1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DAMON Primitives for Virtual Address Spaces
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #define pr_fmt(fmt) "damon-va: " fmt
9
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17
18 #include "ops-common.h"
19
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24
25 /*
26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
28 */
damon_get_task_struct(struct damon_target * t)29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30 {
31 return get_pid_task(t->pid, PIDTYPE_PID);
32 }
33
34 /*
35 * Get the mm_struct of the given target
36 *
37 * Caller _must_ put the mm_struct after use, unless it is NULL.
38 *
39 * Returns the mm_struct of the target on success, NULL on failure
40 */
damon_get_mm(struct damon_target * t)41 static struct mm_struct *damon_get_mm(struct damon_target *t)
42 {
43 struct task_struct *task;
44 struct mm_struct *mm;
45
46 task = damon_get_task_struct(t);
47 if (!task)
48 return NULL;
49
50 mm = get_task_mm(task);
51 put_task_struct(task);
52 return mm;
53 }
54
55 /*
56 * Functions for the initial monitoring target regions construction
57 */
58
59 /*
60 * Size-evenly split a region into 'nr_pieces' small regions
61 *
62 * Returns 0 on success, or negative error code otherwise.
63 */
damon_va_evenly_split_region(struct damon_target * t,struct damon_region * r,unsigned int nr_pieces)64 static int damon_va_evenly_split_region(struct damon_target *t,
65 struct damon_region *r, unsigned int nr_pieces)
66 {
67 unsigned long sz_orig, sz_piece, orig_end;
68 struct damon_region *n = NULL, *next;
69 unsigned long start;
70
71 if (!r || !nr_pieces)
72 return -EINVAL;
73
74 orig_end = r->ar.end;
75 sz_orig = damon_sz_region(r);
76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
77
78 if (!sz_piece)
79 return -EINVAL;
80
81 r->ar.end = r->ar.start + sz_piece;
82 next = damon_next_region(r);
83 for (start = r->ar.end; start + sz_piece <= orig_end;
84 start += sz_piece) {
85 n = damon_new_region(start, start + sz_piece);
86 if (!n)
87 return -ENOMEM;
88 damon_insert_region(n, r, next, t);
89 r = n;
90 }
91 /* complement last region for possible rounding error */
92 if (n)
93 n->ar.end = orig_end;
94
95 return 0;
96 }
97
sz_range(struct damon_addr_range * r)98 static unsigned long sz_range(struct damon_addr_range *r)
99 {
100 return r->end - r->start;
101 }
102
103 /*
104 * Find three regions separated by two biggest unmapped regions
105 *
106 * vma the head vma of the target address space
107 * regions an array of three address ranges that results will be saved
108 *
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space. Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
112 * necessary.
113 *
114 * Returns 0 if success, or negative error code otherwise.
115 */
__damon_va_three_regions(struct mm_struct * mm,struct damon_addr_range regions[3])116 static int __damon_va_three_regions(struct mm_struct *mm,
117 struct damon_addr_range regions[3])
118 {
119 struct damon_addr_range first_gap = {0}, second_gap = {0};
120 VMA_ITERATOR(vmi, mm, 0);
121 struct vm_area_struct *vma, *prev = NULL;
122 unsigned long start;
123
124 /*
125 * Find the two biggest gaps so that first_gap > second_gap > others.
126 * If this is too slow, it can be optimised to examine the maple
127 * tree gaps.
128 */
129 for_each_vma(vmi, vma) {
130 unsigned long gap;
131
132 if (!prev) {
133 start = vma->vm_start;
134 goto next;
135 }
136 gap = vma->vm_start - prev->vm_end;
137
138 if (gap > sz_range(&first_gap)) {
139 second_gap = first_gap;
140 first_gap.start = prev->vm_end;
141 first_gap.end = vma->vm_start;
142 } else if (gap > sz_range(&second_gap)) {
143 second_gap.start = prev->vm_end;
144 second_gap.end = vma->vm_start;
145 }
146 next:
147 prev = vma;
148 }
149
150 if (!sz_range(&second_gap) || !sz_range(&first_gap))
151 return -EINVAL;
152
153 /* Sort the two biggest gaps by address */
154 if (first_gap.start > second_gap.start)
155 swap(first_gap, second_gap);
156
157 /* Store the result */
158 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
159 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
160 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
161 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
162 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
163 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
164
165 return 0;
166 }
167
168 /*
169 * Get the three regions in the given target (task)
170 *
171 * Returns 0 on success, negative error code otherwise.
172 */
damon_va_three_regions(struct damon_target * t,struct damon_addr_range regions[3])173 static int damon_va_three_regions(struct damon_target *t,
174 struct damon_addr_range regions[3])
175 {
176 struct mm_struct *mm;
177 int rc;
178
179 mm = damon_get_mm(t);
180 if (!mm)
181 return -EINVAL;
182
183 mmap_read_lock(mm);
184 rc = __damon_va_three_regions(mm, regions);
185 mmap_read_unlock(mm);
186
187 mmput(mm);
188 return rc;
189 }
190
191 /*
192 * Initialize the monitoring target regions for the given target (task)
193 *
194 * t the given target
195 *
196 * Because only a number of small portions of the entire address space
197 * is actually mapped to the memory and accessed, monitoring the unmapped
198 * regions is wasteful. That said, because we can deal with small noises,
199 * tracking every mapping is not strictly required but could even incur a high
200 * overhead if the mapping frequently changes or the number of mappings is
201 * high. The adaptive regions adjustment mechanism will further help to deal
202 * with the noise by simply identifying the unmapped areas as a region that
203 * has no access. Moreover, applying the real mappings that would have many
204 * unmapped areas inside will make the adaptive mechanism quite complex. That
205 * said, too huge unmapped areas inside the monitoring target should be removed
206 * to not take the time for the adaptive mechanism.
207 *
208 * For the reason, we convert the complex mappings to three distinct regions
209 * that cover every mapped area of the address space. Also the two gaps
210 * between the three regions are the two biggest unmapped areas in the given
211 * address space. In detail, this function first identifies the start and the
212 * end of the mappings and the two biggest unmapped areas of the address space.
213 * Then, it constructs the three regions as below:
214 *
215 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
216 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
217 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218 *
219 * As usual memory map of processes is as below, the gap between the heap and
220 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
221 * region and the stack will be two biggest unmapped regions. Because these
222 * gaps are exceptionally huge areas in usual address space, excluding these
223 * two biggest unmapped regions will be sufficient to make a trade-off.
224 *
225 * <heap>
226 * <BIG UNMAPPED REGION 1>
227 * <uppermost mmap()-ed region>
228 * (other mmap()-ed regions and small unmapped regions)
229 * <lowermost mmap()-ed region>
230 * <BIG UNMAPPED REGION 2>
231 * <stack>
232 */
__damon_va_init_regions(struct damon_ctx * ctx,struct damon_target * t)233 static void __damon_va_init_regions(struct damon_ctx *ctx,
234 struct damon_target *t)
235 {
236 struct damon_target *ti;
237 struct damon_region *r;
238 struct damon_addr_range regions[3];
239 unsigned long sz = 0, nr_pieces;
240 int i, tidx = 0;
241
242 if (damon_va_three_regions(t, regions)) {
243 damon_for_each_target(ti, ctx) {
244 if (ti == t)
245 break;
246 tidx++;
247 }
248 pr_debug("Failed to get three regions of %dth target\n", tidx);
249 return;
250 }
251
252 for (i = 0; i < 3; i++)
253 sz += regions[i].end - regions[i].start;
254 if (ctx->attrs.min_nr_regions)
255 sz /= ctx->attrs.min_nr_regions;
256 if (sz < DAMON_MIN_REGION)
257 sz = DAMON_MIN_REGION;
258
259 /* Set the initial three regions of the target */
260 for (i = 0; i < 3; i++) {
261 r = damon_new_region(regions[i].start, regions[i].end);
262 if (!r) {
263 pr_err("%d'th init region creation failed\n", i);
264 return;
265 }
266 damon_add_region(r, t);
267
268 nr_pieces = (regions[i].end - regions[i].start) / sz;
269 damon_va_evenly_split_region(t, r, nr_pieces);
270 }
271 }
272
273 /* Initialize '->regions_list' of every target (task) */
damon_va_init(struct damon_ctx * ctx)274 static void damon_va_init(struct damon_ctx *ctx)
275 {
276 struct damon_target *t;
277
278 damon_for_each_target(t, ctx) {
279 /* the user may set the target regions as they want */
280 if (!damon_nr_regions(t))
281 __damon_va_init_regions(ctx, t);
282 }
283 }
284
285 /*
286 * Update regions for current memory mappings
287 */
damon_va_update(struct damon_ctx * ctx)288 static void damon_va_update(struct damon_ctx *ctx)
289 {
290 struct damon_addr_range three_regions[3];
291 struct damon_target *t;
292
293 damon_for_each_target(t, ctx) {
294 if (damon_va_three_regions(t, three_regions))
295 continue;
296 damon_set_regions(t, three_regions, 3);
297 }
298 }
299
damon_mkold_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
301 unsigned long next, struct mm_walk *walk)
302 {
303 pte_t *pte;
304 pmd_t pmde;
305 spinlock_t *ptl;
306
307 if (pmd_trans_huge(pmdp_get(pmd))) {
308 ptl = pmd_lock(walk->mm, pmd);
309 pmde = pmdp_get(pmd);
310
311 if (!pmd_present(pmde)) {
312 spin_unlock(ptl);
313 return 0;
314 }
315
316 if (pmd_trans_huge(pmde)) {
317 damon_pmdp_mkold(pmd, walk->vma, addr);
318 spin_unlock(ptl);
319 return 0;
320 }
321 spin_unlock(ptl);
322 }
323
324 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
325 if (!pte) {
326 walk->action = ACTION_AGAIN;
327 return 0;
328 }
329 if (!pte_present(ptep_get(pte)))
330 goto out;
331 damon_ptep_mkold(pte, walk->vma, addr);
332 out:
333 pte_unmap_unlock(pte, ptl);
334 return 0;
335 }
336
337 #ifdef CONFIG_HUGETLB_PAGE
damon_hugetlb_mkold(pte_t * pte,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr)338 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
339 struct vm_area_struct *vma, unsigned long addr)
340 {
341 bool referenced = false;
342 pte_t entry = huge_ptep_get(pte);
343 struct folio *folio = pfn_folio(pte_pfn(entry));
344 unsigned long psize = huge_page_size(hstate_vma(vma));
345
346 folio_get(folio);
347
348 if (pte_young(entry)) {
349 referenced = true;
350 entry = pte_mkold(entry);
351 set_huge_pte_at(mm, addr, pte, entry, psize);
352 }
353
354 #ifdef CONFIG_MMU_NOTIFIER
355 if (mmu_notifier_clear_young(mm, addr,
356 addr + huge_page_size(hstate_vma(vma))))
357 referenced = true;
358 #endif /* CONFIG_MMU_NOTIFIER */
359
360 if (referenced)
361 folio_set_young(folio);
362
363 folio_set_idle(folio);
364 folio_put(folio);
365 }
366
damon_mkold_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)367 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
368 unsigned long addr, unsigned long end,
369 struct mm_walk *walk)
370 {
371 struct hstate *h = hstate_vma(walk->vma);
372 spinlock_t *ptl;
373 pte_t entry;
374
375 ptl = huge_pte_lock(h, walk->mm, pte);
376 entry = huge_ptep_get(pte);
377 if (!pte_present(entry))
378 goto out;
379
380 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
381
382 out:
383 spin_unlock(ptl);
384 return 0;
385 }
386 #else
387 #define damon_mkold_hugetlb_entry NULL
388 #endif /* CONFIG_HUGETLB_PAGE */
389
390 static const struct mm_walk_ops damon_mkold_ops = {
391 .pmd_entry = damon_mkold_pmd_entry,
392 .hugetlb_entry = damon_mkold_hugetlb_entry,
393 .walk_lock = PGWALK_RDLOCK,
394 };
395
damon_va_mkold(struct mm_struct * mm,unsigned long addr)396 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
397 {
398 mmap_read_lock(mm);
399 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
400 mmap_read_unlock(mm);
401 }
402
403 /*
404 * Functions for the access checking of the regions
405 */
406
__damon_va_prepare_access_check(struct mm_struct * mm,struct damon_region * r)407 static void __damon_va_prepare_access_check(struct mm_struct *mm,
408 struct damon_region *r)
409 {
410 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
411
412 damon_va_mkold(mm, r->sampling_addr);
413 }
414
damon_va_prepare_access_checks(struct damon_ctx * ctx)415 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
416 {
417 struct damon_target *t;
418 struct mm_struct *mm;
419 struct damon_region *r;
420
421 damon_for_each_target(t, ctx) {
422 mm = damon_get_mm(t);
423 if (!mm)
424 continue;
425 damon_for_each_region(r, t)
426 __damon_va_prepare_access_check(mm, r);
427 mmput(mm);
428 }
429 }
430
431 struct damon_young_walk_private {
432 /* size of the folio for the access checked virtual memory address */
433 unsigned long *folio_sz;
434 bool young;
435 };
436
damon_young_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)437 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
438 unsigned long next, struct mm_walk *walk)
439 {
440 pte_t *pte;
441 pte_t ptent;
442 spinlock_t *ptl;
443 struct folio *folio;
444 struct damon_young_walk_private *priv = walk->private;
445
446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
447 if (pmd_trans_huge(pmdp_get(pmd))) {
448 pmd_t pmde;
449
450 ptl = pmd_lock(walk->mm, pmd);
451 pmde = pmdp_get(pmd);
452
453 if (!pmd_present(pmde)) {
454 spin_unlock(ptl);
455 return 0;
456 }
457
458 if (!pmd_trans_huge(pmde)) {
459 spin_unlock(ptl);
460 goto regular_page;
461 }
462 folio = damon_get_folio(pmd_pfn(pmde));
463 if (!folio)
464 goto huge_out;
465 if (pmd_young(pmde) || !folio_test_idle(folio) ||
466 mmu_notifier_test_young(walk->mm,
467 addr))
468 priv->young = true;
469 *priv->folio_sz = HPAGE_PMD_SIZE;
470 folio_put(folio);
471 huge_out:
472 spin_unlock(ptl);
473 return 0;
474 }
475
476 regular_page:
477 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
478
479 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
480 if (!pte) {
481 walk->action = ACTION_AGAIN;
482 return 0;
483 }
484 ptent = ptep_get(pte);
485 if (!pte_present(ptent))
486 goto out;
487 folio = damon_get_folio(pte_pfn(ptent));
488 if (!folio)
489 goto out;
490 if (pte_young(ptent) || !folio_test_idle(folio) ||
491 mmu_notifier_test_young(walk->mm, addr))
492 priv->young = true;
493 *priv->folio_sz = folio_size(folio);
494 folio_put(folio);
495 out:
496 pte_unmap_unlock(pte, ptl);
497 return 0;
498 }
499
500 #ifdef CONFIG_HUGETLB_PAGE
damon_young_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)501 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
502 unsigned long addr, unsigned long end,
503 struct mm_walk *walk)
504 {
505 struct damon_young_walk_private *priv = walk->private;
506 struct hstate *h = hstate_vma(walk->vma);
507 struct folio *folio;
508 spinlock_t *ptl;
509 pte_t entry;
510
511 ptl = huge_pte_lock(h, walk->mm, pte);
512 entry = huge_ptep_get(pte);
513 if (!pte_present(entry))
514 goto out;
515
516 folio = pfn_folio(pte_pfn(entry));
517 folio_get(folio);
518
519 if (pte_young(entry) || !folio_test_idle(folio) ||
520 mmu_notifier_test_young(walk->mm, addr))
521 priv->young = true;
522 *priv->folio_sz = huge_page_size(h);
523
524 folio_put(folio);
525
526 out:
527 spin_unlock(ptl);
528 return 0;
529 }
530 #else
531 #define damon_young_hugetlb_entry NULL
532 #endif /* CONFIG_HUGETLB_PAGE */
533
534 static const struct mm_walk_ops damon_young_ops = {
535 .pmd_entry = damon_young_pmd_entry,
536 .hugetlb_entry = damon_young_hugetlb_entry,
537 .walk_lock = PGWALK_RDLOCK,
538 };
539
damon_va_young(struct mm_struct * mm,unsigned long addr,unsigned long * folio_sz)540 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
541 unsigned long *folio_sz)
542 {
543 struct damon_young_walk_private arg = {
544 .folio_sz = folio_sz,
545 .young = false,
546 };
547
548 mmap_read_lock(mm);
549 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
550 mmap_read_unlock(mm);
551 return arg.young;
552 }
553
554 /*
555 * Check whether the region was accessed after the last preparation
556 *
557 * mm 'mm_struct' for the given virtual address space
558 * r the region to be checked
559 */
__damon_va_check_access(struct mm_struct * mm,struct damon_region * r,bool same_target)560 static void __damon_va_check_access(struct mm_struct *mm,
561 struct damon_region *r, bool same_target)
562 {
563 static unsigned long last_addr;
564 static unsigned long last_folio_sz = PAGE_SIZE;
565 static bool last_accessed;
566
567 /* If the region is in the last checked page, reuse the result */
568 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
569 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
570 if (last_accessed)
571 r->nr_accesses++;
572 return;
573 }
574
575 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
576 if (last_accessed)
577 r->nr_accesses++;
578
579 last_addr = r->sampling_addr;
580 }
581
damon_va_check_accesses(struct damon_ctx * ctx)582 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
583 {
584 struct damon_target *t;
585 struct mm_struct *mm;
586 struct damon_region *r;
587 unsigned int max_nr_accesses = 0;
588 bool same_target;
589
590 damon_for_each_target(t, ctx) {
591 mm = damon_get_mm(t);
592 if (!mm)
593 continue;
594 same_target = false;
595 damon_for_each_region(r, t) {
596 __damon_va_check_access(mm, r, same_target);
597 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
598 same_target = true;
599 }
600 mmput(mm);
601 }
602
603 return max_nr_accesses;
604 }
605
606 /*
607 * Functions for the target validity check and cleanup
608 */
609
damon_va_target_valid(struct damon_target * t)610 static bool damon_va_target_valid(struct damon_target *t)
611 {
612 struct task_struct *task;
613
614 task = damon_get_task_struct(t);
615 if (task) {
616 put_task_struct(task);
617 return true;
618 }
619
620 return false;
621 }
622
623 #ifndef CONFIG_ADVISE_SYSCALLS
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)624 static unsigned long damos_madvise(struct damon_target *target,
625 struct damon_region *r, int behavior)
626 {
627 return 0;
628 }
629 #else
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)630 static unsigned long damos_madvise(struct damon_target *target,
631 struct damon_region *r, int behavior)
632 {
633 struct mm_struct *mm;
634 unsigned long start = PAGE_ALIGN(r->ar.start);
635 unsigned long len = PAGE_ALIGN(damon_sz_region(r));
636 unsigned long applied;
637
638 mm = damon_get_mm(target);
639 if (!mm)
640 return 0;
641
642 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
643 mmput(mm);
644
645 return applied;
646 }
647 #endif /* CONFIG_ADVISE_SYSCALLS */
648
damon_va_apply_scheme(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * scheme)649 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
650 struct damon_target *t, struct damon_region *r,
651 struct damos *scheme)
652 {
653 int madv_action;
654
655 switch (scheme->action) {
656 case DAMOS_WILLNEED:
657 madv_action = MADV_WILLNEED;
658 break;
659 case DAMOS_COLD:
660 madv_action = MADV_COLD;
661 break;
662 case DAMOS_PAGEOUT:
663 madv_action = MADV_PAGEOUT;
664 break;
665 case DAMOS_HUGEPAGE:
666 madv_action = MADV_HUGEPAGE;
667 break;
668 case DAMOS_NOHUGEPAGE:
669 madv_action = MADV_NOHUGEPAGE;
670 break;
671 case DAMOS_STAT:
672 return 0;
673 default:
674 /*
675 * DAMOS actions that are not yet supported by 'vaddr'.
676 */
677 return 0;
678 }
679
680 return damos_madvise(t, r, madv_action);
681 }
682
damon_va_scheme_score(struct damon_ctx * context,struct damon_target * t,struct damon_region * r,struct damos * scheme)683 static int damon_va_scheme_score(struct damon_ctx *context,
684 struct damon_target *t, struct damon_region *r,
685 struct damos *scheme)
686 {
687
688 switch (scheme->action) {
689 case DAMOS_PAGEOUT:
690 return damon_cold_score(context, r, scheme);
691 default:
692 break;
693 }
694
695 return DAMOS_MAX_SCORE;
696 }
697
damon_va_initcall(void)698 static int __init damon_va_initcall(void)
699 {
700 struct damon_operations ops = {
701 .id = DAMON_OPS_VADDR,
702 .init = damon_va_init,
703 .update = damon_va_update,
704 .prepare_access_checks = damon_va_prepare_access_checks,
705 .check_accesses = damon_va_check_accesses,
706 .reset_aggregated = NULL,
707 .target_valid = damon_va_target_valid,
708 .cleanup = NULL,
709 .apply_scheme = damon_va_apply_scheme,
710 .get_scheme_score = damon_va_scheme_score,
711 };
712 /* ops for fixed virtual address ranges */
713 struct damon_operations ops_fvaddr = ops;
714 int err;
715
716 /* Don't set the monitoring target regions for the entire mapping */
717 ops_fvaddr.id = DAMON_OPS_FVADDR;
718 ops_fvaddr.init = NULL;
719 ops_fvaddr.update = NULL;
720
721 err = damon_register_ops(&ops);
722 if (err)
723 return err;
724 return damon_register_ops(&ops_fvaddr);
725 };
726
727 subsys_initcall(damon_va_initcall);
728
729 #include "vaddr-test.h"
730