1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65
66 #include <linux/nospec.h>
67
68 struct ipmr_rule {
69 struct fib_rule common;
70 };
71
72 struct ipmr_result {
73 struct mr_table *mrt;
74 };
75
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77 * Note that the changes are semaphored via rtnl_lock.
78 */
79
80 static DEFINE_SPINLOCK(mrt_lock);
81
vif_dev_read(const struct vif_device * vif)82 static struct net_device *vif_dev_read(const struct vif_device *vif)
83 {
84 return rcu_dereference(vif->dev);
85 }
86
87 /* Multicast router control variables */
88
89 /* Special spinlock for queue of unresolved entries */
90 static DEFINE_SPINLOCK(mfc_unres_lock);
91
92 /* We return to original Alan's scheme. Hash table of resolved
93 * entries is changed only in process context and protected
94 * with weak lock mrt_lock. Queue of unresolved entries is protected
95 * with strong spinlock mfc_unres_lock.
96 *
97 * In this case data path is free of exclusive locks at all.
98 */
99
100 static struct kmem_cache *mrt_cachep __ro_after_init;
101
102 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103 static void ipmr_free_table(struct mr_table *mrt);
104
105 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106 struct net_device *dev, struct sk_buff *skb,
107 struct mfc_cache *cache, int local);
108 static int ipmr_cache_report(const struct mr_table *mrt,
109 struct sk_buff *pkt, vifi_t vifi, int assert);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
113 static void mroute_clean_tables(struct mr_table *mrt, int flags);
114 static void ipmr_expire_process(struct timer_list *t);
115
116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117 #define ipmr_for_each_table(mrt, net) \
118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
119 lockdep_rtnl_is_held() || \
120 list_empty(&net->ipv4.mr_tables))
121
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)122 static struct mr_table *ipmr_mr_table_iter(struct net *net,
123 struct mr_table *mrt)
124 {
125 struct mr_table *ret;
126
127 if (!mrt)
128 ret = list_entry_rcu(net->ipv4.mr_tables.next,
129 struct mr_table, list);
130 else
131 ret = list_entry_rcu(mrt->list.next,
132 struct mr_table, list);
133
134 if (&ret->list == &net->ipv4.mr_tables)
135 return NULL;
136 return ret;
137 }
138
ipmr_get_table(struct net * net,u32 id)139 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
140 {
141 struct mr_table *mrt;
142
143 ipmr_for_each_table(mrt, net) {
144 if (mrt->id == id)
145 return mrt;
146 }
147 return NULL;
148 }
149
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)150 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
151 struct mr_table **mrt)
152 {
153 int err;
154 struct ipmr_result res;
155 struct fib_lookup_arg arg = {
156 .result = &res,
157 .flags = FIB_LOOKUP_NOREF,
158 };
159
160 /* update flow if oif or iif point to device enslaved to l3mdev */
161 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
162
163 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
164 flowi4_to_flowi(flp4), 0, &arg);
165 if (err < 0)
166 return err;
167 *mrt = res.mrt;
168 return 0;
169 }
170
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)171 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
172 int flags, struct fib_lookup_arg *arg)
173 {
174 struct ipmr_result *res = arg->result;
175 struct mr_table *mrt;
176
177 switch (rule->action) {
178 case FR_ACT_TO_TBL:
179 break;
180 case FR_ACT_UNREACHABLE:
181 return -ENETUNREACH;
182 case FR_ACT_PROHIBIT:
183 return -EACCES;
184 case FR_ACT_BLACKHOLE:
185 default:
186 return -EINVAL;
187 }
188
189 arg->table = fib_rule_get_table(rule, arg);
190
191 mrt = ipmr_get_table(rule->fr_net, arg->table);
192 if (!mrt)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196 }
197
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200 return 1;
201 }
202
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 struct fib_rule_hdr *frh, struct nlattr **tb,
205 struct netlink_ext_ack *extack)
206 {
207 return 0;
208 }
209
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
211 struct nlattr **tb)
212 {
213 return 1;
214 }
215
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
217 struct fib_rule_hdr *frh)
218 {
219 frh->dst_len = 0;
220 frh->src_len = 0;
221 frh->tos = 0;
222 return 0;
223 }
224
225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
226 .family = RTNL_FAMILY_IPMR,
227 .rule_size = sizeof(struct ipmr_rule),
228 .addr_size = sizeof(u32),
229 .action = ipmr_rule_action,
230 .match = ipmr_rule_match,
231 .configure = ipmr_rule_configure,
232 .compare = ipmr_rule_compare,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .owner = THIS_MODULE,
236 };
237
ipmr_rules_init(struct net * net)238 static int __net_init ipmr_rules_init(struct net *net)
239 {
240 struct fib_rules_ops *ops;
241 struct mr_table *mrt;
242 int err;
243
244 ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 if (IS_ERR(ops))
246 return PTR_ERR(ops);
247
248 INIT_LIST_HEAD(&net->ipv4.mr_tables);
249
250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 if (IS_ERR(mrt)) {
252 err = PTR_ERR(mrt);
253 goto err1;
254 }
255
256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 if (err < 0)
258 goto err2;
259
260 net->ipv4.mr_rules_ops = ops;
261 return 0;
262
263 err2:
264 rtnl_lock();
265 ipmr_free_table(mrt);
266 rtnl_unlock();
267 err1:
268 fib_rules_unregister(ops);
269 return err;
270 }
271
ipmr_rules_exit(struct net * net)272 static void __net_exit ipmr_rules_exit(struct net *net)
273 {
274 struct mr_table *mrt, *next;
275
276 ASSERT_RTNL();
277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
278 list_del(&mrt->list);
279 ipmr_free_table(mrt);
280 }
281 fib_rules_unregister(net->ipv4.mr_rules_ops);
282 }
283
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
285 struct netlink_ext_ack *extack)
286 {
287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
288 }
289
ipmr_rules_seq_read(struct net * net)290 static unsigned int ipmr_rules_seq_read(struct net *net)
291 {
292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
293 }
294
ipmr_rule_default(const struct fib_rule * rule)295 bool ipmr_rule_default(const struct fib_rule *rule)
296 {
297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
298 }
299 EXPORT_SYMBOL(ipmr_rule_default);
300 #else
301 #define ipmr_for_each_table(mrt, net) \
302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
303
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)304 static struct mr_table *ipmr_mr_table_iter(struct net *net,
305 struct mr_table *mrt)
306 {
307 if (!mrt)
308 return net->ipv4.mrt;
309 return NULL;
310 }
311
ipmr_get_table(struct net * net,u32 id)312 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
313 {
314 return net->ipv4.mrt;
315 }
316
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
318 struct mr_table **mrt)
319 {
320 *mrt = net->ipv4.mrt;
321 return 0;
322 }
323
ipmr_rules_init(struct net * net)324 static int __net_init ipmr_rules_init(struct net *net)
325 {
326 struct mr_table *mrt;
327
328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
329 if (IS_ERR(mrt))
330 return PTR_ERR(mrt);
331 net->ipv4.mrt = mrt;
332 return 0;
333 }
334
ipmr_rules_exit(struct net * net)335 static void __net_exit ipmr_rules_exit(struct net *net)
336 {
337 ASSERT_RTNL();
338 ipmr_free_table(net->ipv4.mrt);
339 net->ipv4.mrt = NULL;
340 }
341
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 struct netlink_ext_ack *extack)
344 {
345 return 0;
346 }
347
ipmr_rules_seq_read(struct net * net)348 static unsigned int ipmr_rules_seq_read(struct net *net)
349 {
350 return 0;
351 }
352
ipmr_rule_default(const struct fib_rule * rule)353 bool ipmr_rule_default(const struct fib_rule *rule)
354 {
355 return true;
356 }
357 EXPORT_SYMBOL(ipmr_rule_default);
358 #endif
359
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 const void *ptr)
362 {
363 const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 const struct mfc_cache *c = ptr;
365
366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 cmparg->mfc_origin != c->mfc_origin;
368 }
369
370 static const struct rhashtable_params ipmr_rht_params = {
371 .head_offset = offsetof(struct mr_mfc, mnode),
372 .key_offset = offsetof(struct mfc_cache, cmparg),
373 .key_len = sizeof(struct mfc_cache_cmp_arg),
374 .nelem_hint = 3,
375 .obj_cmpfn = ipmr_hash_cmp,
376 .automatic_shrinking = true,
377 };
378
ipmr_new_table_set(struct mr_table * mrt,struct net * net)379 static void ipmr_new_table_set(struct mr_table *mrt,
380 struct net *net)
381 {
382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384 #endif
385 }
386
387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 .mfc_mcastgrp = htonl(INADDR_ANY),
389 .mfc_origin = htonl(INADDR_ANY),
390 };
391
392 static struct mr_table_ops ipmr_mr_table_ops = {
393 .rht_params = &ipmr_rht_params,
394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395 };
396
ipmr_new_table(struct net * net,u32 id)397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398 {
399 struct mr_table *mrt;
400
401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 return ERR_PTR(-EINVAL);
404
405 mrt = ipmr_get_table(net, id);
406 if (mrt)
407 return mrt;
408
409 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 ipmr_expire_process, ipmr_new_table_set);
411 }
412
ipmr_free_table(struct mr_table * mrt)413 static void ipmr_free_table(struct mr_table *mrt)
414 {
415 timer_shutdown_sync(&mrt->ipmr_expire_timer);
416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 rhltable_destroy(&mrt->mfc_hash);
419 kfree(mrt);
420 }
421
422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423
424 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)425 static bool ipmr_init_vif_indev(const struct net_device *dev)
426 {
427 struct in_device *in_dev;
428
429 ASSERT_RTNL();
430
431 in_dev = __in_dev_get_rtnl(dev);
432 if (!in_dev)
433 return false;
434 ipv4_devconf_setall(in_dev);
435 neigh_parms_data_state_setall(in_dev->arp_parms);
436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437
438 return true;
439 }
440
ipmr_new_tunnel(struct net * net,struct vifctl * v)441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442 {
443 struct net_device *tunnel_dev, *new_dev;
444 struct ip_tunnel_parm p = { };
445 int err;
446
447 tunnel_dev = __dev_get_by_name(net, "tunl0");
448 if (!tunnel_dev)
449 goto out;
450
451 p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 p.iph.version = 4;
454 p.iph.ihl = 5;
455 p.iph.protocol = IPPROTO_IPIP;
456 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
457
458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 goto out;
460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 SIOCADDTUNNEL);
462 if (err)
463 goto out;
464
465 new_dev = __dev_get_by_name(net, p.name);
466 if (!new_dev)
467 goto out;
468
469 new_dev->flags |= IFF_MULTICAST;
470 if (!ipmr_init_vif_indev(new_dev))
471 goto out_unregister;
472 if (dev_open(new_dev, NULL))
473 goto out_unregister;
474 dev_hold(new_dev);
475 err = dev_set_allmulti(new_dev, 1);
476 if (err) {
477 dev_close(new_dev);
478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 SIOCDELTUNNEL);
480 dev_put(new_dev);
481 new_dev = ERR_PTR(err);
482 }
483 return new_dev;
484
485 out_unregister:
486 unregister_netdevice(new_dev);
487 out:
488 return ERR_PTR(-ENOBUFS);
489 }
490
491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493 {
494 struct net *net = dev_net(dev);
495 struct mr_table *mrt;
496 struct flowi4 fl4 = {
497 .flowi4_oif = dev->ifindex,
498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
499 .flowi4_mark = skb->mark,
500 };
501 int err;
502
503 err = ipmr_fib_lookup(net, &fl4, &mrt);
504 if (err < 0) {
505 kfree_skb(skb);
506 return err;
507 }
508
509 DEV_STATS_ADD(dev, tx_bytes, skb->len);
510 DEV_STATS_INC(dev, tx_packets);
511 rcu_read_lock();
512
513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
514 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
515 IGMPMSG_WHOLEPKT);
516
517 rcu_read_unlock();
518 kfree_skb(skb);
519 return NETDEV_TX_OK;
520 }
521
reg_vif_get_iflink(const struct net_device * dev)522 static int reg_vif_get_iflink(const struct net_device *dev)
523 {
524 return 0;
525 }
526
527 static const struct net_device_ops reg_vif_netdev_ops = {
528 .ndo_start_xmit = reg_vif_xmit,
529 .ndo_get_iflink = reg_vif_get_iflink,
530 };
531
reg_vif_setup(struct net_device * dev)532 static void reg_vif_setup(struct net_device *dev)
533 {
534 dev->type = ARPHRD_PIMREG;
535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
536 dev->flags = IFF_NOARP;
537 dev->netdev_ops = ®_vif_netdev_ops;
538 dev->needs_free_netdev = true;
539 dev->features |= NETIF_F_NETNS_LOCAL;
540 }
541
ipmr_reg_vif(struct net * net,struct mr_table * mrt)542 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
543 {
544 struct net_device *dev;
545 char name[IFNAMSIZ];
546
547 if (mrt->id == RT_TABLE_DEFAULT)
548 sprintf(name, "pimreg");
549 else
550 sprintf(name, "pimreg%u", mrt->id);
551
552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
553
554 if (!dev)
555 return NULL;
556
557 dev_net_set(dev, net);
558
559 if (register_netdevice(dev)) {
560 free_netdev(dev);
561 return NULL;
562 }
563
564 if (!ipmr_init_vif_indev(dev))
565 goto failure;
566 if (dev_open(dev, NULL))
567 goto failure;
568
569 dev_hold(dev);
570
571 return dev;
572
573 failure:
574 unregister_netdevice(dev);
575 return NULL;
576 }
577
578 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)579 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
580 unsigned int pimlen)
581 {
582 struct net_device *reg_dev = NULL;
583 struct iphdr *encap;
584 int vif_num;
585
586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
587 /* Check that:
588 * a. packet is really sent to a multicast group
589 * b. packet is not a NULL-REGISTER
590 * c. packet is not truncated
591 */
592 if (!ipv4_is_multicast(encap->daddr) ||
593 encap->tot_len == 0 ||
594 ntohs(encap->tot_len) + pimlen > skb->len)
595 return 1;
596
597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
599 if (vif_num >= 0)
600 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
601 if (!reg_dev)
602 return 1;
603
604 skb->mac_header = skb->network_header;
605 skb_pull(skb, (u8 *)encap - skb->data);
606 skb_reset_network_header(skb);
607 skb->protocol = htons(ETH_P_IP);
608 skb->ip_summed = CHECKSUM_NONE;
609
610 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
611
612 netif_rx(skb);
613
614 return NET_RX_SUCCESS;
615 }
616 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)617 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
618 {
619 return NULL;
620 }
621 #endif
622
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)623 static int call_ipmr_vif_entry_notifiers(struct net *net,
624 enum fib_event_type event_type,
625 struct vif_device *vif,
626 struct net_device *vif_dev,
627 vifi_t vif_index, u32 tb_id)
628 {
629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
630 vif, vif_dev, vif_index, tb_id,
631 &net->ipv4.ipmr_seq);
632 }
633
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)634 static int call_ipmr_mfc_entry_notifiers(struct net *net,
635 enum fib_event_type event_type,
636 struct mfc_cache *mfc, u32 tb_id)
637 {
638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
639 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
640 }
641
642 /**
643 * vif_delete - Delete a VIF entry
644 * @mrt: Table to delete from
645 * @vifi: VIF identifier to delete
646 * @notify: Set to 1, if the caller is a notifier_call
647 * @head: if unregistering the VIF, place it on this queue
648 */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)649 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
650 struct list_head *head)
651 {
652 struct net *net = read_pnet(&mrt->net);
653 struct vif_device *v;
654 struct net_device *dev;
655 struct in_device *in_dev;
656
657 if (vifi < 0 || vifi >= mrt->maxvif)
658 return -EADDRNOTAVAIL;
659
660 v = &mrt->vif_table[vifi];
661
662 dev = rtnl_dereference(v->dev);
663 if (!dev)
664 return -EADDRNOTAVAIL;
665
666 spin_lock(&mrt_lock);
667 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
668 vifi, mrt->id);
669 RCU_INIT_POINTER(v->dev, NULL);
670
671 if (vifi == mrt->mroute_reg_vif_num) {
672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
674 }
675 if (vifi + 1 == mrt->maxvif) {
676 int tmp;
677
678 for (tmp = vifi - 1; tmp >= 0; tmp--) {
679 if (VIF_EXISTS(mrt, tmp))
680 break;
681 }
682 WRITE_ONCE(mrt->maxvif, tmp + 1);
683 }
684
685 spin_unlock(&mrt_lock);
686
687 dev_set_allmulti(dev, -1);
688
689 in_dev = __in_dev_get_rtnl(dev);
690 if (in_dev) {
691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
692 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
693 NETCONFA_MC_FORWARDING,
694 dev->ifindex, &in_dev->cnf);
695 ip_rt_multicast_event(in_dev);
696 }
697
698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
699 unregister_netdevice_queue(dev, head);
700
701 netdev_put(dev, &v->dev_tracker);
702 return 0;
703 }
704
ipmr_cache_free_rcu(struct rcu_head * head)705 static void ipmr_cache_free_rcu(struct rcu_head *head)
706 {
707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
708
709 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
710 }
711
ipmr_cache_free(struct mfc_cache * c)712 static void ipmr_cache_free(struct mfc_cache *c)
713 {
714 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
715 }
716
717 /* Destroy an unresolved cache entry, killing queued skbs
718 * and reporting error to netlink readers.
719 */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)720 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
721 {
722 struct net *net = read_pnet(&mrt->net);
723 struct sk_buff *skb;
724 struct nlmsgerr *e;
725
726 atomic_dec(&mrt->cache_resolve_queue_len);
727
728 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
729 if (ip_hdr(skb)->version == 0) {
730 struct nlmsghdr *nlh = skb_pull(skb,
731 sizeof(struct iphdr));
732 nlh->nlmsg_type = NLMSG_ERROR;
733 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
734 skb_trim(skb, nlh->nlmsg_len);
735 e = nlmsg_data(nlh);
736 e->error = -ETIMEDOUT;
737 memset(&e->msg, 0, sizeof(e->msg));
738
739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
740 } else {
741 kfree_skb(skb);
742 }
743 }
744
745 ipmr_cache_free(c);
746 }
747
748 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)749 static void ipmr_expire_process(struct timer_list *t)
750 {
751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
752 struct mr_mfc *c, *next;
753 unsigned long expires;
754 unsigned long now;
755
756 if (!spin_trylock(&mfc_unres_lock)) {
757 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
758 return;
759 }
760
761 if (list_empty(&mrt->mfc_unres_queue))
762 goto out;
763
764 now = jiffies;
765 expires = 10*HZ;
766
767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
768 if (time_after(c->mfc_un.unres.expires, now)) {
769 unsigned long interval = c->mfc_un.unres.expires - now;
770 if (interval < expires)
771 expires = interval;
772 continue;
773 }
774
775 list_del(&c->list);
776 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
777 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
778 }
779
780 if (!list_empty(&mrt->mfc_unres_queue))
781 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
782
783 out:
784 spin_unlock(&mfc_unres_lock);
785 }
786
787 /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)788 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
789 unsigned char *ttls)
790 {
791 int vifi;
792
793 cache->mfc_un.res.minvif = MAXVIFS;
794 cache->mfc_un.res.maxvif = 0;
795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
796
797 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
798 if (VIF_EXISTS(mrt, vifi) &&
799 ttls[vifi] && ttls[vifi] < 255) {
800 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
801 if (cache->mfc_un.res.minvif > vifi)
802 cache->mfc_un.res.minvif = vifi;
803 if (cache->mfc_un.res.maxvif <= vifi)
804 cache->mfc_un.res.maxvif = vifi + 1;
805 }
806 }
807 cache->mfc_un.res.lastuse = jiffies;
808 }
809
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)810 static int vif_add(struct net *net, struct mr_table *mrt,
811 struct vifctl *vifc, int mrtsock)
812 {
813 struct netdev_phys_item_id ppid = { };
814 int vifi = vifc->vifc_vifi;
815 struct vif_device *v = &mrt->vif_table[vifi];
816 struct net_device *dev;
817 struct in_device *in_dev;
818 int err;
819
820 /* Is vif busy ? */
821 if (VIF_EXISTS(mrt, vifi))
822 return -EADDRINUSE;
823
824 switch (vifc->vifc_flags) {
825 case VIFF_REGISTER:
826 if (!ipmr_pimsm_enabled())
827 return -EINVAL;
828 /* Special Purpose VIF in PIM
829 * All the packets will be sent to the daemon
830 */
831 if (mrt->mroute_reg_vif_num >= 0)
832 return -EADDRINUSE;
833 dev = ipmr_reg_vif(net, mrt);
834 if (!dev)
835 return -ENOBUFS;
836 err = dev_set_allmulti(dev, 1);
837 if (err) {
838 unregister_netdevice(dev);
839 dev_put(dev);
840 return err;
841 }
842 break;
843 case VIFF_TUNNEL:
844 dev = ipmr_new_tunnel(net, vifc);
845 if (IS_ERR(dev))
846 return PTR_ERR(dev);
847 break;
848 case VIFF_USE_IFINDEX:
849 case 0:
850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
851 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
852 if (dev && !__in_dev_get_rtnl(dev)) {
853 dev_put(dev);
854 return -EADDRNOTAVAIL;
855 }
856 } else {
857 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
858 }
859 if (!dev)
860 return -EADDRNOTAVAIL;
861 err = dev_set_allmulti(dev, 1);
862 if (err) {
863 dev_put(dev);
864 return err;
865 }
866 break;
867 default:
868 return -EINVAL;
869 }
870
871 in_dev = __in_dev_get_rtnl(dev);
872 if (!in_dev) {
873 dev_put(dev);
874 return -EADDRNOTAVAIL;
875 }
876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
878 dev->ifindex, &in_dev->cnf);
879 ip_rt_multicast_event(in_dev);
880
881 /* Fill in the VIF structures */
882 vif_device_init(v, dev, vifc->vifc_rate_limit,
883 vifc->vifc_threshold,
884 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
885 (VIFF_TUNNEL | VIFF_REGISTER));
886
887 err = dev_get_port_parent_id(dev, &ppid, true);
888 if (err == 0) {
889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
890 v->dev_parent_id.id_len = ppid.id_len;
891 } else {
892 v->dev_parent_id.id_len = 0;
893 }
894
895 v->local = vifc->vifc_lcl_addr.s_addr;
896 v->remote = vifc->vifc_rmt_addr.s_addr;
897
898 /* And finish update writing critical data */
899 spin_lock(&mrt_lock);
900 rcu_assign_pointer(v->dev, dev);
901 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
902 if (v->flags & VIFF_REGISTER) {
903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
905 }
906 if (vifi+1 > mrt->maxvif)
907 WRITE_ONCE(mrt->maxvif, vifi + 1);
908 spin_unlock(&mrt_lock);
909 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
910 vifi, mrt->id);
911 return 0;
912 }
913
914 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)915 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
916 __be32 origin,
917 __be32 mcastgrp)
918 {
919 struct mfc_cache_cmp_arg arg = {
920 .mfc_mcastgrp = mcastgrp,
921 .mfc_origin = origin
922 };
923
924 return mr_mfc_find(mrt, &arg);
925 }
926
927 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)928 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
929 __be32 mcastgrp, int vifi)
930 {
931 struct mfc_cache_cmp_arg arg = {
932 .mfc_mcastgrp = mcastgrp,
933 .mfc_origin = htonl(INADDR_ANY)
934 };
935
936 if (mcastgrp == htonl(INADDR_ANY))
937 return mr_mfc_find_any_parent(mrt, vifi);
938 return mr_mfc_find_any(mrt, vifi, &arg);
939 }
940
941 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)942 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
943 __be32 origin, __be32 mcastgrp,
944 int parent)
945 {
946 struct mfc_cache_cmp_arg arg = {
947 .mfc_mcastgrp = mcastgrp,
948 .mfc_origin = origin,
949 };
950
951 return mr_mfc_find_parent(mrt, &arg, parent);
952 }
953
954 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)955 static struct mfc_cache *ipmr_cache_alloc(void)
956 {
957 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
958
959 if (c) {
960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
961 c->_c.mfc_un.res.minvif = MAXVIFS;
962 c->_c.free = ipmr_cache_free_rcu;
963 refcount_set(&c->_c.mfc_un.res.refcount, 1);
964 }
965 return c;
966 }
967
ipmr_cache_alloc_unres(void)968 static struct mfc_cache *ipmr_cache_alloc_unres(void)
969 {
970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
971
972 if (c) {
973 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
975 }
976 return c;
977 }
978
979 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)980 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
981 struct mfc_cache *uc, struct mfc_cache *c)
982 {
983 struct sk_buff *skb;
984 struct nlmsgerr *e;
985
986 /* Play the pending entries through our router */
987 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
988 if (ip_hdr(skb)->version == 0) {
989 struct nlmsghdr *nlh = skb_pull(skb,
990 sizeof(struct iphdr));
991
992 if (mr_fill_mroute(mrt, skb, &c->_c,
993 nlmsg_data(nlh)) > 0) {
994 nlh->nlmsg_len = skb_tail_pointer(skb) -
995 (u8 *)nlh;
996 } else {
997 nlh->nlmsg_type = NLMSG_ERROR;
998 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
999 skb_trim(skb, nlh->nlmsg_len);
1000 e = nlmsg_data(nlh);
1001 e->error = -EMSGSIZE;
1002 memset(&e->msg, 0, sizeof(e->msg));
1003 }
1004
1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1006 } else {
1007 rcu_read_lock();
1008 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1009 rcu_read_unlock();
1010 }
1011 }
1012 }
1013
1014 /* Bounce a cache query up to mrouted and netlink.
1015 *
1016 * Called under rcu_read_lock().
1017 */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1018 static int ipmr_cache_report(const struct mr_table *mrt,
1019 struct sk_buff *pkt, vifi_t vifi, int assert)
1020 {
1021 const int ihl = ip_hdrlen(pkt);
1022 struct sock *mroute_sk;
1023 struct igmphdr *igmp;
1024 struct igmpmsg *msg;
1025 struct sk_buff *skb;
1026 int ret;
1027
1028 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1029 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1030 else
1031 skb = alloc_skb(128, GFP_ATOMIC);
1032
1033 if (!skb)
1034 return -ENOBUFS;
1035
1036 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1037 /* Ugly, but we have no choice with this interface.
1038 * Duplicate old header, fix ihl, length etc.
1039 * And all this only to mangle msg->im_msgtype and
1040 * to set msg->im_mbz to "mbz" :-)
1041 */
1042 skb_push(skb, sizeof(struct iphdr));
1043 skb_reset_network_header(skb);
1044 skb_reset_transport_header(skb);
1045 msg = (struct igmpmsg *)skb_network_header(skb);
1046 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1047 msg->im_msgtype = assert;
1048 msg->im_mbz = 0;
1049 if (assert == IGMPMSG_WRVIFWHOLE) {
1050 msg->im_vif = vifi;
1051 msg->im_vif_hi = vifi >> 8;
1052 } else {
1053 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1054 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1055
1056 msg->im_vif = vif_num;
1057 msg->im_vif_hi = vif_num >> 8;
1058 }
1059 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1060 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1061 sizeof(struct iphdr));
1062 } else {
1063 /* Copy the IP header */
1064 skb_set_network_header(skb, skb->len);
1065 skb_put(skb, ihl);
1066 skb_copy_to_linear_data(skb, pkt->data, ihl);
1067 /* Flag to the kernel this is a route add */
1068 ip_hdr(skb)->protocol = 0;
1069 msg = (struct igmpmsg *)skb_network_header(skb);
1070 msg->im_vif = vifi;
1071 msg->im_vif_hi = vifi >> 8;
1072 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1073 /* Add our header */
1074 igmp = skb_put(skb, sizeof(struct igmphdr));
1075 igmp->type = assert;
1076 msg->im_msgtype = assert;
1077 igmp->code = 0;
1078 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1079 skb->transport_header = skb->network_header;
1080 }
1081
1082 mroute_sk = rcu_dereference(mrt->mroute_sk);
1083 if (!mroute_sk) {
1084 kfree_skb(skb);
1085 return -EINVAL;
1086 }
1087
1088 igmpmsg_netlink_event(mrt, skb);
1089
1090 /* Deliver to mrouted */
1091 ret = sock_queue_rcv_skb(mroute_sk, skb);
1092
1093 if (ret < 0) {
1094 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1095 kfree_skb(skb);
1096 }
1097
1098 return ret;
1099 }
1100
1101 /* Queue a packet for resolution. It gets locked cache entry! */
1102 /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1103 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1104 struct sk_buff *skb, struct net_device *dev)
1105 {
1106 const struct iphdr *iph = ip_hdr(skb);
1107 struct mfc_cache *c;
1108 bool found = false;
1109 int err;
1110
1111 spin_lock_bh(&mfc_unres_lock);
1112 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1113 if (c->mfc_mcastgrp == iph->daddr &&
1114 c->mfc_origin == iph->saddr) {
1115 found = true;
1116 break;
1117 }
1118 }
1119
1120 if (!found) {
1121 /* Create a new entry if allowable */
1122 c = ipmr_cache_alloc_unres();
1123 if (!c) {
1124 spin_unlock_bh(&mfc_unres_lock);
1125
1126 kfree_skb(skb);
1127 return -ENOBUFS;
1128 }
1129
1130 /* Fill in the new cache entry */
1131 c->_c.mfc_parent = -1;
1132 c->mfc_origin = iph->saddr;
1133 c->mfc_mcastgrp = iph->daddr;
1134
1135 /* Reflect first query at mrouted. */
1136 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1137
1138 if (err < 0) {
1139 /* If the report failed throw the cache entry
1140 out - Brad Parker
1141 */
1142 spin_unlock_bh(&mfc_unres_lock);
1143
1144 ipmr_cache_free(c);
1145 kfree_skb(skb);
1146 return err;
1147 }
1148
1149 atomic_inc(&mrt->cache_resolve_queue_len);
1150 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1151 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1152
1153 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1154 mod_timer(&mrt->ipmr_expire_timer,
1155 c->_c.mfc_un.unres.expires);
1156 }
1157
1158 /* See if we can append the packet */
1159 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1160 kfree_skb(skb);
1161 err = -ENOBUFS;
1162 } else {
1163 if (dev) {
1164 skb->dev = dev;
1165 skb->skb_iif = dev->ifindex;
1166 }
1167 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1168 err = 0;
1169 }
1170
1171 spin_unlock_bh(&mfc_unres_lock);
1172 return err;
1173 }
1174
1175 /* MFC cache manipulation by user space mroute daemon */
1176
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1177 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1178 {
1179 struct net *net = read_pnet(&mrt->net);
1180 struct mfc_cache *c;
1181
1182 /* The entries are added/deleted only under RTNL */
1183 rcu_read_lock();
1184 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1185 mfc->mfcc_mcastgrp.s_addr, parent);
1186 rcu_read_unlock();
1187 if (!c)
1188 return -ENOENT;
1189 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1190 list_del_rcu(&c->_c.list);
1191 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1192 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1193 mr_cache_put(&c->_c);
1194
1195 return 0;
1196 }
1197
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1198 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1199 struct mfcctl *mfc, int mrtsock, int parent)
1200 {
1201 struct mfc_cache *uc, *c;
1202 struct mr_mfc *_uc;
1203 bool found;
1204 int ret;
1205
1206 if (mfc->mfcc_parent >= MAXVIFS)
1207 return -ENFILE;
1208
1209 /* The entries are added/deleted only under RTNL */
1210 rcu_read_lock();
1211 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1212 mfc->mfcc_mcastgrp.s_addr, parent);
1213 rcu_read_unlock();
1214 if (c) {
1215 spin_lock(&mrt_lock);
1216 c->_c.mfc_parent = mfc->mfcc_parent;
1217 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1218 if (!mrtsock)
1219 c->_c.mfc_flags |= MFC_STATIC;
1220 spin_unlock(&mrt_lock);
1221 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1222 mrt->id);
1223 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1224 return 0;
1225 }
1226
1227 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1228 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1229 return -EINVAL;
1230
1231 c = ipmr_cache_alloc();
1232 if (!c)
1233 return -ENOMEM;
1234
1235 c->mfc_origin = mfc->mfcc_origin.s_addr;
1236 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1237 c->_c.mfc_parent = mfc->mfcc_parent;
1238 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1239 if (!mrtsock)
1240 c->_c.mfc_flags |= MFC_STATIC;
1241
1242 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1243 ipmr_rht_params);
1244 if (ret) {
1245 pr_err("ipmr: rhtable insert error %d\n", ret);
1246 ipmr_cache_free(c);
1247 return ret;
1248 }
1249 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1250 /* Check to see if we resolved a queued list. If so we
1251 * need to send on the frames and tidy up.
1252 */
1253 found = false;
1254 spin_lock_bh(&mfc_unres_lock);
1255 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1256 uc = (struct mfc_cache *)_uc;
1257 if (uc->mfc_origin == c->mfc_origin &&
1258 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1259 list_del(&_uc->list);
1260 atomic_dec(&mrt->cache_resolve_queue_len);
1261 found = true;
1262 break;
1263 }
1264 }
1265 if (list_empty(&mrt->mfc_unres_queue))
1266 del_timer(&mrt->ipmr_expire_timer);
1267 spin_unlock_bh(&mfc_unres_lock);
1268
1269 if (found) {
1270 ipmr_cache_resolve(net, mrt, uc, c);
1271 ipmr_cache_free(uc);
1272 }
1273 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1274 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1275 return 0;
1276 }
1277
1278 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1279 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1280 {
1281 struct net *net = read_pnet(&mrt->net);
1282 struct mr_mfc *c, *tmp;
1283 struct mfc_cache *cache;
1284 LIST_HEAD(list);
1285 int i;
1286
1287 /* Shut down all active vif entries */
1288 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1289 for (i = 0; i < mrt->maxvif; i++) {
1290 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1291 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1292 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1293 continue;
1294 vif_delete(mrt, i, 0, &list);
1295 }
1296 unregister_netdevice_many(&list);
1297 }
1298
1299 /* Wipe the cache */
1300 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1301 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1302 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1303 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1304 continue;
1305 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1306 list_del_rcu(&c->list);
1307 cache = (struct mfc_cache *)c;
1308 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1309 mrt->id);
1310 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1311 mr_cache_put(c);
1312 }
1313 }
1314
1315 if (flags & MRT_FLUSH_MFC) {
1316 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1317 spin_lock_bh(&mfc_unres_lock);
1318 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1319 list_del(&c->list);
1320 cache = (struct mfc_cache *)c;
1321 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1322 ipmr_destroy_unres(mrt, cache);
1323 }
1324 spin_unlock_bh(&mfc_unres_lock);
1325 }
1326 }
1327 }
1328
1329 /* called from ip_ra_control(), before an RCU grace period,
1330 * we don't need to call synchronize_rcu() here
1331 */
mrtsock_destruct(struct sock * sk)1332 static void mrtsock_destruct(struct sock *sk)
1333 {
1334 struct net *net = sock_net(sk);
1335 struct mr_table *mrt;
1336
1337 rtnl_lock();
1338 ipmr_for_each_table(mrt, net) {
1339 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1340 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1341 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1342 NETCONFA_MC_FORWARDING,
1343 NETCONFA_IFINDEX_ALL,
1344 net->ipv4.devconf_all);
1345 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1346 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1347 }
1348 }
1349 rtnl_unlock();
1350 }
1351
1352 /* Socket options and virtual interface manipulation. The whole
1353 * virtual interface system is a complete heap, but unfortunately
1354 * that's how BSD mrouted happens to think. Maybe one day with a proper
1355 * MOSPF/PIM router set up we can clean this up.
1356 */
1357
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1358 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1359 unsigned int optlen)
1360 {
1361 struct net *net = sock_net(sk);
1362 int val, ret = 0, parent = 0;
1363 struct mr_table *mrt;
1364 struct vifctl vif;
1365 struct mfcctl mfc;
1366 bool do_wrvifwhole;
1367 u32 uval;
1368
1369 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1370 rtnl_lock();
1371 if (sk->sk_type != SOCK_RAW ||
1372 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1373 ret = -EOPNOTSUPP;
1374 goto out_unlock;
1375 }
1376
1377 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1378 if (!mrt) {
1379 ret = -ENOENT;
1380 goto out_unlock;
1381 }
1382 if (optname != MRT_INIT) {
1383 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1384 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1385 ret = -EACCES;
1386 goto out_unlock;
1387 }
1388 }
1389
1390 switch (optname) {
1391 case MRT_INIT:
1392 if (optlen != sizeof(int)) {
1393 ret = -EINVAL;
1394 break;
1395 }
1396 if (rtnl_dereference(mrt->mroute_sk)) {
1397 ret = -EADDRINUSE;
1398 break;
1399 }
1400
1401 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1402 if (ret == 0) {
1403 rcu_assign_pointer(mrt->mroute_sk, sk);
1404 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1405 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1406 NETCONFA_MC_FORWARDING,
1407 NETCONFA_IFINDEX_ALL,
1408 net->ipv4.devconf_all);
1409 }
1410 break;
1411 case MRT_DONE:
1412 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1413 ret = -EACCES;
1414 } else {
1415 /* We need to unlock here because mrtsock_destruct takes
1416 * care of rtnl itself and we can't change that due to
1417 * the IP_ROUTER_ALERT setsockopt which runs without it.
1418 */
1419 rtnl_unlock();
1420 ret = ip_ra_control(sk, 0, NULL);
1421 goto out;
1422 }
1423 break;
1424 case MRT_ADD_VIF:
1425 case MRT_DEL_VIF:
1426 if (optlen != sizeof(vif)) {
1427 ret = -EINVAL;
1428 break;
1429 }
1430 if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1431 ret = -EFAULT;
1432 break;
1433 }
1434 if (vif.vifc_vifi >= MAXVIFS) {
1435 ret = -ENFILE;
1436 break;
1437 }
1438 if (optname == MRT_ADD_VIF) {
1439 ret = vif_add(net, mrt, &vif,
1440 sk == rtnl_dereference(mrt->mroute_sk));
1441 } else {
1442 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1443 }
1444 break;
1445 /* Manipulate the forwarding caches. These live
1446 * in a sort of kernel/user symbiosis.
1447 */
1448 case MRT_ADD_MFC:
1449 case MRT_DEL_MFC:
1450 parent = -1;
1451 fallthrough;
1452 case MRT_ADD_MFC_PROXY:
1453 case MRT_DEL_MFC_PROXY:
1454 if (optlen != sizeof(mfc)) {
1455 ret = -EINVAL;
1456 break;
1457 }
1458 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1459 ret = -EFAULT;
1460 break;
1461 }
1462 if (parent == 0)
1463 parent = mfc.mfcc_parent;
1464 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1465 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1466 else
1467 ret = ipmr_mfc_add(net, mrt, &mfc,
1468 sk == rtnl_dereference(mrt->mroute_sk),
1469 parent);
1470 break;
1471 case MRT_FLUSH:
1472 if (optlen != sizeof(val)) {
1473 ret = -EINVAL;
1474 break;
1475 }
1476 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1477 ret = -EFAULT;
1478 break;
1479 }
1480 mroute_clean_tables(mrt, val);
1481 break;
1482 /* Control PIM assert. */
1483 case MRT_ASSERT:
1484 if (optlen != sizeof(val)) {
1485 ret = -EINVAL;
1486 break;
1487 }
1488 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1489 ret = -EFAULT;
1490 break;
1491 }
1492 mrt->mroute_do_assert = val;
1493 break;
1494 case MRT_PIM:
1495 if (!ipmr_pimsm_enabled()) {
1496 ret = -ENOPROTOOPT;
1497 break;
1498 }
1499 if (optlen != sizeof(val)) {
1500 ret = -EINVAL;
1501 break;
1502 }
1503 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1504 ret = -EFAULT;
1505 break;
1506 }
1507
1508 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1509 val = !!val;
1510 if (val != mrt->mroute_do_pim) {
1511 mrt->mroute_do_pim = val;
1512 mrt->mroute_do_assert = val;
1513 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1514 }
1515 break;
1516 case MRT_TABLE:
1517 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1518 ret = -ENOPROTOOPT;
1519 break;
1520 }
1521 if (optlen != sizeof(uval)) {
1522 ret = -EINVAL;
1523 break;
1524 }
1525 if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1526 ret = -EFAULT;
1527 break;
1528 }
1529
1530 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1531 ret = -EBUSY;
1532 } else {
1533 mrt = ipmr_new_table(net, uval);
1534 if (IS_ERR(mrt))
1535 ret = PTR_ERR(mrt);
1536 else
1537 raw_sk(sk)->ipmr_table = uval;
1538 }
1539 break;
1540 /* Spurious command, or MRT_VERSION which you cannot set. */
1541 default:
1542 ret = -ENOPROTOOPT;
1543 }
1544 out_unlock:
1545 rtnl_unlock();
1546 out:
1547 return ret;
1548 }
1549
1550 /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1551 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1552 {
1553 switch (cmd) {
1554 /* These userspace buffers will be consumed by ipmr_ioctl() */
1555 case SIOCGETVIFCNT: {
1556 struct sioc_vif_req buffer;
1557
1558 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1559 sizeof(buffer));
1560 }
1561 case SIOCGETSGCNT: {
1562 struct sioc_sg_req buffer;
1563
1564 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1565 sizeof(buffer));
1566 }
1567 }
1568 /* return code > 0 means that the ioctl was not executed */
1569 return 1;
1570 }
1571
1572 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1573 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1574 sockptr_t optlen)
1575 {
1576 int olr;
1577 int val;
1578 struct net *net = sock_net(sk);
1579 struct mr_table *mrt;
1580
1581 if (sk->sk_type != SOCK_RAW ||
1582 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1583 return -EOPNOTSUPP;
1584
1585 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1586 if (!mrt)
1587 return -ENOENT;
1588
1589 switch (optname) {
1590 case MRT_VERSION:
1591 val = 0x0305;
1592 break;
1593 case MRT_PIM:
1594 if (!ipmr_pimsm_enabled())
1595 return -ENOPROTOOPT;
1596 val = mrt->mroute_do_pim;
1597 break;
1598 case MRT_ASSERT:
1599 val = mrt->mroute_do_assert;
1600 break;
1601 default:
1602 return -ENOPROTOOPT;
1603 }
1604
1605 if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1606 return -EFAULT;
1607 olr = min_t(unsigned int, olr, sizeof(int));
1608 if (olr < 0)
1609 return -EINVAL;
1610 if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1611 return -EFAULT;
1612 if (copy_to_sockptr(optval, &val, olr))
1613 return -EFAULT;
1614 return 0;
1615 }
1616
1617 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1618 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1619 {
1620 struct vif_device *vif;
1621 struct mfc_cache *c;
1622 struct net *net = sock_net(sk);
1623 struct sioc_vif_req *vr;
1624 struct sioc_sg_req *sr;
1625 struct mr_table *mrt;
1626
1627 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1628 if (!mrt)
1629 return -ENOENT;
1630
1631 switch (cmd) {
1632 case SIOCGETVIFCNT:
1633 vr = (struct sioc_vif_req *)arg;
1634 if (vr->vifi >= mrt->maxvif)
1635 return -EINVAL;
1636 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1637 rcu_read_lock();
1638 vif = &mrt->vif_table[vr->vifi];
1639 if (VIF_EXISTS(mrt, vr->vifi)) {
1640 vr->icount = READ_ONCE(vif->pkt_in);
1641 vr->ocount = READ_ONCE(vif->pkt_out);
1642 vr->ibytes = READ_ONCE(vif->bytes_in);
1643 vr->obytes = READ_ONCE(vif->bytes_out);
1644 rcu_read_unlock();
1645
1646 return 0;
1647 }
1648 rcu_read_unlock();
1649 return -EADDRNOTAVAIL;
1650 case SIOCGETSGCNT:
1651 sr = (struct sioc_sg_req *)arg;
1652
1653 rcu_read_lock();
1654 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1655 if (c) {
1656 sr->pktcnt = c->_c.mfc_un.res.pkt;
1657 sr->bytecnt = c->_c.mfc_un.res.bytes;
1658 sr->wrong_if = c->_c.mfc_un.res.wrong_if;
1659 rcu_read_unlock();
1660 return 0;
1661 }
1662 rcu_read_unlock();
1663 return -EADDRNOTAVAIL;
1664 default:
1665 return -ENOIOCTLCMD;
1666 }
1667 }
1668
1669 #ifdef CONFIG_COMPAT
1670 struct compat_sioc_sg_req {
1671 struct in_addr src;
1672 struct in_addr grp;
1673 compat_ulong_t pktcnt;
1674 compat_ulong_t bytecnt;
1675 compat_ulong_t wrong_if;
1676 };
1677
1678 struct compat_sioc_vif_req {
1679 vifi_t vifi; /* Which iface */
1680 compat_ulong_t icount;
1681 compat_ulong_t ocount;
1682 compat_ulong_t ibytes;
1683 compat_ulong_t obytes;
1684 };
1685
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1686 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1687 {
1688 struct compat_sioc_sg_req sr;
1689 struct compat_sioc_vif_req vr;
1690 struct vif_device *vif;
1691 struct mfc_cache *c;
1692 struct net *net = sock_net(sk);
1693 struct mr_table *mrt;
1694
1695 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1696 if (!mrt)
1697 return -ENOENT;
1698
1699 switch (cmd) {
1700 case SIOCGETVIFCNT:
1701 if (copy_from_user(&vr, arg, sizeof(vr)))
1702 return -EFAULT;
1703 if (vr.vifi >= mrt->maxvif)
1704 return -EINVAL;
1705 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1706 rcu_read_lock();
1707 vif = &mrt->vif_table[vr.vifi];
1708 if (VIF_EXISTS(mrt, vr.vifi)) {
1709 vr.icount = READ_ONCE(vif->pkt_in);
1710 vr.ocount = READ_ONCE(vif->pkt_out);
1711 vr.ibytes = READ_ONCE(vif->bytes_in);
1712 vr.obytes = READ_ONCE(vif->bytes_out);
1713 rcu_read_unlock();
1714
1715 if (copy_to_user(arg, &vr, sizeof(vr)))
1716 return -EFAULT;
1717 return 0;
1718 }
1719 rcu_read_unlock();
1720 return -EADDRNOTAVAIL;
1721 case SIOCGETSGCNT:
1722 if (copy_from_user(&sr, arg, sizeof(sr)))
1723 return -EFAULT;
1724
1725 rcu_read_lock();
1726 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1727 if (c) {
1728 sr.pktcnt = c->_c.mfc_un.res.pkt;
1729 sr.bytecnt = c->_c.mfc_un.res.bytes;
1730 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1731 rcu_read_unlock();
1732
1733 if (copy_to_user(arg, &sr, sizeof(sr)))
1734 return -EFAULT;
1735 return 0;
1736 }
1737 rcu_read_unlock();
1738 return -EADDRNOTAVAIL;
1739 default:
1740 return -ENOIOCTLCMD;
1741 }
1742 }
1743 #endif
1744
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1745 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1746 {
1747 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1748 struct net *net = dev_net(dev);
1749 struct mr_table *mrt;
1750 struct vif_device *v;
1751 int ct;
1752
1753 if (event != NETDEV_UNREGISTER)
1754 return NOTIFY_DONE;
1755
1756 ipmr_for_each_table(mrt, net) {
1757 v = &mrt->vif_table[0];
1758 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1759 if (rcu_access_pointer(v->dev) == dev)
1760 vif_delete(mrt, ct, 1, NULL);
1761 }
1762 }
1763 return NOTIFY_DONE;
1764 }
1765
1766 static struct notifier_block ip_mr_notifier = {
1767 .notifier_call = ipmr_device_event,
1768 };
1769
1770 /* Encapsulate a packet by attaching a valid IPIP header to it.
1771 * This avoids tunnel drivers and other mess and gives us the speed so
1772 * important for multicast video.
1773 */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1774 static void ip_encap(struct net *net, struct sk_buff *skb,
1775 __be32 saddr, __be32 daddr)
1776 {
1777 struct iphdr *iph;
1778 const struct iphdr *old_iph = ip_hdr(skb);
1779
1780 skb_push(skb, sizeof(struct iphdr));
1781 skb->transport_header = skb->network_header;
1782 skb_reset_network_header(skb);
1783 iph = ip_hdr(skb);
1784
1785 iph->version = 4;
1786 iph->tos = old_iph->tos;
1787 iph->ttl = old_iph->ttl;
1788 iph->frag_off = 0;
1789 iph->daddr = daddr;
1790 iph->saddr = saddr;
1791 iph->protocol = IPPROTO_IPIP;
1792 iph->ihl = 5;
1793 iph->tot_len = htons(skb->len);
1794 ip_select_ident(net, skb, NULL);
1795 ip_send_check(iph);
1796
1797 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1798 nf_reset_ct(skb);
1799 }
1800
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1801 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1802 struct sk_buff *skb)
1803 {
1804 struct ip_options *opt = &(IPCB(skb)->opt);
1805
1806 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1807
1808 if (unlikely(opt->optlen))
1809 ip_forward_options(skb);
1810
1811 return dst_output(net, sk, skb);
1812 }
1813
1814 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1815 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1816 int in_vifi, int out_vifi)
1817 {
1818 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1819 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1820
1821 if (!skb->offload_l3_fwd_mark)
1822 return false;
1823 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1824 return false;
1825 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1826 &in_vif->dev_parent_id);
1827 }
1828 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1829 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1830 int in_vifi, int out_vifi)
1831 {
1832 return false;
1833 }
1834 #endif
1835
1836 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1837
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1838 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1839 int in_vifi, struct sk_buff *skb, int vifi)
1840 {
1841 const struct iphdr *iph = ip_hdr(skb);
1842 struct vif_device *vif = &mrt->vif_table[vifi];
1843 struct net_device *vif_dev;
1844 struct net_device *dev;
1845 struct rtable *rt;
1846 struct flowi4 fl4;
1847 int encap = 0;
1848
1849 vif_dev = vif_dev_read(vif);
1850 if (!vif_dev)
1851 goto out_free;
1852
1853 if (vif->flags & VIFF_REGISTER) {
1854 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1855 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1856 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1857 DEV_STATS_INC(vif_dev, tx_packets);
1858 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1859 goto out_free;
1860 }
1861
1862 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1863 goto out_free;
1864
1865 if (vif->flags & VIFF_TUNNEL) {
1866 rt = ip_route_output_ports(net, &fl4, NULL,
1867 vif->remote, vif->local,
1868 0, 0,
1869 IPPROTO_IPIP,
1870 RT_TOS(iph->tos), vif->link);
1871 if (IS_ERR(rt))
1872 goto out_free;
1873 encap = sizeof(struct iphdr);
1874 } else {
1875 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1876 0, 0,
1877 IPPROTO_IPIP,
1878 RT_TOS(iph->tos), vif->link);
1879 if (IS_ERR(rt))
1880 goto out_free;
1881 }
1882
1883 dev = rt->dst.dev;
1884
1885 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1886 /* Do not fragment multicasts. Alas, IPv4 does not
1887 * allow to send ICMP, so that packets will disappear
1888 * to blackhole.
1889 */
1890 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1891 ip_rt_put(rt);
1892 goto out_free;
1893 }
1894
1895 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1896
1897 if (skb_cow(skb, encap)) {
1898 ip_rt_put(rt);
1899 goto out_free;
1900 }
1901
1902 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1903 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1904
1905 skb_dst_drop(skb);
1906 skb_dst_set(skb, &rt->dst);
1907 ip_decrease_ttl(ip_hdr(skb));
1908
1909 /* FIXME: forward and output firewalls used to be called here.
1910 * What do we do with netfilter? -- RR
1911 */
1912 if (vif->flags & VIFF_TUNNEL) {
1913 ip_encap(net, skb, vif->local, vif->remote);
1914 /* FIXME: extra output firewall step used to be here. --RR */
1915 DEV_STATS_INC(vif_dev, tx_packets);
1916 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1917 }
1918
1919 IPCB(skb)->flags |= IPSKB_FORWARDED;
1920
1921 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1922 * not only before forwarding, but after forwarding on all output
1923 * interfaces. It is clear, if mrouter runs a multicasting
1924 * program, it should receive packets not depending to what interface
1925 * program is joined.
1926 * If we will not make it, the program will have to join on all
1927 * interfaces. On the other hand, multihoming host (or router, but
1928 * not mrouter) cannot join to more than one interface - it will
1929 * result in receiving multiple packets.
1930 */
1931 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1932 net, NULL, skb, skb->dev, dev,
1933 ipmr_forward_finish);
1934 return;
1935
1936 out_free:
1937 kfree_skb(skb);
1938 }
1939
1940 /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1941 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1942 {
1943 int ct;
1944 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1945 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1946 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1947 break;
1948 }
1949 return ct;
1950 }
1951
1952 /* "local" means that we should preserve one skb (for local delivery) */
1953 /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1954 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1955 struct net_device *dev, struct sk_buff *skb,
1956 struct mfc_cache *c, int local)
1957 {
1958 int true_vifi = ipmr_find_vif(mrt, dev);
1959 int psend = -1;
1960 int vif, ct;
1961
1962 vif = c->_c.mfc_parent;
1963 c->_c.mfc_un.res.pkt++;
1964 c->_c.mfc_un.res.bytes += skb->len;
1965 c->_c.mfc_un.res.lastuse = jiffies;
1966
1967 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1968 struct mfc_cache *cache_proxy;
1969
1970 /* For an (*,G) entry, we only check that the incoming
1971 * interface is part of the static tree.
1972 */
1973 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1974 if (cache_proxy &&
1975 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1976 goto forward;
1977 }
1978
1979 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1980 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1981 if (rt_is_output_route(skb_rtable(skb))) {
1982 /* It is our own packet, looped back.
1983 * Very complicated situation...
1984 *
1985 * The best workaround until routing daemons will be
1986 * fixed is not to redistribute packet, if it was
1987 * send through wrong interface. It means, that
1988 * multicast applications WILL NOT work for
1989 * (S,G), which have default multicast route pointing
1990 * to wrong oif. In any case, it is not a good
1991 * idea to use multicasting applications on router.
1992 */
1993 goto dont_forward;
1994 }
1995
1996 c->_c.mfc_un.res.wrong_if++;
1997
1998 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1999 /* pimsm uses asserts, when switching from RPT to SPT,
2000 * so that we cannot check that packet arrived on an oif.
2001 * It is bad, but otherwise we would need to move pretty
2002 * large chunk of pimd to kernel. Ough... --ANK
2003 */
2004 (mrt->mroute_do_pim ||
2005 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2006 time_after(jiffies,
2007 c->_c.mfc_un.res.last_assert +
2008 MFC_ASSERT_THRESH)) {
2009 c->_c.mfc_un.res.last_assert = jiffies;
2010 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2011 if (mrt->mroute_do_wrvifwhole)
2012 ipmr_cache_report(mrt, skb, true_vifi,
2013 IGMPMSG_WRVIFWHOLE);
2014 }
2015 goto dont_forward;
2016 }
2017
2018 forward:
2019 WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2020 mrt->vif_table[vif].pkt_in + 1);
2021 WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2022 mrt->vif_table[vif].bytes_in + skb->len);
2023
2024 /* Forward the frame */
2025 if (c->mfc_origin == htonl(INADDR_ANY) &&
2026 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2027 if (true_vifi >= 0 &&
2028 true_vifi != c->_c.mfc_parent &&
2029 ip_hdr(skb)->ttl >
2030 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2031 /* It's an (*,*) entry and the packet is not coming from
2032 * the upstream: forward the packet to the upstream
2033 * only.
2034 */
2035 psend = c->_c.mfc_parent;
2036 goto last_forward;
2037 }
2038 goto dont_forward;
2039 }
2040 for (ct = c->_c.mfc_un.res.maxvif - 1;
2041 ct >= c->_c.mfc_un.res.minvif; ct--) {
2042 /* For (*,G) entry, don't forward to the incoming interface */
2043 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2044 ct != true_vifi) &&
2045 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2046 if (psend != -1) {
2047 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2048
2049 if (skb2)
2050 ipmr_queue_xmit(net, mrt, true_vifi,
2051 skb2, psend);
2052 }
2053 psend = ct;
2054 }
2055 }
2056 last_forward:
2057 if (psend != -1) {
2058 if (local) {
2059 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2060
2061 if (skb2)
2062 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2063 psend);
2064 } else {
2065 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2066 return;
2067 }
2068 }
2069
2070 dont_forward:
2071 if (!local)
2072 kfree_skb(skb);
2073 }
2074
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2075 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2076 {
2077 struct rtable *rt = skb_rtable(skb);
2078 struct iphdr *iph = ip_hdr(skb);
2079 struct flowi4 fl4 = {
2080 .daddr = iph->daddr,
2081 .saddr = iph->saddr,
2082 .flowi4_tos = RT_TOS(iph->tos),
2083 .flowi4_oif = (rt_is_output_route(rt) ?
2084 skb->dev->ifindex : 0),
2085 .flowi4_iif = (rt_is_output_route(rt) ?
2086 LOOPBACK_IFINDEX :
2087 skb->dev->ifindex),
2088 .flowi4_mark = skb->mark,
2089 };
2090 struct mr_table *mrt;
2091 int err;
2092
2093 err = ipmr_fib_lookup(net, &fl4, &mrt);
2094 if (err)
2095 return ERR_PTR(err);
2096 return mrt;
2097 }
2098
2099 /* Multicast packets for forwarding arrive here
2100 * Called with rcu_read_lock();
2101 */
ip_mr_input(struct sk_buff * skb)2102 int ip_mr_input(struct sk_buff *skb)
2103 {
2104 struct mfc_cache *cache;
2105 struct net *net = dev_net(skb->dev);
2106 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2107 struct mr_table *mrt;
2108 struct net_device *dev;
2109
2110 /* skb->dev passed in is the loX master dev for vrfs.
2111 * As there are no vifs associated with loopback devices,
2112 * get the proper interface that does have a vif associated with it.
2113 */
2114 dev = skb->dev;
2115 if (netif_is_l3_master(skb->dev)) {
2116 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2117 if (!dev) {
2118 kfree_skb(skb);
2119 return -ENODEV;
2120 }
2121 }
2122
2123 /* Packet is looped back after forward, it should not be
2124 * forwarded second time, but still can be delivered locally.
2125 */
2126 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2127 goto dont_forward;
2128
2129 mrt = ipmr_rt_fib_lookup(net, skb);
2130 if (IS_ERR(mrt)) {
2131 kfree_skb(skb);
2132 return PTR_ERR(mrt);
2133 }
2134 if (!local) {
2135 if (IPCB(skb)->opt.router_alert) {
2136 if (ip_call_ra_chain(skb))
2137 return 0;
2138 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2139 /* IGMPv1 (and broken IGMPv2 implementations sort of
2140 * Cisco IOS <= 11.2(8)) do not put router alert
2141 * option to IGMP packets destined to routable
2142 * groups. It is very bad, because it means
2143 * that we can forward NO IGMP messages.
2144 */
2145 struct sock *mroute_sk;
2146
2147 mroute_sk = rcu_dereference(mrt->mroute_sk);
2148 if (mroute_sk) {
2149 nf_reset_ct(skb);
2150 raw_rcv(mroute_sk, skb);
2151 return 0;
2152 }
2153 }
2154 }
2155
2156 /* already under rcu_read_lock() */
2157 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2158 if (!cache) {
2159 int vif = ipmr_find_vif(mrt, dev);
2160
2161 if (vif >= 0)
2162 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2163 vif);
2164 }
2165
2166 /* No usable cache entry */
2167 if (!cache) {
2168 int vif;
2169
2170 if (local) {
2171 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2172 ip_local_deliver(skb);
2173 if (!skb2)
2174 return -ENOBUFS;
2175 skb = skb2;
2176 }
2177
2178 vif = ipmr_find_vif(mrt, dev);
2179 if (vif >= 0)
2180 return ipmr_cache_unresolved(mrt, vif, skb, dev);
2181 kfree_skb(skb);
2182 return -ENODEV;
2183 }
2184
2185 ip_mr_forward(net, mrt, dev, skb, cache, local);
2186
2187 if (local)
2188 return ip_local_deliver(skb);
2189
2190 return 0;
2191
2192 dont_forward:
2193 if (local)
2194 return ip_local_deliver(skb);
2195 kfree_skb(skb);
2196 return 0;
2197 }
2198
2199 #ifdef CONFIG_IP_PIMSM_V1
2200 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2201 int pim_rcv_v1(struct sk_buff *skb)
2202 {
2203 struct igmphdr *pim;
2204 struct net *net = dev_net(skb->dev);
2205 struct mr_table *mrt;
2206
2207 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2208 goto drop;
2209
2210 pim = igmp_hdr(skb);
2211
2212 mrt = ipmr_rt_fib_lookup(net, skb);
2213 if (IS_ERR(mrt))
2214 goto drop;
2215 if (!mrt->mroute_do_pim ||
2216 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2217 goto drop;
2218
2219 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2220 drop:
2221 kfree_skb(skb);
2222 }
2223 return 0;
2224 }
2225 #endif
2226
2227 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2228 static int pim_rcv(struct sk_buff *skb)
2229 {
2230 struct pimreghdr *pim;
2231 struct net *net = dev_net(skb->dev);
2232 struct mr_table *mrt;
2233
2234 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2235 goto drop;
2236
2237 pim = (struct pimreghdr *)skb_transport_header(skb);
2238 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2239 (pim->flags & PIM_NULL_REGISTER) ||
2240 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2241 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2242 goto drop;
2243
2244 mrt = ipmr_rt_fib_lookup(net, skb);
2245 if (IS_ERR(mrt))
2246 goto drop;
2247 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2248 drop:
2249 kfree_skb(skb);
2250 }
2251 return 0;
2252 }
2253 #endif
2254
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2255 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2256 __be32 saddr, __be32 daddr,
2257 struct rtmsg *rtm, u32 portid)
2258 {
2259 struct mfc_cache *cache;
2260 struct mr_table *mrt;
2261 int err;
2262
2263 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2264 if (!mrt)
2265 return -ENOENT;
2266
2267 rcu_read_lock();
2268 cache = ipmr_cache_find(mrt, saddr, daddr);
2269 if (!cache && skb->dev) {
2270 int vif = ipmr_find_vif(mrt, skb->dev);
2271
2272 if (vif >= 0)
2273 cache = ipmr_cache_find_any(mrt, daddr, vif);
2274 }
2275 if (!cache) {
2276 struct sk_buff *skb2;
2277 struct iphdr *iph;
2278 struct net_device *dev;
2279 int vif = -1;
2280
2281 dev = skb->dev;
2282 if (dev)
2283 vif = ipmr_find_vif(mrt, dev);
2284 if (vif < 0) {
2285 rcu_read_unlock();
2286 return -ENODEV;
2287 }
2288
2289 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2290 if (!skb2) {
2291 rcu_read_unlock();
2292 return -ENOMEM;
2293 }
2294
2295 NETLINK_CB(skb2).portid = portid;
2296 skb_push(skb2, sizeof(struct iphdr));
2297 skb_reset_network_header(skb2);
2298 iph = ip_hdr(skb2);
2299 iph->ihl = sizeof(struct iphdr) >> 2;
2300 iph->saddr = saddr;
2301 iph->daddr = daddr;
2302 iph->version = 0;
2303 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2304 rcu_read_unlock();
2305 return err;
2306 }
2307
2308 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2309 rcu_read_unlock();
2310 return err;
2311 }
2312
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2313 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2314 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2315 int flags)
2316 {
2317 struct nlmsghdr *nlh;
2318 struct rtmsg *rtm;
2319 int err;
2320
2321 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2322 if (!nlh)
2323 return -EMSGSIZE;
2324
2325 rtm = nlmsg_data(nlh);
2326 rtm->rtm_family = RTNL_FAMILY_IPMR;
2327 rtm->rtm_dst_len = 32;
2328 rtm->rtm_src_len = 32;
2329 rtm->rtm_tos = 0;
2330 rtm->rtm_table = mrt->id;
2331 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2332 goto nla_put_failure;
2333 rtm->rtm_type = RTN_MULTICAST;
2334 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2335 if (c->_c.mfc_flags & MFC_STATIC)
2336 rtm->rtm_protocol = RTPROT_STATIC;
2337 else
2338 rtm->rtm_protocol = RTPROT_MROUTED;
2339 rtm->rtm_flags = 0;
2340
2341 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2342 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2343 goto nla_put_failure;
2344 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2345 /* do not break the dump if cache is unresolved */
2346 if (err < 0 && err != -ENOENT)
2347 goto nla_put_failure;
2348
2349 nlmsg_end(skb, nlh);
2350 return 0;
2351
2352 nla_put_failure:
2353 nlmsg_cancel(skb, nlh);
2354 return -EMSGSIZE;
2355 }
2356
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2357 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2358 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2359 int flags)
2360 {
2361 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2362 cmd, flags);
2363 }
2364
mroute_msgsize(bool unresolved,int maxvif)2365 static size_t mroute_msgsize(bool unresolved, int maxvif)
2366 {
2367 size_t len =
2368 NLMSG_ALIGN(sizeof(struct rtmsg))
2369 + nla_total_size(4) /* RTA_TABLE */
2370 + nla_total_size(4) /* RTA_SRC */
2371 + nla_total_size(4) /* RTA_DST */
2372 ;
2373
2374 if (!unresolved)
2375 len = len
2376 + nla_total_size(4) /* RTA_IIF */
2377 + nla_total_size(0) /* RTA_MULTIPATH */
2378 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2379 /* RTA_MFC_STATS */
2380 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2381 ;
2382
2383 return len;
2384 }
2385
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2386 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2387 int cmd)
2388 {
2389 struct net *net = read_pnet(&mrt->net);
2390 struct sk_buff *skb;
2391 int err = -ENOBUFS;
2392
2393 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2394 mrt->maxvif),
2395 GFP_ATOMIC);
2396 if (!skb)
2397 goto errout;
2398
2399 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2400 if (err < 0)
2401 goto errout;
2402
2403 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2404 return;
2405
2406 errout:
2407 kfree_skb(skb);
2408 if (err < 0)
2409 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2410 }
2411
igmpmsg_netlink_msgsize(size_t payloadlen)2412 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2413 {
2414 size_t len =
2415 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2416 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2417 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2418 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2419 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2420 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2421 /* IPMRA_CREPORT_PKT */
2422 + nla_total_size(payloadlen)
2423 ;
2424
2425 return len;
2426 }
2427
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2428 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2429 {
2430 struct net *net = read_pnet(&mrt->net);
2431 struct nlmsghdr *nlh;
2432 struct rtgenmsg *rtgenm;
2433 struct igmpmsg *msg;
2434 struct sk_buff *skb;
2435 struct nlattr *nla;
2436 int payloadlen;
2437
2438 payloadlen = pkt->len - sizeof(struct igmpmsg);
2439 msg = (struct igmpmsg *)skb_network_header(pkt);
2440
2441 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2442 if (!skb)
2443 goto errout;
2444
2445 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2446 sizeof(struct rtgenmsg), 0);
2447 if (!nlh)
2448 goto errout;
2449 rtgenm = nlmsg_data(nlh);
2450 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2451 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2452 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2453 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2454 msg->im_src.s_addr) ||
2455 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2456 msg->im_dst.s_addr) ||
2457 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2458 goto nla_put_failure;
2459
2460 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2461 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2462 nla_data(nla), payloadlen))
2463 goto nla_put_failure;
2464
2465 nlmsg_end(skb, nlh);
2466
2467 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2468 return;
2469
2470 nla_put_failure:
2471 nlmsg_cancel(skb, nlh);
2472 errout:
2473 kfree_skb(skb);
2474 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2475 }
2476
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2477 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2478 const struct nlmsghdr *nlh,
2479 struct nlattr **tb,
2480 struct netlink_ext_ack *extack)
2481 {
2482 struct rtmsg *rtm;
2483 int i, err;
2484
2485 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2486 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2487 return -EINVAL;
2488 }
2489
2490 if (!netlink_strict_get_check(skb))
2491 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2492 rtm_ipv4_policy, extack);
2493
2494 rtm = nlmsg_data(nlh);
2495 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2496 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2497 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2498 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2499 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2500 return -EINVAL;
2501 }
2502
2503 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2504 rtm_ipv4_policy, extack);
2505 if (err)
2506 return err;
2507
2508 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2509 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2510 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2511 return -EINVAL;
2512 }
2513
2514 for (i = 0; i <= RTA_MAX; i++) {
2515 if (!tb[i])
2516 continue;
2517
2518 switch (i) {
2519 case RTA_SRC:
2520 case RTA_DST:
2521 case RTA_TABLE:
2522 break;
2523 default:
2524 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2525 return -EINVAL;
2526 }
2527 }
2528
2529 return 0;
2530 }
2531
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2532 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2533 struct netlink_ext_ack *extack)
2534 {
2535 struct net *net = sock_net(in_skb->sk);
2536 struct nlattr *tb[RTA_MAX + 1];
2537 struct sk_buff *skb = NULL;
2538 struct mfc_cache *cache;
2539 struct mr_table *mrt;
2540 __be32 src, grp;
2541 u32 tableid;
2542 int err;
2543
2544 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2545 if (err < 0)
2546 goto errout;
2547
2548 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2549 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2550 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2551
2552 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2553 if (!mrt) {
2554 err = -ENOENT;
2555 goto errout_free;
2556 }
2557
2558 /* entries are added/deleted only under RTNL */
2559 rcu_read_lock();
2560 cache = ipmr_cache_find(mrt, src, grp);
2561 rcu_read_unlock();
2562 if (!cache) {
2563 err = -ENOENT;
2564 goto errout_free;
2565 }
2566
2567 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2568 if (!skb) {
2569 err = -ENOBUFS;
2570 goto errout_free;
2571 }
2572
2573 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2574 nlh->nlmsg_seq, cache,
2575 RTM_NEWROUTE, 0);
2576 if (err < 0)
2577 goto errout_free;
2578
2579 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2580
2581 errout:
2582 return err;
2583
2584 errout_free:
2585 kfree_skb(skb);
2586 goto errout;
2587 }
2588
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2589 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2590 {
2591 struct fib_dump_filter filter = {};
2592 int err;
2593
2594 if (cb->strict_check) {
2595 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2596 &filter, cb);
2597 if (err < 0)
2598 return err;
2599 }
2600
2601 if (filter.table_id) {
2602 struct mr_table *mrt;
2603
2604 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2605 if (!mrt) {
2606 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2607 return skb->len;
2608
2609 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2610 return -ENOENT;
2611 }
2612 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2613 &mfc_unres_lock, &filter);
2614 return skb->len ? : err;
2615 }
2616
2617 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2618 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2619 }
2620
2621 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2622 [RTA_SRC] = { .type = NLA_U32 },
2623 [RTA_DST] = { .type = NLA_U32 },
2624 [RTA_IIF] = { .type = NLA_U32 },
2625 [RTA_TABLE] = { .type = NLA_U32 },
2626 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2627 };
2628
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2629 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2630 {
2631 switch (rtm_protocol) {
2632 case RTPROT_STATIC:
2633 case RTPROT_MROUTED:
2634 return true;
2635 }
2636 return false;
2637 }
2638
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2639 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2640 {
2641 struct rtnexthop *rtnh = nla_data(nla);
2642 int remaining = nla_len(nla), vifi = 0;
2643
2644 while (rtnh_ok(rtnh, remaining)) {
2645 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2646 if (++vifi == MAXVIFS)
2647 break;
2648 rtnh = rtnh_next(rtnh, &remaining);
2649 }
2650
2651 return remaining > 0 ? -EINVAL : vifi;
2652 }
2653
2654 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2655 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2656 struct mfcctl *mfcc, int *mrtsock,
2657 struct mr_table **mrtret,
2658 struct netlink_ext_ack *extack)
2659 {
2660 struct net_device *dev = NULL;
2661 u32 tblid = RT_TABLE_DEFAULT;
2662 struct mr_table *mrt;
2663 struct nlattr *attr;
2664 struct rtmsg *rtm;
2665 int ret, rem;
2666
2667 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2668 rtm_ipmr_policy, extack);
2669 if (ret < 0)
2670 goto out;
2671 rtm = nlmsg_data(nlh);
2672
2673 ret = -EINVAL;
2674 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2675 rtm->rtm_type != RTN_MULTICAST ||
2676 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2677 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2678 goto out;
2679
2680 memset(mfcc, 0, sizeof(*mfcc));
2681 mfcc->mfcc_parent = -1;
2682 ret = 0;
2683 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2684 switch (nla_type(attr)) {
2685 case RTA_SRC:
2686 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2687 break;
2688 case RTA_DST:
2689 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2690 break;
2691 case RTA_IIF:
2692 dev = __dev_get_by_index(net, nla_get_u32(attr));
2693 if (!dev) {
2694 ret = -ENODEV;
2695 goto out;
2696 }
2697 break;
2698 case RTA_MULTIPATH:
2699 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2700 ret = -EINVAL;
2701 goto out;
2702 }
2703 break;
2704 case RTA_PREFSRC:
2705 ret = 1;
2706 break;
2707 case RTA_TABLE:
2708 tblid = nla_get_u32(attr);
2709 break;
2710 }
2711 }
2712 mrt = ipmr_get_table(net, tblid);
2713 if (!mrt) {
2714 ret = -ENOENT;
2715 goto out;
2716 }
2717 *mrtret = mrt;
2718 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2719 if (dev)
2720 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2721
2722 out:
2723 return ret;
2724 }
2725
2726 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2727 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2728 struct netlink_ext_ack *extack)
2729 {
2730 struct net *net = sock_net(skb->sk);
2731 int ret, mrtsock, parent;
2732 struct mr_table *tbl;
2733 struct mfcctl mfcc;
2734
2735 mrtsock = 0;
2736 tbl = NULL;
2737 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2738 if (ret < 0)
2739 return ret;
2740
2741 parent = ret ? mfcc.mfcc_parent : -1;
2742 if (nlh->nlmsg_type == RTM_NEWROUTE)
2743 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2744 else
2745 return ipmr_mfc_delete(tbl, &mfcc, parent);
2746 }
2747
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2748 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2749 {
2750 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2751
2752 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2753 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2754 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2755 mrt->mroute_reg_vif_num) ||
2756 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2757 mrt->mroute_do_assert) ||
2758 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2759 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2760 mrt->mroute_do_wrvifwhole))
2761 return false;
2762
2763 return true;
2764 }
2765
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2766 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2767 {
2768 struct net_device *vif_dev;
2769 struct nlattr *vif_nest;
2770 struct vif_device *vif;
2771
2772 vif = &mrt->vif_table[vifid];
2773 vif_dev = rtnl_dereference(vif->dev);
2774 /* if the VIF doesn't exist just continue */
2775 if (!vif_dev)
2776 return true;
2777
2778 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2779 if (!vif_nest)
2780 return false;
2781
2782 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2783 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2784 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2785 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2786 IPMRA_VIFA_PAD) ||
2787 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2788 IPMRA_VIFA_PAD) ||
2789 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2790 IPMRA_VIFA_PAD) ||
2791 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2792 IPMRA_VIFA_PAD) ||
2793 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2794 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2795 nla_nest_cancel(skb, vif_nest);
2796 return false;
2797 }
2798 nla_nest_end(skb, vif_nest);
2799
2800 return true;
2801 }
2802
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2803 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2804 struct netlink_ext_ack *extack)
2805 {
2806 struct ifinfomsg *ifm;
2807
2808 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2809 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2810 return -EINVAL;
2811 }
2812
2813 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2814 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2815 return -EINVAL;
2816 }
2817
2818 ifm = nlmsg_data(nlh);
2819 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2820 ifm->ifi_change || ifm->ifi_index) {
2821 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2822 return -EINVAL;
2823 }
2824
2825 return 0;
2826 }
2827
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2828 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2829 {
2830 struct net *net = sock_net(skb->sk);
2831 struct nlmsghdr *nlh = NULL;
2832 unsigned int t = 0, s_t;
2833 unsigned int e = 0, s_e;
2834 struct mr_table *mrt;
2835
2836 if (cb->strict_check) {
2837 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2838
2839 if (err < 0)
2840 return err;
2841 }
2842
2843 s_t = cb->args[0];
2844 s_e = cb->args[1];
2845
2846 ipmr_for_each_table(mrt, net) {
2847 struct nlattr *vifs, *af;
2848 struct ifinfomsg *hdr;
2849 u32 i;
2850
2851 if (t < s_t)
2852 goto skip_table;
2853 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2854 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2855 sizeof(*hdr), NLM_F_MULTI);
2856 if (!nlh)
2857 break;
2858
2859 hdr = nlmsg_data(nlh);
2860 memset(hdr, 0, sizeof(*hdr));
2861 hdr->ifi_family = RTNL_FAMILY_IPMR;
2862
2863 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2864 if (!af) {
2865 nlmsg_cancel(skb, nlh);
2866 goto out;
2867 }
2868
2869 if (!ipmr_fill_table(mrt, skb)) {
2870 nlmsg_cancel(skb, nlh);
2871 goto out;
2872 }
2873
2874 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2875 if (!vifs) {
2876 nla_nest_end(skb, af);
2877 nlmsg_end(skb, nlh);
2878 goto out;
2879 }
2880 for (i = 0; i < mrt->maxvif; i++) {
2881 if (e < s_e)
2882 goto skip_entry;
2883 if (!ipmr_fill_vif(mrt, i, skb)) {
2884 nla_nest_end(skb, vifs);
2885 nla_nest_end(skb, af);
2886 nlmsg_end(skb, nlh);
2887 goto out;
2888 }
2889 skip_entry:
2890 e++;
2891 }
2892 s_e = 0;
2893 e = 0;
2894 nla_nest_end(skb, vifs);
2895 nla_nest_end(skb, af);
2896 nlmsg_end(skb, nlh);
2897 skip_table:
2898 t++;
2899 }
2900
2901 out:
2902 cb->args[1] = e;
2903 cb->args[0] = t;
2904
2905 return skb->len;
2906 }
2907
2908 #ifdef CONFIG_PROC_FS
2909 /* The /proc interfaces to multicast routing :
2910 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2911 */
2912
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2913 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2914 __acquires(RCU)
2915 {
2916 struct mr_vif_iter *iter = seq->private;
2917 struct net *net = seq_file_net(seq);
2918 struct mr_table *mrt;
2919
2920 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2921 if (!mrt)
2922 return ERR_PTR(-ENOENT);
2923
2924 iter->mrt = mrt;
2925
2926 rcu_read_lock();
2927 return mr_vif_seq_start(seq, pos);
2928 }
2929
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2930 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2931 __releases(RCU)
2932 {
2933 rcu_read_unlock();
2934 }
2935
ipmr_vif_seq_show(struct seq_file * seq,void * v)2936 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2937 {
2938 struct mr_vif_iter *iter = seq->private;
2939 struct mr_table *mrt = iter->mrt;
2940
2941 if (v == SEQ_START_TOKEN) {
2942 seq_puts(seq,
2943 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2944 } else {
2945 const struct vif_device *vif = v;
2946 const struct net_device *vif_dev;
2947 const char *name;
2948
2949 vif_dev = vif_dev_read(vif);
2950 name = vif_dev ? vif_dev->name : "none";
2951 seq_printf(seq,
2952 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2953 vif - mrt->vif_table,
2954 name, vif->bytes_in, vif->pkt_in,
2955 vif->bytes_out, vif->pkt_out,
2956 vif->flags, vif->local, vif->remote);
2957 }
2958 return 0;
2959 }
2960
2961 static const struct seq_operations ipmr_vif_seq_ops = {
2962 .start = ipmr_vif_seq_start,
2963 .next = mr_vif_seq_next,
2964 .stop = ipmr_vif_seq_stop,
2965 .show = ipmr_vif_seq_show,
2966 };
2967
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)2968 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2969 {
2970 struct net *net = seq_file_net(seq);
2971 struct mr_table *mrt;
2972
2973 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2974 if (!mrt)
2975 return ERR_PTR(-ENOENT);
2976
2977 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2978 }
2979
ipmr_mfc_seq_show(struct seq_file * seq,void * v)2980 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2981 {
2982 int n;
2983
2984 if (v == SEQ_START_TOKEN) {
2985 seq_puts(seq,
2986 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2987 } else {
2988 const struct mfc_cache *mfc = v;
2989 const struct mr_mfc_iter *it = seq->private;
2990 const struct mr_table *mrt = it->mrt;
2991
2992 seq_printf(seq, "%08X %08X %-3hd",
2993 (__force u32) mfc->mfc_mcastgrp,
2994 (__force u32) mfc->mfc_origin,
2995 mfc->_c.mfc_parent);
2996
2997 if (it->cache != &mrt->mfc_unres_queue) {
2998 seq_printf(seq, " %8lu %8lu %8lu",
2999 mfc->_c.mfc_un.res.pkt,
3000 mfc->_c.mfc_un.res.bytes,
3001 mfc->_c.mfc_un.res.wrong_if);
3002 for (n = mfc->_c.mfc_un.res.minvif;
3003 n < mfc->_c.mfc_un.res.maxvif; n++) {
3004 if (VIF_EXISTS(mrt, n) &&
3005 mfc->_c.mfc_un.res.ttls[n] < 255)
3006 seq_printf(seq,
3007 " %2d:%-3d",
3008 n, mfc->_c.mfc_un.res.ttls[n]);
3009 }
3010 } else {
3011 /* unresolved mfc_caches don't contain
3012 * pkt, bytes and wrong_if values
3013 */
3014 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3015 }
3016 seq_putc(seq, '\n');
3017 }
3018 return 0;
3019 }
3020
3021 static const struct seq_operations ipmr_mfc_seq_ops = {
3022 .start = ipmr_mfc_seq_start,
3023 .next = mr_mfc_seq_next,
3024 .stop = mr_mfc_seq_stop,
3025 .show = ipmr_mfc_seq_show,
3026 };
3027 #endif
3028
3029 #ifdef CONFIG_IP_PIMSM_V2
3030 static const struct net_protocol pim_protocol = {
3031 .handler = pim_rcv,
3032 };
3033 #endif
3034
ipmr_seq_read(struct net * net)3035 static unsigned int ipmr_seq_read(struct net *net)
3036 {
3037 ASSERT_RTNL();
3038
3039 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3040 }
3041
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3042 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3043 struct netlink_ext_ack *extack)
3044 {
3045 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3046 ipmr_mr_table_iter, extack);
3047 }
3048
3049 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3050 .family = RTNL_FAMILY_IPMR,
3051 .fib_seq_read = ipmr_seq_read,
3052 .fib_dump = ipmr_dump,
3053 .owner = THIS_MODULE,
3054 };
3055
ipmr_notifier_init(struct net * net)3056 static int __net_init ipmr_notifier_init(struct net *net)
3057 {
3058 struct fib_notifier_ops *ops;
3059
3060 net->ipv4.ipmr_seq = 0;
3061
3062 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3063 if (IS_ERR(ops))
3064 return PTR_ERR(ops);
3065 net->ipv4.ipmr_notifier_ops = ops;
3066
3067 return 0;
3068 }
3069
ipmr_notifier_exit(struct net * net)3070 static void __net_exit ipmr_notifier_exit(struct net *net)
3071 {
3072 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3073 net->ipv4.ipmr_notifier_ops = NULL;
3074 }
3075
3076 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3077 static int __net_init ipmr_net_init(struct net *net)
3078 {
3079 int err;
3080
3081 err = ipmr_notifier_init(net);
3082 if (err)
3083 goto ipmr_notifier_fail;
3084
3085 err = ipmr_rules_init(net);
3086 if (err < 0)
3087 goto ipmr_rules_fail;
3088
3089 #ifdef CONFIG_PROC_FS
3090 err = -ENOMEM;
3091 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3092 sizeof(struct mr_vif_iter)))
3093 goto proc_vif_fail;
3094 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3095 sizeof(struct mr_mfc_iter)))
3096 goto proc_cache_fail;
3097 #endif
3098 return 0;
3099
3100 #ifdef CONFIG_PROC_FS
3101 proc_cache_fail:
3102 remove_proc_entry("ip_mr_vif", net->proc_net);
3103 proc_vif_fail:
3104 rtnl_lock();
3105 ipmr_rules_exit(net);
3106 rtnl_unlock();
3107 #endif
3108 ipmr_rules_fail:
3109 ipmr_notifier_exit(net);
3110 ipmr_notifier_fail:
3111 return err;
3112 }
3113
ipmr_net_exit(struct net * net)3114 static void __net_exit ipmr_net_exit(struct net *net)
3115 {
3116 #ifdef CONFIG_PROC_FS
3117 remove_proc_entry("ip_mr_cache", net->proc_net);
3118 remove_proc_entry("ip_mr_vif", net->proc_net);
3119 #endif
3120 ipmr_notifier_exit(net);
3121 }
3122
ipmr_net_exit_batch(struct list_head * net_list)3123 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3124 {
3125 struct net *net;
3126
3127 rtnl_lock();
3128 list_for_each_entry(net, net_list, exit_list)
3129 ipmr_rules_exit(net);
3130 rtnl_unlock();
3131 }
3132
3133 static struct pernet_operations ipmr_net_ops = {
3134 .init = ipmr_net_init,
3135 .exit = ipmr_net_exit,
3136 .exit_batch = ipmr_net_exit_batch,
3137 };
3138
ip_mr_init(void)3139 int __init ip_mr_init(void)
3140 {
3141 int err;
3142
3143 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3144 sizeof(struct mfc_cache),
3145 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3146 NULL);
3147
3148 err = register_pernet_subsys(&ipmr_net_ops);
3149 if (err)
3150 goto reg_pernet_fail;
3151
3152 err = register_netdevice_notifier(&ip_mr_notifier);
3153 if (err)
3154 goto reg_notif_fail;
3155 #ifdef CONFIG_IP_PIMSM_V2
3156 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3157 pr_err("%s: can't add PIM protocol\n", __func__);
3158 err = -EAGAIN;
3159 goto add_proto_fail;
3160 }
3161 #endif
3162 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3163 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3164 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3165 ipmr_rtm_route, NULL, 0);
3166 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3167 ipmr_rtm_route, NULL, 0);
3168
3169 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3170 NULL, ipmr_rtm_dumplink, 0);
3171 return 0;
3172
3173 #ifdef CONFIG_IP_PIMSM_V2
3174 add_proto_fail:
3175 unregister_netdevice_notifier(&ip_mr_notifier);
3176 #endif
3177 reg_notif_fail:
3178 unregister_pernet_subsys(&ipmr_net_ops);
3179 reg_pernet_fail:
3180 kmem_cache_destroy(mrt_cachep);
3181 return err;
3182 }
3183