1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49
50 #include <linux/uaccess.h>
51
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68
69 /*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
80 (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82
83 /*
84 * The defaults come from config options but can be overriden by module
85 * or bootarg options.
86 */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88
89 /*
90 * We've only got one major, so number of mmcblk devices is
91 * limited to (1 << 20) / number of minors per device. It is also
92 * limited by the MAX_DEVICES below.
93 */
94 static int max_devices;
95
96 #define MAX_DEVICES 256
97
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100
101 struct mmc_blk_busy_data {
102 struct mmc_card *card;
103 u32 status;
104 };
105
106 /*
107 * There is one mmc_blk_data per slot.
108 */
109 struct mmc_blk_data {
110 struct device *parent;
111 struct gendisk *disk;
112 struct mmc_queue queue;
113 struct list_head part;
114 struct list_head rpmbs;
115
116 unsigned int flags;
117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
119
120 struct kref kref;
121 unsigned int read_only;
122 unsigned int part_type;
123 unsigned int reset_done;
124 #define MMC_BLK_READ BIT(0)
125 #define MMC_BLK_WRITE BIT(1)
126 #define MMC_BLK_DISCARD BIT(2)
127 #define MMC_BLK_SECDISCARD BIT(3)
128 #define MMC_BLK_CQE_RECOVERY BIT(4)
129 #define MMC_BLK_TRIM BIT(5)
130
131 /*
132 * Only set in main mmc_blk_data associated
133 * with mmc_card with dev_set_drvdata, and keeps
134 * track of the current selected device partition.
135 */
136 unsigned int part_curr;
137 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
138 int area_type;
139
140 /* debugfs files (only in main mmc_blk_data) */
141 struct dentry *status_dentry;
142 struct dentry *ext_csd_dentry;
143 };
144
145 /* Device type for RPMB character devices */
146 static dev_t mmc_rpmb_devt;
147
148 /* Bus type for RPMB character devices */
149 static struct bus_type mmc_rpmb_bus_type = {
150 .name = "mmc_rpmb",
151 };
152
153 /**
154 * struct mmc_rpmb_data - special RPMB device type for these areas
155 * @dev: the device for the RPMB area
156 * @chrdev: character device for the RPMB area
157 * @id: unique device ID number
158 * @part_index: partition index (0 on first)
159 * @md: parent MMC block device
160 * @node: list item, so we can put this device on a list
161 */
162 struct mmc_rpmb_data {
163 struct device dev;
164 struct cdev chrdev;
165 int id;
166 unsigned int part_index;
167 struct mmc_blk_data *md;
168 struct list_head node;
169 };
170
171 static DEFINE_MUTEX(open_lock);
172
173 module_param(perdev_minors, int, 0444);
174 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
175
176 static inline int mmc_blk_part_switch(struct mmc_card *card,
177 unsigned int part_type);
178 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
179 struct mmc_card *card,
180 int recovery_mode,
181 struct mmc_queue *mq);
182 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
183
mmc_blk_get(struct gendisk * disk)184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
191 md = NULL;
192 mutex_unlock(&open_lock);
193
194 return md;
195 }
196
mmc_get_devidx(struct gendisk * disk)197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201 }
202
mmc_blk_kref_release(struct kref * ref)203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
214
215 put_disk(md->disk);
216 kfree(md);
217 }
218
mmc_blk_put(struct mmc_blk_data * md)219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 kref_put(&md->kref, mmc_blk_kref_release);
222 }
223
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)224 static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226 {
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242 }
243
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246 {
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(buf, 0, &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 if (IS_ERR(req)) {
265 count = PTR_ERR(req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 blk_execute_rq(req, false);
270 ret = req_to_mmc_queue_req(req)->drv_op_result;
271 blk_mq_free_request(req);
272
273 if (!ret) {
274 pr_info("%s: Locking boot partition ro until next power on\n",
275 md->disk->disk_name);
276 set_disk_ro(md->disk, 1);
277
278 list_for_each_entry(part_md, &md->part, part)
279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 set_disk_ro(part_md->disk, 1);
282 }
283 }
284 out_put:
285 mmc_blk_put(md);
286 return count;
287 }
288
289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
290 power_ro_lock_show, power_ro_lock_store);
291
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
293 char *buf)
294 {
295 int ret;
296 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297
298 ret = snprintf(buf, PAGE_SIZE, "%d\n",
299 get_disk_ro(dev_to_disk(dev)) ^
300 md->read_only);
301 mmc_blk_put(md);
302 return ret;
303 }
304
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
306 const char *buf, size_t count)
307 {
308 int ret;
309 char *end;
310 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
311 unsigned long set = simple_strtoul(buf, &end, 0);
312 if (end == buf) {
313 ret = -EINVAL;
314 goto out;
315 }
316
317 set_disk_ro(dev_to_disk(dev), set || md->read_only);
318 ret = count;
319 out:
320 mmc_blk_put(md);
321 return ret;
322 }
323
324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
325
326 static struct attribute *mmc_disk_attrs[] = {
327 &dev_attr_force_ro.attr,
328 &dev_attr_ro_lock_until_next_power_on.attr,
329 NULL,
330 };
331
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
333 struct attribute *a, int n)
334 {
335 struct device *dev = kobj_to_dev(kobj);
336 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
337 umode_t mode = a->mode;
338
339 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
340 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
341 md->queue.card->ext_csd.boot_ro_lockable) {
342 mode = S_IRUGO;
343 if (!(md->queue.card->ext_csd.boot_ro_lock &
344 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
345 mode |= S_IWUSR;
346 }
347
348 mmc_blk_put(md);
349 return mode;
350 }
351
352 static const struct attribute_group mmc_disk_attr_group = {
353 .is_visible = mmc_disk_attrs_is_visible,
354 .attrs = mmc_disk_attrs,
355 };
356
357 static const struct attribute_group *mmc_disk_attr_groups[] = {
358 &mmc_disk_attr_group,
359 NULL,
360 };
361
mmc_blk_open(struct block_device * bdev,fmode_t mode)362 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
363 {
364 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
365 int ret = -ENXIO;
366
367 mutex_lock(&block_mutex);
368 if (md) {
369 ret = 0;
370 if ((mode & FMODE_WRITE) && md->read_only) {
371 mmc_blk_put(md);
372 ret = -EROFS;
373 }
374 }
375 mutex_unlock(&block_mutex);
376
377 return ret;
378 }
379
mmc_blk_release(struct gendisk * disk,fmode_t mode)380 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
381 {
382 struct mmc_blk_data *md = disk->private_data;
383
384 mutex_lock(&block_mutex);
385 mmc_blk_put(md);
386 mutex_unlock(&block_mutex);
387 }
388
389 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
393 geo->heads = 4;
394 geo->sectors = 16;
395 return 0;
396 }
397
398 struct mmc_blk_ioc_data {
399 struct mmc_ioc_cmd ic;
400 unsigned char *buf;
401 u64 buf_bytes;
402 struct mmc_rpmb_data *rpmb;
403 };
404
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
406 struct mmc_ioc_cmd __user *user)
407 {
408 struct mmc_blk_ioc_data *idata;
409 int err;
410
411 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
412 if (!idata) {
413 err = -ENOMEM;
414 goto out;
415 }
416
417 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
418 err = -EFAULT;
419 goto idata_err;
420 }
421
422 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
423 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
424 err = -EOVERFLOW;
425 goto idata_err;
426 }
427
428 if (!idata->buf_bytes) {
429 idata->buf = NULL;
430 return idata;
431 }
432
433 idata->buf = memdup_user((void __user *)(unsigned long)
434 idata->ic.data_ptr, idata->buf_bytes);
435 if (IS_ERR(idata->buf)) {
436 err = PTR_ERR(idata->buf);
437 goto idata_err;
438 }
439
440 return idata;
441
442 idata_err:
443 kfree(idata);
444 out:
445 return ERR_PTR(err);
446 }
447
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
449 struct mmc_blk_ioc_data *idata)
450 {
451 struct mmc_ioc_cmd *ic = &idata->ic;
452
453 if (copy_to_user(&(ic_ptr->response), ic->response,
454 sizeof(ic->response)))
455 return -EFAULT;
456
457 if (!idata->ic.write_flag) {
458 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
459 idata->buf, idata->buf_bytes))
460 return -EFAULT;
461 }
462
463 return 0;
464 }
465
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data * idata)466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
467 struct mmc_blk_ioc_data *idata)
468 {
469 struct mmc_command cmd = {}, sbc = {};
470 struct mmc_data data = {};
471 struct mmc_request mrq = {};
472 struct scatterlist sg;
473 int err;
474 unsigned int target_part;
475
476 if (!card || !md || !idata)
477 return -EINVAL;
478
479 /*
480 * The RPMB accesses comes in from the character device, so we
481 * need to target these explicitly. Else we just target the
482 * partition type for the block device the ioctl() was issued
483 * on.
484 */
485 if (idata->rpmb) {
486 /* Support multiple RPMB partitions */
487 target_part = idata->rpmb->part_index;
488 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
489 } else {
490 target_part = md->part_type;
491 }
492
493 cmd.opcode = idata->ic.opcode;
494 cmd.arg = idata->ic.arg;
495 cmd.flags = idata->ic.flags;
496
497 if (idata->buf_bytes) {
498 data.sg = &sg;
499 data.sg_len = 1;
500 data.blksz = idata->ic.blksz;
501 data.blocks = idata->ic.blocks;
502
503 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
504
505 if (idata->ic.write_flag)
506 data.flags = MMC_DATA_WRITE;
507 else
508 data.flags = MMC_DATA_READ;
509
510 /* data.flags must already be set before doing this. */
511 mmc_set_data_timeout(&data, card);
512
513 /* Allow overriding the timeout_ns for empirical tuning. */
514 if (idata->ic.data_timeout_ns)
515 data.timeout_ns = idata->ic.data_timeout_ns;
516
517 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
518 /*
519 * Pretend this is a data transfer and rely on the
520 * host driver to compute timeout. When all host
521 * drivers support cmd.cmd_timeout for R1B, this
522 * can be changed to:
523 *
524 * mrq.data = NULL;
525 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
526 */
527 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
528 }
529
530 mrq.data = &data;
531 }
532
533 mrq.cmd = &cmd;
534
535 err = mmc_blk_part_switch(card, target_part);
536 if (err)
537 return err;
538
539 if (idata->ic.is_acmd) {
540 err = mmc_app_cmd(card->host, card);
541 if (err)
542 return err;
543 }
544
545 if (idata->rpmb) {
546 sbc.opcode = MMC_SET_BLOCK_COUNT;
547 /*
548 * We don't do any blockcount validation because the max size
549 * may be increased by a future standard. We just copy the
550 * 'Reliable Write' bit here.
551 */
552 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
553 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
554 mrq.sbc = &sbc;
555 }
556
557 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
558 (cmd.opcode == MMC_SWITCH))
559 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
560
561 mmc_wait_for_req(card->host, &mrq);
562 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
563
564 if (cmd.error) {
565 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
566 __func__, cmd.error);
567 return cmd.error;
568 }
569 if (data.error) {
570 dev_err(mmc_dev(card->host), "%s: data error %d\n",
571 __func__, data.error);
572 return data.error;
573 }
574
575 /*
576 * Make sure the cache of the PARTITION_CONFIG register and
577 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
578 * changed it successfully.
579 */
580 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
581 (cmd.opcode == MMC_SWITCH)) {
582 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
583 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
584
585 /*
586 * Update cache so the next mmc_blk_part_switch call operates
587 * on up-to-date data.
588 */
589 card->ext_csd.part_config = value;
590 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
591 }
592
593 /*
594 * Make sure to update CACHE_CTRL in case it was changed. The cache
595 * will get turned back on if the card is re-initialized, e.g.
596 * suspend/resume or hw reset in recovery.
597 */
598 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
599 (cmd.opcode == MMC_SWITCH)) {
600 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
601
602 card->ext_csd.cache_ctrl = value;
603 }
604
605 /*
606 * According to the SD specs, some commands require a delay after
607 * issuing the command.
608 */
609 if (idata->ic.postsleep_min_us)
610 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
611
612 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
613 /*
614 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
615 * allow to override the default timeout value if a custom timeout is specified.
616 */
617 err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
618 false, MMC_BUSY_IO);
619 }
620
621 return err;
622 }
623
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)624 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
625 struct mmc_ioc_cmd __user *ic_ptr,
626 struct mmc_rpmb_data *rpmb)
627 {
628 struct mmc_blk_ioc_data *idata;
629 struct mmc_blk_ioc_data *idatas[1];
630 struct mmc_queue *mq;
631 struct mmc_card *card;
632 int err = 0, ioc_err = 0;
633 struct request *req;
634
635 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
636 if (IS_ERR(idata))
637 return PTR_ERR(idata);
638 /* This will be NULL on non-RPMB ioctl():s */
639 idata->rpmb = rpmb;
640
641 card = md->queue.card;
642 if (IS_ERR(card)) {
643 err = PTR_ERR(card);
644 goto cmd_done;
645 }
646
647 /*
648 * Dispatch the ioctl() into the block request queue.
649 */
650 mq = &md->queue;
651 req = blk_mq_alloc_request(mq->queue,
652 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
653 if (IS_ERR(req)) {
654 err = PTR_ERR(req);
655 goto cmd_done;
656 }
657 idatas[0] = idata;
658 req_to_mmc_queue_req(req)->drv_op =
659 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
660 req_to_mmc_queue_req(req)->drv_op_data = idatas;
661 req_to_mmc_queue_req(req)->ioc_count = 1;
662 blk_execute_rq(req, false);
663 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
664 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
665 blk_mq_free_request(req);
666
667 cmd_done:
668 kfree(idata->buf);
669 kfree(idata);
670 return ioc_err ? ioc_err : err;
671 }
672
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)673 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
674 struct mmc_ioc_multi_cmd __user *user,
675 struct mmc_rpmb_data *rpmb)
676 {
677 struct mmc_blk_ioc_data **idata = NULL;
678 struct mmc_ioc_cmd __user *cmds = user->cmds;
679 struct mmc_card *card;
680 struct mmc_queue *mq;
681 int err = 0, ioc_err = 0;
682 __u64 num_of_cmds;
683 unsigned int i, n;
684 struct request *req;
685
686 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
687 sizeof(num_of_cmds)))
688 return -EFAULT;
689
690 if (!num_of_cmds)
691 return 0;
692
693 if (num_of_cmds > MMC_IOC_MAX_CMDS)
694 return -EINVAL;
695
696 n = num_of_cmds;
697 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
698 if (!idata)
699 return -ENOMEM;
700
701 for (i = 0; i < n; i++) {
702 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
703 if (IS_ERR(idata[i])) {
704 err = PTR_ERR(idata[i]);
705 n = i;
706 goto cmd_err;
707 }
708 /* This will be NULL on non-RPMB ioctl():s */
709 idata[i]->rpmb = rpmb;
710 }
711
712 card = md->queue.card;
713 if (IS_ERR(card)) {
714 err = PTR_ERR(card);
715 goto cmd_err;
716 }
717
718
719 /*
720 * Dispatch the ioctl()s into the block request queue.
721 */
722 mq = &md->queue;
723 req = blk_mq_alloc_request(mq->queue,
724 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
725 if (IS_ERR(req)) {
726 err = PTR_ERR(req);
727 goto cmd_err;
728 }
729 req_to_mmc_queue_req(req)->drv_op =
730 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
731 req_to_mmc_queue_req(req)->drv_op_data = idata;
732 req_to_mmc_queue_req(req)->ioc_count = n;
733 blk_execute_rq(req, false);
734 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
735
736 /* copy to user if data and response */
737 for (i = 0; i < n && !err; i++)
738 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
739
740 blk_mq_free_request(req);
741
742 cmd_err:
743 for (i = 0; i < n; i++) {
744 kfree(idata[i]->buf);
745 kfree(idata[i]);
746 }
747 kfree(idata);
748 return ioc_err ? ioc_err : err;
749 }
750
mmc_blk_check_blkdev(struct block_device * bdev)751 static int mmc_blk_check_blkdev(struct block_device *bdev)
752 {
753 /*
754 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
755 * whole block device, not on a partition. This prevents overspray
756 * between sibling partitions.
757 */
758 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
759 return -EPERM;
760 return 0;
761 }
762
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)763 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
764 unsigned int cmd, unsigned long arg)
765 {
766 struct mmc_blk_data *md;
767 int ret;
768
769 switch (cmd) {
770 case MMC_IOC_CMD:
771 ret = mmc_blk_check_blkdev(bdev);
772 if (ret)
773 return ret;
774 md = mmc_blk_get(bdev->bd_disk);
775 if (!md)
776 return -EINVAL;
777 ret = mmc_blk_ioctl_cmd(md,
778 (struct mmc_ioc_cmd __user *)arg,
779 NULL);
780 mmc_blk_put(md);
781 return ret;
782 case MMC_IOC_MULTI_CMD:
783 ret = mmc_blk_check_blkdev(bdev);
784 if (ret)
785 return ret;
786 md = mmc_blk_get(bdev->bd_disk);
787 if (!md)
788 return -EINVAL;
789 ret = mmc_blk_ioctl_multi_cmd(md,
790 (struct mmc_ioc_multi_cmd __user *)arg,
791 NULL);
792 mmc_blk_put(md);
793 return ret;
794 default:
795 return -EINVAL;
796 }
797 }
798
799 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)800 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
801 unsigned int cmd, unsigned long arg)
802 {
803 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
804 }
805 #endif
806
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)807 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
808 sector_t *sector)
809 {
810 struct mmc_blk_data *md;
811 int ret;
812
813 md = mmc_blk_get(disk);
814 if (!md)
815 return -EINVAL;
816
817 if (md->queue.card)
818 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
819 else
820 ret = -ENODEV;
821
822 mmc_blk_put(md);
823
824 return ret;
825 }
826
827 static const struct block_device_operations mmc_bdops = {
828 .open = mmc_blk_open,
829 .release = mmc_blk_release,
830 .getgeo = mmc_blk_getgeo,
831 .owner = THIS_MODULE,
832 .ioctl = mmc_blk_ioctl,
833 #ifdef CONFIG_COMPAT
834 .compat_ioctl = mmc_blk_compat_ioctl,
835 #endif
836 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
837 };
838
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)839 static int mmc_blk_part_switch_pre(struct mmc_card *card,
840 unsigned int part_type)
841 {
842 int ret = 0;
843
844 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
845 if (card->ext_csd.cmdq_en) {
846 ret = mmc_cmdq_disable(card);
847 if (ret)
848 return ret;
849 }
850 mmc_retune_pause(card->host);
851 }
852
853 return ret;
854 }
855
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)856 static int mmc_blk_part_switch_post(struct mmc_card *card,
857 unsigned int part_type)
858 {
859 int ret = 0;
860
861 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
862 mmc_retune_unpause(card->host);
863 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
864 ret = mmc_cmdq_enable(card);
865 }
866
867 return ret;
868 }
869
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)870 static inline int mmc_blk_part_switch(struct mmc_card *card,
871 unsigned int part_type)
872 {
873 int ret = 0;
874 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
875
876 if (main_md->part_curr == part_type)
877 return 0;
878
879 if (mmc_card_mmc(card)) {
880 u8 part_config = card->ext_csd.part_config;
881
882 ret = mmc_blk_part_switch_pre(card, part_type);
883 if (ret)
884 return ret;
885
886 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
887 part_config |= part_type;
888
889 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
890 EXT_CSD_PART_CONFIG, part_config,
891 card->ext_csd.part_time);
892 if (ret) {
893 mmc_blk_part_switch_post(card, part_type);
894 return ret;
895 }
896
897 card->ext_csd.part_config = part_config;
898
899 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
900 }
901
902 main_md->part_curr = part_type;
903 return ret;
904 }
905
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)906 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
907 {
908 int err;
909 u32 result;
910 __be32 *blocks;
911
912 struct mmc_request mrq = {};
913 struct mmc_command cmd = {};
914 struct mmc_data data = {};
915
916 struct scatterlist sg;
917
918 cmd.opcode = MMC_APP_CMD;
919 cmd.arg = card->rca << 16;
920 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
921
922 err = mmc_wait_for_cmd(card->host, &cmd, 0);
923 if (err)
924 return err;
925 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
926 return -EIO;
927
928 memset(&cmd, 0, sizeof(struct mmc_command));
929
930 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
931 cmd.arg = 0;
932 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
933
934 data.blksz = 4;
935 data.blocks = 1;
936 data.flags = MMC_DATA_READ;
937 data.sg = &sg;
938 data.sg_len = 1;
939 mmc_set_data_timeout(&data, card);
940
941 mrq.cmd = &cmd;
942 mrq.data = &data;
943
944 blocks = kmalloc(4, GFP_KERNEL);
945 if (!blocks)
946 return -ENOMEM;
947
948 sg_init_one(&sg, blocks, 4);
949
950 mmc_wait_for_req(card->host, &mrq);
951
952 result = ntohl(*blocks);
953 kfree(blocks);
954
955 if (cmd.error || data.error)
956 return -EIO;
957
958 *written_blocks = result;
959
960 return 0;
961 }
962
mmc_blk_clock_khz(struct mmc_host * host)963 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
964 {
965 if (host->actual_clock)
966 return host->actual_clock / 1000;
967
968 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
969 if (host->ios.clock)
970 return host->ios.clock / 2000;
971
972 /* How can there be no clock */
973 WARN_ON_ONCE(1);
974 return 100; /* 100 kHz is minimum possible value */
975 }
976
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)977 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
978 struct mmc_data *data)
979 {
980 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
981 unsigned int khz;
982
983 if (data->timeout_clks) {
984 khz = mmc_blk_clock_khz(host);
985 ms += DIV_ROUND_UP(data->timeout_clks, khz);
986 }
987
988 return ms;
989 }
990
991 /*
992 * Attempts to reset the card and get back to the requested partition.
993 * Therefore any error here must result in cancelling the block layer
994 * request, it must not be reattempted without going through the mmc_blk
995 * partition sanity checks.
996 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)997 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
998 int type)
999 {
1000 int err;
1001 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1002
1003 if (md->reset_done & type)
1004 return -EEXIST;
1005
1006 md->reset_done |= type;
1007 err = mmc_hw_reset(host->card);
1008 /*
1009 * A successful reset will leave the card in the main partition, but
1010 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1011 * in that case.
1012 */
1013 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1014 if (err)
1015 return err;
1016 /* Ensure we switch back to the correct partition */
1017 if (mmc_blk_part_switch(host->card, md->part_type))
1018 /*
1019 * We have failed to get back into the correct
1020 * partition, so we need to abort the whole request.
1021 */
1022 return -ENODEV;
1023 return 0;
1024 }
1025
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1026 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1027 {
1028 md->reset_done &= ~type;
1029 }
1030
1031 /*
1032 * The non-block commands come back from the block layer after it queued it and
1033 * processed it with all other requests and then they get issued in this
1034 * function.
1035 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1036 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1037 {
1038 struct mmc_queue_req *mq_rq;
1039 struct mmc_card *card = mq->card;
1040 struct mmc_blk_data *md = mq->blkdata;
1041 struct mmc_blk_ioc_data **idata;
1042 bool rpmb_ioctl;
1043 u8 **ext_csd;
1044 u32 status;
1045 int ret;
1046 int i;
1047
1048 mq_rq = req_to_mmc_queue_req(req);
1049 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1050
1051 switch (mq_rq->drv_op) {
1052 case MMC_DRV_OP_IOCTL:
1053 if (card->ext_csd.cmdq_en) {
1054 ret = mmc_cmdq_disable(card);
1055 if (ret)
1056 break;
1057 }
1058 fallthrough;
1059 case MMC_DRV_OP_IOCTL_RPMB:
1060 idata = mq_rq->drv_op_data;
1061 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1062 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1063 if (ret)
1064 break;
1065 }
1066 /* Always switch back to main area after RPMB access */
1067 if (rpmb_ioctl)
1068 mmc_blk_part_switch(card, 0);
1069 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1070 mmc_cmdq_enable(card);
1071 break;
1072 case MMC_DRV_OP_BOOT_WP:
1073 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1074 card->ext_csd.boot_ro_lock |
1075 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1076 card->ext_csd.part_time);
1077 if (ret)
1078 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1079 md->disk->disk_name, ret);
1080 else
1081 card->ext_csd.boot_ro_lock |=
1082 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1083 break;
1084 case MMC_DRV_OP_GET_CARD_STATUS:
1085 ret = mmc_send_status(card, &status);
1086 if (!ret)
1087 ret = status;
1088 break;
1089 case MMC_DRV_OP_GET_EXT_CSD:
1090 ext_csd = mq_rq->drv_op_data;
1091 ret = mmc_get_ext_csd(card, ext_csd);
1092 break;
1093 default:
1094 pr_err("%s: unknown driver specific operation\n",
1095 md->disk->disk_name);
1096 ret = -EINVAL;
1097 break;
1098 }
1099 mq_rq->drv_op_result = ret;
1100 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1101 }
1102
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1103 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1104 int type, unsigned int erase_arg)
1105 {
1106 struct mmc_blk_data *md = mq->blkdata;
1107 struct mmc_card *card = md->queue.card;
1108 unsigned int from, nr;
1109 int err = 0;
1110 blk_status_t status = BLK_STS_OK;
1111
1112 if (!mmc_can_erase(card)) {
1113 status = BLK_STS_NOTSUPP;
1114 goto fail;
1115 }
1116
1117 from = blk_rq_pos(req);
1118 nr = blk_rq_sectors(req);
1119
1120 do {
1121 err = 0;
1122 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1123 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1124 INAND_CMD38_ARG_EXT_CSD,
1125 erase_arg == MMC_TRIM_ARG ?
1126 INAND_CMD38_ARG_TRIM :
1127 INAND_CMD38_ARG_ERASE,
1128 card->ext_csd.generic_cmd6_time);
1129 }
1130 if (!err)
1131 err = mmc_erase(card, from, nr, erase_arg);
1132 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1133 if (err)
1134 status = BLK_STS_IOERR;
1135 else
1136 mmc_blk_reset_success(md, type);
1137 fail:
1138 blk_mq_end_request(req, status);
1139 }
1140
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1141 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1142 {
1143 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1144 }
1145
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1146 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1147 {
1148 struct mmc_blk_data *md = mq->blkdata;
1149 struct mmc_card *card = md->queue.card;
1150 unsigned int arg = card->erase_arg;
1151
1152 if (mmc_card_broken_sd_discard(card))
1153 arg = SD_ERASE_ARG;
1154
1155 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1156 }
1157
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1158 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1159 struct request *req)
1160 {
1161 struct mmc_blk_data *md = mq->blkdata;
1162 struct mmc_card *card = md->queue.card;
1163 unsigned int from, nr, arg;
1164 int err = 0, type = MMC_BLK_SECDISCARD;
1165 blk_status_t status = BLK_STS_OK;
1166
1167 if (!(mmc_can_secure_erase_trim(card))) {
1168 status = BLK_STS_NOTSUPP;
1169 goto out;
1170 }
1171
1172 from = blk_rq_pos(req);
1173 nr = blk_rq_sectors(req);
1174
1175 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1176 arg = MMC_SECURE_TRIM1_ARG;
1177 else
1178 arg = MMC_SECURE_ERASE_ARG;
1179
1180 retry:
1181 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1182 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1183 INAND_CMD38_ARG_EXT_CSD,
1184 arg == MMC_SECURE_TRIM1_ARG ?
1185 INAND_CMD38_ARG_SECTRIM1 :
1186 INAND_CMD38_ARG_SECERASE,
1187 card->ext_csd.generic_cmd6_time);
1188 if (err)
1189 goto out_retry;
1190 }
1191
1192 err = mmc_erase(card, from, nr, arg);
1193 if (err == -EIO)
1194 goto out_retry;
1195 if (err) {
1196 status = BLK_STS_IOERR;
1197 goto out;
1198 }
1199
1200 if (arg == MMC_SECURE_TRIM1_ARG) {
1201 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1202 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1203 INAND_CMD38_ARG_EXT_CSD,
1204 INAND_CMD38_ARG_SECTRIM2,
1205 card->ext_csd.generic_cmd6_time);
1206 if (err)
1207 goto out_retry;
1208 }
1209
1210 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1211 if (err == -EIO)
1212 goto out_retry;
1213 if (err) {
1214 status = BLK_STS_IOERR;
1215 goto out;
1216 }
1217 }
1218
1219 out_retry:
1220 if (err && !mmc_blk_reset(md, card->host, type))
1221 goto retry;
1222 if (!err)
1223 mmc_blk_reset_success(md, type);
1224 out:
1225 blk_mq_end_request(req, status);
1226 }
1227
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1228 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1229 {
1230 struct mmc_blk_data *md = mq->blkdata;
1231 struct mmc_card *card = md->queue.card;
1232 int ret = 0;
1233
1234 ret = mmc_flush_cache(card->host);
1235 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1236 }
1237
1238 /*
1239 * Reformat current write as a reliable write, supporting
1240 * both legacy and the enhanced reliable write MMC cards.
1241 * In each transfer we'll handle only as much as a single
1242 * reliable write can handle, thus finish the request in
1243 * partial completions.
1244 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1245 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1246 struct mmc_card *card,
1247 struct request *req)
1248 {
1249 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1250 /* Legacy mode imposes restrictions on transfers. */
1251 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1252 brq->data.blocks = 1;
1253
1254 if (brq->data.blocks > card->ext_csd.rel_sectors)
1255 brq->data.blocks = card->ext_csd.rel_sectors;
1256 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1257 brq->data.blocks = 1;
1258 }
1259 }
1260
1261 #define CMD_ERRORS_EXCL_OOR \
1262 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1263 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1264 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1265 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1266 R1_CC_ERROR | /* Card controller error */ \
1267 R1_ERROR) /* General/unknown error */
1268
1269 #define CMD_ERRORS \
1270 (CMD_ERRORS_EXCL_OOR | \
1271 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1272
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1273 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1274 {
1275 u32 val;
1276
1277 /*
1278 * Per the SD specification(physical layer version 4.10)[1],
1279 * section 4.3.3, it explicitly states that "When the last
1280 * block of user area is read using CMD18, the host should
1281 * ignore OUT_OF_RANGE error that may occur even the sequence
1282 * is correct". And JESD84-B51 for eMMC also has a similar
1283 * statement on section 6.8.3.
1284 *
1285 * Multiple block read/write could be done by either predefined
1286 * method, namely CMD23, or open-ending mode. For open-ending mode,
1287 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1288 *
1289 * However the spec[1] doesn't tell us whether we should also
1290 * ignore that for predefined method. But per the spec[1], section
1291 * 4.15 Set Block Count Command, it says"If illegal block count
1292 * is set, out of range error will be indicated during read/write
1293 * operation (For example, data transfer is stopped at user area
1294 * boundary)." In another word, we could expect a out of range error
1295 * in the response for the following CMD18/25. And if argument of
1296 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1297 * we could also expect to get a -ETIMEDOUT or any error number from
1298 * the host drivers due to missing data response(for write)/data(for
1299 * read), as the cards will stop the data transfer by itself per the
1300 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1301 */
1302
1303 if (!brq->stop.error) {
1304 bool oor_with_open_end;
1305 /* If there is no error yet, check R1 response */
1306
1307 val = brq->stop.resp[0] & CMD_ERRORS;
1308 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1309
1310 if (val && !oor_with_open_end)
1311 brq->stop.error = -EIO;
1312 }
1313 }
1314
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1315 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1316 int recovery_mode, bool *do_rel_wr_p,
1317 bool *do_data_tag_p)
1318 {
1319 struct mmc_blk_data *md = mq->blkdata;
1320 struct mmc_card *card = md->queue.card;
1321 struct mmc_blk_request *brq = &mqrq->brq;
1322 struct request *req = mmc_queue_req_to_req(mqrq);
1323 bool do_rel_wr, do_data_tag;
1324
1325 /*
1326 * Reliable writes are used to implement Forced Unit Access and
1327 * are supported only on MMCs.
1328 */
1329 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1330 rq_data_dir(req) == WRITE &&
1331 (md->flags & MMC_BLK_REL_WR);
1332
1333 memset(brq, 0, sizeof(struct mmc_blk_request));
1334
1335 mmc_crypto_prepare_req(mqrq);
1336
1337 brq->mrq.data = &brq->data;
1338 brq->mrq.tag = req->tag;
1339
1340 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1341 brq->stop.arg = 0;
1342
1343 if (rq_data_dir(req) == READ) {
1344 brq->data.flags = MMC_DATA_READ;
1345 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1346 } else {
1347 brq->data.flags = MMC_DATA_WRITE;
1348 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1349 }
1350
1351 brq->data.blksz = 512;
1352 brq->data.blocks = blk_rq_sectors(req);
1353 brq->data.blk_addr = blk_rq_pos(req);
1354
1355 /*
1356 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1357 * The eMMC will give "high" priority tasks priority over "simple"
1358 * priority tasks. Here we always set "simple" priority by not setting
1359 * MMC_DATA_PRIO.
1360 */
1361
1362 /*
1363 * The block layer doesn't support all sector count
1364 * restrictions, so we need to be prepared for too big
1365 * requests.
1366 */
1367 if (brq->data.blocks > card->host->max_blk_count)
1368 brq->data.blocks = card->host->max_blk_count;
1369
1370 if (brq->data.blocks > 1) {
1371 /*
1372 * Some SD cards in SPI mode return a CRC error or even lock up
1373 * completely when trying to read the last block using a
1374 * multiblock read command.
1375 */
1376 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1377 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1378 get_capacity(md->disk)))
1379 brq->data.blocks--;
1380
1381 /*
1382 * After a read error, we redo the request one (native) sector
1383 * at a time in order to accurately determine which
1384 * sectors can be read successfully.
1385 */
1386 if (recovery_mode)
1387 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1388
1389 /*
1390 * Some controllers have HW issues while operating
1391 * in multiple I/O mode
1392 */
1393 if (card->host->ops->multi_io_quirk)
1394 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1395 (rq_data_dir(req) == READ) ?
1396 MMC_DATA_READ : MMC_DATA_WRITE,
1397 brq->data.blocks);
1398 }
1399
1400 if (do_rel_wr) {
1401 mmc_apply_rel_rw(brq, card, req);
1402 brq->data.flags |= MMC_DATA_REL_WR;
1403 }
1404
1405 /*
1406 * Data tag is used only during writing meta data to speed
1407 * up write and any subsequent read of this meta data
1408 */
1409 do_data_tag = card->ext_csd.data_tag_unit_size &&
1410 (req->cmd_flags & REQ_META) &&
1411 (rq_data_dir(req) == WRITE) &&
1412 ((brq->data.blocks * brq->data.blksz) >=
1413 card->ext_csd.data_tag_unit_size);
1414
1415 if (do_data_tag)
1416 brq->data.flags |= MMC_DATA_DAT_TAG;
1417
1418 mmc_set_data_timeout(&brq->data, card);
1419
1420 brq->data.sg = mqrq->sg;
1421 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1422
1423 /*
1424 * Adjust the sg list so it is the same size as the
1425 * request.
1426 */
1427 if (brq->data.blocks != blk_rq_sectors(req)) {
1428 int i, data_size = brq->data.blocks << 9;
1429 struct scatterlist *sg;
1430
1431 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1432 data_size -= sg->length;
1433 if (data_size <= 0) {
1434 sg->length += data_size;
1435 i++;
1436 break;
1437 }
1438 }
1439 brq->data.sg_len = i;
1440 }
1441
1442 if (do_rel_wr_p)
1443 *do_rel_wr_p = do_rel_wr;
1444
1445 if (do_data_tag_p)
1446 *do_data_tag_p = do_data_tag;
1447 }
1448
1449 #define MMC_CQE_RETRIES 2
1450
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1451 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1452 {
1453 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1454 struct mmc_request *mrq = &mqrq->brq.mrq;
1455 struct request_queue *q = req->q;
1456 struct mmc_host *host = mq->card->host;
1457 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1458 unsigned long flags;
1459 bool put_card;
1460 int err;
1461
1462 mmc_cqe_post_req(host, mrq);
1463
1464 if (mrq->cmd && mrq->cmd->error)
1465 err = mrq->cmd->error;
1466 else if (mrq->data && mrq->data->error)
1467 err = mrq->data->error;
1468 else
1469 err = 0;
1470
1471 if (err) {
1472 if (mqrq->retries++ < MMC_CQE_RETRIES)
1473 blk_mq_requeue_request(req, true);
1474 else
1475 blk_mq_end_request(req, BLK_STS_IOERR);
1476 } else if (mrq->data) {
1477 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1478 blk_mq_requeue_request(req, true);
1479 else
1480 __blk_mq_end_request(req, BLK_STS_OK);
1481 } else {
1482 blk_mq_end_request(req, BLK_STS_OK);
1483 }
1484
1485 spin_lock_irqsave(&mq->lock, flags);
1486
1487 mq->in_flight[issue_type] -= 1;
1488
1489 put_card = (mmc_tot_in_flight(mq) == 0);
1490
1491 mmc_cqe_check_busy(mq);
1492
1493 spin_unlock_irqrestore(&mq->lock, flags);
1494
1495 if (!mq->cqe_busy)
1496 blk_mq_run_hw_queues(q, true);
1497
1498 if (put_card)
1499 mmc_put_card(mq->card, &mq->ctx);
1500 }
1501
mmc_blk_cqe_recovery(struct mmc_queue * mq)1502 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1503 {
1504 struct mmc_card *card = mq->card;
1505 struct mmc_host *host = card->host;
1506 int err;
1507
1508 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1509
1510 err = mmc_cqe_recovery(host);
1511 if (err)
1512 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1513 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1514
1515 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1516 }
1517
mmc_blk_cqe_req_done(struct mmc_request * mrq)1518 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1519 {
1520 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1521 brq.mrq);
1522 struct request *req = mmc_queue_req_to_req(mqrq);
1523 struct request_queue *q = req->q;
1524 struct mmc_queue *mq = q->queuedata;
1525
1526 /*
1527 * Block layer timeouts race with completions which means the normal
1528 * completion path cannot be used during recovery.
1529 */
1530 if (mq->in_recovery)
1531 mmc_blk_cqe_complete_rq(mq, req);
1532 else if (likely(!blk_should_fake_timeout(req->q)))
1533 blk_mq_complete_request(req);
1534 }
1535
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1536 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1537 {
1538 mrq->done = mmc_blk_cqe_req_done;
1539 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1540
1541 return mmc_cqe_start_req(host, mrq);
1542 }
1543
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1544 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1545 struct request *req)
1546 {
1547 struct mmc_blk_request *brq = &mqrq->brq;
1548
1549 memset(brq, 0, sizeof(*brq));
1550
1551 brq->mrq.cmd = &brq->cmd;
1552 brq->mrq.tag = req->tag;
1553
1554 return &brq->mrq;
1555 }
1556
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1557 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1558 {
1559 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1560 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1561
1562 mrq->cmd->opcode = MMC_SWITCH;
1563 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1564 (EXT_CSD_FLUSH_CACHE << 16) |
1565 (1 << 8) |
1566 EXT_CSD_CMD_SET_NORMAL;
1567 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1568
1569 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1570 }
1571
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1572 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1573 {
1574 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1575 struct mmc_host *host = mq->card->host;
1576 int err;
1577
1578 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1579 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1580 mmc_pre_req(host, &mqrq->brq.mrq);
1581
1582 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1583 if (err)
1584 mmc_post_req(host, &mqrq->brq.mrq, err);
1585
1586 return err;
1587 }
1588
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1589 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1590 {
1591 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1592 struct mmc_host *host = mq->card->host;
1593
1594 if (host->hsq_enabled)
1595 return mmc_blk_hsq_issue_rw_rq(mq, req);
1596
1597 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1598
1599 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1600 }
1601
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1602 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1603 struct mmc_card *card,
1604 int recovery_mode,
1605 struct mmc_queue *mq)
1606 {
1607 u32 readcmd, writecmd;
1608 struct mmc_blk_request *brq = &mqrq->brq;
1609 struct request *req = mmc_queue_req_to_req(mqrq);
1610 struct mmc_blk_data *md = mq->blkdata;
1611 bool do_rel_wr, do_data_tag;
1612
1613 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1614
1615 brq->mrq.cmd = &brq->cmd;
1616
1617 brq->cmd.arg = blk_rq_pos(req);
1618 if (!mmc_card_blockaddr(card))
1619 brq->cmd.arg <<= 9;
1620 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1621
1622 if (brq->data.blocks > 1 || do_rel_wr) {
1623 /* SPI multiblock writes terminate using a special
1624 * token, not a STOP_TRANSMISSION request.
1625 */
1626 if (!mmc_host_is_spi(card->host) ||
1627 rq_data_dir(req) == READ)
1628 brq->mrq.stop = &brq->stop;
1629 readcmd = MMC_READ_MULTIPLE_BLOCK;
1630 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1631 } else {
1632 brq->mrq.stop = NULL;
1633 readcmd = MMC_READ_SINGLE_BLOCK;
1634 writecmd = MMC_WRITE_BLOCK;
1635 }
1636 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1637
1638 /*
1639 * Pre-defined multi-block transfers are preferable to
1640 * open ended-ones (and necessary for reliable writes).
1641 * However, it is not sufficient to just send CMD23,
1642 * and avoid the final CMD12, as on an error condition
1643 * CMD12 (stop) needs to be sent anyway. This, coupled
1644 * with Auto-CMD23 enhancements provided by some
1645 * hosts, means that the complexity of dealing
1646 * with this is best left to the host. If CMD23 is
1647 * supported by card and host, we'll fill sbc in and let
1648 * the host deal with handling it correctly. This means
1649 * that for hosts that don't expose MMC_CAP_CMD23, no
1650 * change of behavior will be observed.
1651 *
1652 * N.B: Some MMC cards experience perf degradation.
1653 * We'll avoid using CMD23-bounded multiblock writes for
1654 * these, while retaining features like reliable writes.
1655 */
1656 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1657 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1658 do_data_tag)) {
1659 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1660 brq->sbc.arg = brq->data.blocks |
1661 (do_rel_wr ? (1 << 31) : 0) |
1662 (do_data_tag ? (1 << 29) : 0);
1663 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1664 brq->mrq.sbc = &brq->sbc;
1665 }
1666 }
1667
1668 #define MMC_MAX_RETRIES 5
1669 #define MMC_DATA_RETRIES 2
1670 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1671
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1672 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1673 {
1674 struct mmc_command cmd = {
1675 .opcode = MMC_STOP_TRANSMISSION,
1676 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1677 /* Some hosts wait for busy anyway, so provide a busy timeout */
1678 .busy_timeout = timeout,
1679 };
1680
1681 return mmc_wait_for_cmd(card->host, &cmd, 5);
1682 }
1683
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1684 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1685 {
1686 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1687 struct mmc_blk_request *brq = &mqrq->brq;
1688 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1689 int err;
1690
1691 mmc_retune_hold_now(card->host);
1692
1693 mmc_blk_send_stop(card, timeout);
1694
1695 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1696
1697 mmc_retune_release(card->host);
1698
1699 return err;
1700 }
1701
1702 #define MMC_READ_SINGLE_RETRIES 2
1703
1704 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1705 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1706 {
1707 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1708 struct mmc_request *mrq = &mqrq->brq.mrq;
1709 struct mmc_card *card = mq->card;
1710 struct mmc_host *host = card->host;
1711 blk_status_t error = BLK_STS_OK;
1712 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1713
1714 do {
1715 u32 status;
1716 int err;
1717 int retries = 0;
1718
1719 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1720 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1721
1722 mmc_wait_for_req(host, mrq);
1723
1724 err = mmc_send_status(card, &status);
1725 if (err)
1726 goto error_exit;
1727
1728 if (!mmc_host_is_spi(host) &&
1729 !mmc_ready_for_data(status)) {
1730 err = mmc_blk_fix_state(card, req);
1731 if (err)
1732 goto error_exit;
1733 }
1734
1735 if (!mrq->cmd->error)
1736 break;
1737 }
1738
1739 if (mrq->cmd->error ||
1740 mrq->data->error ||
1741 (!mmc_host_is_spi(host) &&
1742 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1743 error = BLK_STS_IOERR;
1744 else
1745 error = BLK_STS_OK;
1746
1747 } while (blk_update_request(req, error, bytes_per_read));
1748
1749 return;
1750
1751 error_exit:
1752 mrq->data->bytes_xfered = 0;
1753 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1754 /* Let it try the remaining request again */
1755 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1756 mqrq->retries = MMC_MAX_RETRIES - 1;
1757 }
1758
mmc_blk_oor_valid(struct mmc_blk_request * brq)1759 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1760 {
1761 return !!brq->mrq.sbc;
1762 }
1763
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1764 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1765 {
1766 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1767 }
1768
1769 /*
1770 * Check for errors the host controller driver might not have seen such as
1771 * response mode errors or invalid card state.
1772 */
mmc_blk_status_error(struct request * req,u32 status)1773 static bool mmc_blk_status_error(struct request *req, u32 status)
1774 {
1775 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1776 struct mmc_blk_request *brq = &mqrq->brq;
1777 struct mmc_queue *mq = req->q->queuedata;
1778 u32 stop_err_bits;
1779
1780 if (mmc_host_is_spi(mq->card->host))
1781 return false;
1782
1783 stop_err_bits = mmc_blk_stop_err_bits(brq);
1784
1785 return brq->cmd.resp[0] & CMD_ERRORS ||
1786 brq->stop.resp[0] & stop_err_bits ||
1787 status & stop_err_bits ||
1788 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1789 }
1790
mmc_blk_cmd_started(struct mmc_blk_request * brq)1791 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1792 {
1793 return !brq->sbc.error && !brq->cmd.error &&
1794 !(brq->cmd.resp[0] & CMD_ERRORS);
1795 }
1796
1797 /*
1798 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1799 * policy:
1800 * 1. A request that has transferred at least some data is considered
1801 * successful and will be requeued if there is remaining data to
1802 * transfer.
1803 * 2. Otherwise the number of retries is incremented and the request
1804 * will be requeued if there are remaining retries.
1805 * 3. Otherwise the request will be errored out.
1806 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1807 * mqrq->retries. So there are only 4 possible actions here:
1808 * 1. do not accept the bytes_xfered value i.e. set it to zero
1809 * 2. change mqrq->retries to determine the number of retries
1810 * 3. try to reset the card
1811 * 4. read one sector at a time
1812 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1813 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1814 {
1815 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1816 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1817 struct mmc_blk_request *brq = &mqrq->brq;
1818 struct mmc_blk_data *md = mq->blkdata;
1819 struct mmc_card *card = mq->card;
1820 u32 status;
1821 u32 blocks;
1822 int err;
1823
1824 /*
1825 * Some errors the host driver might not have seen. Set the number of
1826 * bytes transferred to zero in that case.
1827 */
1828 err = __mmc_send_status(card, &status, 0);
1829 if (err || mmc_blk_status_error(req, status))
1830 brq->data.bytes_xfered = 0;
1831
1832 mmc_retune_release(card->host);
1833
1834 /*
1835 * Try again to get the status. This also provides an opportunity for
1836 * re-tuning.
1837 */
1838 if (err)
1839 err = __mmc_send_status(card, &status, 0);
1840
1841 /*
1842 * Nothing more to do after the number of bytes transferred has been
1843 * updated and there is no card.
1844 */
1845 if (err && mmc_detect_card_removed(card->host))
1846 return;
1847
1848 /* Try to get back to "tran" state */
1849 if (!mmc_host_is_spi(mq->card->host) &&
1850 (err || !mmc_ready_for_data(status)))
1851 err = mmc_blk_fix_state(mq->card, req);
1852
1853 /*
1854 * Special case for SD cards where the card might record the number of
1855 * blocks written.
1856 */
1857 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1858 rq_data_dir(req) == WRITE) {
1859 if (mmc_sd_num_wr_blocks(card, &blocks))
1860 brq->data.bytes_xfered = 0;
1861 else
1862 brq->data.bytes_xfered = blocks << 9;
1863 }
1864
1865 /* Reset if the card is in a bad state */
1866 if (!mmc_host_is_spi(mq->card->host) &&
1867 err && mmc_blk_reset(md, card->host, type)) {
1868 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1869 mqrq->retries = MMC_NO_RETRIES;
1870 return;
1871 }
1872
1873 /*
1874 * If anything was done, just return and if there is anything remaining
1875 * on the request it will get requeued.
1876 */
1877 if (brq->data.bytes_xfered)
1878 return;
1879
1880 /* Reset before last retry */
1881 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1882 mmc_blk_reset(md, card->host, type))
1883 return;
1884
1885 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1886 if (brq->sbc.error || brq->cmd.error)
1887 return;
1888
1889 /* Reduce the remaining retries for data errors */
1890 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1891 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1892 return;
1893 }
1894
1895 if (rq_data_dir(req) == READ && brq->data.blocks >
1896 queue_physical_block_size(mq->queue) >> 9) {
1897 /* Read one (native) sector at a time */
1898 mmc_blk_read_single(mq, req);
1899 return;
1900 }
1901 }
1902
mmc_blk_rq_error(struct mmc_blk_request * brq)1903 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1904 {
1905 mmc_blk_eval_resp_error(brq);
1906
1907 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1908 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1909 }
1910
mmc_spi_err_check(struct mmc_card * card)1911 static int mmc_spi_err_check(struct mmc_card *card)
1912 {
1913 u32 status = 0;
1914 int err;
1915
1916 /*
1917 * SPI does not have a TRAN state we have to wait on, instead the
1918 * card is ready again when it no longer holds the line LOW.
1919 * We still have to ensure two things here before we know the write
1920 * was successful:
1921 * 1. The card has not disconnected during busy and we actually read our
1922 * own pull-up, thinking it was still connected, so ensure it
1923 * still responds.
1924 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1925 * just reconnected card after being disconnected during busy.
1926 */
1927 err = __mmc_send_status(card, &status, 0);
1928 if (err)
1929 return err;
1930 /* All R1 and R2 bits of SPI are errors in our case */
1931 if (status)
1932 return -EIO;
1933 return 0;
1934 }
1935
mmc_blk_busy_cb(void * cb_data,bool * busy)1936 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1937 {
1938 struct mmc_blk_busy_data *data = cb_data;
1939 u32 status = 0;
1940 int err;
1941
1942 err = mmc_send_status(data->card, &status);
1943 if (err)
1944 return err;
1945
1946 /* Accumulate response error bits. */
1947 data->status |= status;
1948
1949 *busy = !mmc_ready_for_data(status);
1950 return 0;
1951 }
1952
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1953 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1954 {
1955 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1956 struct mmc_blk_busy_data cb_data;
1957 int err;
1958
1959 if (rq_data_dir(req) == READ)
1960 return 0;
1961
1962 if (mmc_host_is_spi(card->host)) {
1963 err = mmc_spi_err_check(card);
1964 if (err)
1965 mqrq->brq.data.bytes_xfered = 0;
1966 return err;
1967 }
1968
1969 cb_data.card = card;
1970 cb_data.status = 0;
1971 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1972 &mmc_blk_busy_cb, &cb_data);
1973
1974 /*
1975 * Do not assume data transferred correctly if there are any error bits
1976 * set.
1977 */
1978 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1979 mqrq->brq.data.bytes_xfered = 0;
1980 err = err ? err : -EIO;
1981 }
1982
1983 /* Copy the exception bit so it will be seen later on */
1984 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1985 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1986
1987 return err;
1988 }
1989
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)1990 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1991 struct request *req)
1992 {
1993 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1994
1995 mmc_blk_reset_success(mq->blkdata, type);
1996 }
1997
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)1998 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1999 {
2000 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2001 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2002
2003 if (nr_bytes) {
2004 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2005 blk_mq_requeue_request(req, true);
2006 else
2007 __blk_mq_end_request(req, BLK_STS_OK);
2008 } else if (!blk_rq_bytes(req)) {
2009 __blk_mq_end_request(req, BLK_STS_IOERR);
2010 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2011 blk_mq_requeue_request(req, true);
2012 } else {
2013 if (mmc_card_removed(mq->card))
2014 req->rq_flags |= RQF_QUIET;
2015 blk_mq_end_request(req, BLK_STS_IOERR);
2016 }
2017 }
2018
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2019 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2020 struct mmc_queue_req *mqrq)
2021 {
2022 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2023 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2024 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2025 }
2026
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2027 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2028 struct mmc_queue_req *mqrq)
2029 {
2030 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2031 mmc_run_bkops(mq->card);
2032 }
2033
mmc_blk_hsq_req_done(struct mmc_request * mrq)2034 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2035 {
2036 struct mmc_queue_req *mqrq =
2037 container_of(mrq, struct mmc_queue_req, brq.mrq);
2038 struct request *req = mmc_queue_req_to_req(mqrq);
2039 struct request_queue *q = req->q;
2040 struct mmc_queue *mq = q->queuedata;
2041 struct mmc_host *host = mq->card->host;
2042 unsigned long flags;
2043
2044 if (mmc_blk_rq_error(&mqrq->brq) ||
2045 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2046 spin_lock_irqsave(&mq->lock, flags);
2047 mq->recovery_needed = true;
2048 mq->recovery_req = req;
2049 spin_unlock_irqrestore(&mq->lock, flags);
2050
2051 host->cqe_ops->cqe_recovery_start(host);
2052
2053 schedule_work(&mq->recovery_work);
2054 return;
2055 }
2056
2057 mmc_blk_rw_reset_success(mq, req);
2058
2059 /*
2060 * Block layer timeouts race with completions which means the normal
2061 * completion path cannot be used during recovery.
2062 */
2063 if (mq->in_recovery)
2064 mmc_blk_cqe_complete_rq(mq, req);
2065 else if (likely(!blk_should_fake_timeout(req->q)))
2066 blk_mq_complete_request(req);
2067 }
2068
mmc_blk_mq_complete(struct request * req)2069 void mmc_blk_mq_complete(struct request *req)
2070 {
2071 struct mmc_queue *mq = req->q->queuedata;
2072 struct mmc_host *host = mq->card->host;
2073
2074 if (host->cqe_enabled)
2075 mmc_blk_cqe_complete_rq(mq, req);
2076 else if (likely(!blk_should_fake_timeout(req->q)))
2077 mmc_blk_mq_complete_rq(mq, req);
2078 }
2079
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2080 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2081 struct request *req)
2082 {
2083 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2084 struct mmc_host *host = mq->card->host;
2085
2086 if (mmc_blk_rq_error(&mqrq->brq) ||
2087 mmc_blk_card_busy(mq->card, req)) {
2088 mmc_blk_mq_rw_recovery(mq, req);
2089 } else {
2090 mmc_blk_rw_reset_success(mq, req);
2091 mmc_retune_release(host);
2092 }
2093
2094 mmc_blk_urgent_bkops(mq, mqrq);
2095 }
2096
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,struct request * req)2097 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2098 {
2099 unsigned long flags;
2100 bool put_card;
2101
2102 spin_lock_irqsave(&mq->lock, flags);
2103
2104 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2105
2106 put_card = (mmc_tot_in_flight(mq) == 0);
2107
2108 spin_unlock_irqrestore(&mq->lock, flags);
2109
2110 if (put_card)
2111 mmc_put_card(mq->card, &mq->ctx);
2112 }
2113
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2114 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2115 bool can_sleep)
2116 {
2117 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2118 struct mmc_request *mrq = &mqrq->brq.mrq;
2119 struct mmc_host *host = mq->card->host;
2120
2121 mmc_post_req(host, mrq, 0);
2122
2123 /*
2124 * Block layer timeouts race with completions which means the normal
2125 * completion path cannot be used during recovery.
2126 */
2127 if (mq->in_recovery) {
2128 mmc_blk_mq_complete_rq(mq, req);
2129 } else if (likely(!blk_should_fake_timeout(req->q))) {
2130 if (can_sleep)
2131 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2132 else
2133 blk_mq_complete_request(req);
2134 }
2135
2136 mmc_blk_mq_dec_in_flight(mq, req);
2137 }
2138
mmc_blk_mq_recovery(struct mmc_queue * mq)2139 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2140 {
2141 struct request *req = mq->recovery_req;
2142 struct mmc_host *host = mq->card->host;
2143 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2144
2145 mq->recovery_req = NULL;
2146 mq->rw_wait = false;
2147
2148 if (mmc_blk_rq_error(&mqrq->brq)) {
2149 mmc_retune_hold_now(host);
2150 mmc_blk_mq_rw_recovery(mq, req);
2151 }
2152
2153 mmc_blk_urgent_bkops(mq, mqrq);
2154
2155 mmc_blk_mq_post_req(mq, req, true);
2156 }
2157
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2158 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2159 struct request **prev_req)
2160 {
2161 if (mmc_host_done_complete(mq->card->host))
2162 return;
2163
2164 mutex_lock(&mq->complete_lock);
2165
2166 if (!mq->complete_req)
2167 goto out_unlock;
2168
2169 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2170
2171 if (prev_req)
2172 *prev_req = mq->complete_req;
2173 else
2174 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2175
2176 mq->complete_req = NULL;
2177
2178 out_unlock:
2179 mutex_unlock(&mq->complete_lock);
2180 }
2181
mmc_blk_mq_complete_work(struct work_struct * work)2182 void mmc_blk_mq_complete_work(struct work_struct *work)
2183 {
2184 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2185 complete_work);
2186
2187 mmc_blk_mq_complete_prev_req(mq, NULL);
2188 }
2189
mmc_blk_mq_req_done(struct mmc_request * mrq)2190 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2191 {
2192 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2193 brq.mrq);
2194 struct request *req = mmc_queue_req_to_req(mqrq);
2195 struct request_queue *q = req->q;
2196 struct mmc_queue *mq = q->queuedata;
2197 struct mmc_host *host = mq->card->host;
2198 unsigned long flags;
2199
2200 if (!mmc_host_done_complete(host)) {
2201 bool waiting;
2202
2203 /*
2204 * We cannot complete the request in this context, so record
2205 * that there is a request to complete, and that a following
2206 * request does not need to wait (although it does need to
2207 * complete complete_req first).
2208 */
2209 spin_lock_irqsave(&mq->lock, flags);
2210 mq->complete_req = req;
2211 mq->rw_wait = false;
2212 waiting = mq->waiting;
2213 spin_unlock_irqrestore(&mq->lock, flags);
2214
2215 /*
2216 * If 'waiting' then the waiting task will complete this
2217 * request, otherwise queue a work to do it. Note that
2218 * complete_work may still race with the dispatch of a following
2219 * request.
2220 */
2221 if (waiting)
2222 wake_up(&mq->wait);
2223 else
2224 queue_work(mq->card->complete_wq, &mq->complete_work);
2225
2226 return;
2227 }
2228
2229 /* Take the recovery path for errors or urgent background operations */
2230 if (mmc_blk_rq_error(&mqrq->brq) ||
2231 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2232 spin_lock_irqsave(&mq->lock, flags);
2233 mq->recovery_needed = true;
2234 mq->recovery_req = req;
2235 spin_unlock_irqrestore(&mq->lock, flags);
2236 wake_up(&mq->wait);
2237 schedule_work(&mq->recovery_work);
2238 return;
2239 }
2240
2241 mmc_blk_rw_reset_success(mq, req);
2242
2243 mq->rw_wait = false;
2244 wake_up(&mq->wait);
2245
2246 /* context unknown */
2247 mmc_blk_mq_post_req(mq, req, false);
2248 }
2249
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2250 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2251 {
2252 unsigned long flags;
2253 bool done;
2254
2255 /*
2256 * Wait while there is another request in progress, but not if recovery
2257 * is needed. Also indicate whether there is a request waiting to start.
2258 */
2259 spin_lock_irqsave(&mq->lock, flags);
2260 if (mq->recovery_needed) {
2261 *err = -EBUSY;
2262 done = true;
2263 } else {
2264 done = !mq->rw_wait;
2265 }
2266 mq->waiting = !done;
2267 spin_unlock_irqrestore(&mq->lock, flags);
2268
2269 return done;
2270 }
2271
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2272 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2273 {
2274 int err = 0;
2275
2276 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2277
2278 /* Always complete the previous request if there is one */
2279 mmc_blk_mq_complete_prev_req(mq, prev_req);
2280
2281 return err;
2282 }
2283
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2284 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2285 struct request *req)
2286 {
2287 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2288 struct mmc_host *host = mq->card->host;
2289 struct request *prev_req = NULL;
2290 int err = 0;
2291
2292 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2293
2294 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2295
2296 mmc_pre_req(host, &mqrq->brq.mrq);
2297
2298 err = mmc_blk_rw_wait(mq, &prev_req);
2299 if (err)
2300 goto out_post_req;
2301
2302 mq->rw_wait = true;
2303
2304 err = mmc_start_request(host, &mqrq->brq.mrq);
2305
2306 if (prev_req)
2307 mmc_blk_mq_post_req(mq, prev_req, true);
2308
2309 if (err)
2310 mq->rw_wait = false;
2311
2312 /* Release re-tuning here where there is no synchronization required */
2313 if (err || mmc_host_done_complete(host))
2314 mmc_retune_release(host);
2315
2316 out_post_req:
2317 if (err)
2318 mmc_post_req(host, &mqrq->brq.mrq, err);
2319
2320 return err;
2321 }
2322
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2323 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2324 {
2325 if (host->cqe_enabled)
2326 return host->cqe_ops->cqe_wait_for_idle(host);
2327
2328 return mmc_blk_rw_wait(mq, NULL);
2329 }
2330
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2331 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2332 {
2333 struct mmc_blk_data *md = mq->blkdata;
2334 struct mmc_card *card = md->queue.card;
2335 struct mmc_host *host = card->host;
2336 int ret;
2337
2338 ret = mmc_blk_part_switch(card, md->part_type);
2339 if (ret)
2340 return MMC_REQ_FAILED_TO_START;
2341
2342 switch (mmc_issue_type(mq, req)) {
2343 case MMC_ISSUE_SYNC:
2344 ret = mmc_blk_wait_for_idle(mq, host);
2345 if (ret)
2346 return MMC_REQ_BUSY;
2347 switch (req_op(req)) {
2348 case REQ_OP_DRV_IN:
2349 case REQ_OP_DRV_OUT:
2350 mmc_blk_issue_drv_op(mq, req);
2351 break;
2352 case REQ_OP_DISCARD:
2353 mmc_blk_issue_discard_rq(mq, req);
2354 break;
2355 case REQ_OP_SECURE_ERASE:
2356 mmc_blk_issue_secdiscard_rq(mq, req);
2357 break;
2358 case REQ_OP_WRITE_ZEROES:
2359 mmc_blk_issue_trim_rq(mq, req);
2360 break;
2361 case REQ_OP_FLUSH:
2362 mmc_blk_issue_flush(mq, req);
2363 break;
2364 default:
2365 WARN_ON_ONCE(1);
2366 return MMC_REQ_FAILED_TO_START;
2367 }
2368 return MMC_REQ_FINISHED;
2369 case MMC_ISSUE_DCMD:
2370 case MMC_ISSUE_ASYNC:
2371 switch (req_op(req)) {
2372 case REQ_OP_FLUSH:
2373 if (!mmc_cache_enabled(host)) {
2374 blk_mq_end_request(req, BLK_STS_OK);
2375 return MMC_REQ_FINISHED;
2376 }
2377 ret = mmc_blk_cqe_issue_flush(mq, req);
2378 break;
2379 case REQ_OP_READ:
2380 case REQ_OP_WRITE:
2381 if (host->cqe_enabled)
2382 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2383 else
2384 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2385 break;
2386 default:
2387 WARN_ON_ONCE(1);
2388 ret = -EINVAL;
2389 }
2390 if (!ret)
2391 return MMC_REQ_STARTED;
2392 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2393 default:
2394 WARN_ON_ONCE(1);
2395 return MMC_REQ_FAILED_TO_START;
2396 }
2397 }
2398
mmc_blk_readonly(struct mmc_card * card)2399 static inline int mmc_blk_readonly(struct mmc_card *card)
2400 {
2401 return mmc_card_readonly(card) ||
2402 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2403 }
2404
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2405 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2406 struct device *parent,
2407 sector_t size,
2408 bool default_ro,
2409 const char *subname,
2410 int area_type,
2411 unsigned int part_type)
2412 {
2413 struct mmc_blk_data *md;
2414 int devidx, ret;
2415 char cap_str[10];
2416 bool cache_enabled = false;
2417 bool fua_enabled = false;
2418
2419 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2420 if (devidx < 0) {
2421 /*
2422 * We get -ENOSPC because there are no more any available
2423 * devidx. The reason may be that, either userspace haven't yet
2424 * unmounted the partitions, which postpones mmc_blk_release()
2425 * from being called, or the device has more partitions than
2426 * what we support.
2427 */
2428 if (devidx == -ENOSPC)
2429 dev_err(mmc_dev(card->host),
2430 "no more device IDs available\n");
2431
2432 return ERR_PTR(devidx);
2433 }
2434
2435 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2436 if (!md) {
2437 ret = -ENOMEM;
2438 goto out;
2439 }
2440
2441 md->area_type = area_type;
2442
2443 /*
2444 * Set the read-only status based on the supported commands
2445 * and the write protect switch.
2446 */
2447 md->read_only = mmc_blk_readonly(card);
2448
2449 md->disk = mmc_init_queue(&md->queue, card);
2450 if (IS_ERR(md->disk)) {
2451 ret = PTR_ERR(md->disk);
2452 goto err_kfree;
2453 }
2454
2455 INIT_LIST_HEAD(&md->part);
2456 INIT_LIST_HEAD(&md->rpmbs);
2457 kref_init(&md->kref);
2458
2459 md->queue.blkdata = md;
2460 md->part_type = part_type;
2461
2462 md->disk->major = MMC_BLOCK_MAJOR;
2463 md->disk->minors = perdev_minors;
2464 md->disk->first_minor = devidx * perdev_minors;
2465 md->disk->fops = &mmc_bdops;
2466 md->disk->private_data = md;
2467 md->parent = parent;
2468 set_disk_ro(md->disk, md->read_only || default_ro);
2469 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2470 md->disk->flags |= GENHD_FL_NO_PART;
2471
2472 /*
2473 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2474 *
2475 * - be set for removable media with permanent block devices
2476 * - be unset for removable block devices with permanent media
2477 *
2478 * Since MMC block devices clearly fall under the second
2479 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2480 * should use the block device creation/destruction hotplug
2481 * messages to tell when the card is present.
2482 */
2483
2484 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2485 "mmcblk%u%s", card->host->index, subname ? subname : "");
2486
2487 set_capacity(md->disk, size);
2488
2489 if (mmc_host_cmd23(card->host)) {
2490 if ((mmc_card_mmc(card) &&
2491 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2492 (mmc_card_sd(card) &&
2493 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2494 md->flags |= MMC_BLK_CMD23;
2495 }
2496
2497 if (md->flags & MMC_BLK_CMD23 &&
2498 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2499 card->ext_csd.rel_sectors)) {
2500 md->flags |= MMC_BLK_REL_WR;
2501 fua_enabled = true;
2502 cache_enabled = true;
2503 }
2504 if (mmc_cache_enabled(card->host))
2505 cache_enabled = true;
2506
2507 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2508
2509 string_get_size((u64)size, 512, STRING_UNITS_2,
2510 cap_str, sizeof(cap_str));
2511 pr_info("%s: %s %s %s %s\n",
2512 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2513 cap_str, md->read_only ? "(ro)" : "");
2514
2515 /* used in ->open, must be set before add_disk: */
2516 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2517 dev_set_drvdata(&card->dev, md);
2518 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2519 if (ret)
2520 goto err_put_disk;
2521 return md;
2522
2523 err_put_disk:
2524 put_disk(md->disk);
2525 blk_mq_free_tag_set(&md->queue.tag_set);
2526 err_kfree:
2527 kfree(md);
2528 out:
2529 ida_simple_remove(&mmc_blk_ida, devidx);
2530 return ERR_PTR(ret);
2531 }
2532
mmc_blk_alloc(struct mmc_card * card)2533 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2534 {
2535 sector_t size;
2536
2537 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2538 /*
2539 * The EXT_CSD sector count is in number or 512 byte
2540 * sectors.
2541 */
2542 size = card->ext_csd.sectors;
2543 } else {
2544 /*
2545 * The CSD capacity field is in units of read_blkbits.
2546 * set_capacity takes units of 512 bytes.
2547 */
2548 size = (typeof(sector_t))card->csd.capacity
2549 << (card->csd.read_blkbits - 9);
2550 }
2551
2552 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2553 MMC_BLK_DATA_AREA_MAIN, 0);
2554 }
2555
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2556 static int mmc_blk_alloc_part(struct mmc_card *card,
2557 struct mmc_blk_data *md,
2558 unsigned int part_type,
2559 sector_t size,
2560 bool default_ro,
2561 const char *subname,
2562 int area_type)
2563 {
2564 struct mmc_blk_data *part_md;
2565
2566 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2567 subname, area_type, part_type);
2568 if (IS_ERR(part_md))
2569 return PTR_ERR(part_md);
2570 list_add(&part_md->part, &md->part);
2571
2572 return 0;
2573 }
2574
2575 /**
2576 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2577 * @filp: the character device file
2578 * @cmd: the ioctl() command
2579 * @arg: the argument from userspace
2580 *
2581 * This will essentially just redirect the ioctl()s coming in over to
2582 * the main block device spawning the RPMB character device.
2583 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2584 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2585 unsigned long arg)
2586 {
2587 struct mmc_rpmb_data *rpmb = filp->private_data;
2588 int ret;
2589
2590 switch (cmd) {
2591 case MMC_IOC_CMD:
2592 ret = mmc_blk_ioctl_cmd(rpmb->md,
2593 (struct mmc_ioc_cmd __user *)arg,
2594 rpmb);
2595 break;
2596 case MMC_IOC_MULTI_CMD:
2597 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2598 (struct mmc_ioc_multi_cmd __user *)arg,
2599 rpmb);
2600 break;
2601 default:
2602 ret = -EINVAL;
2603 break;
2604 }
2605
2606 return ret;
2607 }
2608
2609 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2610 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2611 unsigned long arg)
2612 {
2613 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2614 }
2615 #endif
2616
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2617 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2618 {
2619 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2620 struct mmc_rpmb_data, chrdev);
2621
2622 get_device(&rpmb->dev);
2623 filp->private_data = rpmb;
2624 mmc_blk_get(rpmb->md->disk);
2625
2626 return nonseekable_open(inode, filp);
2627 }
2628
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2629 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2630 {
2631 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2632 struct mmc_rpmb_data, chrdev);
2633
2634 mmc_blk_put(rpmb->md);
2635 put_device(&rpmb->dev);
2636
2637 return 0;
2638 }
2639
2640 static const struct file_operations mmc_rpmb_fileops = {
2641 .release = mmc_rpmb_chrdev_release,
2642 .open = mmc_rpmb_chrdev_open,
2643 .owner = THIS_MODULE,
2644 .llseek = no_llseek,
2645 .unlocked_ioctl = mmc_rpmb_ioctl,
2646 #ifdef CONFIG_COMPAT
2647 .compat_ioctl = mmc_rpmb_ioctl_compat,
2648 #endif
2649 };
2650
mmc_blk_rpmb_device_release(struct device * dev)2651 static void mmc_blk_rpmb_device_release(struct device *dev)
2652 {
2653 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2654
2655 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2656 kfree(rpmb);
2657 }
2658
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2659 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2660 struct mmc_blk_data *md,
2661 unsigned int part_index,
2662 sector_t size,
2663 const char *subname)
2664 {
2665 int devidx, ret;
2666 char rpmb_name[DISK_NAME_LEN];
2667 char cap_str[10];
2668 struct mmc_rpmb_data *rpmb;
2669
2670 /* This creates the minor number for the RPMB char device */
2671 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2672 if (devidx < 0)
2673 return devidx;
2674
2675 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2676 if (!rpmb) {
2677 ida_simple_remove(&mmc_rpmb_ida, devidx);
2678 return -ENOMEM;
2679 }
2680
2681 snprintf(rpmb_name, sizeof(rpmb_name),
2682 "mmcblk%u%s", card->host->index, subname ? subname : "");
2683
2684 rpmb->id = devidx;
2685 rpmb->part_index = part_index;
2686 rpmb->dev.init_name = rpmb_name;
2687 rpmb->dev.bus = &mmc_rpmb_bus_type;
2688 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2689 rpmb->dev.parent = &card->dev;
2690 rpmb->dev.release = mmc_blk_rpmb_device_release;
2691 device_initialize(&rpmb->dev);
2692 dev_set_drvdata(&rpmb->dev, rpmb);
2693 rpmb->md = md;
2694
2695 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2696 rpmb->chrdev.owner = THIS_MODULE;
2697 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2698 if (ret) {
2699 pr_err("%s: could not add character device\n", rpmb_name);
2700 goto out_put_device;
2701 }
2702
2703 list_add(&rpmb->node, &md->rpmbs);
2704
2705 string_get_size((u64)size, 512, STRING_UNITS_2,
2706 cap_str, sizeof(cap_str));
2707
2708 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2709 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2710 MAJOR(mmc_rpmb_devt), rpmb->id);
2711
2712 return 0;
2713
2714 out_put_device:
2715 put_device(&rpmb->dev);
2716 return ret;
2717 }
2718
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2719 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2720
2721 {
2722 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2723 put_device(&rpmb->dev);
2724 }
2725
2726 /* MMC Physical partitions consist of two boot partitions and
2727 * up to four general purpose partitions.
2728 * For each partition enabled in EXT_CSD a block device will be allocatedi
2729 * to provide access to the partition.
2730 */
2731
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2732 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2733 {
2734 int idx, ret;
2735
2736 if (!mmc_card_mmc(card))
2737 return 0;
2738
2739 for (idx = 0; idx < card->nr_parts; idx++) {
2740 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2741 /*
2742 * RPMB partitions does not provide block access, they
2743 * are only accessed using ioctl():s. Thus create
2744 * special RPMB block devices that do not have a
2745 * backing block queue for these.
2746 */
2747 ret = mmc_blk_alloc_rpmb_part(card, md,
2748 card->part[idx].part_cfg,
2749 card->part[idx].size >> 9,
2750 card->part[idx].name);
2751 if (ret)
2752 return ret;
2753 } else if (card->part[idx].size) {
2754 ret = mmc_blk_alloc_part(card, md,
2755 card->part[idx].part_cfg,
2756 card->part[idx].size >> 9,
2757 card->part[idx].force_ro,
2758 card->part[idx].name,
2759 card->part[idx].area_type);
2760 if (ret)
2761 return ret;
2762 }
2763 }
2764
2765 return 0;
2766 }
2767
mmc_blk_remove_req(struct mmc_blk_data * md)2768 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2769 {
2770 /*
2771 * Flush remaining requests and free queues. It is freeing the queue
2772 * that stops new requests from being accepted.
2773 */
2774 del_gendisk(md->disk);
2775 mmc_cleanup_queue(&md->queue);
2776 mmc_blk_put(md);
2777 }
2778
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2779 static void mmc_blk_remove_parts(struct mmc_card *card,
2780 struct mmc_blk_data *md)
2781 {
2782 struct list_head *pos, *q;
2783 struct mmc_blk_data *part_md;
2784 struct mmc_rpmb_data *rpmb;
2785
2786 /* Remove RPMB partitions */
2787 list_for_each_safe(pos, q, &md->rpmbs) {
2788 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2789 list_del(pos);
2790 mmc_blk_remove_rpmb_part(rpmb);
2791 }
2792 /* Remove block partitions */
2793 list_for_each_safe(pos, q, &md->part) {
2794 part_md = list_entry(pos, struct mmc_blk_data, part);
2795 list_del(pos);
2796 mmc_blk_remove_req(part_md);
2797 }
2798 }
2799
2800 #ifdef CONFIG_DEBUG_FS
2801
mmc_dbg_card_status_get(void * data,u64 * val)2802 static int mmc_dbg_card_status_get(void *data, u64 *val)
2803 {
2804 struct mmc_card *card = data;
2805 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2806 struct mmc_queue *mq = &md->queue;
2807 struct request *req;
2808 int ret;
2809
2810 /* Ask the block layer about the card status */
2811 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2812 if (IS_ERR(req))
2813 return PTR_ERR(req);
2814 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2815 blk_execute_rq(req, false);
2816 ret = req_to_mmc_queue_req(req)->drv_op_result;
2817 if (ret >= 0) {
2818 *val = ret;
2819 ret = 0;
2820 }
2821 blk_mq_free_request(req);
2822
2823 return ret;
2824 }
2825 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2826 NULL, "%08llx\n");
2827
2828 /* That is two digits * 512 + 1 for newline */
2829 #define EXT_CSD_STR_LEN 1025
2830
mmc_ext_csd_open(struct inode * inode,struct file * filp)2831 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2832 {
2833 struct mmc_card *card = inode->i_private;
2834 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2835 struct mmc_queue *mq = &md->queue;
2836 struct request *req;
2837 char *buf;
2838 ssize_t n = 0;
2839 u8 *ext_csd;
2840 int err, i;
2841
2842 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2843 if (!buf)
2844 return -ENOMEM;
2845
2846 /* Ask the block layer for the EXT CSD */
2847 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2848 if (IS_ERR(req)) {
2849 err = PTR_ERR(req);
2850 goto out_free;
2851 }
2852 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2853 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2854 blk_execute_rq(req, false);
2855 err = req_to_mmc_queue_req(req)->drv_op_result;
2856 blk_mq_free_request(req);
2857 if (err) {
2858 pr_err("FAILED %d\n", err);
2859 goto out_free;
2860 }
2861
2862 for (i = 0; i < 512; i++)
2863 n += sprintf(buf + n, "%02x", ext_csd[i]);
2864 n += sprintf(buf + n, "\n");
2865
2866 if (n != EXT_CSD_STR_LEN) {
2867 err = -EINVAL;
2868 kfree(ext_csd);
2869 goto out_free;
2870 }
2871
2872 filp->private_data = buf;
2873 kfree(ext_csd);
2874 return 0;
2875
2876 out_free:
2877 kfree(buf);
2878 return err;
2879 }
2880
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2881 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2882 size_t cnt, loff_t *ppos)
2883 {
2884 char *buf = filp->private_data;
2885
2886 return simple_read_from_buffer(ubuf, cnt, ppos,
2887 buf, EXT_CSD_STR_LEN);
2888 }
2889
mmc_ext_csd_release(struct inode * inode,struct file * file)2890 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2891 {
2892 kfree(file->private_data);
2893 return 0;
2894 }
2895
2896 static const struct file_operations mmc_dbg_ext_csd_fops = {
2897 .open = mmc_ext_csd_open,
2898 .read = mmc_ext_csd_read,
2899 .release = mmc_ext_csd_release,
2900 .llseek = default_llseek,
2901 };
2902
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2903 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2904 {
2905 struct dentry *root;
2906
2907 if (!card->debugfs_root)
2908 return 0;
2909
2910 root = card->debugfs_root;
2911
2912 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2913 md->status_dentry =
2914 debugfs_create_file_unsafe("status", 0400, root,
2915 card,
2916 &mmc_dbg_card_status_fops);
2917 if (!md->status_dentry)
2918 return -EIO;
2919 }
2920
2921 if (mmc_card_mmc(card)) {
2922 md->ext_csd_dentry =
2923 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2924 &mmc_dbg_ext_csd_fops);
2925 if (!md->ext_csd_dentry)
2926 return -EIO;
2927 }
2928
2929 return 0;
2930 }
2931
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2932 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2933 struct mmc_blk_data *md)
2934 {
2935 if (!card->debugfs_root)
2936 return;
2937
2938 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2939 debugfs_remove(md->status_dentry);
2940 md->status_dentry = NULL;
2941 }
2942
2943 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2944 debugfs_remove(md->ext_csd_dentry);
2945 md->ext_csd_dentry = NULL;
2946 }
2947 }
2948
2949 #else
2950
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2951 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2952 {
2953 return 0;
2954 }
2955
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2956 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2957 struct mmc_blk_data *md)
2958 {
2959 }
2960
2961 #endif /* CONFIG_DEBUG_FS */
2962
mmc_blk_probe(struct mmc_card * card)2963 static int mmc_blk_probe(struct mmc_card *card)
2964 {
2965 struct mmc_blk_data *md;
2966 int ret = 0;
2967
2968 /*
2969 * Check that the card supports the command class(es) we need.
2970 */
2971 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2972 return -ENODEV;
2973
2974 mmc_fixup_device(card, mmc_blk_fixups);
2975
2976 card->complete_wq = alloc_workqueue("mmc_complete",
2977 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2978 if (!card->complete_wq) {
2979 pr_err("Failed to create mmc completion workqueue");
2980 return -ENOMEM;
2981 }
2982
2983 md = mmc_blk_alloc(card);
2984 if (IS_ERR(md)) {
2985 ret = PTR_ERR(md);
2986 goto out_free;
2987 }
2988
2989 ret = mmc_blk_alloc_parts(card, md);
2990 if (ret)
2991 goto out;
2992
2993 /* Add two debugfs entries */
2994 mmc_blk_add_debugfs(card, md);
2995
2996 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2997 pm_runtime_use_autosuspend(&card->dev);
2998
2999 /*
3000 * Don't enable runtime PM for SD-combo cards here. Leave that
3001 * decision to be taken during the SDIO init sequence instead.
3002 */
3003 if (!mmc_card_sd_combo(card)) {
3004 pm_runtime_set_active(&card->dev);
3005 pm_runtime_enable(&card->dev);
3006 }
3007
3008 return 0;
3009
3010 out:
3011 mmc_blk_remove_parts(card, md);
3012 mmc_blk_remove_req(md);
3013 out_free:
3014 destroy_workqueue(card->complete_wq);
3015 return ret;
3016 }
3017
mmc_blk_remove(struct mmc_card * card)3018 static void mmc_blk_remove(struct mmc_card *card)
3019 {
3020 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3021
3022 mmc_blk_remove_debugfs(card, md);
3023 mmc_blk_remove_parts(card, md);
3024 pm_runtime_get_sync(&card->dev);
3025 if (md->part_curr != md->part_type) {
3026 mmc_claim_host(card->host);
3027 mmc_blk_part_switch(card, md->part_type);
3028 mmc_release_host(card->host);
3029 }
3030 if (!mmc_card_sd_combo(card))
3031 pm_runtime_disable(&card->dev);
3032 pm_runtime_put_noidle(&card->dev);
3033 mmc_blk_remove_req(md);
3034 dev_set_drvdata(&card->dev, NULL);
3035 destroy_workqueue(card->complete_wq);
3036 }
3037
_mmc_blk_suspend(struct mmc_card * card)3038 static int _mmc_blk_suspend(struct mmc_card *card)
3039 {
3040 struct mmc_blk_data *part_md;
3041 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3042
3043 if (md) {
3044 mmc_queue_suspend(&md->queue);
3045 list_for_each_entry(part_md, &md->part, part) {
3046 mmc_queue_suspend(&part_md->queue);
3047 }
3048 }
3049 return 0;
3050 }
3051
mmc_blk_shutdown(struct mmc_card * card)3052 static void mmc_blk_shutdown(struct mmc_card *card)
3053 {
3054 _mmc_blk_suspend(card);
3055 }
3056
3057 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3058 static int mmc_blk_suspend(struct device *dev)
3059 {
3060 struct mmc_card *card = mmc_dev_to_card(dev);
3061
3062 return _mmc_blk_suspend(card);
3063 }
3064
mmc_blk_resume(struct device * dev)3065 static int mmc_blk_resume(struct device *dev)
3066 {
3067 struct mmc_blk_data *part_md;
3068 struct mmc_blk_data *md = dev_get_drvdata(dev);
3069
3070 if (md) {
3071 /*
3072 * Resume involves the card going into idle state,
3073 * so current partition is always the main one.
3074 */
3075 md->part_curr = md->part_type;
3076 mmc_queue_resume(&md->queue);
3077 list_for_each_entry(part_md, &md->part, part) {
3078 mmc_queue_resume(&part_md->queue);
3079 }
3080 }
3081 return 0;
3082 }
3083 #endif
3084
3085 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3086
3087 static struct mmc_driver mmc_driver = {
3088 .drv = {
3089 .name = "mmcblk",
3090 .pm = &mmc_blk_pm_ops,
3091 },
3092 .probe = mmc_blk_probe,
3093 .remove = mmc_blk_remove,
3094 .shutdown = mmc_blk_shutdown,
3095 };
3096
mmc_blk_init(void)3097 static int __init mmc_blk_init(void)
3098 {
3099 int res;
3100
3101 res = bus_register(&mmc_rpmb_bus_type);
3102 if (res < 0) {
3103 pr_err("mmcblk: could not register RPMB bus type\n");
3104 return res;
3105 }
3106 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3107 if (res < 0) {
3108 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3109 goto out_bus_unreg;
3110 }
3111
3112 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3113 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3114
3115 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3116
3117 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3118 if (res)
3119 goto out_chrdev_unreg;
3120
3121 res = mmc_register_driver(&mmc_driver);
3122 if (res)
3123 goto out_blkdev_unreg;
3124
3125 return 0;
3126
3127 out_blkdev_unreg:
3128 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3129 out_chrdev_unreg:
3130 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3131 out_bus_unreg:
3132 bus_unregister(&mmc_rpmb_bus_type);
3133 return res;
3134 }
3135
mmc_blk_exit(void)3136 static void __exit mmc_blk_exit(void)
3137 {
3138 mmc_unregister_driver(&mmc_driver);
3139 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3140 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3141 bus_unregister(&mmc_rpmb_bus_type);
3142 }
3143
3144 module_init(mmc_blk_init);
3145 module_exit(mmc_blk_exit);
3146
3147 MODULE_LICENSE("GPL");
3148 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3149
3150