1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter
4 *
5 * Copyright (C) 2013-2014 Renesas Electronics Corporation
6 *
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 */
9
10 #include <linux/device.h>
11
12 #include <media/v4l2-subdev.h>
13
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19
20 #define RPF_MAX_WIDTH 8190
21 #define RPF_MAX_HEIGHT 8190
22
23 /* Pre extended display list command data structure. */
24 struct vsp1_extcmd_auto_fld_body {
25 u32 top_y0;
26 u32 bottom_y0;
27 u32 top_c0;
28 u32 bottom_c0;
29 u32 top_c1;
30 u32 bottom_c1;
31 u32 reserved0;
32 u32 reserved1;
33 } __packed;
34
35 /* -----------------------------------------------------------------------------
36 * Device Access
37 */
38
vsp1_rpf_write(struct vsp1_rwpf * rpf,struct vsp1_dl_body * dlb,u32 reg,u32 data)39 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
40 struct vsp1_dl_body *dlb, u32 reg, u32 data)
41 {
42 vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
43 data);
44 }
45
46 /* -----------------------------------------------------------------------------
47 * V4L2 Subdevice Operations
48 */
49
50 static const struct v4l2_subdev_ops rpf_ops = {
51 .pad = &vsp1_rwpf_pad_ops,
52 };
53
54 /* -----------------------------------------------------------------------------
55 * VSP1 Entity Operations
56 */
57
rpf_configure_stream(struct vsp1_entity * entity,struct vsp1_pipeline * pipe,struct vsp1_dl_list * dl,struct vsp1_dl_body * dlb)58 static void rpf_configure_stream(struct vsp1_entity *entity,
59 struct vsp1_pipeline *pipe,
60 struct vsp1_dl_list *dl,
61 struct vsp1_dl_body *dlb)
62 {
63 struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
64 const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
65 const struct v4l2_pix_format_mplane *format = &rpf->format;
66 const struct v4l2_mbus_framefmt *source_format;
67 const struct v4l2_mbus_framefmt *sink_format;
68 unsigned int left = 0;
69 unsigned int top = 0;
70 u32 pstride;
71 u32 infmt;
72
73 /* Stride */
74 pstride = format->plane_fmt[0].bytesperline
75 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
76 if (format->num_planes > 1)
77 pstride |= format->plane_fmt[1].bytesperline
78 << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
79
80 /*
81 * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
82 * of pstride by 2 is conveniently OK here as we are multiplying both
83 * values.
84 */
85 if (pipe->interlaced)
86 pstride *= 2;
87
88 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
89
90 /* Format */
91 sink_format = vsp1_entity_get_pad_format(&rpf->entity,
92 rpf->entity.config,
93 RWPF_PAD_SINK);
94 source_format = vsp1_entity_get_pad_format(&rpf->entity,
95 rpf->entity.config,
96 RWPF_PAD_SOURCE);
97
98 infmt = VI6_RPF_INFMT_CIPM
99 | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
100
101 if (fmtinfo->swap_yc)
102 infmt |= VI6_RPF_INFMT_SPYCS;
103 if (fmtinfo->swap_uv)
104 infmt |= VI6_RPF_INFMT_SPUVS;
105
106 if (sink_format->code != source_format->code)
107 infmt |= VI6_RPF_INFMT_CSC;
108
109 vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
110 vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
111
112 if (entity->vsp1->info->gen == 4) {
113 u32 ext_infmt0;
114 u32 ext_infmt1;
115 u32 ext_infmt2;
116
117 switch (fmtinfo->fourcc) {
118 case V4L2_PIX_FMT_RGBX1010102:
119 ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
120 ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 0);
121 ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 0);
122 break;
123
124 case V4L2_PIX_FMT_RGBA1010102:
125 ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
126 ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 30);
127 ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2);
128 break;
129
130 case V4L2_PIX_FMT_ARGB2101010:
131 ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
132 ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(2, 12, 22, 0);
133 ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2);
134 break;
135
136 case V4L2_PIX_FMT_Y210:
137 ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B |
138 VI6_RPF_EXT_INFMT0_IPBD_Y_10 |
139 VI6_RPF_EXT_INFMT0_IPBD_C_10;
140 ext_infmt1 = 0x0;
141 ext_infmt2 = 0x0;
142 break;
143
144 case V4L2_PIX_FMT_Y212:
145 ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B |
146 VI6_RPF_EXT_INFMT0_IPBD_Y_12 |
147 VI6_RPF_EXT_INFMT0_IPBD_C_12;
148 ext_infmt1 = 0x0;
149 ext_infmt2 = 0x0;
150 break;
151
152 default:
153 ext_infmt0 = 0;
154 ext_infmt1 = 0;
155 ext_infmt2 = 0;
156 break;
157 }
158
159 vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT0, ext_infmt0);
160 vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT1, ext_infmt1);
161 vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT2, ext_infmt2);
162 }
163
164 /* Output location. */
165 if (pipe->brx) {
166 const struct v4l2_rect *compose;
167
168 compose = vsp1_entity_get_pad_selection(pipe->brx,
169 pipe->brx->config,
170 rpf->brx_input,
171 V4L2_SEL_TGT_COMPOSE);
172 left = compose->left;
173 top = compose->top;
174 }
175
176 if (pipe->interlaced)
177 top /= 2;
178
179 vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
180 (left << VI6_RPF_LOC_HCOORD_SHIFT) |
181 (top << VI6_RPF_LOC_VCOORD_SHIFT));
182
183 /*
184 * On Gen2 use the alpha channel (extended to 8 bits) when available or
185 * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
186 * otherwise.
187 *
188 * The Gen3+ RPF has extended alpha capability and can both multiply the
189 * alpha channel by a fixed global alpha value, and multiply the pixel
190 * components to convert the input to premultiplied alpha.
191 *
192 * As alpha premultiplication is available in the BRx for both Gen2 and
193 * Gen3+ we handle it there and use the Gen3 alpha multiplier for global
194 * alpha multiplication only. This however prevents conversion to
195 * premultiplied alpha if no BRx is present in the pipeline. If that use
196 * case turns out to be useful we will revisit the implementation (for
197 * Gen3 only).
198 *
199 * We enable alpha multiplication on Gen3+ using the fixed alpha value
200 * set through the V4L2_CID_ALPHA_COMPONENT control when the input
201 * contains an alpha channel. On Gen2 the global alpha is ignored in
202 * that case.
203 *
204 * In all cases, disable color keying.
205 */
206 vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
207 (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
208 : VI6_RPF_ALPH_SEL_ASEL_FIXED));
209
210 if (entity->vsp1->info->gen >= 3) {
211 u32 mult;
212
213 if (fmtinfo->alpha) {
214 /*
215 * When the input contains an alpha channel enable the
216 * alpha multiplier. If the input is premultiplied we
217 * need to multiply both the alpha channel and the pixel
218 * components by the global alpha value to keep them
219 * premultiplied. Otherwise multiply the alpha channel
220 * only.
221 */
222 bool premultiplied = format->flags
223 & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
224
225 mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
226 | (premultiplied ?
227 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
228 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
229 } else {
230 /*
231 * When the input doesn't contain an alpha channel the
232 * global alpha value is applied in the unpacking unit,
233 * the alpha multiplier isn't needed and must be
234 * disabled.
235 */
236 mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
237 | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
238 }
239
240 rpf->mult_alpha = mult;
241 }
242
243 vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
244 vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
245
246 }
247
vsp1_rpf_configure_autofld(struct vsp1_rwpf * rpf,struct vsp1_dl_list * dl)248 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
249 struct vsp1_dl_list *dl)
250 {
251 const struct v4l2_pix_format_mplane *format = &rpf->format;
252 struct vsp1_dl_ext_cmd *cmd;
253 struct vsp1_extcmd_auto_fld_body *auto_fld;
254 u32 offset_y, offset_c;
255
256 cmd = vsp1_dl_get_pre_cmd(dl);
257 if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
258 return;
259
260 /* Re-index our auto_fld to match the current RPF. */
261 auto_fld = cmd->data;
262 auto_fld = &auto_fld[rpf->entity.index];
263
264 auto_fld->top_y0 = rpf->mem.addr[0];
265 auto_fld->top_c0 = rpf->mem.addr[1];
266 auto_fld->top_c1 = rpf->mem.addr[2];
267
268 offset_y = format->plane_fmt[0].bytesperline;
269 offset_c = format->plane_fmt[1].bytesperline;
270
271 auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
272 auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
273 auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
274
275 cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
276 }
277
rpf_configure_frame(struct vsp1_entity * entity,struct vsp1_pipeline * pipe,struct vsp1_dl_list * dl,struct vsp1_dl_body * dlb)278 static void rpf_configure_frame(struct vsp1_entity *entity,
279 struct vsp1_pipeline *pipe,
280 struct vsp1_dl_list *dl,
281 struct vsp1_dl_body *dlb)
282 {
283 struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
284
285 vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
286 rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
287 vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
288 (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
289
290 vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
291 }
292
rpf_configure_partition(struct vsp1_entity * entity,struct vsp1_pipeline * pipe,struct vsp1_dl_list * dl,struct vsp1_dl_body * dlb)293 static void rpf_configure_partition(struct vsp1_entity *entity,
294 struct vsp1_pipeline *pipe,
295 struct vsp1_dl_list *dl,
296 struct vsp1_dl_body *dlb)
297 {
298 struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
299 struct vsp1_rwpf_memory mem = rpf->mem;
300 struct vsp1_device *vsp1 = rpf->entity.vsp1;
301 const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
302 const struct v4l2_pix_format_mplane *format = &rpf->format;
303 struct v4l2_rect crop;
304
305 /*
306 * Source size and crop offsets.
307 *
308 * The crop offsets correspond to the location of the crop
309 * rectangle top left corner in the plane buffer. Only two
310 * offsets are needed, as planes 2 and 3 always have identical
311 * strides.
312 */
313 crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
314
315 /*
316 * Partition Algorithm Control
317 *
318 * The partition algorithm can split this frame into multiple
319 * slices. We must scale our partition window based on the pipe
320 * configuration to match the destination partition window.
321 * To achieve this, we adjust our crop to provide a 'sub-crop'
322 * matching the expected partition window. Only 'left' and
323 * 'width' need to be adjusted.
324 */
325 if (pipe->partitions > 1) {
326 crop.width = pipe->partition->rpf.width;
327 crop.left += pipe->partition->rpf.left;
328 }
329
330 if (pipe->interlaced) {
331 crop.height = round_down(crop.height / 2, fmtinfo->vsub);
332 crop.top = round_down(crop.top / 2, fmtinfo->vsub);
333 }
334
335 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
336 (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
337 (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
338 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
339 (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
340 (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
341
342 mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
343 + crop.left * fmtinfo->bpp[0] / 8;
344
345 if (format->num_planes > 1) {
346 unsigned int bpl = format->plane_fmt[1].bytesperline;
347 unsigned int offset;
348
349 offset = crop.top / fmtinfo->vsub * bpl
350 + crop.left / fmtinfo->hsub * fmtinfo->bpp[1] / 8;
351 mem.addr[1] += offset;
352 mem.addr[2] += offset;
353 }
354
355 /*
356 * On Gen3+ hardware the SPUVS bit has no effect on 3-planar
357 * formats. Swap the U and V planes manually in that case.
358 */
359 if (vsp1->info->gen >= 3 && format->num_planes == 3 &&
360 fmtinfo->swap_uv)
361 swap(mem.addr[1], mem.addr[2]);
362
363 /*
364 * Interlaced pipelines will use the extended pre-cmd to process
365 * SRCM_ADDR_{Y,C0,C1}.
366 */
367 if (pipe->interlaced) {
368 vsp1_rpf_configure_autofld(rpf, dl);
369 } else {
370 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
371 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
372 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
373 }
374 }
375
rpf_partition(struct vsp1_entity * entity,struct vsp1_pipeline * pipe,struct vsp1_partition * partition,unsigned int partition_idx,struct vsp1_partition_window * window)376 static void rpf_partition(struct vsp1_entity *entity,
377 struct vsp1_pipeline *pipe,
378 struct vsp1_partition *partition,
379 unsigned int partition_idx,
380 struct vsp1_partition_window *window)
381 {
382 partition->rpf = *window;
383 }
384
385 static const struct vsp1_entity_operations rpf_entity_ops = {
386 .configure_stream = rpf_configure_stream,
387 .configure_frame = rpf_configure_frame,
388 .configure_partition = rpf_configure_partition,
389 .partition = rpf_partition,
390 };
391
392 /* -----------------------------------------------------------------------------
393 * Initialization and Cleanup
394 */
395
vsp1_rpf_create(struct vsp1_device * vsp1,unsigned int index)396 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
397 {
398 struct vsp1_rwpf *rpf;
399 char name[6];
400 int ret;
401
402 rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
403 if (rpf == NULL)
404 return ERR_PTR(-ENOMEM);
405
406 rpf->max_width = RPF_MAX_WIDTH;
407 rpf->max_height = RPF_MAX_HEIGHT;
408
409 rpf->entity.ops = &rpf_entity_ops;
410 rpf->entity.type = VSP1_ENTITY_RPF;
411 rpf->entity.index = index;
412
413 sprintf(name, "rpf.%u", index);
414 ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
415 MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
416 if (ret < 0)
417 return ERR_PTR(ret);
418
419 /* Initialize the control handler. */
420 ret = vsp1_rwpf_init_ctrls(rpf, 0);
421 if (ret < 0) {
422 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
423 index);
424 goto error;
425 }
426
427 v4l2_ctrl_handler_setup(&rpf->ctrls);
428
429 return rpf;
430
431 error:
432 vsp1_entity_destroy(&rpf->entity);
433 return ERR_PTR(ret);
434 }
435