inode_unlock(inode);
303 if (unlikely(ret <= 0))
304 return ret;
305 return generic_write_sync(iocb, ret);
306 }
307
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t written,size_t count)308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309 ssize_t written, size_t count)
310 {
311 handle_t *handle;
312 bool truncate = false;
313 u8 blkbits = inode->i_blkbits;
314 ext4_lblk_t written_blk, end_blk;
315 int ret;
316
317 /*
318 * Note that EXT4_I(inode)->i_disksize can get extended up to
319 * inode->i_size while the I/O was running due to writeback of delalloc
320 * blocks. But, the code in ext4_iomap_alloc() is careful to use
321 * zeroed/unwritten extents if this is possible; thus we won't leave
322 * uninitialized blocks in a file even if we didn't succeed in writing
323 * as much as we intended.
324 */
325 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
326 if (offset + count <= EXT4_I(inode)->i_disksize) {
327 /*
328 * We need to ensure that the inode is removed from the orphan
329 * list if it has been added prematurely, due to writeback of
330 * delalloc blocks.
331 */
332 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
333 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
334
335 if (IS_ERR(handle)) {
336 ext4_orphan_del(NULL, inode);
337 return PTR_ERR(handle);
338 }
339
340 ext4_orphan_del(handle, inode);
341 ext4_journal_stop(handle);
342 }
343
344 return written;
345 }
346
347 if (written < 0)
348 goto truncate;
349
350 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
351 if (IS_ERR(handle)) {
352 written = PTR_ERR(handle);
353 goto truncate;
354 }
355
356 if (ext4_update_inode_size(inode, offset + written)) {
357 ret = ext4_mark_inode_dirty(handle, inode);
358 if (unlikely(ret)) {
359 written = ret;
360 ext4_journal_stop(handle);
361 goto truncate;
362 }
363 }
364
365 /*
366 * We may need to truncate allocated but not written blocks beyond EOF.
367 */
368 written_blk = ALIGN(offset + written, 1 << blkbits);
369 end_blk = ALIGN(offset + count, 1 << blkbits);
370 if (written_blk < end_blk && ext4_can_truncate(inode))
371 truncate = true;
372
373 /*
374 * Remove the inode from the orphan list if it has been extended and
375 * everything went OK.
376 */
377 if (!truncate && inode->i_nlink)
378 ext4_orphan_del(handle, inode);
379 ext4_journal_stop(handle);
380
381 if (truncate) {
382 truncate:
383 ext4_truncate_failed_write(inode);
384 /*
385 * If the truncate operation failed early, then the inode may
386 * still be on the orphan list. In that case, we need to try
387 * remove the inode from the in-memory linked list.
388 */
389 if (inode->i_nlink)
390 ext4_orphan_del(NULL, inode);
391 }
392
393 return written;
394 }
395
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)396 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
397 int error, unsigned int flags)
398 {
399 loff_t pos = iocb->ki_pos;
400 struct inode *inode = file_inode(iocb->ki_filp);
401
402 if (error)
403 return error;
404
405 if (size && flags & IOMAP_DIO_UNWRITTEN) {
406 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
407 if (error < 0)
408 return error;
409 }
410 /*
411 * If we are extending the file, we have to update i_size here before
412 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
413 * buffered reads could zero out too much from page cache pages. Update
414 * of on-disk size will happen later in ext4_dio_write_iter() where
415 * we have enough information to also perform orphan list handling etc.
416 * Note that we perform all extending writes synchronously under
417 * i_rwsem held exclusively so i_size update is safe here in that case.
418 * If the write was not extending, we cannot see pos > i_size here
419 * because operations reducing i_size like truncate wait for all
420 * outstanding DIO before updating i_size.
421 */
422 pos += size;
423 if (pos > i_size_read(inode))
424 i_size_write(inode, pos);
425
426 return 0;
427 }
428
429 static const struct iomap_dio_ops ext4_dio_write_ops = {
430 .end_io = ext4_dio_write_end_io,
431 };
432
433 /*
434 * The intention here is to start with shared lock acquired then see if any
435 * condition requires an exclusive inode lock. If yes, then we restart the
436 * whole operation by releasing the shared lock and acquiring exclusive lock.
437 *
438 * - For unaligned_io we never take shared lock as it may cause data corruption
439 * when two unaligned IO tries to modify the same block e.g. while zeroing.
440 *
441 * - For extending writes case we don't take the shared lock, since it requires
442 * updating inode i_disksize and/or orphan handling with exclusive lock.
443 *
444 * - shared locking will only be true mostly with overwrites, including
445 * initialized blocks and unwritten blocks. For overwrite unwritten blocks
446 * we protect splitting extents by i_data_sem in ext4_inode_info, so we can
447 * also release exclusive i_rwsem lock.
448 *
449 * - Otherwise we will switch to exclusive i_rwsem lock.
450 */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend,bool * unwritten,int * dio_flags)451 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
452 bool *ilock_shared, bool *extend,
453 bool *unwritten, int *dio_flags)
454 {
455 struct file *file = iocb->ki_filp;
456 struct inode *inode = file_inode(file);
457 loff_t offset;
458 size_t count;
459 ssize_t ret;
460 bool overwrite, unaligned_io;
461
462 restart:
463 ret = ext4_generic_write_checks(iocb, from);
464 if (ret <= 0)
465 goto out;
466
467 offset = iocb->ki_pos;
468 count = ret;
469
470 unaligned_io = ext4_unaligned_io(inode, from, offset);
471 *extend = ext4_extending_io(inode, offset, count);
472 overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
473
474 /*
475 * Determine whether we need to upgrade to an exclusive lock. This is
476 * required to change security info in file_modified(), for extending
477 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
478 * extents (as partial block zeroing may be required).
479 *
480 * Note that unaligned writes are allowed under shared lock so long as
481 * they are pure overwrites. Otherwise, concurrent unaligned writes risk
482 * data corruption due to partial block zeroing in the dio layer, and so
483 * the I/O must occur exclusively.
484 */
485 if (*ilock_shared &&
486 ((!IS_NOSEC(inode) || *extend || !overwrite ||
487 (unaligned_io && *unwritten)))) {
488 if (iocb->ki_flags & IOCB_NOWAIT) {
489 ret = -EAGAIN;
490 goto out;
491 }
492 inode_unlock_shared(inode);
493 *ilock_shared = false;
494 inode_lock(inode);
495 goto restart;
496 }
497
498 /*
499 * Now that locking is settled, determine dio flags and exclusivity
500 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
501 * behavior already. The inode lock is already held exclusive if the
502 * write is non-overwrite or extending, so drain all outstanding dio and
503 * set the force wait dio flag.
504 */
505 if (!*ilock_shared && (unaligned_io || *extend)) {
506 if (iocb->ki_flags & IOCB_NOWAIT) {
507 ret = -EAGAIN;
508 goto out;
509 }
510 if (unaligned_io && (!overwrite || *unwritten))
511 inode_dio_wait(inode);
512 *dio_flags = IOMAP_DIO_FORCE_WAIT;
513 }
514
515 ret = file_modified(file);
516 if (ret < 0)
517 goto out;
518
519 return count;
520 out:
521 if (*ilock_shared)
522 inode_unlock_shared(inode);
523 else
524 inode_unlock(inode);
525 return ret;
526 }
527
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)528 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
529 {
530 ssize_t ret;
531 handle_t *handle;
532 struct inode *inode = file_inode(iocb->ki_filp);
533 loff_t offset = iocb->ki_pos;
534 size_t count = iov_iter_count(from);
535 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
536 bool extend = false, unwritten = false;
537 bool ilock_shared = true;
538 int dio_flags = 0;
539
540 /*
541 * Quick check here without any i_rwsem lock to see if it is extending
542 * IO. A more reliable check is done in ext4_dio_write_checks() with
543 * proper locking in place.
544 */
545 if (offset + count > i_size_read(inode))
546 ilock_shared = false;
547
548 if (iocb->ki_flags & IOCB_NOWAIT) {
549 if (ilock_shared) {
550 if (!inode_trylock_shared(inode))
551 return -EAGAIN;
552 } else {
553 if (!inode_trylock(inode))
554 return -EAGAIN;
555 }
556 } else {
557 if (ilock_shared)
558 inode_lock_shared(inode);
559 else
560 inode_lock(inode);
561 }
562
563 /* Fallback to buffered I/O if the inode does not support direct I/O. */
564 if (!ext4_should_use_dio(iocb, from)) {
565 if (ilock_shared)
566 inode_unlock_shared(inode);
567 else
568 inode_unlock(inode);
569 return ext4_buffered_write_iter(iocb, from);
570 }
571
572 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
573 &unwritten, &dio_flags);
574 if (ret <= 0)
575 return ret;
576
577 /*
578 * Make sure inline data cannot be created anymore since we are going
579 * to allocate blocks for DIO. We know the inode does not have any
580 * inline data now because ext4_dio_supported() checked for that.
581 */
582 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
583
584 offset = iocb->ki_pos;
585 count = ret;
586
587 if (extend) {
588 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
589 if (IS_ERR(handle)) {
590 ret = PTR_ERR(handle);
591 goto out;
592 }
593
594 ret = ext4_orphan_add(handle, inode);
595 if (ret) {
596 ext4_journal_stop(handle);
597 goto out;
598 }
599
600 ext4_journal_stop(handle);
601 }
602
603 if (ilock_shared && !unwritten)
604 iomap_ops = &ext4_iomap_overwrite_ops;
605 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
606 dio_flags, NULL, 0);
607 if (ret == -ENOTBLK)
608 ret = 0;
609
610 if (extend)
611 ret = ext4_handle_inode_extension(inode, offset, ret, count);
612
613 out:
614 if (ilock_shared)
615 inode_unlock_shared(inode);
616 else
617 inode_unlock(inode);
618
619 if (ret >= 0 && iov_iter_count(from)) {
620 ssize_t err;
621 loff_t endbyte;
622
623 offset = iocb->ki_pos;
624 err = ext4_buffered_write_iter(iocb, from);
625 if (err < 0)
626 return err;
627
628 /*
629 * We need to ensure that the pages within the page cache for
630 * the range covered by this I/O are written to disk and
631 * invalidated. This is in attempt to preserve the expected
632 * direct I/O semantics in the case we fallback to buffered I/O
633 * to complete off the I/O request.
634 */
635 ret += err;
636 endbyte = offset + err - 1;
637 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
638 offset, endbyte);
639 if (!err)
640 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
641 offset >> PAGE_SHIFT,
642 endbyte >> PAGE_SHIFT);
643 }
644
645 return ret;
646 }
647
648 #ifdef CONFIG_FS_DAX
649 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)650 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
651 {
652 ssize_t ret;
653 size_t count;
654 loff_t offset;
655 handle_t *handle;
656 bool extend = false;
657 struct inode *inode = file_inode(iocb->ki_filp);
658
659 if (iocb->ki_flags & IOCB_NOWAIT) {
660 if (!inode_trylock(inode))
661 return -EAGAIN;
662 } else {
663 inode_lock(inode);
664 }
665
666 ret = ext4_write_checks(iocb, from);
667 if (ret <= 0)
668 goto out;
669
670 offset = iocb->ki_pos;
671 count = iov_iter_count(from);
672
673 if (offset + count > EXT4_I(inode)->i_disksize) {
674 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
675 if (IS_ERR(handle)) {
676 ret = PTR_ERR(handle);
677 goto out;
678 }
679
680 ret = ext4_orphan_add(handle, inode);
681 if (ret) {
682 ext4_journal_stop(handle);
683 goto out;
684 }
685
686 extend = true;
687 ext4_journal_stop(handle);
688 }
689
690 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
691
692 if (extend)
693 ret = ext4_handle_inode_extension(inode, offset, ret, count);
694 out:
695 inode_unlock(inode);
696 if (ret > 0)
697 ret = generic_write_sync(iocb, ret);
698 return ret;
699 }
700 #endif
701
702 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)703 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
704 {
705 struct inode *inode = file_inode(iocb->ki_filp);
706
707 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
708 return -EIO;
709
710 #ifdef CONFIG_FS_DAX
711 if (IS_DAX(inode))
712 return ext4_dax_write_iter(iocb, from);
713 #endif
714 if (iocb->ki_flags & IOCB_DIRECT)
715 return ext4_dio_write_iter(iocb, from);
716 else
717 return ext4_buffered_write_iter(iocb, from);
718 }
719
720 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,unsigned int order)721 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
722 {
723 int error = 0;
724 vm_fault_t result;
725 int retries = 0;
726 handle_t *handle = NULL;
727 struct inode *inode = file_inode(vmf->vma->vm_file);
728 struct super_block *sb = inode->i_sb;
729
730 /*
731 * We have to distinguish real writes from writes which will result in a
732 * COW page; COW writes should *not* poke the journal (the file will not
733 * be changed). Doing so would cause unintended failures when mounted
734 * read-only.
735 *
736 * We check for VM_SHARED rather than vmf->cow_page since the latter is
737 * unset for order != 0 (i.e. only in do_cow_fault); for
738 * other sizes, dax_iomap_fault will handle splitting / fallback so that
739 * we eventually come back with a COW page.
740 */
741 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
742 (vmf->vma->vm_flags & VM_SHARED);
743 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
744 pfn_t pfn;
745
746 if (write) {
747 sb_start_pagefault(sb);
748 file_update_time(vmf->vma->vm_file);
749 filemap_invalidate_lock_shared(mapping);
750 retry:
751 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
752 EXT4_DATA_TRANS_BLOCKS(sb));
753 if (IS_ERR(handle)) {
754 filemap_invalidate_unlock_shared(mapping);
755 sb_end_pagefault(sb);
756 return VM_FAULT_SIGBUS;
757 }
758 } else {
759 filemap_invalidate_lock_shared(mapping);
760 }
761 result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
762 if (write) {
763 ext4_journal_stop(handle);
764
765 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
766 ext4_should_retry_alloc(sb, &retries))
767 goto retry;
768 /* Handling synchronous page fault? */
769 if (result & VM_FAULT_NEEDDSYNC)
770 result = dax_finish_sync_fault(vmf, order, pfn);
771 filemap_invalidate_unlock_shared(mapping);
772 sb_end_pagefault(sb);
773 } else {
774 filemap_invalidate_unlock_shared(mapping);
775 }
776
777 return result;
778 }
779
ext4_dax_fault(struct vm_fault * vmf)780 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
781 {
782 return ext4_dax_huge_fault(vmf, 0);
783 }
784
785 static const struct vm_operations_struct ext4_dax_vm_ops = {
786 .fault = ext4_dax_fault,
787 .huge_fault = ext4_dax_huge_fault,
788 .page_mkwrite = ext4_dax_fault,
789 .pfn_mkwrite = ext4_dax_fault,
790 };
791 #else
792 #define ext4_dax_vm_ops ext4_file_vm_ops
793 #endif
794
795 static const struct vm_operations_struct ext4_file_vm_ops = {
796 .fault = filemap_fault,
797 .map_pages = filemap_map_pages,
798 .page_mkwrite = ext4_page_mkwrite,
799 };
800
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)801 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
802 {
803 struct inode *inode = file->f_mapping->host;
804 struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
805
806 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
807 return -EIO;
808
809 /*
810 * We don't support synchronous mappings for non-DAX files and
811 * for DAX files if underneath dax_device is not synchronous.
812 */
813 if (!daxdev_mapping_supported(vma, dax_dev))
814 return -EOPNOTSUPP;
815
816 file_accessed(file);
817 if (IS_DAX(file_inode(file))) {
818 vma->vm_ops = &ext4_dax_vm_ops;
819 vm_flags_set(vma, VM_HUGEPAGE);
820 } else {
821 vma->vm_ops = &ext4_file_vm_ops;
822 }
823 return 0;
824 }
825
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)826 static int ext4_sample_last_mounted(struct super_block *sb,
827 struct vfsmount *mnt)
828 {
829 struct ext4_sb_info *sbi = EXT4_SB(sb);
830 struct path path;
831 char buf[64], *cp;
832 handle_t *handle;
833 int err;
834
835 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
836 return 0;
837
838 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
839 return 0;
840
841 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
842 /*
843 * Sample where the filesystem has been mounted and
844 * store it in the superblock for sysadmin convenience
845 * when trying to sort through large numbers of block
846 * devices or filesystem images.
847 */
848 memset(buf, 0, sizeof(buf));
849 path.mnt = mnt;
850 path.dentry = mnt->mnt_root;
851 cp = d_path(&path, buf, sizeof(buf));
852 err = 0;
853 if (IS_ERR(cp))
854 goto out;
855
856 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
857 err = PTR_ERR(handle);
858 if (IS_ERR(handle))
859 goto out;
860 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
862 EXT4_JTR_NONE);
863 if (err)
864 goto out_journal;
865 lock_buffer(sbi->s_sbh);
866 strncpy(sbi->s_es->s_last_mounted, cp,
867 sizeof(sbi->s_es->s_last_mounted));
868 ext4_superblock_csum_set(sb);
869 unlock_buffer(sbi->s_sbh);
870 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
871 out_journal:
872 ext4_journal_stop(handle);
873 out:
874 sb_end_intwrite(sb);
875 return err;
876 }
877
ext4_file_open(struct inode * inode,struct file * filp)878 static int ext4_file_open(struct inode *inode, struct file *filp)
879 {
880 int ret;
881
882 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
883 return -EIO;
884
885 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
886 if (ret)
887 return ret;
888
889 ret = fscrypt_file_open(inode, filp);
890 if (ret)
891 return ret;
892
893 ret = fsverity_file_open(inode, filp);
894 if (ret)
895 return ret;
896
897 /*
898 * Set up the jbd2_inode if we are opening the inode for
899 * writing and the journal is present
900 */
901 if (filp->f_mode & FMODE_WRITE) {
902 ret = ext4_inode_attach_jinode(inode);
903 if (ret < 0)
904 return ret;
905 }
906
907 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
908 FMODE_DIO_PARALLEL_WRITE;
909 return dquot_file_open(inode, filp);
910 }
911
912 /*
913 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
914 * by calling generic_file_llseek_size() with the appropriate maxbytes
915 * value for each.
916 */
ext4_llseek(struct file * file,loff_t offset,int whence)917 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
918 {
919 struct inode *inode = file->f_mapping->host;
920 loff_t maxbytes;
921
922 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
923 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
924 else
925 maxbytes = inode->i_sb->s_maxbytes;
926
927 switch (whence) {
928 default:
929 return generic_file_llseek_size(file, offset, whence,
930 maxbytes, i_size_read(inode));
931 case SEEK_HOLE:
932 inode_lock_shared(inode);
933 offset = iomap_seek_hole(inode, offset,
934 &ext4_iomap_report_ops);
935 inode_unlock_shared(inode);
936 break;
937 case SEEK_DATA:
938 inode_lock_shared(inode);
939 offset = iomap_seek_data(inode, offset,
940 &ext4_iomap_report_ops);
941 inode_unlock_shared(inode);
942 break;
943 }
944
945 if (offset < 0)
946 return offset;
947 return vfs_setpos(file, offset, maxbytes);
948 }
949
950 const struct file_operations ext4_file_operations = {
951 .llseek = ext4_llseek,
952 .read_iter = ext4_file_read_iter,
953 .write_iter = ext4_file_write_iter,
954 .iopoll = iocb_bio_iopoll,
955 .unlocked_ioctl = ext4_ioctl,
956 #ifdef CONFIG_COMPAT
957 .compat_ioctl = ext4_compat_ioctl,
958 #endif
959 .mmap = ext4_file_mmap,
960 .mmap_supported_flags = MAP_SYNC,
961 .open = ext4_file_open,
962 .release = ext4_release_file,
963 .fsync = ext4_sync_file,
964 .get_unmapped_area = thp_get_unmapped_area,
965 .splice_read = ext4_file_splice_read,
966 .splice_write = iter_file_splice_write,
967 .fallocate = ext4_fallocate,
968 };
969
970 const struct inode_operations ext4_file_inode_operations = {
971 .setattr = ext4_setattr,
972 .getattr = ext4_file_getattr,
973 .listxattr = ext4_listxattr,
974 .get_inode_acl = ext4_get_acl,
975 .set_acl = ext4_set_acl,
976 .fiemap = ext4_fiemap,
977 .fileattr_get = ext4_fileattr_get,
978 .fileattr_set = ext4_fileattr_set,
979 };
980
981