1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Cadence QSPI Controller
4  *
5  * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6  */
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/mtd/spi-nor.h>
23 #include <linux/of_device.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/timer.h>
31 
32 #define CQSPI_NAME			"cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT		16
34 
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
37 
38 /* Capabilities mask */
39 #define CQSPI_BASE_HWCAPS_MASK					\
40 	(SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST |		\
41 	SNOR_HWCAPS_READ_1_1_2 | SNOR_HWCAPS_READ_1_1_4 |	\
42 	SNOR_HWCAPS_PP)
43 
44 struct cqspi_st;
45 
46 struct cqspi_flash_pdata {
47 	struct spi_nor	nor;
48 	struct cqspi_st	*cqspi;
49 	u32		clk_rate;
50 	u32		read_delay;
51 	u32		tshsl_ns;
52 	u32		tsd2d_ns;
53 	u32		tchsh_ns;
54 	u32		tslch_ns;
55 	u8		inst_width;
56 	u8		addr_width;
57 	u8		data_width;
58 	u8		cs;
59 	bool		registered;
60 	bool		use_direct_mode;
61 };
62 
63 struct cqspi_st {
64 	struct platform_device	*pdev;
65 
66 	struct clk		*clk;
67 	unsigned int		sclk;
68 
69 	void __iomem		*iobase;
70 	void __iomem		*ahb_base;
71 	resource_size_t		ahb_size;
72 	struct completion	transfer_complete;
73 	struct mutex		bus_mutex;
74 
75 	struct dma_chan		*rx_chan;
76 	struct completion	rx_dma_complete;
77 	dma_addr_t		mmap_phys_base;
78 
79 	int			current_cs;
80 	int			current_page_size;
81 	int			current_erase_size;
82 	int			current_addr_width;
83 	unsigned long		master_ref_clk_hz;
84 	bool			is_decoded_cs;
85 	u32			fifo_depth;
86 	u32			fifo_width;
87 	bool			rclk_en;
88 	u32			trigger_address;
89 	u32			wr_delay;
90 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
91 };
92 
93 struct cqspi_driver_platdata {
94 	u32 hwcaps_mask;
95 	u8 quirks;
96 };
97 
98 /* Operation timeout value */
99 #define CQSPI_TIMEOUT_MS			500
100 #define CQSPI_READ_TIMEOUT_MS			10
101 
102 /* Instruction type */
103 #define CQSPI_INST_TYPE_SINGLE			0
104 #define CQSPI_INST_TYPE_DUAL			1
105 #define CQSPI_INST_TYPE_QUAD			2
106 #define CQSPI_INST_TYPE_OCTAL			3
107 
108 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
109 #define CQSPI_DUMMY_BYTES_MAX			4
110 #define CQSPI_DUMMY_CLKS_MAX			31
111 
112 #define CQSPI_STIG_DATA_LEN_MAX			8
113 
114 /* Register map */
115 #define CQSPI_REG_CONFIG			0x00
116 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
117 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
118 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
119 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
120 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
121 #define CQSPI_REG_CONFIG_BAUD_LSB		19
122 #define CQSPI_REG_CONFIG_IDLE_LSB		31
123 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
124 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
125 
126 #define CQSPI_REG_RD_INSTR			0x04
127 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
128 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
129 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
130 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
131 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
132 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
136 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
137 
138 #define CQSPI_REG_WR_INSTR			0x08
139 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
140 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
141 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
142 
143 #define CQSPI_REG_DELAY				0x0C
144 #define CQSPI_REG_DELAY_TSLCH_LSB		0
145 #define CQSPI_REG_DELAY_TCHSH_LSB		8
146 #define CQSPI_REG_DELAY_TSD2D_LSB		16
147 #define CQSPI_REG_DELAY_TSHSL_LSB		24
148 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
149 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
150 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
151 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
152 
153 #define CQSPI_REG_READCAPTURE			0x10
154 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
155 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
156 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
157 
158 #define CQSPI_REG_SIZE				0x14
159 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
160 #define CQSPI_REG_SIZE_PAGE_LSB			4
161 #define CQSPI_REG_SIZE_BLOCK_LSB		16
162 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
163 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
164 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
165 
166 #define CQSPI_REG_SRAMPARTITION			0x18
167 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
168 
169 #define CQSPI_REG_DMA				0x20
170 #define CQSPI_REG_DMA_SINGLE_LSB		0
171 #define CQSPI_REG_DMA_BURST_LSB			8
172 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
173 #define CQSPI_REG_DMA_BURST_MASK		0xFF
174 
175 #define CQSPI_REG_REMAP				0x24
176 #define CQSPI_REG_MODE_BIT			0x28
177 
178 #define CQSPI_REG_SDRAMLEVEL			0x2C
179 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
180 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
181 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
182 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
183 
184 #define CQSPI_REG_IRQSTATUS			0x40
185 #define CQSPI_REG_IRQMASK			0x44
186 
187 #define CQSPI_REG_INDIRECTRD			0x60
188 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
189 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
190 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
191 
192 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
193 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
194 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
195 
196 #define CQSPI_REG_CMDCTRL			0x90
197 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
198 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
209 
210 #define CQSPI_REG_INDIRECTWR			0x70
211 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
212 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
213 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
214 
215 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
216 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
217 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
218 
219 #define CQSPI_REG_CMDADDRESS			0x94
220 #define CQSPI_REG_CMDREADDATALOWER		0xA0
221 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
222 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
223 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
224 
225 /* Interrupt status bits */
226 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
227 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
228 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
229 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
230 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
231 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
232 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
233 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
234 
235 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
236 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
237 					 CQSPI_REG_IRQ_IND_COMP)
238 
239 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
240 					 CQSPI_REG_IRQ_WATERMARK	| \
241 					 CQSPI_REG_IRQ_UNDERFLOW)
242 
243 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
244 
cqspi_wait_for_bit(void __iomem * reg,const u32 mask,bool clr)245 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
246 {
247 	u32 val;
248 
249 	return readl_relaxed_poll_timeout(reg, val,
250 					  (((clr ? ~val : val) & mask) == mask),
251 					  10, CQSPI_TIMEOUT_MS * 1000);
252 }
253 
cqspi_is_idle(struct cqspi_st * cqspi)254 static bool cqspi_is_idle(struct cqspi_st *cqspi)
255 {
256 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
257 
258 	return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
259 }
260 
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)261 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
262 {
263 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
264 
265 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
266 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
267 }
268 
cqspi_irq_handler(int this_irq,void * dev)269 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
270 {
271 	struct cqspi_st *cqspi = dev;
272 	unsigned int irq_status;
273 
274 	/* Read interrupt status */
275 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
276 
277 	/* Clear interrupt */
278 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
279 
280 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
281 
282 	if (irq_status)
283 		complete(&cqspi->transfer_complete);
284 
285 	return IRQ_HANDLED;
286 }
287 
cqspi_calc_rdreg(struct spi_nor * nor,const u8 opcode)288 static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
289 {
290 	struct cqspi_flash_pdata *f_pdata = nor->priv;
291 	u32 rdreg = 0;
292 
293 	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
294 	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
295 	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
296 
297 	return rdreg;
298 }
299 
cqspi_wait_idle(struct cqspi_st * cqspi)300 static int cqspi_wait_idle(struct cqspi_st *cqspi)
301 {
302 	const unsigned int poll_idle_retry = 3;
303 	unsigned int count = 0;
304 	unsigned long timeout;
305 
306 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
307 	while (1) {
308 		/*
309 		 * Read few times in succession to ensure the controller
310 		 * is indeed idle, that is, the bit does not transition
311 		 * low again.
312 		 */
313 		if (cqspi_is_idle(cqspi))
314 			count++;
315 		else
316 			count = 0;
317 
318 		if (count >= poll_idle_retry)
319 			return 0;
320 
321 		if (time_after(jiffies, timeout)) {
322 			/* Timeout, in busy mode. */
323 			dev_err(&cqspi->pdev->dev,
324 				"QSPI is still busy after %dms timeout.\n",
325 				CQSPI_TIMEOUT_MS);
326 			return -ETIMEDOUT;
327 		}
328 
329 		cpu_relax();
330 	}
331 }
332 
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)333 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
334 {
335 	void __iomem *reg_base = cqspi->iobase;
336 	int ret;
337 
338 	/* Write the CMDCTRL without start execution. */
339 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
340 	/* Start execute */
341 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
342 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
343 
344 	/* Polling for completion. */
345 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
346 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
347 	if (ret) {
348 		dev_err(&cqspi->pdev->dev,
349 			"Flash command execution timed out.\n");
350 		return ret;
351 	}
352 
353 	/* Polling QSPI idle status. */
354 	return cqspi_wait_idle(cqspi);
355 }
356 
cqspi_command_read(struct spi_nor * nor,const u8 * txbuf,const unsigned n_tx,u8 * rxbuf,const unsigned n_rx)357 static int cqspi_command_read(struct spi_nor *nor,
358 			      const u8 *txbuf, const unsigned n_tx,
359 			      u8 *rxbuf, const unsigned n_rx)
360 {
361 	struct cqspi_flash_pdata *f_pdata = nor->priv;
362 	struct cqspi_st *cqspi = f_pdata->cqspi;
363 	void __iomem *reg_base = cqspi->iobase;
364 	unsigned int rdreg;
365 	unsigned int reg;
366 	unsigned int read_len;
367 	int status;
368 
369 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
370 		dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
371 			n_rx, rxbuf);
372 		return -EINVAL;
373 	}
374 
375 	reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
376 
377 	rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
378 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
379 
380 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
381 
382 	/* 0 means 1 byte. */
383 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
384 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
385 	status = cqspi_exec_flash_cmd(cqspi, reg);
386 	if (status)
387 		return status;
388 
389 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
390 
391 	/* Put the read value into rx_buf */
392 	read_len = (n_rx > 4) ? 4 : n_rx;
393 	memcpy(rxbuf, &reg, read_len);
394 	rxbuf += read_len;
395 
396 	if (n_rx > 4) {
397 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
398 
399 		read_len = n_rx - read_len;
400 		memcpy(rxbuf, &reg, read_len);
401 	}
402 
403 	return 0;
404 }
405 
cqspi_command_write(struct spi_nor * nor,const u8 opcode,const u8 * txbuf,const unsigned n_tx)406 static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
407 			       const u8 *txbuf, const unsigned n_tx)
408 {
409 	struct cqspi_flash_pdata *f_pdata = nor->priv;
410 	struct cqspi_st *cqspi = f_pdata->cqspi;
411 	void __iomem *reg_base = cqspi->iobase;
412 	unsigned int reg;
413 	unsigned int data;
414 	u32 write_len;
415 	int ret;
416 
417 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
418 		dev_err(nor->dev,
419 			"Invalid input argument, cmdlen %d txbuf 0x%p\n",
420 			n_tx, txbuf);
421 		return -EINVAL;
422 	}
423 
424 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
425 	if (n_tx) {
426 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
427 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
428 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
429 		data = 0;
430 		write_len = (n_tx > 4) ? 4 : n_tx;
431 		memcpy(&data, txbuf, write_len);
432 		txbuf += write_len;
433 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
434 
435 		if (n_tx > 4) {
436 			data = 0;
437 			write_len = n_tx - 4;
438 			memcpy(&data, txbuf, write_len);
439 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
440 		}
441 	}
442 	ret = cqspi_exec_flash_cmd(cqspi, reg);
443 	return ret;
444 }
445 
cqspi_command_write_addr(struct spi_nor * nor,const u8 opcode,const unsigned int addr)446 static int cqspi_command_write_addr(struct spi_nor *nor,
447 				    const u8 opcode, const unsigned int addr)
448 {
449 	struct cqspi_flash_pdata *f_pdata = nor->priv;
450 	struct cqspi_st *cqspi = f_pdata->cqspi;
451 	void __iomem *reg_base = cqspi->iobase;
452 	unsigned int reg;
453 
454 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
455 	reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
456 	reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
457 		<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
458 
459 	writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
460 
461 	return cqspi_exec_flash_cmd(cqspi, reg);
462 }
463 
cqspi_read_setup(struct spi_nor * nor)464 static int cqspi_read_setup(struct spi_nor *nor)
465 {
466 	struct cqspi_flash_pdata *f_pdata = nor->priv;
467 	struct cqspi_st *cqspi = f_pdata->cqspi;
468 	void __iomem *reg_base = cqspi->iobase;
469 	unsigned int dummy_clk = 0;
470 	unsigned int reg;
471 
472 	reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
473 	reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
474 
475 	/* Setup dummy clock cycles */
476 	dummy_clk = nor->read_dummy;
477 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
478 		dummy_clk = CQSPI_DUMMY_CLKS_MAX;
479 
480 	if (dummy_clk / 8) {
481 		reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
482 		/* Set mode bits high to ensure chip doesn't enter XIP */
483 		writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
484 
485 		/* Need to subtract the mode byte (8 clocks). */
486 		if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
487 			dummy_clk -= 8;
488 
489 		if (dummy_clk)
490 			reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
491 			       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
492 	}
493 
494 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
495 
496 	/* Set address width */
497 	reg = readl(reg_base + CQSPI_REG_SIZE);
498 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
499 	reg |= (nor->addr_width - 1);
500 	writel(reg, reg_base + CQSPI_REG_SIZE);
501 	return 0;
502 }
503 
cqspi_indirect_read_execute(struct spi_nor * nor,u8 * rxbuf,loff_t from_addr,const size_t n_rx)504 static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
505 				       loff_t from_addr, const size_t n_rx)
506 {
507 	struct cqspi_flash_pdata *f_pdata = nor->priv;
508 	struct cqspi_st *cqspi = f_pdata->cqspi;
509 	void __iomem *reg_base = cqspi->iobase;
510 	void __iomem *ahb_base = cqspi->ahb_base;
511 	unsigned int remaining = n_rx;
512 	unsigned int mod_bytes = n_rx % 4;
513 	unsigned int bytes_to_read = 0;
514 	u8 *rxbuf_end = rxbuf + n_rx;
515 	int ret = 0;
516 
517 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
518 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
519 
520 	/* Clear all interrupts. */
521 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
522 
523 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
524 
525 	reinit_completion(&cqspi->transfer_complete);
526 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
527 	       reg_base + CQSPI_REG_INDIRECTRD);
528 
529 	while (remaining > 0) {
530 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
531 				msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
532 			ret = -ETIMEDOUT;
533 
534 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
535 
536 		if (ret && bytes_to_read == 0) {
537 			dev_err(nor->dev, "Indirect read timeout, no bytes\n");
538 			goto failrd;
539 		}
540 
541 		while (bytes_to_read != 0) {
542 			unsigned int word_remain = round_down(remaining, 4);
543 
544 			bytes_to_read *= cqspi->fifo_width;
545 			bytes_to_read = bytes_to_read > remaining ?
546 					remaining : bytes_to_read;
547 			bytes_to_read = round_down(bytes_to_read, 4);
548 			/* Read 4 byte word chunks then single bytes */
549 			if (bytes_to_read) {
550 				ioread32_rep(ahb_base, rxbuf,
551 					     (bytes_to_read / 4));
552 			} else if (!word_remain && mod_bytes) {
553 				unsigned int temp = ioread32(ahb_base);
554 
555 				bytes_to_read = mod_bytes;
556 				memcpy(rxbuf, &temp, min((unsigned int)
557 							 (rxbuf_end - rxbuf),
558 							 bytes_to_read));
559 			}
560 			rxbuf += bytes_to_read;
561 			remaining -= bytes_to_read;
562 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
563 		}
564 
565 		if (remaining > 0)
566 			reinit_completion(&cqspi->transfer_complete);
567 	}
568 
569 	/* Check indirect done status */
570 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
571 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
572 	if (ret) {
573 		dev_err(nor->dev,
574 			"Indirect read completion error (%i)\n", ret);
575 		goto failrd;
576 	}
577 
578 	/* Disable interrupt */
579 	writel(0, reg_base + CQSPI_REG_IRQMASK);
580 
581 	/* Clear indirect completion status */
582 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
583 
584 	return 0;
585 
586 failrd:
587 	/* Disable interrupt */
588 	writel(0, reg_base + CQSPI_REG_IRQMASK);
589 
590 	/* Cancel the indirect read */
591 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
592 	       reg_base + CQSPI_REG_INDIRECTRD);
593 	return ret;
594 }
595 
cqspi_write_setup(struct spi_nor * nor)596 static int cqspi_write_setup(struct spi_nor *nor)
597 {
598 	unsigned int reg;
599 	struct cqspi_flash_pdata *f_pdata = nor->priv;
600 	struct cqspi_st *cqspi = f_pdata->cqspi;
601 	void __iomem *reg_base = cqspi->iobase;
602 
603 	/* Set opcode. */
604 	reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
605 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
606 	reg = cqspi_calc_rdreg(nor, nor->program_opcode);
607 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
608 
609 	reg = readl(reg_base + CQSPI_REG_SIZE);
610 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
611 	reg |= (nor->addr_width - 1);
612 	writel(reg, reg_base + CQSPI_REG_SIZE);
613 	return 0;
614 }
615 
cqspi_indirect_write_execute(struct spi_nor * nor,loff_t to_addr,const u8 * txbuf,const size_t n_tx)616 static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
617 					const u8 *txbuf, const size_t n_tx)
618 {
619 	const unsigned int page_size = nor->page_size;
620 	struct cqspi_flash_pdata *f_pdata = nor->priv;
621 	struct cqspi_st *cqspi = f_pdata->cqspi;
622 	void __iomem *reg_base = cqspi->iobase;
623 	unsigned int remaining = n_tx;
624 	unsigned int write_bytes;
625 	int ret;
626 
627 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
628 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
629 
630 	/* Clear all interrupts. */
631 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
632 
633 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
634 
635 	reinit_completion(&cqspi->transfer_complete);
636 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
637 	       reg_base + CQSPI_REG_INDIRECTWR);
638 	/*
639 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
640 	 * Controller programming sequence, couple of cycles of
641 	 * QSPI_REF_CLK delay is required for the above bit to
642 	 * be internally synchronized by the QSPI module. Provide 5
643 	 * cycles of delay.
644 	 */
645 	if (cqspi->wr_delay)
646 		ndelay(cqspi->wr_delay);
647 
648 	while (remaining > 0) {
649 		size_t write_words, mod_bytes;
650 
651 		write_bytes = remaining > page_size ? page_size : remaining;
652 		write_words = write_bytes / 4;
653 		mod_bytes = write_bytes % 4;
654 		/* Write 4 bytes at a time then single bytes. */
655 		if (write_words) {
656 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
657 			txbuf += (write_words * 4);
658 		}
659 		if (mod_bytes) {
660 			unsigned int temp = 0xFFFFFFFF;
661 
662 			memcpy(&temp, txbuf, mod_bytes);
663 			iowrite32(temp, cqspi->ahb_base);
664 			txbuf += mod_bytes;
665 		}
666 
667 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
668 					msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
669 			dev_err(nor->dev, "Indirect write timeout\n");
670 			ret = -ETIMEDOUT;
671 			goto failwr;
672 		}
673 
674 		remaining -= write_bytes;
675 
676 		if (remaining > 0)
677 			reinit_completion(&cqspi->transfer_complete);
678 	}
679 
680 	/* Check indirect done status */
681 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
682 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
683 	if (ret) {
684 		dev_err(nor->dev,
685 			"Indirect write completion error (%i)\n", ret);
686 		goto failwr;
687 	}
688 
689 	/* Disable interrupt. */
690 	writel(0, reg_base + CQSPI_REG_IRQMASK);
691 
692 	/* Clear indirect completion status */
693 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
694 
695 	cqspi_wait_idle(cqspi);
696 
697 	return 0;
698 
699 failwr:
700 	/* Disable interrupt. */
701 	writel(0, reg_base + CQSPI_REG_IRQMASK);
702 
703 	/* Cancel the indirect write */
704 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
705 	       reg_base + CQSPI_REG_INDIRECTWR);
706 	return ret;
707 }
708 
cqspi_chipselect(struct spi_nor * nor)709 static void cqspi_chipselect(struct spi_nor *nor)
710 {
711 	struct cqspi_flash_pdata *f_pdata = nor->priv;
712 	struct cqspi_st *cqspi = f_pdata->cqspi;
713 	void __iomem *reg_base = cqspi->iobase;
714 	unsigned int chip_select = f_pdata->cs;
715 	unsigned int reg;
716 
717 	reg = readl(reg_base + CQSPI_REG_CONFIG);
718 	if (cqspi->is_decoded_cs) {
719 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
720 	} else {
721 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
722 
723 		/* Convert CS if without decoder.
724 		 * CS0 to 4b'1110
725 		 * CS1 to 4b'1101
726 		 * CS2 to 4b'1011
727 		 * CS3 to 4b'0111
728 		 */
729 		chip_select = 0xF & ~(1 << chip_select);
730 	}
731 
732 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
733 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
734 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
735 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
736 	writel(reg, reg_base + CQSPI_REG_CONFIG);
737 }
738 
cqspi_configure_cs_and_sizes(struct spi_nor * nor)739 static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
740 {
741 	struct cqspi_flash_pdata *f_pdata = nor->priv;
742 	struct cqspi_st *cqspi = f_pdata->cqspi;
743 	void __iomem *iobase = cqspi->iobase;
744 	unsigned int reg;
745 
746 	/* configure page size and block size. */
747 	reg = readl(iobase + CQSPI_REG_SIZE);
748 	reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
749 	reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
750 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
751 	reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
752 	reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
753 	reg |= (nor->addr_width - 1);
754 	writel(reg, iobase + CQSPI_REG_SIZE);
755 
756 	/* configure the chip select */
757 	cqspi_chipselect(nor);
758 
759 	/* Store the new configuration of the controller */
760 	cqspi->current_page_size = nor->page_size;
761 	cqspi->current_erase_size = nor->mtd.erasesize;
762 	cqspi->current_addr_width = nor->addr_width;
763 }
764 
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)765 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
766 					   const unsigned int ns_val)
767 {
768 	unsigned int ticks;
769 
770 	ticks = ref_clk_hz / 1000;	/* kHz */
771 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
772 
773 	return ticks;
774 }
775 
cqspi_delay(struct spi_nor * nor)776 static void cqspi_delay(struct spi_nor *nor)
777 {
778 	struct cqspi_flash_pdata *f_pdata = nor->priv;
779 	struct cqspi_st *cqspi = f_pdata->cqspi;
780 	void __iomem *iobase = cqspi->iobase;
781 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
782 	unsigned int tshsl, tchsh, tslch, tsd2d;
783 	unsigned int reg;
784 	unsigned int tsclk;
785 
786 	/* calculate the number of ref ticks for one sclk tick */
787 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
788 
789 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
790 	/* this particular value must be at least one sclk */
791 	if (tshsl < tsclk)
792 		tshsl = tsclk;
793 
794 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
795 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
796 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
797 
798 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
799 	       << CQSPI_REG_DELAY_TSHSL_LSB;
800 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
801 		<< CQSPI_REG_DELAY_TCHSH_LSB;
802 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
803 		<< CQSPI_REG_DELAY_TSLCH_LSB;
804 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
805 		<< CQSPI_REG_DELAY_TSD2D_LSB;
806 	writel(reg, iobase + CQSPI_REG_DELAY);
807 }
808 
cqspi_config_baudrate_div(struct cqspi_st * cqspi)809 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
810 {
811 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
812 	void __iomem *reg_base = cqspi->iobase;
813 	u32 reg, div;
814 
815 	/* Recalculate the baudrate divisor based on QSPI specification. */
816 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
817 
818 	reg = readl(reg_base + CQSPI_REG_CONFIG);
819 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
820 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
821 	writel(reg, reg_base + CQSPI_REG_CONFIG);
822 }
823 
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)824 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
825 				   const bool bypass,
826 				   const unsigned int delay)
827 {
828 	void __iomem *reg_base = cqspi->iobase;
829 	unsigned int reg;
830 
831 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
832 
833 	if (bypass)
834 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
835 	else
836 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
837 
838 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
839 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
840 
841 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
842 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
843 
844 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
845 }
846 
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)847 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
848 {
849 	void __iomem *reg_base = cqspi->iobase;
850 	unsigned int reg;
851 
852 	reg = readl(reg_base + CQSPI_REG_CONFIG);
853 
854 	if (enable)
855 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
856 	else
857 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
858 
859 	writel(reg, reg_base + CQSPI_REG_CONFIG);
860 }
861 
cqspi_configure(struct spi_nor * nor)862 static void cqspi_configure(struct spi_nor *nor)
863 {
864 	struct cqspi_flash_pdata *f_pdata = nor->priv;
865 	struct cqspi_st *cqspi = f_pdata->cqspi;
866 	const unsigned int sclk = f_pdata->clk_rate;
867 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
868 	int switch_ck = (cqspi->sclk != sclk);
869 
870 	if ((cqspi->current_page_size != nor->page_size) ||
871 	    (cqspi->current_erase_size != nor->mtd.erasesize) ||
872 	    (cqspi->current_addr_width != nor->addr_width))
873 		switch_cs = 1;
874 
875 	if (switch_cs || switch_ck)
876 		cqspi_controller_enable(cqspi, 0);
877 
878 	/* Switch chip select. */
879 	if (switch_cs) {
880 		cqspi->current_cs = f_pdata->cs;
881 		cqspi_configure_cs_and_sizes(nor);
882 	}
883 
884 	/* Setup baudrate divisor and delays */
885 	if (switch_ck) {
886 		cqspi->sclk = sclk;
887 		cqspi_config_baudrate_div(cqspi);
888 		cqspi_delay(nor);
889 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
890 				       f_pdata->read_delay);
891 	}
892 
893 	if (switch_cs || switch_ck)
894 		cqspi_controller_enable(cqspi, 1);
895 }
896 
cqspi_set_protocol(struct spi_nor * nor,const int read)897 static int cqspi_set_protocol(struct spi_nor *nor, const int read)
898 {
899 	struct cqspi_flash_pdata *f_pdata = nor->priv;
900 
901 	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
902 	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
903 	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
904 
905 	if (read) {
906 		switch (nor->read_proto) {
907 		case SNOR_PROTO_1_1_1:
908 			f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
909 			break;
910 		case SNOR_PROTO_1_1_2:
911 			f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
912 			break;
913 		case SNOR_PROTO_1_1_4:
914 			f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
915 			break;
916 		case SNOR_PROTO_1_1_8:
917 			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
918 			break;
919 		default:
920 			return -EINVAL;
921 		}
922 	}
923 
924 	cqspi_configure(nor);
925 
926 	return 0;
927 }
928 
cqspi_write(struct spi_nor * nor,loff_t to,size_t len,const u_char * buf)929 static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
930 			   size_t len, const u_char *buf)
931 {
932 	struct cqspi_flash_pdata *f_pdata = nor->priv;
933 	struct cqspi_st *cqspi = f_pdata->cqspi;
934 	int ret;
935 
936 	ret = cqspi_set_protocol(nor, 0);
937 	if (ret)
938 		return ret;
939 
940 	ret = cqspi_write_setup(nor);
941 	if (ret)
942 		return ret;
943 
944 	if (f_pdata->use_direct_mode) {
945 		memcpy_toio(cqspi->ahb_base + to, buf, len);
946 		ret = cqspi_wait_idle(cqspi);
947 	} else {
948 		ret = cqspi_indirect_write_execute(nor, to, buf, len);
949 	}
950 	if (ret)
951 		return ret;
952 
953 	return len;
954 }
955 
cqspi_rx_dma_callback(void * param)956 static void cqspi_rx_dma_callback(void *param)
957 {
958 	struct cqspi_st *cqspi = param;
959 
960 	complete(&cqspi->rx_dma_complete);
961 }
962 
cqspi_direct_read_execute(struct spi_nor * nor,u_char * buf,loff_t from,size_t len)963 static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
964 				     loff_t from, size_t len)
965 {
966 	struct cqspi_flash_pdata *f_pdata = nor->priv;
967 	struct cqspi_st *cqspi = f_pdata->cqspi;
968 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
969 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
970 	int ret = 0;
971 	struct dma_async_tx_descriptor *tx;
972 	dma_cookie_t cookie;
973 	dma_addr_t dma_dst;
974 
975 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
976 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
977 		return 0;
978 	}
979 
980 	dma_dst = dma_map_single(nor->dev, buf, len, DMA_FROM_DEVICE);
981 	if (dma_mapping_error(nor->dev, dma_dst)) {
982 		dev_err(nor->dev, "dma mapping failed\n");
983 		return -ENOMEM;
984 	}
985 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
986 				       len, flags);
987 	if (!tx) {
988 		dev_err(nor->dev, "device_prep_dma_memcpy error\n");
989 		ret = -EIO;
990 		goto err_unmap;
991 	}
992 
993 	tx->callback = cqspi_rx_dma_callback;
994 	tx->callback_param = cqspi;
995 	cookie = tx->tx_submit(tx);
996 	reinit_completion(&cqspi->rx_dma_complete);
997 
998 	ret = dma_submit_error(cookie);
999 	if (ret) {
1000 		dev_err(nor->dev, "dma_submit_error %d\n", cookie);
1001 		ret = -EIO;
1002 		goto err_unmap;
1003 	}
1004 
1005 	dma_async_issue_pending(cqspi->rx_chan);
1006 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1007 					 msecs_to_jiffies(len))) {
1008 		dmaengine_terminate_sync(cqspi->rx_chan);
1009 		dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
1010 		ret = -ETIMEDOUT;
1011 		goto err_unmap;
1012 	}
1013 
1014 err_unmap:
1015 	dma_unmap_single(nor->dev, dma_dst, len, DMA_FROM_DEVICE);
1016 
1017 	return ret;
1018 }
1019 
cqspi_read(struct spi_nor * nor,loff_t from,size_t len,u_char * buf)1020 static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
1021 			  size_t len, u_char *buf)
1022 {
1023 	struct cqspi_flash_pdata *f_pdata = nor->priv;
1024 	int ret;
1025 
1026 	ret = cqspi_set_protocol(nor, 1);
1027 	if (ret)
1028 		return ret;
1029 
1030 	ret = cqspi_read_setup(nor);
1031 	if (ret)
1032 		return ret;
1033 
1034 	if (f_pdata->use_direct_mode)
1035 		ret = cqspi_direct_read_execute(nor, buf, from, len);
1036 	else
1037 		ret = cqspi_indirect_read_execute(nor, buf, from, len);
1038 	if (ret)
1039 		return ret;
1040 
1041 	return len;
1042 }
1043 
cqspi_erase(struct spi_nor * nor,loff_t offs)1044 static int cqspi_erase(struct spi_nor *nor, loff_t offs)
1045 {
1046 	int ret;
1047 
1048 	ret = cqspi_set_protocol(nor, 0);
1049 	if (ret)
1050 		return ret;
1051 
1052 	/* Send write enable, then erase commands. */
1053 	ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
1054 	if (ret)
1055 		return ret;
1056 
1057 	/* Set up command buffer. */
1058 	ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
1059 	if (ret)
1060 		return ret;
1061 
1062 	return 0;
1063 }
1064 
cqspi_prep(struct spi_nor * nor,enum spi_nor_ops ops)1065 static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
1066 {
1067 	struct cqspi_flash_pdata *f_pdata = nor->priv;
1068 	struct cqspi_st *cqspi = f_pdata->cqspi;
1069 
1070 	mutex_lock(&cqspi->bus_mutex);
1071 
1072 	return 0;
1073 }
1074 
cqspi_unprep(struct spi_nor * nor,enum spi_nor_ops ops)1075 static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
1076 {
1077 	struct cqspi_flash_pdata *f_pdata = nor->priv;
1078 	struct cqspi_st *cqspi = f_pdata->cqspi;
1079 
1080 	mutex_unlock(&cqspi->bus_mutex);
1081 }
1082 
cqspi_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)1083 static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1084 {
1085 	int ret;
1086 
1087 	ret = cqspi_set_protocol(nor, 0);
1088 	if (!ret)
1089 		ret = cqspi_command_read(nor, &opcode, 1, buf, len);
1090 
1091 	return ret;
1092 }
1093 
cqspi_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)1094 static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1095 {
1096 	int ret;
1097 
1098 	ret = cqspi_set_protocol(nor, 0);
1099 	if (!ret)
1100 		ret = cqspi_command_write(nor, opcode, buf, len);
1101 
1102 	return ret;
1103 }
1104 
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1105 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1106 				    struct cqspi_flash_pdata *f_pdata,
1107 				    struct device_node *np)
1108 {
1109 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1110 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1111 		return -ENXIO;
1112 	}
1113 
1114 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1115 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1116 		return -ENXIO;
1117 	}
1118 
1119 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1120 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1121 		return -ENXIO;
1122 	}
1123 
1124 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1125 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1126 		return -ENXIO;
1127 	}
1128 
1129 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1130 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1131 		return -ENXIO;
1132 	}
1133 
1134 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1135 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1136 		return -ENXIO;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
cqspi_of_get_pdata(struct platform_device * pdev)1142 static int cqspi_of_get_pdata(struct platform_device *pdev)
1143 {
1144 	struct device_node *np = pdev->dev.of_node;
1145 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1146 
1147 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1148 
1149 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1150 		dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
1151 		return -ENXIO;
1152 	}
1153 
1154 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1155 		dev_err(&pdev->dev, "couldn't determine fifo-width\n");
1156 		return -ENXIO;
1157 	}
1158 
1159 	if (of_property_read_u32(np, "cdns,trigger-address",
1160 				 &cqspi->trigger_address)) {
1161 		dev_err(&pdev->dev, "couldn't determine trigger-address\n");
1162 		return -ENXIO;
1163 	}
1164 
1165 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1166 
1167 	return 0;
1168 }
1169 
cqspi_controller_init(struct cqspi_st * cqspi)1170 static void cqspi_controller_init(struct cqspi_st *cqspi)
1171 {
1172 	u32 reg;
1173 
1174 	cqspi_controller_enable(cqspi, 0);
1175 
1176 	/* Configure the remap address register, no remap */
1177 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1178 
1179 	/* Disable all interrupts. */
1180 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1181 
1182 	/* Configure the SRAM split to 1:1 . */
1183 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1184 
1185 	/* Load indirect trigger address. */
1186 	writel(cqspi->trigger_address,
1187 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1188 
1189 	/* Program read watermark -- 1/2 of the FIFO. */
1190 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1191 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1192 	/* Program write watermark -- 1/8 of the FIFO. */
1193 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1194 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1195 
1196 	/* Enable Direct Access Controller */
1197 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1198 	reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1199 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1200 
1201 	cqspi_controller_enable(cqspi, 1);
1202 }
1203 
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1204 static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1205 {
1206 	dma_cap_mask_t mask;
1207 
1208 	dma_cap_zero(mask);
1209 	dma_cap_set(DMA_MEMCPY, mask);
1210 
1211 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1212 	if (IS_ERR(cqspi->rx_chan)) {
1213 		dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1214 		cqspi->rx_chan = NULL;
1215 	}
1216 	init_completion(&cqspi->rx_dma_complete);
1217 }
1218 
cqspi_setup_flash(struct cqspi_st * cqspi,struct device_node * np)1219 static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
1220 {
1221 	struct platform_device *pdev = cqspi->pdev;
1222 	struct device *dev = &pdev->dev;
1223 	const struct cqspi_driver_platdata *ddata;
1224 	struct spi_nor_hwcaps hwcaps;
1225 	struct cqspi_flash_pdata *f_pdata;
1226 	struct spi_nor *nor;
1227 	struct mtd_info *mtd;
1228 	unsigned int cs;
1229 	int i, ret;
1230 
1231 	ddata = of_device_get_match_data(dev);
1232 	if (!ddata) {
1233 		dev_err(dev, "Couldn't find driver data\n");
1234 		return -EINVAL;
1235 	}
1236 	hwcaps.mask = ddata->hwcaps_mask;
1237 
1238 	/* Get flash device data */
1239 	for_each_available_child_of_node(dev->of_node, np) {
1240 		ret = of_property_read_u32(np, "reg", &cs);
1241 		if (ret) {
1242 			dev_err(dev, "Couldn't determine chip select.\n");
1243 			goto err;
1244 		}
1245 
1246 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1247 			ret = -EINVAL;
1248 			dev_err(dev, "Chip select %d out of range.\n", cs);
1249 			goto err;
1250 		}
1251 
1252 		f_pdata = &cqspi->f_pdata[cs];
1253 		f_pdata->cqspi = cqspi;
1254 		f_pdata->cs = cs;
1255 
1256 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1257 		if (ret)
1258 			goto err;
1259 
1260 		nor = &f_pdata->nor;
1261 		mtd = &nor->mtd;
1262 
1263 		mtd->priv = nor;
1264 
1265 		nor->dev = dev;
1266 		spi_nor_set_flash_node(nor, np);
1267 		nor->priv = f_pdata;
1268 
1269 		nor->read_reg = cqspi_read_reg;
1270 		nor->write_reg = cqspi_write_reg;
1271 		nor->read = cqspi_read;
1272 		nor->write = cqspi_write;
1273 		nor->erase = cqspi_erase;
1274 		nor->prepare = cqspi_prep;
1275 		nor->unprepare = cqspi_unprep;
1276 
1277 		mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
1278 					   dev_name(dev), cs);
1279 		if (!mtd->name) {
1280 			ret = -ENOMEM;
1281 			goto err;
1282 		}
1283 
1284 		ret = spi_nor_scan(nor, NULL, &hwcaps);
1285 		if (ret)
1286 			goto err;
1287 
1288 		ret = mtd_device_register(mtd, NULL, 0);
1289 		if (ret)
1290 			goto err;
1291 
1292 		f_pdata->registered = true;
1293 
1294 		if (mtd->size <= cqspi->ahb_size) {
1295 			f_pdata->use_direct_mode = true;
1296 			dev_dbg(nor->dev, "using direct mode for %s\n",
1297 				mtd->name);
1298 
1299 			if (!cqspi->rx_chan)
1300 				cqspi_request_mmap_dma(cqspi);
1301 		}
1302 	}
1303 
1304 	return 0;
1305 
1306 err:
1307 	for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1308 		if (cqspi->f_pdata[i].registered)
1309 			mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1310 	return ret;
1311 }
1312 
cqspi_probe(struct platform_device * pdev)1313 static int cqspi_probe(struct platform_device *pdev)
1314 {
1315 	struct device_node *np = pdev->dev.of_node;
1316 	struct device *dev = &pdev->dev;
1317 	struct cqspi_st *cqspi;
1318 	struct resource *res;
1319 	struct resource *res_ahb;
1320 	struct reset_control *rstc, *rstc_ocp;
1321 	const struct cqspi_driver_platdata *ddata;
1322 	int ret;
1323 	int irq;
1324 
1325 	cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
1326 	if (!cqspi)
1327 		return -ENOMEM;
1328 
1329 	mutex_init(&cqspi->bus_mutex);
1330 	cqspi->pdev = pdev;
1331 	platform_set_drvdata(pdev, cqspi);
1332 
1333 	/* Obtain configuration from OF. */
1334 	ret = cqspi_of_get_pdata(pdev);
1335 	if (ret) {
1336 		dev_err(dev, "Cannot get mandatory OF data.\n");
1337 		return -ENODEV;
1338 	}
1339 
1340 	/* Obtain QSPI clock. */
1341 	cqspi->clk = devm_clk_get(dev, NULL);
1342 	if (IS_ERR(cqspi->clk)) {
1343 		dev_err(dev, "Cannot claim QSPI clock.\n");
1344 		return PTR_ERR(cqspi->clk);
1345 	}
1346 
1347 	/* Obtain and remap controller address. */
1348 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1349 	cqspi->iobase = devm_ioremap_resource(dev, res);
1350 	if (IS_ERR(cqspi->iobase)) {
1351 		dev_err(dev, "Cannot remap controller address.\n");
1352 		return PTR_ERR(cqspi->iobase);
1353 	}
1354 
1355 	/* Obtain and remap AHB address. */
1356 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1357 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1358 	if (IS_ERR(cqspi->ahb_base)) {
1359 		dev_err(dev, "Cannot remap AHB address.\n");
1360 		return PTR_ERR(cqspi->ahb_base);
1361 	}
1362 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1363 	cqspi->ahb_size = resource_size(res_ahb);
1364 
1365 	init_completion(&cqspi->transfer_complete);
1366 
1367 	/* Obtain IRQ line. */
1368 	irq = platform_get_irq(pdev, 0);
1369 	if (irq < 0) {
1370 		dev_err(dev, "Cannot obtain IRQ.\n");
1371 		return -ENXIO;
1372 	}
1373 
1374 	pm_runtime_enable(dev);
1375 	ret = pm_runtime_get_sync(dev);
1376 	if (ret < 0) {
1377 		pm_runtime_put_noidle(dev);
1378 		return ret;
1379 	}
1380 
1381 	ret = clk_prepare_enable(cqspi->clk);
1382 	if (ret) {
1383 		dev_err(dev, "Cannot enable QSPI clock.\n");
1384 		goto probe_clk_failed;
1385 	}
1386 
1387 	/* Obtain QSPI reset control */
1388 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1389 	if (IS_ERR(rstc)) {
1390 		dev_err(dev, "Cannot get QSPI reset.\n");
1391 		return PTR_ERR(rstc);
1392 	}
1393 
1394 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1395 	if (IS_ERR(rstc_ocp)) {
1396 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1397 		return PTR_ERR(rstc_ocp);
1398 	}
1399 
1400 	reset_control_assert(rstc);
1401 	reset_control_deassert(rstc);
1402 
1403 	reset_control_assert(rstc_ocp);
1404 	reset_control_deassert(rstc_ocp);
1405 
1406 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1407 	ddata  = of_device_get_match_data(dev);
1408 	if (ddata && (ddata->quirks & CQSPI_NEEDS_WR_DELAY))
1409 		cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1410 						   cqspi->master_ref_clk_hz);
1411 
1412 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1413 			       pdev->name, cqspi);
1414 	if (ret) {
1415 		dev_err(dev, "Cannot request IRQ.\n");
1416 		goto probe_irq_failed;
1417 	}
1418 
1419 	cqspi_wait_idle(cqspi);
1420 	cqspi_controller_init(cqspi);
1421 	cqspi->current_cs = -1;
1422 	cqspi->sclk = 0;
1423 
1424 	ret = cqspi_setup_flash(cqspi, np);
1425 	if (ret) {
1426 		dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
1427 		goto probe_setup_failed;
1428 	}
1429 
1430 	return ret;
1431 probe_setup_failed:
1432 	cqspi_controller_enable(cqspi, 0);
1433 probe_irq_failed:
1434 	clk_disable_unprepare(cqspi->clk);
1435 probe_clk_failed:
1436 	pm_runtime_put_sync(dev);
1437 	pm_runtime_disable(dev);
1438 	return ret;
1439 }
1440 
cqspi_remove(struct platform_device * pdev)1441 static int cqspi_remove(struct platform_device *pdev)
1442 {
1443 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1444 	int i;
1445 
1446 	for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1447 		if (cqspi->f_pdata[i].registered)
1448 			mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1449 
1450 	cqspi_controller_enable(cqspi, 0);
1451 
1452 	if (cqspi->rx_chan)
1453 		dma_release_channel(cqspi->rx_chan);
1454 
1455 	clk_disable_unprepare(cqspi->clk);
1456 
1457 	pm_runtime_put_sync(&pdev->dev);
1458 	pm_runtime_disable(&pdev->dev);
1459 
1460 	return 0;
1461 }
1462 
1463 #ifdef CONFIG_PM_SLEEP
cqspi_suspend(struct device * dev)1464 static int cqspi_suspend(struct device *dev)
1465 {
1466 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1467 
1468 	cqspi_controller_enable(cqspi, 0);
1469 	return 0;
1470 }
1471 
cqspi_resume(struct device * dev)1472 static int cqspi_resume(struct device *dev)
1473 {
1474 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1475 
1476 	cqspi_controller_enable(cqspi, 1);
1477 	return 0;
1478 }
1479 
1480 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1481 	.suspend = cqspi_suspend,
1482 	.resume = cqspi_resume,
1483 };
1484 
1485 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1486 #else
1487 #define CQSPI_DEV_PM_OPS	NULL
1488 #endif
1489 
1490 static const struct cqspi_driver_platdata cdns_qspi = {
1491 	.hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1492 };
1493 
1494 static const struct cqspi_driver_platdata k2g_qspi = {
1495 	.hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1496 	.quirks = CQSPI_NEEDS_WR_DELAY,
1497 };
1498 
1499 static const struct cqspi_driver_platdata am654_ospi = {
1500 	.hwcaps_mask = CQSPI_BASE_HWCAPS_MASK | SNOR_HWCAPS_READ_1_1_8,
1501 	.quirks = CQSPI_NEEDS_WR_DELAY,
1502 };
1503 
1504 static const struct of_device_id cqspi_dt_ids[] = {
1505 	{
1506 		.compatible = "cdns,qspi-nor",
1507 		.data = &cdns_qspi,
1508 	},
1509 	{
1510 		.compatible = "ti,k2g-qspi",
1511 		.data = &k2g_qspi,
1512 	},
1513 	{
1514 		.compatible = "ti,am654-ospi",
1515 		.data = &am654_ospi,
1516 	},
1517 	{ /* end of table */ }
1518 };
1519 
1520 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1521 
1522 static struct platform_driver cqspi_platform_driver = {
1523 	.probe = cqspi_probe,
1524 	.remove = cqspi_remove,
1525 	.driver = {
1526 		.name = CQSPI_NAME,
1527 		.pm = CQSPI_DEV_PM_OPS,
1528 		.of_match_table = cqspi_dt_ids,
1529 	},
1530 };
1531 
1532 module_platform_driver(cqspi_platform_driver);
1533 
1534 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1535 MODULE_LICENSE("GPL v2");
1536 MODULE_ALIAS("platform:" CQSPI_NAME);
1537 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1538 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1539