1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24
25 #include "mt7530.h"
26
pcs_to_mt753x_pcs(struct phylink_pcs * pcs)27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 MIB_DESC(1, 0x00, "TxDrop"),
35 MIB_DESC(1, 0x04, "TxCrcErr"),
36 MIB_DESC(1, 0x08, "TxUnicast"),
37 MIB_DESC(1, 0x0c, "TxMulticast"),
38 MIB_DESC(1, 0x10, "TxBroadcast"),
39 MIB_DESC(1, 0x14, "TxCollision"),
40 MIB_DESC(1, 0x18, "TxSingleCollision"),
41 MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 MIB_DESC(1, 0x20, "TxDeferred"),
43 MIB_DESC(1, 0x24, "TxLateCollision"),
44 MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 MIB_DESC(1, 0x2c, "TxPause"),
46 MIB_DESC(1, 0x30, "TxPktSz64"),
47 MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 MIB_DESC(2, 0x48, "TxBytes"),
53 MIB_DESC(1, 0x60, "RxDrop"),
54 MIB_DESC(1, 0x64, "RxFiltering"),
55 MIB_DESC(1, 0x68, "RxUnicast"),
56 MIB_DESC(1, 0x6c, "RxMulticast"),
57 MIB_DESC(1, 0x70, "RxBroadcast"),
58 MIB_DESC(1, 0x74, "RxAlignErr"),
59 MIB_DESC(1, 0x78, "RxCrcErr"),
60 MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 MIB_DESC(1, 0x80, "RxFragErr"),
62 MIB_DESC(1, 0x84, "RxOverSzErr"),
63 MIB_DESC(1, 0x88, "RxJabberErr"),
64 MIB_DESC(1, 0x8c, "RxPause"),
65 MIB_DESC(1, 0x90, "RxPktSz64"),
66 MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 MIB_DESC(2, 0xa8, "RxBytes"),
72 MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76
77 /* Since phy_device has not yet been created and
78 * phy_{read,write}_mmd_indirect is not available, we provide our own
79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80 * to complete this function.
81 */
82 static int
core_read_mmd_indirect(struct mt7530_priv * priv,int prtad,int devad)83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 struct mii_bus *bus = priv->bus;
86 int value, ret;
87
88 /* Write the desired MMD Devad */
89 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 if (ret < 0)
91 goto err;
92
93 /* Write the desired MMD register address */
94 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 if (ret < 0)
96 goto err;
97
98 /* Select the Function : DATA with no post increment */
99 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 if (ret < 0)
101 goto err;
102
103 /* Read the content of the MMD's selected register */
104 value = bus->read(bus, 0, MII_MMD_DATA);
105
106 return value;
107 err:
108 dev_err(&bus->dev, "failed to read mmd register\n");
109
110 return ret;
111 }
112
113 static int
core_write_mmd_indirect(struct mt7530_priv * priv,int prtad,int devad,u32 data)114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 int devad, u32 data)
116 {
117 struct mii_bus *bus = priv->bus;
118 int ret;
119
120 /* Write the desired MMD Devad */
121 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 if (ret < 0)
123 goto err;
124
125 /* Write the desired MMD register address */
126 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 if (ret < 0)
128 goto err;
129
130 /* Select the Function : DATA with no post increment */
131 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 if (ret < 0)
133 goto err;
134
135 /* Write the data into MMD's selected register */
136 ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 if (ret < 0)
139 dev_err(&bus->dev,
140 "failed to write mmd register\n");
141 return ret;
142 }
143
144 static void
mt7530_mutex_lock(struct mt7530_priv * priv)145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 if (priv->bus)
148 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150
151 static void
mt7530_mutex_unlock(struct mt7530_priv * priv)152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 if (priv->bus)
155 mutex_unlock(&priv->bus->mdio_lock);
156 }
157
158 static void
core_write(struct mt7530_priv * priv,u32 reg,u32 val)159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 mt7530_mutex_lock(priv);
162
163 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164
165 mt7530_mutex_unlock(priv);
166 }
167
168 static void
core_rmw(struct mt7530_priv * priv,u32 reg,u32 mask,u32 set)169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 u32 val;
172
173 mt7530_mutex_lock(priv);
174
175 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 val &= ~mask;
177 val |= set;
178 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179
180 mt7530_mutex_unlock(priv);
181 }
182
183 static void
core_set(struct mt7530_priv * priv,u32 reg,u32 val)184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 core_rmw(priv, reg, 0, val);
187 }
188
189 static void
core_clear(struct mt7530_priv * priv,u32 reg,u32 val)190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 core_rmw(priv, reg, val, 0);
193 }
194
195 static int
mt7530_mii_write(struct mt7530_priv * priv,u32 reg,u32 val)196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 int ret;
199
200 ret = regmap_write(priv->regmap, reg, val);
201
202 if (ret < 0)
203 dev_err(priv->dev,
204 "failed to write mt7530 register\n");
205
206 return ret;
207 }
208
209 static u32
mt7530_mii_read(struct mt7530_priv * priv,u32 reg)210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 int ret;
213 u32 val;
214
215 ret = regmap_read(priv->regmap, reg, &val);
216 if (ret) {
217 WARN_ON_ONCE(1);
218 dev_err(priv->dev,
219 "failed to read mt7530 register\n");
220 return 0;
221 }
222
223 return val;
224 }
225
226 static void
mt7530_write(struct mt7530_priv * priv,u32 reg,u32 val)227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 mt7530_mutex_lock(priv);
230
231 mt7530_mii_write(priv, reg, val);
232
233 mt7530_mutex_unlock(priv);
234 }
235
236 static u32
_mt7530_unlocked_read(struct mt7530_dummy_poll * p)237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 return mt7530_mii_read(p->priv, p->reg);
240 }
241
242 static u32
_mt7530_read(struct mt7530_dummy_poll * p)243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 u32 val;
246
247 mt7530_mutex_lock(p->priv);
248
249 val = mt7530_mii_read(p->priv, p->reg);
250
251 mt7530_mutex_unlock(p->priv);
252
253 return val;
254 }
255
256 static u32
mt7530_read(struct mt7530_priv * priv,u32 reg)257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 struct mt7530_dummy_poll p;
260
261 INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 return _mt7530_read(&p);
263 }
264
265 static void
mt7530_rmw(struct mt7530_priv * priv,u32 reg,u32 mask,u32 set)266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 u32 mask, u32 set)
268 {
269 mt7530_mutex_lock(priv);
270
271 regmap_update_bits(priv->regmap, reg, mask, set);
272
273 mt7530_mutex_unlock(priv);
274 }
275
276 static void
mt7530_set(struct mt7530_priv * priv,u32 reg,u32 val)277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 mt7530_rmw(priv, reg, val, val);
280 }
281
282 static void
mt7530_clear(struct mt7530_priv * priv,u32 reg,u32 val)283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 mt7530_rmw(priv, reg, val, 0);
286 }
287
288 static int
mt7530_fdb_cmd(struct mt7530_priv * priv,enum mt7530_fdb_cmd cmd,u32 * rsp)289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 u32 val;
292 int ret;
293 struct mt7530_dummy_poll p;
294
295 /* Set the command operating upon the MAC address entries */
296 val = ATC_BUSY | ATC_MAT(0) | cmd;
297 mt7530_write(priv, MT7530_ATC, val);
298
299 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 ret = readx_poll_timeout(_mt7530_read, &p, val,
301 !(val & ATC_BUSY), 20, 20000);
302 if (ret < 0) {
303 dev_err(priv->dev, "reset timeout\n");
304 return ret;
305 }
306
307 /* Additional sanity for read command if the specified
308 * entry is invalid
309 */
310 val = mt7530_read(priv, MT7530_ATC);
311 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 return -EINVAL;
313
314 if (rsp)
315 *rsp = val;
316
317 return 0;
318 }
319
320 static void
mt7530_fdb_read(struct mt7530_priv * priv,struct mt7530_fdb * fdb)321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 u32 reg[3];
324 int i;
325
326 /* Read from ARL table into an array */
327 for (i = 0; i < 3; i++) {
328 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329
330 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 __func__, __LINE__, i, reg[i]);
332 }
333
334 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345
346 static void
mt7530_fdb_write(struct mt7530_priv * priv,u16 vid,u8 port_mask,const u8 * mac,u8 aging,u8 type)347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 u8 port_mask, const u8 *mac,
349 u8 aging, u8 type)
350 {
351 u32 reg[3] = { 0 };
352 int i;
353
354 reg[1] |= vid & CVID_MASK;
355 reg[1] |= ATA2_IVL;
356 reg[1] |= ATA2_FID(FID_BRIDGED);
357 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 /* STATIC_ENT indicate that entry is static wouldn't
360 * be aged out and STATIC_EMP specified as erasing an
361 * entry
362 */
363 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 reg[1] |= mac[5] << MAC_BYTE_5;
365 reg[1] |= mac[4] << MAC_BYTE_4;
366 reg[0] |= mac[3] << MAC_BYTE_3;
367 reg[0] |= mac[2] << MAC_BYTE_2;
368 reg[0] |= mac[1] << MAC_BYTE_1;
369 reg[0] |= mac[0] << MAC_BYTE_0;
370
371 /* Write array into the ARL table */
372 for (i = 0; i < 3; i++)
373 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375
376 /* Set up switch core clock for MT7530 */
mt7530_pll_setup(struct mt7530_priv * priv)377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 /* Disable core clock */
380 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381
382 /* Disable PLL */
383 core_write(priv, CORE_GSWPLL_GRP1, 0);
384
385 /* Set core clock into 500Mhz */
386 core_write(priv, CORE_GSWPLL_GRP2,
387 RG_GSWPLL_POSDIV_500M(1) |
388 RG_GSWPLL_FBKDIV_500M(25));
389
390 /* Enable PLL */
391 core_write(priv, CORE_GSWPLL_GRP1,
392 RG_GSWPLL_EN_PRE |
393 RG_GSWPLL_POSDIV_200M(2) |
394 RG_GSWPLL_FBKDIV_200M(32));
395
396 udelay(20);
397
398 /* Enable core clock */
399 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403 * otherwise don't care.
404 */
405 static struct dsa_port *
mt753x_preferred_default_local_cpu_port(struct dsa_switch * ds)406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409
410 if (dsa_port_is_cpu(cpu_dp))
411 return cpu_dp;
412
413 return NULL;
414 }
415
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
mt7530_pad_clk_setup(struct dsa_switch * ds,phy_interface_t interface)418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 struct mt7530_priv *priv = ds->priv;
421 u32 ncpo1, ssc_delta, trgint, xtal;
422
423 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424
425 if (xtal == HWTRAP_XTAL_20MHZ) {
426 dev_err(priv->dev,
427 "%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 __func__);
429 return -EINVAL;
430 }
431
432 switch (interface) {
433 case PHY_INTERFACE_MODE_RGMII:
434 trgint = 0;
435 break;
436 case PHY_INTERFACE_MODE_TRGMII:
437 trgint = 1;
438 if (xtal == HWTRAP_XTAL_25MHZ)
439 ssc_delta = 0x57;
440 else
441 ssc_delta = 0x87;
442 if (priv->id == ID_MT7621) {
443 /* PLL frequency: 125MHz: 1.0GBit */
444 if (xtal == HWTRAP_XTAL_40MHZ)
445 ncpo1 = 0x0640;
446 if (xtal == HWTRAP_XTAL_25MHZ)
447 ncpo1 = 0x0a00;
448 } else { /* PLL frequency: 250MHz: 2.0Gbit */
449 if (xtal == HWTRAP_XTAL_40MHZ)
450 ncpo1 = 0x0c80;
451 if (xtal == HWTRAP_XTAL_25MHZ)
452 ncpo1 = 0x1400;
453 }
454 break;
455 default:
456 dev_err(priv->dev, "xMII interface %d not supported\n",
457 interface);
458 return -EINVAL;
459 }
460
461 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 P6_INTF_MODE(trgint));
463
464 if (trgint) {
465 /* Disable the MT7530 TRGMII clocks */
466 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467
468 /* Setup the MT7530 TRGMII Tx Clock */
469 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 core_write(priv, CORE_PLL_GROUP4,
474 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 RG_SYSPLL_BIAS_LPF_EN);
476 core_write(priv, CORE_PLL_GROUP2,
477 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 RG_SYSPLL_POSDIV(1));
479 core_write(priv, CORE_PLL_GROUP7,
480 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482
483 /* Enable the MT7530 TRGMII clocks */
484 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 }
486
487 return 0;
488 }
489
mt7531_dual_sgmii_supported(struct mt7530_priv * priv)490 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491 {
492 u32 val;
493
494 val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495
496 return (val & PAD_DUAL_SGMII_EN) != 0;
497 }
498
499 static int
mt7531_pad_setup(struct dsa_switch * ds,phy_interface_t interface)500 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501 {
502 return 0;
503 }
504
505 static void
mt7531_pll_setup(struct mt7530_priv * priv)506 mt7531_pll_setup(struct mt7530_priv *priv)
507 {
508 u32 top_sig;
509 u32 hwstrap;
510 u32 xtal;
511 u32 val;
512
513 if (mt7531_dual_sgmii_supported(priv))
514 return;
515
516 val = mt7530_read(priv, MT7531_CREV);
517 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518 hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519 if ((val & CHIP_REV_M) > 0)
520 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521 HWTRAP_XTAL_FSEL_25MHZ;
522 else
523 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524
525 /* Step 1 : Disable MT7531 COREPLL */
526 val = mt7530_read(priv, MT7531_PLLGP_EN);
527 val &= ~EN_COREPLL;
528 mt7530_write(priv, MT7531_PLLGP_EN, val);
529
530 /* Step 2: switch to XTAL output */
531 val = mt7530_read(priv, MT7531_PLLGP_EN);
532 val |= SW_CLKSW;
533 mt7530_write(priv, MT7531_PLLGP_EN, val);
534
535 val = mt7530_read(priv, MT7531_PLLGP_CR0);
536 val &= ~RG_COREPLL_EN;
537 mt7530_write(priv, MT7531_PLLGP_CR0, val);
538
539 /* Step 3: disable PLLGP and enable program PLLGP */
540 val = mt7530_read(priv, MT7531_PLLGP_EN);
541 val |= SW_PLLGP;
542 mt7530_write(priv, MT7531_PLLGP_EN, val);
543
544 /* Step 4: program COREPLL output frequency to 500MHz */
545 val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 val &= ~RG_COREPLL_POSDIV_M;
547 val |= 2 << RG_COREPLL_POSDIV_S;
548 mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 usleep_range(25, 35);
550
551 switch (xtal) {
552 case HWTRAP_XTAL_FSEL_25MHZ:
553 val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 val &= ~RG_COREPLL_SDM_PCW_M;
555 val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556 mt7530_write(priv, MT7531_PLLGP_CR0, val);
557 break;
558 case HWTRAP_XTAL_FSEL_40MHZ:
559 val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 val &= ~RG_COREPLL_SDM_PCW_M;
561 val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562 mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 break;
564 }
565
566 /* Set feedback divide ratio update signal to high */
567 val = mt7530_read(priv, MT7531_PLLGP_CR0);
568 val |= RG_COREPLL_SDM_PCW_CHG;
569 mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 /* Wait for at least 16 XTAL clocks */
571 usleep_range(10, 20);
572
573 /* Step 5: set feedback divide ratio update signal to low */
574 val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 val &= ~RG_COREPLL_SDM_PCW_CHG;
576 mt7530_write(priv, MT7531_PLLGP_CR0, val);
577
578 /* Enable 325M clock for SGMII */
579 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580
581 /* Enable 250SSC clock for RGMII */
582 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583
584 /* Step 6: Enable MT7531 PLL */
585 val = mt7530_read(priv, MT7531_PLLGP_CR0);
586 val |= RG_COREPLL_EN;
587 mt7530_write(priv, MT7531_PLLGP_CR0, val);
588
589 val = mt7530_read(priv, MT7531_PLLGP_EN);
590 val |= EN_COREPLL;
591 mt7530_write(priv, MT7531_PLLGP_EN, val);
592 usleep_range(25, 35);
593 }
594
595 static void
mt7530_mib_reset(struct dsa_switch * ds)596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 struct mt7530_priv *priv = ds->priv;
599
600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603
mt7530_phy_read_c22(struct mt7530_priv * priv,int port,int regnum)604 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605 {
606 return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608
mt7530_phy_write_c22(struct mt7530_priv * priv,int port,int regnum,u16 val)609 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610 u16 val)
611 {
612 return mdiobus_write_nested(priv->bus, port, regnum, val);
613 }
614
mt7530_phy_read_c45(struct mt7530_priv * priv,int port,int devad,int regnum)615 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616 int devad, int regnum)
617 {
618 return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619 }
620
mt7530_phy_write_c45(struct mt7530_priv * priv,int port,int devad,int regnum,u16 val)621 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622 int regnum, u16 val)
623 {
624 return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625 }
626
627 static int
mt7531_ind_c45_phy_read(struct mt7530_priv * priv,int port,int devad,int regnum)628 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629 int regnum)
630 {
631 struct mt7530_dummy_poll p;
632 u32 reg, val;
633 int ret;
634
635 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636
637 mt7530_mutex_lock(priv);
638
639 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641 if (ret < 0) {
642 dev_err(priv->dev, "poll timeout\n");
643 goto out;
644 }
645
646 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647 MT7531_MDIO_DEV_ADDR(devad) | regnum;
648 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649
650 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 if (ret < 0) {
653 dev_err(priv->dev, "poll timeout\n");
654 goto out;
655 }
656
657 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658 MT7531_MDIO_DEV_ADDR(devad);
659 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660
661 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 if (ret < 0) {
664 dev_err(priv->dev, "poll timeout\n");
665 goto out;
666 }
667
668 ret = val & MT7531_MDIO_RW_DATA_MASK;
669 out:
670 mt7530_mutex_unlock(priv);
671
672 return ret;
673 }
674
675 static int
mt7531_ind_c45_phy_write(struct mt7530_priv * priv,int port,int devad,int regnum,u16 data)676 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677 int regnum, u16 data)
678 {
679 struct mt7530_dummy_poll p;
680 u32 val, reg;
681 int ret;
682
683 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684
685 mt7530_mutex_lock(priv);
686
687 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 if (ret < 0) {
690 dev_err(priv->dev, "poll timeout\n");
691 goto out;
692 }
693
694 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695 MT7531_MDIO_DEV_ADDR(devad) | regnum;
696 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697
698 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 if (ret < 0) {
701 dev_err(priv->dev, "poll timeout\n");
702 goto out;
703 }
704
705 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706 MT7531_MDIO_DEV_ADDR(devad) | data;
707 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708
709 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711 if (ret < 0) {
712 dev_err(priv->dev, "poll timeout\n");
713 goto out;
714 }
715
716 out:
717 mt7530_mutex_unlock(priv);
718
719 return ret;
720 }
721
722 static int
mt7531_ind_c22_phy_read(struct mt7530_priv * priv,int port,int regnum)723 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724 {
725 struct mt7530_dummy_poll p;
726 int ret;
727 u32 val;
728
729 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730
731 mt7530_mutex_lock(priv);
732
733 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 if (ret < 0) {
736 dev_err(priv->dev, "poll timeout\n");
737 goto out;
738 }
739
740 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741 MT7531_MDIO_REG_ADDR(regnum);
742
743 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744
745 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747 if (ret < 0) {
748 dev_err(priv->dev, "poll timeout\n");
749 goto out;
750 }
751
752 ret = val & MT7531_MDIO_RW_DATA_MASK;
753 out:
754 mt7530_mutex_unlock(priv);
755
756 return ret;
757 }
758
759 static int
mt7531_ind_c22_phy_write(struct mt7530_priv * priv,int port,int regnum,u16 data)760 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761 u16 data)
762 {
763 struct mt7530_dummy_poll p;
764 int ret;
765 u32 reg;
766
767 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768
769 mt7530_mutex_lock(priv);
770
771 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 if (ret < 0) {
774 dev_err(priv->dev, "poll timeout\n");
775 goto out;
776 }
777
778 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779 MT7531_MDIO_REG_ADDR(regnum) | data;
780
781 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782
783 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785 if (ret < 0) {
786 dev_err(priv->dev, "poll timeout\n");
787 goto out;
788 }
789
790 out:
791 mt7530_mutex_unlock(priv);
792
793 return ret;
794 }
795
796 static int
mt753x_phy_read_c22(struct mii_bus * bus,int port,int regnum)797 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798 {
799 struct mt7530_priv *priv = bus->priv;
800
801 return priv->info->phy_read_c22(priv, port, regnum);
802 }
803
804 static int
mt753x_phy_read_c45(struct mii_bus * bus,int port,int devad,int regnum)805 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806 {
807 struct mt7530_priv *priv = bus->priv;
808
809 return priv->info->phy_read_c45(priv, port, devad, regnum);
810 }
811
812 static int
mt753x_phy_write_c22(struct mii_bus * bus,int port,int regnum,u16 val)813 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814 {
815 struct mt7530_priv *priv = bus->priv;
816
817 return priv->info->phy_write_c22(priv, port, regnum, val);
818 }
819
820 static int
mt753x_phy_write_c45(struct mii_bus * bus,int port,int devad,int regnum,u16 val)821 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822 u16 val)
823 {
824 struct mt7530_priv *priv = bus->priv;
825
826 return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827 }
828
829 static void
mt7530_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 uint8_t *data)
832 {
833 int i;
834
835 if (stringset != ETH_SS_STATS)
836 return;
837
838 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 ETH_GSTRING_LEN);
841 }
842
843 static void
mt7530_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 uint64_t *data)
846 {
847 struct mt7530_priv *priv = ds->priv;
848 const struct mt7530_mib_desc *mib;
849 u32 reg, i;
850 u64 hi;
851
852 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 mib = &mt7530_mib[i];
854 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855
856 data[i] = mt7530_read(priv, reg);
857 if (mib->size == 2) {
858 hi = mt7530_read(priv, reg + 4);
859 data[i] |= hi << 32;
860 }
861 }
862 }
863
864 static int
mt7530_get_sset_count(struct dsa_switch * ds,int port,int sset)865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 if (sset != ETH_SS_STATS)
868 return 0;
869
870 return ARRAY_SIZE(mt7530_mib);
871 }
872
873 static int
mt7530_set_ageing_time(struct dsa_switch * ds,unsigned int msecs)874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875 {
876 struct mt7530_priv *priv = ds->priv;
877 unsigned int secs = msecs / 1000;
878 unsigned int tmp_age_count;
879 unsigned int error = -1;
880 unsigned int age_count;
881 unsigned int age_unit;
882
883 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885 return -ERANGE;
886
887 /* iterate through all possible age_count to find the closest pair */
888 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890
891 if (tmp_age_unit <= AGE_UNIT_MAX) {
892 unsigned int tmp_error = secs -
893 (tmp_age_count + 1) * (tmp_age_unit + 1);
894
895 /* found a closer pair */
896 if (error > tmp_error) {
897 error = tmp_error;
898 age_count = tmp_age_count;
899 age_unit = tmp_age_unit;
900 }
901
902 /* found the exact match, so break the loop */
903 if (!error)
904 break;
905 }
906 }
907
908 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909
910 return 0;
911 }
912
p5_intf_modes(unsigned int p5_interface)913 static const char *p5_intf_modes(unsigned int p5_interface)
914 {
915 switch (p5_interface) {
916 case P5_DISABLED:
917 return "DISABLED";
918 case P5_INTF_SEL_PHY_P0:
919 return "PHY P0";
920 case P5_INTF_SEL_PHY_P4:
921 return "PHY P4";
922 case P5_INTF_SEL_GMAC5:
923 return "GMAC5";
924 case P5_INTF_SEL_GMAC5_SGMII:
925 return "GMAC5_SGMII";
926 default:
927 return "unknown";
928 }
929 }
930
mt7530_setup_port5(struct dsa_switch * ds,phy_interface_t interface)931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932 {
933 struct mt7530_priv *priv = ds->priv;
934 u8 tx_delay = 0;
935 int val;
936
937 mutex_lock(&priv->reg_mutex);
938
939 val = mt7530_read(priv, MT7530_MHWTRAP);
940
941 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943
944 switch (priv->p5_intf_sel) {
945 case P5_INTF_SEL_PHY_P0:
946 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 val |= MHWTRAP_PHY0_SEL;
948 fallthrough;
949 case P5_INTF_SEL_PHY_P4:
950 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952
953 /* Setup the MAC by default for the cpu port */
954 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 break;
956 case P5_INTF_SEL_GMAC5:
957 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 val &= ~MHWTRAP_P5_DIS;
959 break;
960 case P5_DISABLED:
961 interface = PHY_INTERFACE_MODE_NA;
962 break;
963 default:
964 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 priv->p5_intf_sel);
966 goto unlock_exit;
967 }
968
969 /* Setup RGMII settings */
970 if (phy_interface_mode_is_rgmii(interface)) {
971 val |= MHWTRAP_P5_RGMII_MODE;
972
973 /* P5 RGMII RX Clock Control: delay setting for 1000M */
974 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975
976 /* Don't set delay in DSA mode */
977 if (!dsa_is_dsa_port(priv->ds, 5) &&
978 (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 interface == PHY_INTERFACE_MODE_RGMII_ID))
980 tx_delay = 4; /* n * 0.5 ns */
981
982 /* P5 RGMII TX Clock Control: delay x */
983 mt7530_write(priv, MT7530_P5RGMIITXCR,
984 CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985
986 /* reduce P5 RGMII Tx driving, 8mA */
987 mt7530_write(priv, MT7530_IO_DRV_CR,
988 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 }
990
991 mt7530_write(priv, MT7530_MHWTRAP, val);
992
993 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995
996 priv->p5_interface = interface;
997
998 unlock_exit:
999 mutex_unlock(&priv->reg_mutex);
1000 }
1001
1002 static void
mt753x_trap_frames(struct mt7530_priv * priv)1003 mt753x_trap_frames(struct mt7530_priv *priv)
1004 {
1005 /* Trap BPDUs to the CPU port(s) */
1006 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1007 MT753X_BPDU_CPU_ONLY);
1008
1009 /* Trap 802.1X PAE frames to the CPU port(s) */
1010 mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK,
1011 MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY));
1012
1013 /* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
1014 mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
1015 MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
1016 }
1017
1018 static int
mt753x_cpu_port_enable(struct dsa_switch * ds,int port)1019 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1020 {
1021 struct mt7530_priv *priv = ds->priv;
1022 int ret;
1023
1024 /* Setup max capability of CPU port at first */
1025 if (priv->info->cpu_port_config) {
1026 ret = priv->info->cpu_port_config(ds, port);
1027 if (ret)
1028 return ret;
1029 }
1030
1031 /* Enable Mediatek header mode on the cpu port */
1032 mt7530_write(priv, MT7530_PVC_P(port),
1033 PORT_SPEC_TAG);
1034
1035 /* Enable flooding on the CPU port */
1036 mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1037 UNU_FFP(BIT(port)));
1038
1039 /* Set CPU port number */
1040 if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1041 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1042
1043 /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1044 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1045 * is affine to the inbound user port.
1046 */
1047 if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1048 mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1049
1050 /* CPU port gets connected to all user ports of
1051 * the switch.
1052 */
1053 mt7530_write(priv, MT7530_PCR_P(port),
1054 PCR_MATRIX(dsa_user_ports(priv->ds)));
1055
1056 /* Set to fallback mode for independent VLAN learning */
1057 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1058 MT7530_PORT_FALLBACK_MODE);
1059
1060 return 0;
1061 }
1062
1063 static int
mt7530_port_enable(struct dsa_switch * ds,int port,struct phy_device * phy)1064 mt7530_port_enable(struct dsa_switch *ds, int port,
1065 struct phy_device *phy)
1066 {
1067 struct dsa_port *dp = dsa_to_port(ds, port);
1068 struct mt7530_priv *priv = ds->priv;
1069
1070 mutex_lock(&priv->reg_mutex);
1071
1072 /* Allow the user port gets connected to the cpu port and also
1073 * restore the port matrix if the port is the member of a certain
1074 * bridge.
1075 */
1076 if (dsa_port_is_user(dp)) {
1077 struct dsa_port *cpu_dp = dp->cpu_dp;
1078
1079 priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1080 }
1081 priv->ports[port].enable = true;
1082 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1083 priv->ports[port].pm);
1084 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1085
1086 mutex_unlock(&priv->reg_mutex);
1087
1088 return 0;
1089 }
1090
1091 static void
mt7530_port_disable(struct dsa_switch * ds,int port)1092 mt7530_port_disable(struct dsa_switch *ds, int port)
1093 {
1094 struct mt7530_priv *priv = ds->priv;
1095
1096 mutex_lock(&priv->reg_mutex);
1097
1098 /* Clear up all port matrix which could be restored in the next
1099 * enablement for the port.
1100 */
1101 priv->ports[port].enable = false;
1102 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1103 PCR_MATRIX_CLR);
1104 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1105
1106 mutex_unlock(&priv->reg_mutex);
1107 }
1108
1109 static int
mt7530_port_change_mtu(struct dsa_switch * ds,int port,int new_mtu)1110 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1111 {
1112 struct mt7530_priv *priv = ds->priv;
1113 int length;
1114 u32 val;
1115
1116 /* When a new MTU is set, DSA always set the CPU port's MTU to the
1117 * largest MTU of the slave ports. Because the switch only has a global
1118 * RX length register, only allowing CPU port here is enough.
1119 */
1120 if (!dsa_is_cpu_port(ds, port))
1121 return 0;
1122
1123 mt7530_mutex_lock(priv);
1124
1125 val = mt7530_mii_read(priv, MT7530_GMACCR);
1126 val &= ~MAX_RX_PKT_LEN_MASK;
1127
1128 /* RX length also includes Ethernet header, MTK tag, and FCS length */
1129 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1130 if (length <= 1522) {
1131 val |= MAX_RX_PKT_LEN_1522;
1132 } else if (length <= 1536) {
1133 val |= MAX_RX_PKT_LEN_1536;
1134 } else if (length <= 1552) {
1135 val |= MAX_RX_PKT_LEN_1552;
1136 } else {
1137 val &= ~MAX_RX_JUMBO_MASK;
1138 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1139 val |= MAX_RX_PKT_LEN_JUMBO;
1140 }
1141
1142 mt7530_mii_write(priv, MT7530_GMACCR, val);
1143
1144 mt7530_mutex_unlock(priv);
1145
1146 return 0;
1147 }
1148
1149 static int
mt7530_port_max_mtu(struct dsa_switch * ds,int port)1150 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1151 {
1152 return MT7530_MAX_MTU;
1153 }
1154
1155 static void
mt7530_stp_state_set(struct dsa_switch * ds,int port,u8 state)1156 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1157 {
1158 struct mt7530_priv *priv = ds->priv;
1159 u32 stp_state;
1160
1161 switch (state) {
1162 case BR_STATE_DISABLED:
1163 stp_state = MT7530_STP_DISABLED;
1164 break;
1165 case BR_STATE_BLOCKING:
1166 stp_state = MT7530_STP_BLOCKING;
1167 break;
1168 case BR_STATE_LISTENING:
1169 stp_state = MT7530_STP_LISTENING;
1170 break;
1171 case BR_STATE_LEARNING:
1172 stp_state = MT7530_STP_LEARNING;
1173 break;
1174 case BR_STATE_FORWARDING:
1175 default:
1176 stp_state = MT7530_STP_FORWARDING;
1177 break;
1178 }
1179
1180 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1181 FID_PST(FID_BRIDGED, stp_state));
1182 }
1183
1184 static int
mt7530_port_pre_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)1185 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1186 struct switchdev_brport_flags flags,
1187 struct netlink_ext_ack *extack)
1188 {
1189 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1190 BR_BCAST_FLOOD))
1191 return -EINVAL;
1192
1193 return 0;
1194 }
1195
1196 static int
mt7530_port_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)1197 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1198 struct switchdev_brport_flags flags,
1199 struct netlink_ext_ack *extack)
1200 {
1201 struct mt7530_priv *priv = ds->priv;
1202
1203 if (flags.mask & BR_LEARNING)
1204 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1205 flags.val & BR_LEARNING ? 0 : SA_DIS);
1206
1207 if (flags.mask & BR_FLOOD)
1208 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1209 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1210
1211 if (flags.mask & BR_MCAST_FLOOD)
1212 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1213 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1214
1215 if (flags.mask & BR_BCAST_FLOOD)
1216 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1217 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1218
1219 return 0;
1220 }
1221
1222 static int
mt7530_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)1223 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1224 struct dsa_bridge bridge, bool *tx_fwd_offload,
1225 struct netlink_ext_ack *extack)
1226 {
1227 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1228 struct dsa_port *cpu_dp = dp->cpu_dp;
1229 u32 port_bitmap = BIT(cpu_dp->index);
1230 struct mt7530_priv *priv = ds->priv;
1231
1232 mutex_lock(&priv->reg_mutex);
1233
1234 dsa_switch_for_each_user_port(other_dp, ds) {
1235 int other_port = other_dp->index;
1236
1237 if (dp == other_dp)
1238 continue;
1239
1240 /* Add this port to the port matrix of the other ports in the
1241 * same bridge. If the port is disabled, port matrix is kept
1242 * and not being setup until the port becomes enabled.
1243 */
1244 if (!dsa_port_offloads_bridge(other_dp, &bridge))
1245 continue;
1246
1247 if (priv->ports[other_port].enable)
1248 mt7530_set(priv, MT7530_PCR_P(other_port),
1249 PCR_MATRIX(BIT(port)));
1250 priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1251
1252 port_bitmap |= BIT(other_port);
1253 }
1254
1255 /* Add the all other ports to this port matrix. */
1256 if (priv->ports[port].enable)
1257 mt7530_rmw(priv, MT7530_PCR_P(port),
1258 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1259 priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1260
1261 /* Set to fallback mode for independent VLAN learning */
1262 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1263 MT7530_PORT_FALLBACK_MODE);
1264
1265 mutex_unlock(&priv->reg_mutex);
1266
1267 return 0;
1268 }
1269
1270 static void
mt7530_port_set_vlan_unaware(struct dsa_switch * ds,int port)1271 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1272 {
1273 struct mt7530_priv *priv = ds->priv;
1274 bool all_user_ports_removed = true;
1275 int i;
1276
1277 /* This is called after .port_bridge_leave when leaving a VLAN-aware
1278 * bridge. Don't set standalone ports to fallback mode.
1279 */
1280 if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1281 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1282 MT7530_PORT_FALLBACK_MODE);
1283
1284 mt7530_rmw(priv, MT7530_PVC_P(port),
1285 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1286 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1287 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1288 MT7530_VLAN_ACC_ALL);
1289
1290 /* Set PVID to 0 */
1291 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1292 G0_PORT_VID_DEF);
1293
1294 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1295 if (dsa_is_user_port(ds, i) &&
1296 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1297 all_user_ports_removed = false;
1298 break;
1299 }
1300 }
1301
1302 /* CPU port also does the same thing until all user ports belonging to
1303 * the CPU port get out of VLAN filtering mode.
1304 */
1305 if (all_user_ports_removed) {
1306 struct dsa_port *dp = dsa_to_port(ds, port);
1307 struct dsa_port *cpu_dp = dp->cpu_dp;
1308
1309 mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1310 PCR_MATRIX(dsa_user_ports(priv->ds)));
1311 mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1312 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1313 }
1314 }
1315
1316 static void
mt7530_port_set_vlan_aware(struct dsa_switch * ds,int port)1317 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1318 {
1319 struct mt7530_priv *priv = ds->priv;
1320
1321 /* Trapped into security mode allows packet forwarding through VLAN
1322 * table lookup.
1323 */
1324 if (dsa_is_user_port(ds, port)) {
1325 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1326 MT7530_PORT_SECURITY_MODE);
1327 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1328 G0_PORT_VID(priv->ports[port].pvid));
1329
1330 /* Only accept tagged frames if PVID is not set */
1331 if (!priv->ports[port].pvid)
1332 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1333 MT7530_VLAN_ACC_TAGGED);
1334
1335 /* Set the port as a user port which is to be able to recognize
1336 * VID from incoming packets before fetching entry within the
1337 * VLAN table.
1338 */
1339 mt7530_rmw(priv, MT7530_PVC_P(port),
1340 VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1341 VLAN_ATTR(MT7530_VLAN_USER) |
1342 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1343 } else {
1344 /* Also set CPU ports to the "user" VLAN port attribute, to
1345 * allow VLAN classification, but keep the EG_TAG attribute as
1346 * "consistent" (i.o.w. don't change its value) for packets
1347 * received by the switch from the CPU, so that tagged packets
1348 * are forwarded to user ports as tagged, and untagged as
1349 * untagged.
1350 */
1351 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1352 VLAN_ATTR(MT7530_VLAN_USER));
1353 }
1354 }
1355
1356 static void
mt7530_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)1357 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1358 struct dsa_bridge bridge)
1359 {
1360 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1361 struct dsa_port *cpu_dp = dp->cpu_dp;
1362 struct mt7530_priv *priv = ds->priv;
1363
1364 mutex_lock(&priv->reg_mutex);
1365
1366 dsa_switch_for_each_user_port(other_dp, ds) {
1367 int other_port = other_dp->index;
1368
1369 if (dp == other_dp)
1370 continue;
1371
1372 /* Remove this port from the port matrix of the other ports
1373 * in the same bridge. If the port is disabled, port matrix
1374 * is kept and not being setup until the port becomes enabled.
1375 */
1376 if (!dsa_port_offloads_bridge(other_dp, &bridge))
1377 continue;
1378
1379 if (priv->ports[other_port].enable)
1380 mt7530_clear(priv, MT7530_PCR_P(other_port),
1381 PCR_MATRIX(BIT(port)));
1382 priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1383 }
1384
1385 /* Set the cpu port to be the only one in the port matrix of
1386 * this port.
1387 */
1388 if (priv->ports[port].enable)
1389 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1390 PCR_MATRIX(BIT(cpu_dp->index)));
1391 priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1392
1393 /* When a port is removed from the bridge, the port would be set up
1394 * back to the default as is at initial boot which is a VLAN-unaware
1395 * port.
1396 */
1397 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1398 MT7530_PORT_MATRIX_MODE);
1399
1400 mutex_unlock(&priv->reg_mutex);
1401 }
1402
1403 static int
mt7530_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1404 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1405 const unsigned char *addr, u16 vid,
1406 struct dsa_db db)
1407 {
1408 struct mt7530_priv *priv = ds->priv;
1409 int ret;
1410 u8 port_mask = BIT(port);
1411
1412 mutex_lock(&priv->reg_mutex);
1413 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1414 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1415 mutex_unlock(&priv->reg_mutex);
1416
1417 return ret;
1418 }
1419
1420 static int
mt7530_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1421 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1422 const unsigned char *addr, u16 vid,
1423 struct dsa_db db)
1424 {
1425 struct mt7530_priv *priv = ds->priv;
1426 int ret;
1427 u8 port_mask = BIT(port);
1428
1429 mutex_lock(&priv->reg_mutex);
1430 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1431 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1432 mutex_unlock(&priv->reg_mutex);
1433
1434 return ret;
1435 }
1436
1437 static int
mt7530_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1438 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1439 dsa_fdb_dump_cb_t *cb, void *data)
1440 {
1441 struct mt7530_priv *priv = ds->priv;
1442 struct mt7530_fdb _fdb = { 0 };
1443 int cnt = MT7530_NUM_FDB_RECORDS;
1444 int ret = 0;
1445 u32 rsp = 0;
1446
1447 mutex_lock(&priv->reg_mutex);
1448
1449 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1450 if (ret < 0)
1451 goto err;
1452
1453 do {
1454 if (rsp & ATC_SRCH_HIT) {
1455 mt7530_fdb_read(priv, &_fdb);
1456 if (_fdb.port_mask & BIT(port)) {
1457 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1458 data);
1459 if (ret < 0)
1460 break;
1461 }
1462 }
1463 } while (--cnt &&
1464 !(rsp & ATC_SRCH_END) &&
1465 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1466 err:
1467 mutex_unlock(&priv->reg_mutex);
1468
1469 return 0;
1470 }
1471
1472 static int
mt7530_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1473 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1474 const struct switchdev_obj_port_mdb *mdb,
1475 struct dsa_db db)
1476 {
1477 struct mt7530_priv *priv = ds->priv;
1478 const u8 *addr = mdb->addr;
1479 u16 vid = mdb->vid;
1480 u8 port_mask = 0;
1481 int ret;
1482
1483 mutex_lock(&priv->reg_mutex);
1484
1485 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1486 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1487 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1488 & PORT_MAP_MASK;
1489
1490 port_mask |= BIT(port);
1491 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1492 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1493
1494 mutex_unlock(&priv->reg_mutex);
1495
1496 return ret;
1497 }
1498
1499 static int
mt7530_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1500 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1501 const struct switchdev_obj_port_mdb *mdb,
1502 struct dsa_db db)
1503 {
1504 struct mt7530_priv *priv = ds->priv;
1505 const u8 *addr = mdb->addr;
1506 u16 vid = mdb->vid;
1507 u8 port_mask = 0;
1508 int ret;
1509
1510 mutex_lock(&priv->reg_mutex);
1511
1512 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1513 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1514 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1515 & PORT_MAP_MASK;
1516
1517 port_mask &= ~BIT(port);
1518 mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1519 port_mask ? STATIC_ENT : STATIC_EMP);
1520 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1521
1522 mutex_unlock(&priv->reg_mutex);
1523
1524 return ret;
1525 }
1526
1527 static int
mt7530_vlan_cmd(struct mt7530_priv * priv,enum mt7530_vlan_cmd cmd,u16 vid)1528 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1529 {
1530 struct mt7530_dummy_poll p;
1531 u32 val;
1532 int ret;
1533
1534 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1535 mt7530_write(priv, MT7530_VTCR, val);
1536
1537 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1538 ret = readx_poll_timeout(_mt7530_read, &p, val,
1539 !(val & VTCR_BUSY), 20, 20000);
1540 if (ret < 0) {
1541 dev_err(priv->dev, "poll timeout\n");
1542 return ret;
1543 }
1544
1545 val = mt7530_read(priv, MT7530_VTCR);
1546 if (val & VTCR_INVALID) {
1547 dev_err(priv->dev, "read VTCR invalid\n");
1548 return -EINVAL;
1549 }
1550
1551 return 0;
1552 }
1553
1554 static int
mt7530_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)1555 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1556 struct netlink_ext_ack *extack)
1557 {
1558 struct dsa_port *dp = dsa_to_port(ds, port);
1559 struct dsa_port *cpu_dp = dp->cpu_dp;
1560
1561 if (vlan_filtering) {
1562 /* The port is being kept as VLAN-unaware port when bridge is
1563 * set up with vlan_filtering not being set, Otherwise, the
1564 * port and the corresponding CPU port is required the setup
1565 * for becoming a VLAN-aware port.
1566 */
1567 mt7530_port_set_vlan_aware(ds, port);
1568 mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1569 } else {
1570 mt7530_port_set_vlan_unaware(ds, port);
1571 }
1572
1573 return 0;
1574 }
1575
1576 static void
mt7530_hw_vlan_add(struct mt7530_priv * priv,struct mt7530_hw_vlan_entry * entry)1577 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1578 struct mt7530_hw_vlan_entry *entry)
1579 {
1580 struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1581 u8 new_members;
1582 u32 val;
1583
1584 new_members = entry->old_members | BIT(entry->port);
1585
1586 /* Validate the entry with independent learning, create egress tag per
1587 * VLAN and joining the port as one of the port members.
1588 */
1589 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1590 VLAN_VALID;
1591 mt7530_write(priv, MT7530_VAWD1, val);
1592
1593 /* Decide whether adding tag or not for those outgoing packets from the
1594 * port inside the VLAN.
1595 * CPU port is always taken as a tagged port for serving more than one
1596 * VLANs across and also being applied with egress type stack mode for
1597 * that VLAN tags would be appended after hardware special tag used as
1598 * DSA tag.
1599 */
1600 if (dsa_port_is_cpu(dp))
1601 val = MT7530_VLAN_EGRESS_STACK;
1602 else if (entry->untagged)
1603 val = MT7530_VLAN_EGRESS_UNTAG;
1604 else
1605 val = MT7530_VLAN_EGRESS_TAG;
1606 mt7530_rmw(priv, MT7530_VAWD2,
1607 ETAG_CTRL_P_MASK(entry->port),
1608 ETAG_CTRL_P(entry->port, val));
1609 }
1610
1611 static void
mt7530_hw_vlan_del(struct mt7530_priv * priv,struct mt7530_hw_vlan_entry * entry)1612 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1613 struct mt7530_hw_vlan_entry *entry)
1614 {
1615 u8 new_members;
1616 u32 val;
1617
1618 new_members = entry->old_members & ~BIT(entry->port);
1619
1620 val = mt7530_read(priv, MT7530_VAWD1);
1621 if (!(val & VLAN_VALID)) {
1622 dev_err(priv->dev,
1623 "Cannot be deleted due to invalid entry\n");
1624 return;
1625 }
1626
1627 if (new_members) {
1628 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1629 VLAN_VALID;
1630 mt7530_write(priv, MT7530_VAWD1, val);
1631 } else {
1632 mt7530_write(priv, MT7530_VAWD1, 0);
1633 mt7530_write(priv, MT7530_VAWD2, 0);
1634 }
1635 }
1636
1637 static void
mt7530_hw_vlan_update(struct mt7530_priv * priv,u16 vid,struct mt7530_hw_vlan_entry * entry,mt7530_vlan_op vlan_op)1638 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1639 struct mt7530_hw_vlan_entry *entry,
1640 mt7530_vlan_op vlan_op)
1641 {
1642 u32 val;
1643
1644 /* Fetch entry */
1645 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1646
1647 val = mt7530_read(priv, MT7530_VAWD1);
1648
1649 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1650
1651 /* Manipulate entry */
1652 vlan_op(priv, entry);
1653
1654 /* Flush result to hardware */
1655 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1656 }
1657
1658 static int
mt7530_setup_vlan0(struct mt7530_priv * priv)1659 mt7530_setup_vlan0(struct mt7530_priv *priv)
1660 {
1661 u32 val;
1662
1663 /* Validate the entry with independent learning, keep the original
1664 * ingress tag attribute.
1665 */
1666 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1667 VLAN_VALID;
1668 mt7530_write(priv, MT7530_VAWD1, val);
1669
1670 return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1671 }
1672
1673 static int
mt7530_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1674 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1675 const struct switchdev_obj_port_vlan *vlan,
1676 struct netlink_ext_ack *extack)
1677 {
1678 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1679 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1680 struct mt7530_hw_vlan_entry new_entry;
1681 struct mt7530_priv *priv = ds->priv;
1682
1683 mutex_lock(&priv->reg_mutex);
1684
1685 mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1686 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1687
1688 if (pvid) {
1689 priv->ports[port].pvid = vlan->vid;
1690
1691 /* Accept all frames if PVID is set */
1692 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1693 MT7530_VLAN_ACC_ALL);
1694
1695 /* Only configure PVID if VLAN filtering is enabled */
1696 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1697 mt7530_rmw(priv, MT7530_PPBV1_P(port),
1698 G0_PORT_VID_MASK,
1699 G0_PORT_VID(vlan->vid));
1700 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1701 /* This VLAN is overwritten without PVID, so unset it */
1702 priv->ports[port].pvid = G0_PORT_VID_DEF;
1703
1704 /* Only accept tagged frames if the port is VLAN-aware */
1705 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1706 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1707 MT7530_VLAN_ACC_TAGGED);
1708
1709 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1710 G0_PORT_VID_DEF);
1711 }
1712
1713 mutex_unlock(&priv->reg_mutex);
1714
1715 return 0;
1716 }
1717
1718 static int
mt7530_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1719 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1720 const struct switchdev_obj_port_vlan *vlan)
1721 {
1722 struct mt7530_hw_vlan_entry target_entry;
1723 struct mt7530_priv *priv = ds->priv;
1724
1725 mutex_lock(&priv->reg_mutex);
1726
1727 mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1728 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1729 mt7530_hw_vlan_del);
1730
1731 /* PVID is being restored to the default whenever the PVID port
1732 * is being removed from the VLAN.
1733 */
1734 if (priv->ports[port].pvid == vlan->vid) {
1735 priv->ports[port].pvid = G0_PORT_VID_DEF;
1736
1737 /* Only accept tagged frames if the port is VLAN-aware */
1738 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1739 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1740 MT7530_VLAN_ACC_TAGGED);
1741
1742 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1743 G0_PORT_VID_DEF);
1744 }
1745
1746
1747 mutex_unlock(&priv->reg_mutex);
1748
1749 return 0;
1750 }
1751
mt753x_mirror_port_get(unsigned int id,u32 val)1752 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1753 {
1754 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1755 MIRROR_PORT(val);
1756 }
1757
mt753x_mirror_port_set(unsigned int id,u32 val)1758 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1759 {
1760 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1761 MIRROR_PORT(val);
1762 }
1763
mt753x_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1764 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1765 struct dsa_mall_mirror_tc_entry *mirror,
1766 bool ingress, struct netlink_ext_ack *extack)
1767 {
1768 struct mt7530_priv *priv = ds->priv;
1769 int monitor_port;
1770 u32 val;
1771
1772 /* Check for existent entry */
1773 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1774 return -EEXIST;
1775
1776 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1777
1778 /* MT7530 only supports one monitor port */
1779 monitor_port = mt753x_mirror_port_get(priv->id, val);
1780 if (val & MT753X_MIRROR_EN(priv->id) &&
1781 monitor_port != mirror->to_local_port)
1782 return -EEXIST;
1783
1784 val |= MT753X_MIRROR_EN(priv->id);
1785 val &= ~MT753X_MIRROR_MASK(priv->id);
1786 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1787 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1788
1789 val = mt7530_read(priv, MT7530_PCR_P(port));
1790 if (ingress) {
1791 val |= PORT_RX_MIR;
1792 priv->mirror_rx |= BIT(port);
1793 } else {
1794 val |= PORT_TX_MIR;
1795 priv->mirror_tx |= BIT(port);
1796 }
1797 mt7530_write(priv, MT7530_PCR_P(port), val);
1798
1799 return 0;
1800 }
1801
mt753x_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)1802 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1803 struct dsa_mall_mirror_tc_entry *mirror)
1804 {
1805 struct mt7530_priv *priv = ds->priv;
1806 u32 val;
1807
1808 val = mt7530_read(priv, MT7530_PCR_P(port));
1809 if (mirror->ingress) {
1810 val &= ~PORT_RX_MIR;
1811 priv->mirror_rx &= ~BIT(port);
1812 } else {
1813 val &= ~PORT_TX_MIR;
1814 priv->mirror_tx &= ~BIT(port);
1815 }
1816 mt7530_write(priv, MT7530_PCR_P(port), val);
1817
1818 if (!priv->mirror_rx && !priv->mirror_tx) {
1819 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1820 val &= ~MT753X_MIRROR_EN(priv->id);
1821 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1822 }
1823 }
1824
1825 static enum dsa_tag_protocol
mtk_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)1826 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1827 enum dsa_tag_protocol mp)
1828 {
1829 return DSA_TAG_PROTO_MTK;
1830 }
1831
1832 #ifdef CONFIG_GPIOLIB
1833 static inline u32
mt7530_gpio_to_bit(unsigned int offset)1834 mt7530_gpio_to_bit(unsigned int offset)
1835 {
1836 /* Map GPIO offset to register bit
1837 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2
1838 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5
1839 * [10: 8] port 2 LED 0..2 as GPIO 6..8
1840 * [14:12] port 3 LED 0..2 as GPIO 9..11
1841 * [18:16] port 4 LED 0..2 as GPIO 12..14
1842 */
1843 return BIT(offset + offset / 3);
1844 }
1845
1846 static int
mt7530_gpio_get(struct gpio_chip * gc,unsigned int offset)1847 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1848 {
1849 struct mt7530_priv *priv = gpiochip_get_data(gc);
1850 u32 bit = mt7530_gpio_to_bit(offset);
1851
1852 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1853 }
1854
1855 static void
mt7530_gpio_set(struct gpio_chip * gc,unsigned int offset,int value)1856 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1857 {
1858 struct mt7530_priv *priv = gpiochip_get_data(gc);
1859 u32 bit = mt7530_gpio_to_bit(offset);
1860
1861 if (value)
1862 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1863 else
1864 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1865 }
1866
1867 static int
mt7530_gpio_get_direction(struct gpio_chip * gc,unsigned int offset)1868 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1869 {
1870 struct mt7530_priv *priv = gpiochip_get_data(gc);
1871 u32 bit = mt7530_gpio_to_bit(offset);
1872
1873 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1874 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1875 }
1876
1877 static int
mt7530_gpio_direction_input(struct gpio_chip * gc,unsigned int offset)1878 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1879 {
1880 struct mt7530_priv *priv = gpiochip_get_data(gc);
1881 u32 bit = mt7530_gpio_to_bit(offset);
1882
1883 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1884 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1885
1886 return 0;
1887 }
1888
1889 static int
mt7530_gpio_direction_output(struct gpio_chip * gc,unsigned int offset,int value)1890 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1891 {
1892 struct mt7530_priv *priv = gpiochip_get_data(gc);
1893 u32 bit = mt7530_gpio_to_bit(offset);
1894
1895 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1896
1897 if (value)
1898 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1899 else
1900 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1901
1902 mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1903
1904 return 0;
1905 }
1906
1907 static int
mt7530_setup_gpio(struct mt7530_priv * priv)1908 mt7530_setup_gpio(struct mt7530_priv *priv)
1909 {
1910 struct device *dev = priv->dev;
1911 struct gpio_chip *gc;
1912
1913 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1914 if (!gc)
1915 return -ENOMEM;
1916
1917 mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1918 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1919 mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1920
1921 gc->label = "mt7530";
1922 gc->parent = dev;
1923 gc->owner = THIS_MODULE;
1924 gc->get_direction = mt7530_gpio_get_direction;
1925 gc->direction_input = mt7530_gpio_direction_input;
1926 gc->direction_output = mt7530_gpio_direction_output;
1927 gc->get = mt7530_gpio_get;
1928 gc->set = mt7530_gpio_set;
1929 gc->base = -1;
1930 gc->ngpio = 15;
1931 gc->can_sleep = true;
1932
1933 return devm_gpiochip_add_data(dev, gc, priv);
1934 }
1935 #endif /* CONFIG_GPIOLIB */
1936
1937 static irqreturn_t
mt7530_irq_thread_fn(int irq,void * dev_id)1938 mt7530_irq_thread_fn(int irq, void *dev_id)
1939 {
1940 struct mt7530_priv *priv = dev_id;
1941 bool handled = false;
1942 u32 val;
1943 int p;
1944
1945 mt7530_mutex_lock(priv);
1946 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1947 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1948 mt7530_mutex_unlock(priv);
1949
1950 for (p = 0; p < MT7530_NUM_PHYS; p++) {
1951 if (BIT(p) & val) {
1952 unsigned int irq;
1953
1954 irq = irq_find_mapping(priv->irq_domain, p);
1955 handle_nested_irq(irq);
1956 handled = true;
1957 }
1958 }
1959
1960 return IRQ_RETVAL(handled);
1961 }
1962
1963 static void
mt7530_irq_mask(struct irq_data * d)1964 mt7530_irq_mask(struct irq_data *d)
1965 {
1966 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1967
1968 priv->irq_enable &= ~BIT(d->hwirq);
1969 }
1970
1971 static void
mt7530_irq_unmask(struct irq_data * d)1972 mt7530_irq_unmask(struct irq_data *d)
1973 {
1974 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1975
1976 priv->irq_enable |= BIT(d->hwirq);
1977 }
1978
1979 static void
mt7530_irq_bus_lock(struct irq_data * d)1980 mt7530_irq_bus_lock(struct irq_data *d)
1981 {
1982 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1983
1984 mt7530_mutex_lock(priv);
1985 }
1986
1987 static void
mt7530_irq_bus_sync_unlock(struct irq_data * d)1988 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1989 {
1990 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1991
1992 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1993 mt7530_mutex_unlock(priv);
1994 }
1995
1996 static struct irq_chip mt7530_irq_chip = {
1997 .name = KBUILD_MODNAME,
1998 .irq_mask = mt7530_irq_mask,
1999 .irq_unmask = mt7530_irq_unmask,
2000 .irq_bus_lock = mt7530_irq_bus_lock,
2001 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2002 };
2003
2004 static int
mt7530_irq_map(struct irq_domain * domain,unsigned int irq,irq_hw_number_t hwirq)2005 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2006 irq_hw_number_t hwirq)
2007 {
2008 irq_set_chip_data(irq, domain->host_data);
2009 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2010 irq_set_nested_thread(irq, true);
2011 irq_set_noprobe(irq);
2012
2013 return 0;
2014 }
2015
2016 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2017 .map = mt7530_irq_map,
2018 .xlate = irq_domain_xlate_onecell,
2019 };
2020
2021 static void
mt7988_irq_mask(struct irq_data * d)2022 mt7988_irq_mask(struct irq_data *d)
2023 {
2024 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2025
2026 priv->irq_enable &= ~BIT(d->hwirq);
2027 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2028 }
2029
2030 static void
mt7988_irq_unmask(struct irq_data * d)2031 mt7988_irq_unmask(struct irq_data *d)
2032 {
2033 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2034
2035 priv->irq_enable |= BIT(d->hwirq);
2036 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2037 }
2038
2039 static struct irq_chip mt7988_irq_chip = {
2040 .name = KBUILD_MODNAME,
2041 .irq_mask = mt7988_irq_mask,
2042 .irq_unmask = mt7988_irq_unmask,
2043 };
2044
2045 static int
mt7988_irq_map(struct irq_domain * domain,unsigned int irq,irq_hw_number_t hwirq)2046 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2047 irq_hw_number_t hwirq)
2048 {
2049 irq_set_chip_data(irq, domain->host_data);
2050 irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2051 irq_set_nested_thread(irq, true);
2052 irq_set_noprobe(irq);
2053
2054 return 0;
2055 }
2056
2057 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2058 .map = mt7988_irq_map,
2059 .xlate = irq_domain_xlate_onecell,
2060 };
2061
2062 static void
mt7530_setup_mdio_irq(struct mt7530_priv * priv)2063 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2064 {
2065 struct dsa_switch *ds = priv->ds;
2066 int p;
2067
2068 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2069 if (BIT(p) & ds->phys_mii_mask) {
2070 unsigned int irq;
2071
2072 irq = irq_create_mapping(priv->irq_domain, p);
2073 ds->slave_mii_bus->irq[p] = irq;
2074 }
2075 }
2076 }
2077
2078 static int
mt7530_setup_irq(struct mt7530_priv * priv)2079 mt7530_setup_irq(struct mt7530_priv *priv)
2080 {
2081 struct device *dev = priv->dev;
2082 struct device_node *np = dev->of_node;
2083 int ret;
2084
2085 if (!of_property_read_bool(np, "interrupt-controller")) {
2086 dev_info(dev, "no interrupt support\n");
2087 return 0;
2088 }
2089
2090 priv->irq = of_irq_get(np, 0);
2091 if (priv->irq <= 0) {
2092 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2093 return priv->irq ? : -EINVAL;
2094 }
2095
2096 if (priv->id == ID_MT7988)
2097 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2098 &mt7988_irq_domain_ops,
2099 priv);
2100 else
2101 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2102 &mt7530_irq_domain_ops,
2103 priv);
2104
2105 if (!priv->irq_domain) {
2106 dev_err(dev, "failed to create IRQ domain\n");
2107 return -ENOMEM;
2108 }
2109
2110 /* This register must be set for MT7530 to properly fire interrupts */
2111 if (priv->id != ID_MT7531)
2112 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2113
2114 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2115 IRQF_ONESHOT, KBUILD_MODNAME, priv);
2116 if (ret) {
2117 irq_domain_remove(priv->irq_domain);
2118 dev_err(dev, "failed to request IRQ: %d\n", ret);
2119 return ret;
2120 }
2121
2122 return 0;
2123 }
2124
2125 static void
mt7530_free_mdio_irq(struct mt7530_priv * priv)2126 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2127 {
2128 int p;
2129
2130 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2131 if (BIT(p) & priv->ds->phys_mii_mask) {
2132 unsigned int irq;
2133
2134 irq = irq_find_mapping(priv->irq_domain, p);
2135 irq_dispose_mapping(irq);
2136 }
2137 }
2138 }
2139
2140 static void
mt7530_free_irq_common(struct mt7530_priv * priv)2141 mt7530_free_irq_common(struct mt7530_priv *priv)
2142 {
2143 free_irq(priv->irq, priv);
2144 irq_domain_remove(priv->irq_domain);
2145 }
2146
2147 static void
mt7530_free_irq(struct mt7530_priv * priv)2148 mt7530_free_irq(struct mt7530_priv *priv)
2149 {
2150 mt7530_free_mdio_irq(priv);
2151 mt7530_free_irq_common(priv);
2152 }
2153
2154 static int
mt7530_setup_mdio(struct mt7530_priv * priv)2155 mt7530_setup_mdio(struct mt7530_priv *priv)
2156 {
2157 struct dsa_switch *ds = priv->ds;
2158 struct device *dev = priv->dev;
2159 struct mii_bus *bus;
2160 static int idx;
2161 int ret;
2162
2163 bus = devm_mdiobus_alloc(dev);
2164 if (!bus)
2165 return -ENOMEM;
2166
2167 ds->slave_mii_bus = bus;
2168 bus->priv = priv;
2169 bus->name = KBUILD_MODNAME "-mii";
2170 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2171 bus->read = mt753x_phy_read_c22;
2172 bus->write = mt753x_phy_write_c22;
2173 bus->read_c45 = mt753x_phy_read_c45;
2174 bus->write_c45 = mt753x_phy_write_c45;
2175 bus->parent = dev;
2176 bus->phy_mask = ~ds->phys_mii_mask;
2177
2178 if (priv->irq)
2179 mt7530_setup_mdio_irq(priv);
2180
2181 ret = devm_mdiobus_register(dev, bus);
2182 if (ret) {
2183 dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2184 if (priv->irq)
2185 mt7530_free_mdio_irq(priv);
2186 }
2187
2188 return ret;
2189 }
2190
2191 static int
mt7530_setup(struct dsa_switch * ds)2192 mt7530_setup(struct dsa_switch *ds)
2193 {
2194 struct mt7530_priv *priv = ds->priv;
2195 struct device_node *dn = NULL;
2196 struct device_node *phy_node;
2197 struct device_node *mac_np;
2198 struct mt7530_dummy_poll p;
2199 phy_interface_t interface;
2200 struct dsa_port *cpu_dp;
2201 u32 id, val;
2202 int ret, i;
2203
2204 /* The parent node of master netdev which holds the common system
2205 * controller also is the container for two GMACs nodes representing
2206 * as two netdev instances.
2207 */
2208 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2209 dn = cpu_dp->master->dev.of_node->parent;
2210 /* It doesn't matter which CPU port is found first,
2211 * their masters should share the same parent OF node
2212 */
2213 break;
2214 }
2215
2216 if (!dn) {
2217 dev_err(ds->dev, "parent OF node of DSA master not found");
2218 return -EINVAL;
2219 }
2220
2221 ds->assisted_learning_on_cpu_port = true;
2222 ds->mtu_enforcement_ingress = true;
2223
2224 if (priv->id == ID_MT7530) {
2225 regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2226 ret = regulator_enable(priv->core_pwr);
2227 if (ret < 0) {
2228 dev_err(priv->dev,
2229 "Failed to enable core power: %d\n", ret);
2230 return ret;
2231 }
2232
2233 regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2234 ret = regulator_enable(priv->io_pwr);
2235 if (ret < 0) {
2236 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2237 ret);
2238 return ret;
2239 }
2240 }
2241
2242 /* Reset whole chip through gpio pin or memory-mapped registers for
2243 * different type of hardware
2244 */
2245 if (priv->mcm) {
2246 reset_control_assert(priv->rstc);
2247 usleep_range(1000, 1100);
2248 reset_control_deassert(priv->rstc);
2249 } else {
2250 gpiod_set_value_cansleep(priv->reset, 0);
2251 usleep_range(1000, 1100);
2252 gpiod_set_value_cansleep(priv->reset, 1);
2253 }
2254
2255 /* Waiting for MT7530 got to stable */
2256 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2257 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2258 20, 1000000);
2259 if (ret < 0) {
2260 dev_err(priv->dev, "reset timeout\n");
2261 return ret;
2262 }
2263
2264 id = mt7530_read(priv, MT7530_CREV);
2265 id >>= CHIP_NAME_SHIFT;
2266 if (id != MT7530_ID) {
2267 dev_err(priv->dev, "chip %x can't be supported\n", id);
2268 return -ENODEV;
2269 }
2270
2271 /* Reset the switch through internal reset */
2272 mt7530_write(priv, MT7530_SYS_CTRL,
2273 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2274 SYS_CTRL_REG_RST);
2275
2276 mt7530_pll_setup(priv);
2277
2278 /* Lower Tx driving for TRGMII path */
2279 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2280 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2281 TD_DM_DRVP(8) | TD_DM_DRVN(8));
2282
2283 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2284 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2285 RD_TAP_MASK, RD_TAP(16));
2286
2287 /* Enable port 6 */
2288 val = mt7530_read(priv, MT7530_MHWTRAP);
2289 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2290 val |= MHWTRAP_MANUAL;
2291 mt7530_write(priv, MT7530_MHWTRAP, val);
2292
2293 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2294
2295 mt753x_trap_frames(priv);
2296
2297 /* Enable and reset MIB counters */
2298 mt7530_mib_reset(ds);
2299
2300 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2301 /* Disable forwarding by default on all ports */
2302 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2303 PCR_MATRIX_CLR);
2304
2305 /* Disable learning by default on all ports */
2306 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2307
2308 if (dsa_is_cpu_port(ds, i)) {
2309 ret = mt753x_cpu_port_enable(ds, i);
2310 if (ret)
2311 return ret;
2312 } else {
2313 mt7530_port_disable(ds, i);
2314
2315 /* Set default PVID to 0 on all user ports */
2316 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2317 G0_PORT_VID_DEF);
2318 }
2319 /* Enable consistent egress tag */
2320 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2321 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2322 }
2323
2324 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2325 ret = mt7530_setup_vlan0(priv);
2326 if (ret)
2327 return ret;
2328
2329 /* Setup port 5 */
2330 priv->p5_intf_sel = P5_DISABLED;
2331 interface = PHY_INTERFACE_MODE_NA;
2332
2333 if (!dsa_is_unused_port(ds, 5)) {
2334 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2335 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2336 if (ret && ret != -ENODEV)
2337 return ret;
2338 } else {
2339 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2340 for_each_child_of_node(dn, mac_np) {
2341 if (!of_device_is_compatible(mac_np,
2342 "mediatek,eth-mac"))
2343 continue;
2344
2345 ret = of_property_read_u32(mac_np, "reg", &id);
2346 if (ret < 0 || id != 1)
2347 continue;
2348
2349 phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2350 if (!phy_node)
2351 continue;
2352
2353 if (phy_node->parent == priv->dev->of_node->parent) {
2354 ret = of_get_phy_mode(mac_np, &interface);
2355 if (ret && ret != -ENODEV) {
2356 of_node_put(mac_np);
2357 of_node_put(phy_node);
2358 return ret;
2359 }
2360 id = of_mdio_parse_addr(ds->dev, phy_node);
2361 if (id == 0)
2362 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2363 if (id == 4)
2364 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2365 }
2366 of_node_put(mac_np);
2367 of_node_put(phy_node);
2368 break;
2369 }
2370 }
2371
2372 #ifdef CONFIG_GPIOLIB
2373 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2374 ret = mt7530_setup_gpio(priv);
2375 if (ret)
2376 return ret;
2377 }
2378 #endif /* CONFIG_GPIOLIB */
2379
2380 mt7530_setup_port5(ds, interface);
2381
2382 /* Flush the FDB table */
2383 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2384 if (ret < 0)
2385 return ret;
2386
2387 return 0;
2388 }
2389
2390 static int
mt7531_setup_common(struct dsa_switch * ds)2391 mt7531_setup_common(struct dsa_switch *ds)
2392 {
2393 struct mt7530_priv *priv = ds->priv;
2394 int ret, i;
2395
2396 mt753x_trap_frames(priv);
2397
2398 /* Enable and reset MIB counters */
2399 mt7530_mib_reset(ds);
2400
2401 /* Disable flooding on all ports */
2402 mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2403 UNU_FFP_MASK);
2404
2405 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2406 /* Disable forwarding by default on all ports */
2407 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2408 PCR_MATRIX_CLR);
2409
2410 /* Disable learning by default on all ports */
2411 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2412
2413 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2414
2415 if (dsa_is_cpu_port(ds, i)) {
2416 ret = mt753x_cpu_port_enable(ds, i);
2417 if (ret)
2418 return ret;
2419 } else {
2420 mt7530_port_disable(ds, i);
2421
2422 /* Set default PVID to 0 on all user ports */
2423 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2424 G0_PORT_VID_DEF);
2425 }
2426
2427 /* Enable consistent egress tag */
2428 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2429 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2430 }
2431
2432 /* Flush the FDB table */
2433 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2434 if (ret < 0)
2435 return ret;
2436
2437 return 0;
2438 }
2439
2440 static int
mt7531_setup(struct dsa_switch * ds)2441 mt7531_setup(struct dsa_switch *ds)
2442 {
2443 struct mt7530_priv *priv = ds->priv;
2444 struct mt7530_dummy_poll p;
2445 u32 val, id;
2446 int ret, i;
2447
2448 /* Reset whole chip through gpio pin or memory-mapped registers for
2449 * different type of hardware
2450 */
2451 if (priv->mcm) {
2452 reset_control_assert(priv->rstc);
2453 usleep_range(1000, 1100);
2454 reset_control_deassert(priv->rstc);
2455 } else {
2456 gpiod_set_value_cansleep(priv->reset, 0);
2457 usleep_range(1000, 1100);
2458 gpiod_set_value_cansleep(priv->reset, 1);
2459 }
2460
2461 /* Waiting for MT7530 got to stable */
2462 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2463 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2464 20, 1000000);
2465 if (ret < 0) {
2466 dev_err(priv->dev, "reset timeout\n");
2467 return ret;
2468 }
2469
2470 id = mt7530_read(priv, MT7531_CREV);
2471 id >>= CHIP_NAME_SHIFT;
2472
2473 if (id != MT7531_ID) {
2474 dev_err(priv->dev, "chip %x can't be supported\n", id);
2475 return -ENODEV;
2476 }
2477
2478 /* all MACs must be forced link-down before sw reset */
2479 for (i = 0; i < MT7530_NUM_PORTS; i++)
2480 mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2481
2482 /* Reset the switch through internal reset */
2483 mt7530_write(priv, MT7530_SYS_CTRL,
2484 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2485 SYS_CTRL_REG_RST);
2486
2487 mt7531_pll_setup(priv);
2488
2489 if (mt7531_dual_sgmii_supported(priv)) {
2490 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2491
2492 /* Let ds->slave_mii_bus be able to access external phy. */
2493 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2494 MT7531_EXT_P_MDC_11);
2495 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2496 MT7531_EXT_P_MDIO_12);
2497 } else {
2498 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2499 }
2500 dev_dbg(ds->dev, "P5 support %s interface\n",
2501 p5_intf_modes(priv->p5_intf_sel));
2502
2503 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2504 MT7531_GPIO0_INTERRUPT);
2505
2506 /* Let phylink decide the interface later. */
2507 priv->p5_interface = PHY_INTERFACE_MODE_NA;
2508 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2509
2510 /* Enable PHY core PLL, since phy_device has not yet been created
2511 * provided for phy_[read,write]_mmd_indirect is called, we provide
2512 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2513 * function.
2514 */
2515 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2516 MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2517 val |= MT7531_PHY_PLL_BYPASS_MODE;
2518 val &= ~MT7531_PHY_PLL_OFF;
2519 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2520 CORE_PLL_GROUP4, val);
2521
2522 mt7531_setup_common(ds);
2523
2524 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2525 ret = mt7530_setup_vlan0(priv);
2526 if (ret)
2527 return ret;
2528
2529 ds->assisted_learning_on_cpu_port = true;
2530 ds->mtu_enforcement_ingress = true;
2531
2532 return 0;
2533 }
2534
mt7530_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2535 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2536 struct phylink_config *config)
2537 {
2538 switch (port) {
2539 case 0 ... 4: /* Internal phy */
2540 __set_bit(PHY_INTERFACE_MODE_GMII,
2541 config->supported_interfaces);
2542 break;
2543
2544 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2545 phy_interface_set_rgmii(config->supported_interfaces);
2546 __set_bit(PHY_INTERFACE_MODE_MII,
2547 config->supported_interfaces);
2548 __set_bit(PHY_INTERFACE_MODE_GMII,
2549 config->supported_interfaces);
2550 break;
2551
2552 case 6: /* 1st cpu port */
2553 __set_bit(PHY_INTERFACE_MODE_RGMII,
2554 config->supported_interfaces);
2555 __set_bit(PHY_INTERFACE_MODE_TRGMII,
2556 config->supported_interfaces);
2557 break;
2558 }
2559 }
2560
mt7531_is_rgmii_port(struct mt7530_priv * priv,u32 port)2561 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2562 {
2563 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2564 }
2565
mt7531_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2566 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2567 struct phylink_config *config)
2568 {
2569 struct mt7530_priv *priv = ds->priv;
2570
2571 switch (port) {
2572 case 0 ... 4: /* Internal phy */
2573 __set_bit(PHY_INTERFACE_MODE_GMII,
2574 config->supported_interfaces);
2575 break;
2576
2577 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2578 if (mt7531_is_rgmii_port(priv, port)) {
2579 phy_interface_set_rgmii(config->supported_interfaces);
2580 break;
2581 }
2582 fallthrough;
2583
2584 case 6: /* 1st cpu port supports sgmii/8023z only */
2585 __set_bit(PHY_INTERFACE_MODE_SGMII,
2586 config->supported_interfaces);
2587 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2588 config->supported_interfaces);
2589 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
2590 config->supported_interfaces);
2591
2592 config->mac_capabilities |= MAC_2500FD;
2593 break;
2594 }
2595 }
2596
mt7988_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2597 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2598 struct phylink_config *config)
2599 {
2600 phy_interface_zero(config->supported_interfaces);
2601
2602 switch (port) {
2603 case 0 ... 4: /* Internal phy */
2604 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2605 config->supported_interfaces);
2606 break;
2607
2608 case 6:
2609 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2610 config->supported_interfaces);
2611 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2612 MAC_10000FD;
2613 }
2614 }
2615
2616 static int
mt753x_pad_setup(struct dsa_switch * ds,const struct phylink_link_state * state)2617 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2618 {
2619 struct mt7530_priv *priv = ds->priv;
2620
2621 return priv->info->pad_setup(ds, state->interface);
2622 }
2623
2624 static int
mt7530_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2625 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2626 phy_interface_t interface)
2627 {
2628 struct mt7530_priv *priv = ds->priv;
2629
2630 /* Only need to setup port5. */
2631 if (port != 5)
2632 return 0;
2633
2634 mt7530_setup_port5(priv->ds, interface);
2635
2636 return 0;
2637 }
2638
mt7531_rgmii_setup(struct mt7530_priv * priv,u32 port,phy_interface_t interface,struct phy_device * phydev)2639 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2640 phy_interface_t interface,
2641 struct phy_device *phydev)
2642 {
2643 u32 val;
2644
2645 if (!mt7531_is_rgmii_port(priv, port)) {
2646 dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2647 port);
2648 return -EINVAL;
2649 }
2650
2651 val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2652 val |= GP_CLK_EN;
2653 val &= ~GP_MODE_MASK;
2654 val |= GP_MODE(MT7531_GP_MODE_RGMII);
2655 val &= ~CLK_SKEW_IN_MASK;
2656 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2657 val &= ~CLK_SKEW_OUT_MASK;
2658 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2659 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2660
2661 /* Do not adjust rgmii delay when vendor phy driver presents. */
2662 if (!phydev || phy_driver_is_genphy(phydev)) {
2663 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2664 switch (interface) {
2665 case PHY_INTERFACE_MODE_RGMII:
2666 val |= TXCLK_NO_REVERSE;
2667 val |= RXCLK_NO_DELAY;
2668 break;
2669 case PHY_INTERFACE_MODE_RGMII_RXID:
2670 val |= TXCLK_NO_REVERSE;
2671 break;
2672 case PHY_INTERFACE_MODE_RGMII_TXID:
2673 val |= RXCLK_NO_DELAY;
2674 break;
2675 case PHY_INTERFACE_MODE_RGMII_ID:
2676 break;
2677 default:
2678 return -EINVAL;
2679 }
2680 }
2681 mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2682
2683 return 0;
2684 }
2685
mt753x_is_mac_port(u32 port)2686 static bool mt753x_is_mac_port(u32 port)
2687 {
2688 return (port == 5 || port == 6);
2689 }
2690
2691 static int
mt7988_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2692 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2693 phy_interface_t interface)
2694 {
2695 if (dsa_is_cpu_port(ds, port) &&
2696 interface == PHY_INTERFACE_MODE_INTERNAL)
2697 return 0;
2698
2699 return -EINVAL;
2700 }
2701
2702 static int
mt7531_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2703 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2704 phy_interface_t interface)
2705 {
2706 struct mt7530_priv *priv = ds->priv;
2707 struct phy_device *phydev;
2708 struct dsa_port *dp;
2709
2710 if (!mt753x_is_mac_port(port)) {
2711 dev_err(priv->dev, "port %d is not a MAC port\n", port);
2712 return -EINVAL;
2713 }
2714
2715 switch (interface) {
2716 case PHY_INTERFACE_MODE_RGMII:
2717 case PHY_INTERFACE_MODE_RGMII_ID:
2718 case PHY_INTERFACE_MODE_RGMII_RXID:
2719 case PHY_INTERFACE_MODE_RGMII_TXID:
2720 dp = dsa_to_port(ds, port);
2721 phydev = dp->slave->phydev;
2722 return mt7531_rgmii_setup(priv, port, interface, phydev);
2723 case PHY_INTERFACE_MODE_SGMII:
2724 case PHY_INTERFACE_MODE_NA:
2725 case PHY_INTERFACE_MODE_1000BASEX:
2726 case PHY_INTERFACE_MODE_2500BASEX:
2727 /* handled in SGMII PCS driver */
2728 return 0;
2729 default:
2730 return -EINVAL;
2731 }
2732
2733 return -EINVAL;
2734 }
2735
2736 static int
mt753x_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)2737 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2738 const struct phylink_link_state *state)
2739 {
2740 struct mt7530_priv *priv = ds->priv;
2741
2742 return priv->info->mac_port_config(ds, port, mode, state->interface);
2743 }
2744
2745 static struct phylink_pcs *
mt753x_phylink_mac_select_pcs(struct dsa_switch * ds,int port,phy_interface_t interface)2746 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2747 phy_interface_t interface)
2748 {
2749 struct mt7530_priv *priv = ds->priv;
2750
2751 switch (interface) {
2752 case PHY_INTERFACE_MODE_TRGMII:
2753 return &priv->pcs[port].pcs;
2754 case PHY_INTERFACE_MODE_SGMII:
2755 case PHY_INTERFACE_MODE_1000BASEX:
2756 case PHY_INTERFACE_MODE_2500BASEX:
2757 return priv->ports[port].sgmii_pcs;
2758 default:
2759 return NULL;
2760 }
2761 }
2762
2763 static void
mt753x_phylink_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)2764 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2765 const struct phylink_link_state *state)
2766 {
2767 struct mt7530_priv *priv = ds->priv;
2768 u32 mcr_cur, mcr_new;
2769
2770 switch (port) {
2771 case 0 ... 4: /* Internal phy */
2772 if (state->interface != PHY_INTERFACE_MODE_GMII &&
2773 state->interface != PHY_INTERFACE_MODE_INTERNAL)
2774 goto unsupported;
2775 break;
2776 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2777 if (priv->p5_interface == state->interface)
2778 break;
2779
2780 if (mt753x_mac_config(ds, port, mode, state) < 0)
2781 goto unsupported;
2782
2783 if (priv->p5_intf_sel != P5_DISABLED)
2784 priv->p5_interface = state->interface;
2785 break;
2786 case 6: /* 1st cpu port */
2787 if (priv->p6_interface == state->interface)
2788 break;
2789
2790 mt753x_pad_setup(ds, state);
2791
2792 if (mt753x_mac_config(ds, port, mode, state) < 0)
2793 goto unsupported;
2794
2795 priv->p6_interface = state->interface;
2796 break;
2797 default:
2798 unsupported:
2799 dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2800 __func__, phy_modes(state->interface), port);
2801 return;
2802 }
2803
2804 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2805 mcr_new = mcr_cur;
2806 mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2807 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2808 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2809
2810 /* Are we connected to external phy */
2811 if (port == 5 && dsa_is_user_port(ds, 5))
2812 mcr_new |= PMCR_EXT_PHY;
2813
2814 if (mcr_new != mcr_cur)
2815 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2816 }
2817
mt753x_phylink_mac_link_down(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2818 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2819 unsigned int mode,
2820 phy_interface_t interface)
2821 {
2822 struct mt7530_priv *priv = ds->priv;
2823
2824 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2825 }
2826
mt753x_phylink_pcs_link_up(struct phylink_pcs * pcs,unsigned int mode,phy_interface_t interface,int speed,int duplex)2827 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2828 unsigned int mode,
2829 phy_interface_t interface,
2830 int speed, int duplex)
2831 {
2832 if (pcs->ops->pcs_link_up)
2833 pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2834 }
2835
mt753x_phylink_mac_link_up(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)2836 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2837 unsigned int mode,
2838 phy_interface_t interface,
2839 struct phy_device *phydev,
2840 int speed, int duplex,
2841 bool tx_pause, bool rx_pause)
2842 {
2843 struct mt7530_priv *priv = ds->priv;
2844 u32 mcr;
2845
2846 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2847
2848 /* MT753x MAC works in 1G full duplex mode for all up-clocked
2849 * variants.
2850 */
2851 if (interface == PHY_INTERFACE_MODE_INTERNAL ||
2852 interface == PHY_INTERFACE_MODE_TRGMII ||
2853 (phy_interface_mode_is_8023z(interface))) {
2854 speed = SPEED_1000;
2855 duplex = DUPLEX_FULL;
2856 }
2857
2858 switch (speed) {
2859 case SPEED_1000:
2860 mcr |= PMCR_FORCE_SPEED_1000;
2861 break;
2862 case SPEED_100:
2863 mcr |= PMCR_FORCE_SPEED_100;
2864 break;
2865 }
2866 if (duplex == DUPLEX_FULL) {
2867 mcr |= PMCR_FORCE_FDX;
2868 if (tx_pause)
2869 mcr |= PMCR_TX_FC_EN;
2870 if (rx_pause)
2871 mcr |= PMCR_RX_FC_EN;
2872 }
2873
2874 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2875 switch (speed) {
2876 case SPEED_1000:
2877 mcr |= PMCR_FORCE_EEE1G;
2878 break;
2879 case SPEED_100:
2880 mcr |= PMCR_FORCE_EEE100;
2881 break;
2882 }
2883 }
2884
2885 mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2886 }
2887
2888 static int
mt7531_cpu_port_config(struct dsa_switch * ds,int port)2889 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2890 {
2891 struct mt7530_priv *priv = ds->priv;
2892 phy_interface_t interface;
2893 int speed;
2894 int ret;
2895
2896 switch (port) {
2897 case 5:
2898 if (mt7531_is_rgmii_port(priv, port))
2899 interface = PHY_INTERFACE_MODE_RGMII;
2900 else
2901 interface = PHY_INTERFACE_MODE_2500BASEX;
2902
2903 priv->p5_interface = interface;
2904 break;
2905 case 6:
2906 interface = PHY_INTERFACE_MODE_2500BASEX;
2907
2908 priv->p6_interface = interface;
2909 break;
2910 default:
2911 return -EINVAL;
2912 }
2913
2914 if (interface == PHY_INTERFACE_MODE_2500BASEX)
2915 speed = SPEED_2500;
2916 else
2917 speed = SPEED_1000;
2918
2919 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2920 if (ret)
2921 return ret;
2922 mt7530_write(priv, MT7530_PMCR_P(port),
2923 PMCR_CPU_PORT_SETTING(priv->id));
2924 mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2925 interface, speed, DUPLEX_FULL);
2926 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2927 speed, DUPLEX_FULL, true, true);
2928
2929 return 0;
2930 }
2931
2932 static int
mt7988_cpu_port_config(struct dsa_switch * ds,int port)2933 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2934 {
2935 struct mt7530_priv *priv = ds->priv;
2936
2937 mt7530_write(priv, MT7530_PMCR_P(port),
2938 PMCR_CPU_PORT_SETTING(priv->id));
2939
2940 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2941 PHY_INTERFACE_MODE_INTERNAL, NULL,
2942 SPEED_10000, DUPLEX_FULL, true, true);
2943
2944 return 0;
2945 }
2946
mt753x_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2947 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2948 struct phylink_config *config)
2949 {
2950 struct mt7530_priv *priv = ds->priv;
2951
2952 /* This switch only supports full-duplex at 1Gbps */
2953 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2954 MAC_10 | MAC_100 | MAC_1000FD;
2955
2956 priv->info->mac_port_get_caps(ds, port, config);
2957 }
2958
mt753x_pcs_validate(struct phylink_pcs * pcs,unsigned long * supported,const struct phylink_link_state * state)2959 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2960 unsigned long *supported,
2961 const struct phylink_link_state *state)
2962 {
2963 /* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2964 if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2965 phy_interface_mode_is_8023z(state->interface))
2966 phylink_clear(supported, Autoneg);
2967
2968 return 0;
2969 }
2970
mt7530_pcs_get_state(struct phylink_pcs * pcs,struct phylink_link_state * state)2971 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2972 struct phylink_link_state *state)
2973 {
2974 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2975 int port = pcs_to_mt753x_pcs(pcs)->port;
2976 u32 pmsr;
2977
2978 pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2979
2980 state->link = (pmsr & PMSR_LINK);
2981 state->an_complete = state->link;
2982 state->duplex = !!(pmsr & PMSR_DPX);
2983
2984 switch (pmsr & PMSR_SPEED_MASK) {
2985 case PMSR_SPEED_10:
2986 state->speed = SPEED_10;
2987 break;
2988 case PMSR_SPEED_100:
2989 state->speed = SPEED_100;
2990 break;
2991 case PMSR_SPEED_1000:
2992 state->speed = SPEED_1000;
2993 break;
2994 default:
2995 state->speed = SPEED_UNKNOWN;
2996 break;
2997 }
2998
2999 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3000 if (pmsr & PMSR_RX_FC)
3001 state->pause |= MLO_PAUSE_RX;
3002 if (pmsr & PMSR_TX_FC)
3003 state->pause |= MLO_PAUSE_TX;
3004 }
3005
mt753x_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)3006 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3007 phy_interface_t interface,
3008 const unsigned long *advertising,
3009 bool permit_pause_to_mac)
3010 {
3011 return 0;
3012 }
3013
mt7530_pcs_an_restart(struct phylink_pcs * pcs)3014 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3015 {
3016 }
3017
3018 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3019 .pcs_validate = mt753x_pcs_validate,
3020 .pcs_get_state = mt7530_pcs_get_state,
3021 .pcs_config = mt753x_pcs_config,
3022 .pcs_an_restart = mt7530_pcs_an_restart,
3023 };
3024
3025 static int
mt753x_setup(struct dsa_switch * ds)3026 mt753x_setup(struct dsa_switch *ds)
3027 {
3028 struct mt7530_priv *priv = ds->priv;
3029 int i, ret;
3030
3031 /* Initialise the PCS devices */
3032 for (i = 0; i < priv->ds->num_ports; i++) {
3033 priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3034 priv->pcs[i].pcs.neg_mode = true;
3035 priv->pcs[i].priv = priv;
3036 priv->pcs[i].port = i;
3037 }
3038
3039 ret = priv->info->sw_setup(ds);
3040 if (ret)
3041 return ret;
3042
3043 ret = mt7530_setup_irq(priv);
3044 if (ret)
3045 return ret;
3046
3047 ret = mt7530_setup_mdio(priv);
3048 if (ret && priv->irq)
3049 mt7530_free_irq_common(priv);
3050
3051 if (priv->create_sgmii) {
3052 ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3053 if (ret && priv->irq)
3054 mt7530_free_irq(priv);
3055 }
3056
3057 return ret;
3058 }
3059
mt753x_get_mac_eee(struct dsa_switch * ds,int port,struct ethtool_eee * e)3060 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3061 struct ethtool_eee *e)
3062 {
3063 struct mt7530_priv *priv = ds->priv;
3064 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3065
3066 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3067 e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3068
3069 return 0;
3070 }
3071
mt753x_set_mac_eee(struct dsa_switch * ds,int port,struct ethtool_eee * e)3072 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3073 struct ethtool_eee *e)
3074 {
3075 struct mt7530_priv *priv = ds->priv;
3076 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3077
3078 if (e->tx_lpi_timer > 0xFFF)
3079 return -EINVAL;
3080
3081 set = SET_LPI_THRESH(e->tx_lpi_timer);
3082 if (!e->tx_lpi_enabled)
3083 /* Force LPI Mode without a delay */
3084 set |= LPI_MODE_EN;
3085 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3086
3087 return 0;
3088 }
3089
mt7988_pad_setup(struct dsa_switch * ds,phy_interface_t interface)3090 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3091 {
3092 return 0;
3093 }
3094
mt7988_setup(struct dsa_switch * ds)3095 static int mt7988_setup(struct dsa_switch *ds)
3096 {
3097 struct mt7530_priv *priv = ds->priv;
3098
3099 /* Reset the switch */
3100 reset_control_assert(priv->rstc);
3101 usleep_range(20, 50);
3102 reset_control_deassert(priv->rstc);
3103 usleep_range(20, 50);
3104
3105 /* Reset the switch PHYs */
3106 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3107
3108 return mt7531_setup_common(ds);
3109 }
3110
3111 const struct dsa_switch_ops mt7530_switch_ops = {
3112 .get_tag_protocol = mtk_get_tag_protocol,
3113 .setup = mt753x_setup,
3114 .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3115 .get_strings = mt7530_get_strings,
3116 .get_ethtool_stats = mt7530_get_ethtool_stats,
3117 .get_sset_count = mt7530_get_sset_count,
3118 .set_ageing_time = mt7530_set_ageing_time,
3119 .port_enable = mt7530_port_enable,
3120 .port_disable = mt7530_port_disable,
3121 .port_change_mtu = mt7530_port_change_mtu,
3122 .port_max_mtu = mt7530_port_max_mtu,
3123 .port_stp_state_set = mt7530_stp_state_set,
3124 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
3125 .port_bridge_flags = mt7530_port_bridge_flags,
3126 .port_bridge_join = mt7530_port_bridge_join,
3127 .port_bridge_leave = mt7530_port_bridge_leave,
3128 .port_fdb_add = mt7530_port_fdb_add,
3129 .port_fdb_del = mt7530_port_fdb_del,
3130 .port_fdb_dump = mt7530_port_fdb_dump,
3131 .port_mdb_add = mt7530_port_mdb_add,
3132 .port_mdb_del = mt7530_port_mdb_del,
3133 .port_vlan_filtering = mt7530_port_vlan_filtering,
3134 .port_vlan_add = mt7530_port_vlan_add,
3135 .port_vlan_del = mt7530_port_vlan_del,
3136 .port_mirror_add = mt753x_port_mirror_add,
3137 .port_mirror_del = mt753x_port_mirror_del,
3138 .phylink_get_caps = mt753x_phylink_get_caps,
3139 .phylink_mac_select_pcs = mt753x_phylink_mac_select_pcs,
3140 .phylink_mac_config = mt753x_phylink_mac_config,
3141 .phylink_mac_link_down = mt753x_phylink_mac_link_down,
3142 .phylink_mac_link_up = mt753x_phylink_mac_link_up,
3143 .get_mac_eee = mt753x_get_mac_eee,
3144 .set_mac_eee = mt753x_set_mac_eee,
3145 };
3146 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3147
3148 const struct mt753x_info mt753x_table[] = {
3149 [ID_MT7621] = {
3150 .id = ID_MT7621,
3151 .pcs_ops = &mt7530_pcs_ops,
3152 .sw_setup = mt7530_setup,
3153 .phy_read_c22 = mt7530_phy_read_c22,
3154 .phy_write_c22 = mt7530_phy_write_c22,
3155 .phy_read_c45 = mt7530_phy_read_c45,
3156 .phy_write_c45 = mt7530_phy_write_c45,
3157 .pad_setup = mt7530_pad_clk_setup,
3158 .mac_port_get_caps = mt7530_mac_port_get_caps,
3159 .mac_port_config = mt7530_mac_config,
3160 },
3161 [ID_MT7530] = {
3162 .id = ID_MT7530,
3163 .pcs_ops = &mt7530_pcs_ops,
3164 .sw_setup = mt7530_setup,
3165 .phy_read_c22 = mt7530_phy_read_c22,
3166 .phy_write_c22 = mt7530_phy_write_c22,
3167 .phy_read_c45 = mt7530_phy_read_c45,
3168 .phy_write_c45 = mt7530_phy_write_c45,
3169 .pad_setup = mt7530_pad_clk_setup,
3170 .mac_port_get_caps = mt7530_mac_port_get_caps,
3171 .mac_port_config = mt7530_mac_config,
3172 },
3173 [ID_MT7531] = {
3174 .id = ID_MT7531,
3175 .pcs_ops = &mt7530_pcs_ops,
3176 .sw_setup = mt7531_setup,
3177 .phy_read_c22 = mt7531_ind_c22_phy_read,
3178 .phy_write_c22 = mt7531_ind_c22_phy_write,
3179 .phy_read_c45 = mt7531_ind_c45_phy_read,
3180 .phy_write_c45 = mt7531_ind_c45_phy_write,
3181 .pad_setup = mt7531_pad_setup,
3182 .cpu_port_config = mt7531_cpu_port_config,
3183 .mac_port_get_caps = mt7531_mac_port_get_caps,
3184 .mac_port_config = mt7531_mac_config,
3185 },
3186 [ID_MT7988] = {
3187 .id = ID_MT7988,
3188 .pcs_ops = &mt7530_pcs_ops,
3189 .sw_setup = mt7988_setup,
3190 .phy_read_c22 = mt7531_ind_c22_phy_read,
3191 .phy_write_c22 = mt7531_ind_c22_phy_write,
3192 .phy_read_c45 = mt7531_ind_c45_phy_read,
3193 .phy_write_c45 = mt7531_ind_c45_phy_write,
3194 .pad_setup = mt7988_pad_setup,
3195 .cpu_port_config = mt7988_cpu_port_config,
3196 .mac_port_get_caps = mt7988_mac_port_get_caps,
3197 .mac_port_config = mt7988_mac_config,
3198 },
3199 };
3200 EXPORT_SYMBOL_GPL(mt753x_table);
3201
3202 int
mt7530_probe_common(struct mt7530_priv * priv)3203 mt7530_probe_common(struct mt7530_priv *priv)
3204 {
3205 struct device *dev = priv->dev;
3206
3207 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3208 if (!priv->ds)
3209 return -ENOMEM;
3210
3211 priv->ds->dev = dev;
3212 priv->ds->num_ports = MT7530_NUM_PORTS;
3213
3214 /* Get the hardware identifier from the devicetree node.
3215 * We will need it for some of the clock and regulator setup.
3216 */
3217 priv->info = of_device_get_match_data(dev);
3218 if (!priv->info)
3219 return -EINVAL;
3220
3221 /* Sanity check if these required device operations are filled
3222 * properly.
3223 */
3224 if (!priv->info->sw_setup || !priv->info->pad_setup ||
3225 !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3226 !priv->info->mac_port_get_caps ||
3227 !priv->info->mac_port_config)
3228 return -EINVAL;
3229
3230 priv->id = priv->info->id;
3231 priv->dev = dev;
3232 priv->ds->priv = priv;
3233 priv->ds->ops = &mt7530_switch_ops;
3234 mutex_init(&priv->reg_mutex);
3235 dev_set_drvdata(dev, priv);
3236
3237 return 0;
3238 }
3239 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3240
3241 void
mt7530_remove_common(struct mt7530_priv * priv)3242 mt7530_remove_common(struct mt7530_priv *priv)
3243 {
3244 if (priv->irq)
3245 mt7530_free_irq(priv);
3246
3247 dsa_unregister_switch(priv->ds);
3248
3249 mutex_destroy(&priv->reg_mutex);
3250 }
3251 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3252
3253 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3254 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3255 MODULE_LICENSE("GPL");
3256