1 // SPDX-License-Identifier: GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5 * Synopsys DesignWare AXI DMA Controller driver.
6 *
7 * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8 */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/reset.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31
32 #include "dw-axi-dmac.h"
33 #include "../dmaengine.h"
34 #include "../virt-dma.h"
35
36 /*
37 * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
38 * master data bus width up to 512 bits (for both AXI master interfaces), but
39 * it depends on IP block configuration.
40 */
41 #define AXI_DMA_BUSWIDTHS \
42 (DMA_SLAVE_BUSWIDTH_1_BYTE | \
43 DMA_SLAVE_BUSWIDTH_2_BYTES | \
44 DMA_SLAVE_BUSWIDTH_4_BYTES | \
45 DMA_SLAVE_BUSWIDTH_8_BYTES | \
46 DMA_SLAVE_BUSWIDTH_16_BYTES | \
47 DMA_SLAVE_BUSWIDTH_32_BYTES | \
48 DMA_SLAVE_BUSWIDTH_64_BYTES)
49
50 #define AXI_DMA_FLAG_HAS_APB_REGS BIT(0)
51 #define AXI_DMA_FLAG_HAS_RESETS BIT(1)
52 #define AXI_DMA_FLAG_USE_CFG2 BIT(2)
53
54 static inline void
axi_dma_iowrite32(struct axi_dma_chip * chip,u32 reg,u32 val)55 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
56 {
57 iowrite32(val, chip->regs + reg);
58 }
59
axi_dma_ioread32(struct axi_dma_chip * chip,u32 reg)60 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
61 {
62 return ioread32(chip->regs + reg);
63 }
64
65 static inline void
axi_chan_iowrite32(struct axi_dma_chan * chan,u32 reg,u32 val)66 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
67 {
68 iowrite32(val, chan->chan_regs + reg);
69 }
70
axi_chan_ioread32(struct axi_dma_chan * chan,u32 reg)71 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
72 {
73 return ioread32(chan->chan_regs + reg);
74 }
75
76 static inline void
axi_chan_iowrite64(struct axi_dma_chan * chan,u32 reg,u64 val)77 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
78 {
79 /*
80 * We split one 64 bit write for two 32 bit write as some HW doesn't
81 * support 64 bit access.
82 */
83 iowrite32(lower_32_bits(val), chan->chan_regs + reg);
84 iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
85 }
86
axi_chan_config_write(struct axi_dma_chan * chan,struct axi_dma_chan_config * config)87 static inline void axi_chan_config_write(struct axi_dma_chan *chan,
88 struct axi_dma_chan_config *config)
89 {
90 u32 cfg_lo, cfg_hi;
91
92 cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS |
93 config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
94 if (chan->chip->dw->hdata->reg_map_8_channels &&
95 !chan->chip->dw->hdata->use_cfg2) {
96 cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS |
97 config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS |
98 config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS |
99 config->src_per << CH_CFG_H_SRC_PER_POS |
100 config->dst_per << CH_CFG_H_DST_PER_POS |
101 config->prior << CH_CFG_H_PRIORITY_POS;
102 } else {
103 cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS |
104 config->dst_per << CH_CFG2_L_DST_PER_POS;
105 cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS |
106 config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS |
107 config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS |
108 config->prior << CH_CFG2_H_PRIORITY_POS;
109 }
110 axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo);
111 axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi);
112 }
113
axi_dma_disable(struct axi_dma_chip * chip)114 static inline void axi_dma_disable(struct axi_dma_chip *chip)
115 {
116 u32 val;
117
118 val = axi_dma_ioread32(chip, DMAC_CFG);
119 val &= ~DMAC_EN_MASK;
120 axi_dma_iowrite32(chip, DMAC_CFG, val);
121 }
122
axi_dma_enable(struct axi_dma_chip * chip)123 static inline void axi_dma_enable(struct axi_dma_chip *chip)
124 {
125 u32 val;
126
127 val = axi_dma_ioread32(chip, DMAC_CFG);
128 val |= DMAC_EN_MASK;
129 axi_dma_iowrite32(chip, DMAC_CFG, val);
130 }
131
axi_dma_irq_disable(struct axi_dma_chip * chip)132 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
133 {
134 u32 val;
135
136 val = axi_dma_ioread32(chip, DMAC_CFG);
137 val &= ~INT_EN_MASK;
138 axi_dma_iowrite32(chip, DMAC_CFG, val);
139 }
140
axi_dma_irq_enable(struct axi_dma_chip * chip)141 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
142 {
143 u32 val;
144
145 val = axi_dma_ioread32(chip, DMAC_CFG);
146 val |= INT_EN_MASK;
147 axi_dma_iowrite32(chip, DMAC_CFG, val);
148 }
149
axi_chan_irq_disable(struct axi_dma_chan * chan,u32 irq_mask)150 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
151 {
152 u32 val;
153
154 if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
155 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
156 } else {
157 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
158 val &= ~irq_mask;
159 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
160 }
161 }
162
axi_chan_irq_set(struct axi_dma_chan * chan,u32 irq_mask)163 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
164 {
165 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
166 }
167
axi_chan_irq_sig_set(struct axi_dma_chan * chan,u32 irq_mask)168 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
169 {
170 axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
171 }
172
axi_chan_irq_clear(struct axi_dma_chan * chan,u32 irq_mask)173 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
174 {
175 axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
176 }
177
axi_chan_irq_read(struct axi_dma_chan * chan)178 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
179 {
180 return axi_chan_ioread32(chan, CH_INTSTATUS);
181 }
182
axi_chan_disable(struct axi_dma_chan * chan)183 static inline void axi_chan_disable(struct axi_dma_chan *chan)
184 {
185 u32 val;
186
187 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
188 val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
189 if (chan->chip->dw->hdata->reg_map_8_channels)
190 val |= BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
191 else
192 val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
193 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
194 }
195
axi_chan_enable(struct axi_dma_chan * chan)196 static inline void axi_chan_enable(struct axi_dma_chan *chan)
197 {
198 u32 val;
199
200 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
201 if (chan->chip->dw->hdata->reg_map_8_channels)
202 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
203 BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
204 else
205 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
206 BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
207 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
208 }
209
axi_chan_is_hw_enable(struct axi_dma_chan * chan)210 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
211 {
212 u32 val;
213
214 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
215
216 return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
217 }
218
axi_dma_hw_init(struct axi_dma_chip * chip)219 static void axi_dma_hw_init(struct axi_dma_chip *chip)
220 {
221 int ret;
222 u32 i;
223
224 for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
225 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
226 axi_chan_disable(&chip->dw->chan[i]);
227 }
228 ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64));
229 if (ret)
230 dev_warn(chip->dev, "Unable to set coherent mask\n");
231 }
232
axi_chan_get_xfer_width(struct axi_dma_chan * chan,dma_addr_t src,dma_addr_t dst,size_t len)233 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
234 dma_addr_t dst, size_t len)
235 {
236 u32 max_width = chan->chip->dw->hdata->m_data_width;
237
238 return __ffs(src | dst | len | BIT(max_width));
239 }
240
axi_chan_name(struct axi_dma_chan * chan)241 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
242 {
243 return dma_chan_name(&chan->vc.chan);
244 }
245
axi_desc_alloc(u32 num)246 static struct axi_dma_desc *axi_desc_alloc(u32 num)
247 {
248 struct axi_dma_desc *desc;
249
250 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
251 if (!desc)
252 return NULL;
253
254 desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
255 if (!desc->hw_desc) {
256 kfree(desc);
257 return NULL;
258 }
259
260 return desc;
261 }
262
axi_desc_get(struct axi_dma_chan * chan,dma_addr_t * addr)263 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
264 dma_addr_t *addr)
265 {
266 struct axi_dma_lli *lli;
267 dma_addr_t phys;
268
269 lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
270 if (unlikely(!lli)) {
271 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
272 axi_chan_name(chan));
273 return NULL;
274 }
275
276 atomic_inc(&chan->descs_allocated);
277 *addr = phys;
278
279 return lli;
280 }
281
axi_desc_put(struct axi_dma_desc * desc)282 static void axi_desc_put(struct axi_dma_desc *desc)
283 {
284 struct axi_dma_chan *chan = desc->chan;
285 int count = atomic_read(&chan->descs_allocated);
286 struct axi_dma_hw_desc *hw_desc;
287 int descs_put;
288
289 for (descs_put = 0; descs_put < count; descs_put++) {
290 hw_desc = &desc->hw_desc[descs_put];
291 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
292 }
293
294 kfree(desc->hw_desc);
295 kfree(desc);
296 atomic_sub(descs_put, &chan->descs_allocated);
297 dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
298 axi_chan_name(chan), descs_put,
299 atomic_read(&chan->descs_allocated));
300 }
301
vchan_desc_put(struct virt_dma_desc * vdesc)302 static void vchan_desc_put(struct virt_dma_desc *vdesc)
303 {
304 axi_desc_put(vd_to_axi_desc(vdesc));
305 }
306
307 static enum dma_status
dma_chan_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)308 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
309 struct dma_tx_state *txstate)
310 {
311 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
312 struct virt_dma_desc *vdesc;
313 enum dma_status status;
314 u32 completed_length;
315 unsigned long flags;
316 u32 completed_blocks;
317 size_t bytes = 0;
318 u32 length;
319 u32 len;
320
321 status = dma_cookie_status(dchan, cookie, txstate);
322 if (status == DMA_COMPLETE || !txstate)
323 return status;
324
325 spin_lock_irqsave(&chan->vc.lock, flags);
326
327 vdesc = vchan_find_desc(&chan->vc, cookie);
328 if (vdesc) {
329 length = vd_to_axi_desc(vdesc)->length;
330 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
331 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
332 completed_length = completed_blocks * len;
333 bytes = length - completed_length;
334 }
335
336 spin_unlock_irqrestore(&chan->vc.lock, flags);
337 dma_set_residue(txstate, bytes);
338
339 return status;
340 }
341
write_desc_llp(struct axi_dma_hw_desc * desc,dma_addr_t adr)342 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
343 {
344 desc->lli->llp = cpu_to_le64(adr);
345 }
346
write_chan_llp(struct axi_dma_chan * chan,dma_addr_t adr)347 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
348 {
349 axi_chan_iowrite64(chan, CH_LLP, adr);
350 }
351
dw_axi_dma_set_byte_halfword(struct axi_dma_chan * chan,bool set)352 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
353 {
354 u32 offset = DMAC_APB_BYTE_WR_CH_EN;
355 u32 reg_width, val;
356
357 if (!chan->chip->apb_regs) {
358 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
359 return;
360 }
361
362 reg_width = __ffs(chan->config.dst_addr_width);
363 if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
364 offset = DMAC_APB_HALFWORD_WR_CH_EN;
365
366 val = ioread32(chan->chip->apb_regs + offset);
367
368 if (set)
369 val |= BIT(chan->id);
370 else
371 val &= ~BIT(chan->id);
372
373 iowrite32(val, chan->chip->apb_regs + offset);
374 }
375 /* Called in chan locked context */
axi_chan_block_xfer_start(struct axi_dma_chan * chan,struct axi_dma_desc * first)376 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
377 struct axi_dma_desc *first)
378 {
379 u32 priority = chan->chip->dw->hdata->priority[chan->id];
380 struct axi_dma_chan_config config = {};
381 u32 irq_mask;
382 u8 lms = 0; /* Select AXI0 master for LLI fetching */
383
384 if (unlikely(axi_chan_is_hw_enable(chan))) {
385 dev_err(chan2dev(chan), "%s is non-idle!\n",
386 axi_chan_name(chan));
387
388 return;
389 }
390
391 axi_dma_enable(chan->chip);
392
393 config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
394 config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
395 config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC;
396 config.prior = priority;
397 config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW;
398 config.hs_sel_src = DWAXIDMAC_HS_SEL_HW;
399 switch (chan->direction) {
400 case DMA_MEM_TO_DEV:
401 dw_axi_dma_set_byte_halfword(chan, true);
402 config.tt_fc = chan->config.device_fc ?
403 DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
404 DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC;
405 if (chan->chip->apb_regs)
406 config.dst_per = chan->id;
407 else
408 config.dst_per = chan->hw_handshake_num;
409 break;
410 case DMA_DEV_TO_MEM:
411 config.tt_fc = chan->config.device_fc ?
412 DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
413 DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC;
414 if (chan->chip->apb_regs)
415 config.src_per = chan->id;
416 else
417 config.src_per = chan->hw_handshake_num;
418 break;
419 default:
420 break;
421 }
422 axi_chan_config_write(chan, &config);
423
424 write_chan_llp(chan, first->hw_desc[0].llp | lms);
425
426 irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
427 axi_chan_irq_sig_set(chan, irq_mask);
428
429 /* Generate 'suspend' status but don't generate interrupt */
430 irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
431 axi_chan_irq_set(chan, irq_mask);
432
433 axi_chan_enable(chan);
434 }
435
axi_chan_start_first_queued(struct axi_dma_chan * chan)436 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
437 {
438 struct axi_dma_desc *desc;
439 struct virt_dma_desc *vd;
440
441 vd = vchan_next_desc(&chan->vc);
442 if (!vd)
443 return;
444
445 desc = vd_to_axi_desc(vd);
446 dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
447 vd->tx.cookie);
448 axi_chan_block_xfer_start(chan, desc);
449 }
450
dma_chan_issue_pending(struct dma_chan * dchan)451 static void dma_chan_issue_pending(struct dma_chan *dchan)
452 {
453 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
454 unsigned long flags;
455
456 spin_lock_irqsave(&chan->vc.lock, flags);
457 if (vchan_issue_pending(&chan->vc))
458 axi_chan_start_first_queued(chan);
459 spin_unlock_irqrestore(&chan->vc.lock, flags);
460 }
461
dw_axi_dma_synchronize(struct dma_chan * dchan)462 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
463 {
464 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
465
466 vchan_synchronize(&chan->vc);
467 }
468
dma_chan_alloc_chan_resources(struct dma_chan * dchan)469 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
470 {
471 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
472
473 /* ASSERT: channel is idle */
474 if (axi_chan_is_hw_enable(chan)) {
475 dev_err(chan2dev(chan), "%s is non-idle!\n",
476 axi_chan_name(chan));
477 return -EBUSY;
478 }
479
480 /* LLI address must be aligned to a 64-byte boundary */
481 chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
482 chan->chip->dev,
483 sizeof(struct axi_dma_lli),
484 64, 0);
485 if (!chan->desc_pool) {
486 dev_err(chan2dev(chan), "No memory for descriptors\n");
487 return -ENOMEM;
488 }
489 dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
490
491 pm_runtime_get(chan->chip->dev);
492
493 return 0;
494 }
495
dma_chan_free_chan_resources(struct dma_chan * dchan)496 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
497 {
498 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
499
500 /* ASSERT: channel is idle */
501 if (axi_chan_is_hw_enable(chan))
502 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
503 axi_chan_name(chan));
504
505 axi_chan_disable(chan);
506 axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
507
508 vchan_free_chan_resources(&chan->vc);
509
510 dma_pool_destroy(chan->desc_pool);
511 chan->desc_pool = NULL;
512 dev_vdbg(dchan2dev(dchan),
513 "%s: free resources, descriptor still allocated: %u\n",
514 axi_chan_name(chan), atomic_read(&chan->descs_allocated));
515
516 pm_runtime_put(chan->chip->dev);
517 }
518
dw_axi_dma_set_hw_channel(struct axi_dma_chan * chan,bool set)519 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
520 {
521 struct axi_dma_chip *chip = chan->chip;
522 unsigned long reg_value, val;
523
524 if (!chip->apb_regs) {
525 dev_err(chip->dev, "apb_regs not initialized\n");
526 return;
527 }
528
529 /*
530 * An unused DMA channel has a default value of 0x3F.
531 * Lock the DMA channel by assign a handshake number to the channel.
532 * Unlock the DMA channel by assign 0x3F to the channel.
533 */
534 if (set)
535 val = chan->hw_handshake_num;
536 else
537 val = UNUSED_CHANNEL;
538
539 reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
540
541 /* Channel is already allocated, set handshake as per channel ID */
542 /* 64 bit write should handle for 8 channels */
543
544 reg_value &= ~(DMA_APB_HS_SEL_MASK <<
545 (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
546 reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
547 lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
548
549 return;
550 }
551
552 /*
553 * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
554 * as 1, it understands that the current block is the final block in the
555 * transfer and completes the DMA transfer operation at the end of current
556 * block transfer.
557 */
set_desc_last(struct axi_dma_hw_desc * desc)558 static void set_desc_last(struct axi_dma_hw_desc *desc)
559 {
560 u32 val;
561
562 val = le32_to_cpu(desc->lli->ctl_hi);
563 val |= CH_CTL_H_LLI_LAST;
564 desc->lli->ctl_hi = cpu_to_le32(val);
565 }
566
write_desc_sar(struct axi_dma_hw_desc * desc,dma_addr_t adr)567 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
568 {
569 desc->lli->sar = cpu_to_le64(adr);
570 }
571
write_desc_dar(struct axi_dma_hw_desc * desc,dma_addr_t adr)572 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
573 {
574 desc->lli->dar = cpu_to_le64(adr);
575 }
576
set_desc_src_master(struct axi_dma_hw_desc * desc)577 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
578 {
579 u32 val;
580
581 /* Select AXI0 for source master */
582 val = le32_to_cpu(desc->lli->ctl_lo);
583 val &= ~CH_CTL_L_SRC_MAST;
584 desc->lli->ctl_lo = cpu_to_le32(val);
585 }
586
set_desc_dest_master(struct axi_dma_hw_desc * hw_desc,struct axi_dma_desc * desc)587 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
588 struct axi_dma_desc *desc)
589 {
590 u32 val;
591
592 /* Select AXI1 for source master if available */
593 val = le32_to_cpu(hw_desc->lli->ctl_lo);
594 if (desc->chan->chip->dw->hdata->nr_masters > 1)
595 val |= CH_CTL_L_DST_MAST;
596 else
597 val &= ~CH_CTL_L_DST_MAST;
598
599 hw_desc->lli->ctl_lo = cpu_to_le32(val);
600 }
601
dw_axi_dma_set_hw_desc(struct axi_dma_chan * chan,struct axi_dma_hw_desc * hw_desc,dma_addr_t mem_addr,size_t len)602 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
603 struct axi_dma_hw_desc *hw_desc,
604 dma_addr_t mem_addr, size_t len)
605 {
606 unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
607 unsigned int reg_width;
608 unsigned int mem_width;
609 dma_addr_t device_addr;
610 size_t axi_block_ts;
611 size_t block_ts;
612 u32 ctllo, ctlhi;
613 u32 burst_len;
614
615 axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
616
617 mem_width = __ffs(data_width | mem_addr | len);
618 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
619 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
620
621 if (!IS_ALIGNED(mem_addr, 4)) {
622 dev_err(chan->chip->dev, "invalid buffer alignment\n");
623 return -EINVAL;
624 }
625
626 switch (chan->direction) {
627 case DMA_MEM_TO_DEV:
628 reg_width = __ffs(chan->config.dst_addr_width);
629 device_addr = chan->config.dst_addr;
630 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
631 mem_width << CH_CTL_L_SRC_WIDTH_POS |
632 DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
633 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
634 block_ts = len >> mem_width;
635 break;
636 case DMA_DEV_TO_MEM:
637 reg_width = __ffs(chan->config.src_addr_width);
638 device_addr = chan->config.src_addr;
639 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
640 mem_width << CH_CTL_L_DST_WIDTH_POS |
641 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
642 DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
643 block_ts = len >> reg_width;
644 break;
645 default:
646 return -EINVAL;
647 }
648
649 if (block_ts > axi_block_ts)
650 return -EINVAL;
651
652 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
653 if (unlikely(!hw_desc->lli))
654 return -ENOMEM;
655
656 ctlhi = CH_CTL_H_LLI_VALID;
657
658 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
659 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
660 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
661 burst_len << CH_CTL_H_ARLEN_POS |
662 burst_len << CH_CTL_H_AWLEN_POS;
663 }
664
665 hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
666
667 if (chan->direction == DMA_MEM_TO_DEV) {
668 write_desc_sar(hw_desc, mem_addr);
669 write_desc_dar(hw_desc, device_addr);
670 } else {
671 write_desc_sar(hw_desc, device_addr);
672 write_desc_dar(hw_desc, mem_addr);
673 }
674
675 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
676
677 ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
678 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
679 hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
680
681 set_desc_src_master(hw_desc);
682
683 hw_desc->len = len;
684 return 0;
685 }
686
calculate_block_len(struct axi_dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,enum dma_transfer_direction direction)687 static size_t calculate_block_len(struct axi_dma_chan *chan,
688 dma_addr_t dma_addr, size_t buf_len,
689 enum dma_transfer_direction direction)
690 {
691 u32 data_width, reg_width, mem_width;
692 size_t axi_block_ts, block_len;
693
694 axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
695
696 switch (direction) {
697 case DMA_MEM_TO_DEV:
698 data_width = BIT(chan->chip->dw->hdata->m_data_width);
699 mem_width = __ffs(data_width | dma_addr | buf_len);
700 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
701 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
702
703 block_len = axi_block_ts << mem_width;
704 break;
705 case DMA_DEV_TO_MEM:
706 reg_width = __ffs(chan->config.src_addr_width);
707 block_len = axi_block_ts << reg_width;
708 break;
709 default:
710 block_len = 0;
711 }
712
713 return block_len;
714 }
715
716 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_cyclic(struct dma_chan * dchan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)717 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
718 size_t buf_len, size_t period_len,
719 enum dma_transfer_direction direction,
720 unsigned long flags)
721 {
722 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
723 struct axi_dma_hw_desc *hw_desc = NULL;
724 struct axi_dma_desc *desc = NULL;
725 dma_addr_t src_addr = dma_addr;
726 u32 num_periods, num_segments;
727 size_t axi_block_len;
728 u32 total_segments;
729 u32 segment_len;
730 unsigned int i;
731 int status;
732 u64 llp = 0;
733 u8 lms = 0; /* Select AXI0 master for LLI fetching */
734
735 num_periods = buf_len / period_len;
736
737 axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
738 if (axi_block_len == 0)
739 return NULL;
740
741 num_segments = DIV_ROUND_UP(period_len, axi_block_len);
742 segment_len = DIV_ROUND_UP(period_len, num_segments);
743
744 total_segments = num_periods * num_segments;
745
746 desc = axi_desc_alloc(total_segments);
747 if (unlikely(!desc))
748 goto err_desc_get;
749
750 chan->direction = direction;
751 desc->chan = chan;
752 chan->cyclic = true;
753 desc->length = 0;
754 desc->period_len = period_len;
755
756 for (i = 0; i < total_segments; i++) {
757 hw_desc = &desc->hw_desc[i];
758
759 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
760 segment_len);
761 if (status < 0)
762 goto err_desc_get;
763
764 desc->length += hw_desc->len;
765 /* Set end-of-link to the linked descriptor, so that cyclic
766 * callback function can be triggered during interrupt.
767 */
768 set_desc_last(hw_desc);
769
770 src_addr += segment_len;
771 }
772
773 llp = desc->hw_desc[0].llp;
774
775 /* Managed transfer list */
776 do {
777 hw_desc = &desc->hw_desc[--total_segments];
778 write_desc_llp(hw_desc, llp | lms);
779 llp = hw_desc->llp;
780 } while (total_segments);
781
782 dw_axi_dma_set_hw_channel(chan, true);
783
784 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
785
786 err_desc_get:
787 if (desc)
788 axi_desc_put(desc);
789
790 return NULL;
791 }
792
793 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)794 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
795 unsigned int sg_len,
796 enum dma_transfer_direction direction,
797 unsigned long flags, void *context)
798 {
799 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
800 struct axi_dma_hw_desc *hw_desc = NULL;
801 struct axi_dma_desc *desc = NULL;
802 u32 num_segments, segment_len;
803 unsigned int loop = 0;
804 struct scatterlist *sg;
805 size_t axi_block_len;
806 u32 len, num_sgs = 0;
807 unsigned int i;
808 dma_addr_t mem;
809 int status;
810 u64 llp = 0;
811 u8 lms = 0; /* Select AXI0 master for LLI fetching */
812
813 if (unlikely(!is_slave_direction(direction) || !sg_len))
814 return NULL;
815
816 mem = sg_dma_address(sgl);
817 len = sg_dma_len(sgl);
818
819 axi_block_len = calculate_block_len(chan, mem, len, direction);
820 if (axi_block_len == 0)
821 return NULL;
822
823 for_each_sg(sgl, sg, sg_len, i)
824 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
825
826 desc = axi_desc_alloc(num_sgs);
827 if (unlikely(!desc))
828 goto err_desc_get;
829
830 desc->chan = chan;
831 desc->length = 0;
832 chan->direction = direction;
833
834 for_each_sg(sgl, sg, sg_len, i) {
835 mem = sg_dma_address(sg);
836 len = sg_dma_len(sg);
837 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
838 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
839
840 do {
841 hw_desc = &desc->hw_desc[loop++];
842 status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
843 if (status < 0)
844 goto err_desc_get;
845
846 desc->length += hw_desc->len;
847 len -= segment_len;
848 mem += segment_len;
849 } while (len >= segment_len);
850 }
851
852 /* Set end-of-link to the last link descriptor of list */
853 set_desc_last(&desc->hw_desc[num_sgs - 1]);
854
855 /* Managed transfer list */
856 do {
857 hw_desc = &desc->hw_desc[--num_sgs];
858 write_desc_llp(hw_desc, llp | lms);
859 llp = hw_desc->llp;
860 } while (num_sgs);
861
862 dw_axi_dma_set_hw_channel(chan, true);
863
864 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
865
866 err_desc_get:
867 if (desc)
868 axi_desc_put(desc);
869
870 return NULL;
871 }
872
873 static struct dma_async_tx_descriptor *
dma_chan_prep_dma_memcpy(struct dma_chan * dchan,dma_addr_t dst_adr,dma_addr_t src_adr,size_t len,unsigned long flags)874 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
875 dma_addr_t src_adr, size_t len, unsigned long flags)
876 {
877 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
878 size_t block_ts, max_block_ts, xfer_len;
879 struct axi_dma_hw_desc *hw_desc = NULL;
880 struct axi_dma_desc *desc = NULL;
881 u32 xfer_width, reg, num;
882 u64 llp = 0;
883 u8 lms = 0; /* Select AXI0 master for LLI fetching */
884
885 dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
886 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
887
888 max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
889 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
890 num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
891 desc = axi_desc_alloc(num);
892 if (unlikely(!desc))
893 goto err_desc_get;
894
895 desc->chan = chan;
896 num = 0;
897 desc->length = 0;
898 while (len) {
899 xfer_len = len;
900
901 hw_desc = &desc->hw_desc[num];
902 /*
903 * Take care for the alignment.
904 * Actually source and destination widths can be different, but
905 * make them same to be simpler.
906 */
907 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
908
909 /*
910 * block_ts indicates the total number of data of width
911 * to be transferred in a DMA block transfer.
912 * BLOCK_TS register should be set to block_ts - 1
913 */
914 block_ts = xfer_len >> xfer_width;
915 if (block_ts > max_block_ts) {
916 block_ts = max_block_ts;
917 xfer_len = max_block_ts << xfer_width;
918 }
919
920 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
921 if (unlikely(!hw_desc->lli))
922 goto err_desc_get;
923
924 write_desc_sar(hw_desc, src_adr);
925 write_desc_dar(hw_desc, dst_adr);
926 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
927
928 reg = CH_CTL_H_LLI_VALID;
929 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
930 u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
931
932 reg |= (CH_CTL_H_ARLEN_EN |
933 burst_len << CH_CTL_H_ARLEN_POS |
934 CH_CTL_H_AWLEN_EN |
935 burst_len << CH_CTL_H_AWLEN_POS);
936 }
937 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
938
939 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
940 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
941 xfer_width << CH_CTL_L_DST_WIDTH_POS |
942 xfer_width << CH_CTL_L_SRC_WIDTH_POS |
943 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
944 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
945 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
946
947 set_desc_src_master(hw_desc);
948 set_desc_dest_master(hw_desc, desc);
949
950 hw_desc->len = xfer_len;
951 desc->length += hw_desc->len;
952 /* update the length and addresses for the next loop cycle */
953 len -= xfer_len;
954 dst_adr += xfer_len;
955 src_adr += xfer_len;
956 num++;
957 }
958
959 /* Set end-of-link to the last link descriptor of list */
960 set_desc_last(&desc->hw_desc[num - 1]);
961 /* Managed transfer list */
962 do {
963 hw_desc = &desc->hw_desc[--num];
964 write_desc_llp(hw_desc, llp | lms);
965 llp = hw_desc->llp;
966 } while (num);
967
968 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
969
970 err_desc_get:
971 if (desc)
972 axi_desc_put(desc);
973 return NULL;
974 }
975
dw_axi_dma_chan_slave_config(struct dma_chan * dchan,struct dma_slave_config * config)976 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
977 struct dma_slave_config *config)
978 {
979 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
980
981 memcpy(&chan->config, config, sizeof(*config));
982
983 return 0;
984 }
985
axi_chan_dump_lli(struct axi_dma_chan * chan,struct axi_dma_hw_desc * desc)986 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
987 struct axi_dma_hw_desc *desc)
988 {
989 if (!desc->lli) {
990 dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n");
991 return;
992 }
993
994 dev_err(dchan2dev(&chan->vc.chan),
995 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
996 le64_to_cpu(desc->lli->sar),
997 le64_to_cpu(desc->lli->dar),
998 le64_to_cpu(desc->lli->llp),
999 le32_to_cpu(desc->lli->block_ts_lo),
1000 le32_to_cpu(desc->lli->ctl_hi),
1001 le32_to_cpu(desc->lli->ctl_lo));
1002 }
1003
axi_chan_list_dump_lli(struct axi_dma_chan * chan,struct axi_dma_desc * desc_head)1004 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
1005 struct axi_dma_desc *desc_head)
1006 {
1007 int count = atomic_read(&chan->descs_allocated);
1008 int i;
1009
1010 for (i = 0; i < count; i++)
1011 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
1012 }
1013
axi_chan_handle_err(struct axi_dma_chan * chan,u32 status)1014 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
1015 {
1016 struct virt_dma_desc *vd;
1017 unsigned long flags;
1018
1019 spin_lock_irqsave(&chan->vc.lock, flags);
1020
1021 axi_chan_disable(chan);
1022
1023 /* The bad descriptor currently is in the head of vc list */
1024 vd = vchan_next_desc(&chan->vc);
1025 if (!vd) {
1026 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1027 axi_chan_name(chan));
1028 goto out;
1029 }
1030 /* Remove the completed descriptor from issued list */
1031 list_del(&vd->node);
1032
1033 /* WARN about bad descriptor */
1034 dev_err(chan2dev(chan),
1035 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
1036 axi_chan_name(chan), vd->tx.cookie, status);
1037 axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
1038
1039 vchan_cookie_complete(vd);
1040
1041 /* Try to restart the controller */
1042 axi_chan_start_first_queued(chan);
1043
1044 out:
1045 spin_unlock_irqrestore(&chan->vc.lock, flags);
1046 }
1047
axi_chan_block_xfer_complete(struct axi_dma_chan * chan)1048 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1049 {
1050 int count = atomic_read(&chan->descs_allocated);
1051 struct axi_dma_hw_desc *hw_desc;
1052 struct axi_dma_desc *desc;
1053 struct virt_dma_desc *vd;
1054 unsigned long flags;
1055 u64 llp;
1056 int i;
1057
1058 spin_lock_irqsave(&chan->vc.lock, flags);
1059 if (unlikely(axi_chan_is_hw_enable(chan))) {
1060 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1061 axi_chan_name(chan));
1062 axi_chan_disable(chan);
1063 }
1064
1065 /* The completed descriptor currently is in the head of vc list */
1066 vd = vchan_next_desc(&chan->vc);
1067 if (!vd) {
1068 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1069 axi_chan_name(chan));
1070 goto out;
1071 }
1072
1073 if (chan->cyclic) {
1074 desc = vd_to_axi_desc(vd);
1075 if (desc) {
1076 llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1077 for (i = 0; i < count; i++) {
1078 hw_desc = &desc->hw_desc[i];
1079 if (hw_desc->llp == llp) {
1080 axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1081 hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1082 desc->completed_blocks = i;
1083
1084 if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1085 vchan_cyclic_callback(vd);
1086 break;
1087 }
1088 }
1089
1090 axi_chan_enable(chan);
1091 }
1092 } else {
1093 /* Remove the completed descriptor from issued list before completing */
1094 list_del(&vd->node);
1095 vchan_cookie_complete(vd);
1096
1097 /* Submit queued descriptors after processing the completed ones */
1098 axi_chan_start_first_queued(chan);
1099 }
1100
1101 out:
1102 spin_unlock_irqrestore(&chan->vc.lock, flags);
1103 }
1104
dw_axi_dma_interrupt(int irq,void * dev_id)1105 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1106 {
1107 struct axi_dma_chip *chip = dev_id;
1108 struct dw_axi_dma *dw = chip->dw;
1109 struct axi_dma_chan *chan;
1110
1111 u32 status, i;
1112
1113 /* Disable DMAC interrupts. We'll enable them after processing channels */
1114 axi_dma_irq_disable(chip);
1115
1116 /* Poll, clear and process every channel interrupt status */
1117 for (i = 0; i < dw->hdata->nr_channels; i++) {
1118 chan = &dw->chan[i];
1119 status = axi_chan_irq_read(chan);
1120 axi_chan_irq_clear(chan, status);
1121
1122 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1123 axi_chan_name(chan), i, status);
1124
1125 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1126 axi_chan_handle_err(chan, status);
1127 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1128 axi_chan_block_xfer_complete(chan);
1129 }
1130
1131 /* Re-enable interrupts */
1132 axi_dma_irq_enable(chip);
1133
1134 return IRQ_HANDLED;
1135 }
1136
dma_chan_terminate_all(struct dma_chan * dchan)1137 static int dma_chan_terminate_all(struct dma_chan *dchan)
1138 {
1139 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1140 u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1141 unsigned long flags;
1142 u32 val;
1143 int ret;
1144 LIST_HEAD(head);
1145
1146 axi_chan_disable(chan);
1147
1148 ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1149 !(val & chan_active), 1000, 50000);
1150 if (ret == -ETIMEDOUT)
1151 dev_warn(dchan2dev(dchan),
1152 "%s failed to stop\n", axi_chan_name(chan));
1153
1154 if (chan->direction != DMA_MEM_TO_MEM)
1155 dw_axi_dma_set_hw_channel(chan, false);
1156 if (chan->direction == DMA_MEM_TO_DEV)
1157 dw_axi_dma_set_byte_halfword(chan, false);
1158
1159 spin_lock_irqsave(&chan->vc.lock, flags);
1160
1161 vchan_get_all_descriptors(&chan->vc, &head);
1162
1163 chan->cyclic = false;
1164 spin_unlock_irqrestore(&chan->vc.lock, flags);
1165
1166 vchan_dma_desc_free_list(&chan->vc, &head);
1167
1168 dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1169
1170 return 0;
1171 }
1172
dma_chan_pause(struct dma_chan * dchan)1173 static int dma_chan_pause(struct dma_chan *dchan)
1174 {
1175 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1176 unsigned long flags;
1177 unsigned int timeout = 20; /* timeout iterations */
1178 u32 val;
1179
1180 spin_lock_irqsave(&chan->vc.lock, flags);
1181
1182 if (chan->chip->dw->hdata->reg_map_8_channels) {
1183 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1184 val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1185 BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1186 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1187 } else {
1188 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1189 val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1190 BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1191 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1192 }
1193
1194 do {
1195 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1196 break;
1197
1198 udelay(2);
1199 } while (--timeout);
1200
1201 axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1202
1203 chan->is_paused = true;
1204
1205 spin_unlock_irqrestore(&chan->vc.lock, flags);
1206
1207 return timeout ? 0 : -EAGAIN;
1208 }
1209
1210 /* Called in chan locked context */
axi_chan_resume(struct axi_dma_chan * chan)1211 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1212 {
1213 u32 val;
1214
1215 if (chan->chip->dw->hdata->reg_map_8_channels) {
1216 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1217 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1218 val |= (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1219 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1220 } else {
1221 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1222 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1223 val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1224 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1225 }
1226
1227 chan->is_paused = false;
1228 }
1229
dma_chan_resume(struct dma_chan * dchan)1230 static int dma_chan_resume(struct dma_chan *dchan)
1231 {
1232 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1233 unsigned long flags;
1234
1235 spin_lock_irqsave(&chan->vc.lock, flags);
1236
1237 if (chan->is_paused)
1238 axi_chan_resume(chan);
1239
1240 spin_unlock_irqrestore(&chan->vc.lock, flags);
1241
1242 return 0;
1243 }
1244
axi_dma_suspend(struct axi_dma_chip * chip)1245 static int axi_dma_suspend(struct axi_dma_chip *chip)
1246 {
1247 axi_dma_irq_disable(chip);
1248 axi_dma_disable(chip);
1249
1250 clk_disable_unprepare(chip->core_clk);
1251 clk_disable_unprepare(chip->cfgr_clk);
1252
1253 return 0;
1254 }
1255
axi_dma_resume(struct axi_dma_chip * chip)1256 static int axi_dma_resume(struct axi_dma_chip *chip)
1257 {
1258 int ret;
1259
1260 ret = clk_prepare_enable(chip->cfgr_clk);
1261 if (ret < 0)
1262 return ret;
1263
1264 ret = clk_prepare_enable(chip->core_clk);
1265 if (ret < 0)
1266 return ret;
1267
1268 axi_dma_enable(chip);
1269 axi_dma_irq_enable(chip);
1270
1271 return 0;
1272 }
1273
axi_dma_runtime_suspend(struct device * dev)1274 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1275 {
1276 struct axi_dma_chip *chip = dev_get_drvdata(dev);
1277
1278 return axi_dma_suspend(chip);
1279 }
1280
axi_dma_runtime_resume(struct device * dev)1281 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1282 {
1283 struct axi_dma_chip *chip = dev_get_drvdata(dev);
1284
1285 return axi_dma_resume(chip);
1286 }
1287
dw_axi_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1288 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1289 struct of_dma *ofdma)
1290 {
1291 struct dw_axi_dma *dw = ofdma->of_dma_data;
1292 struct axi_dma_chan *chan;
1293 struct dma_chan *dchan;
1294
1295 dchan = dma_get_any_slave_channel(&dw->dma);
1296 if (!dchan)
1297 return NULL;
1298
1299 chan = dchan_to_axi_dma_chan(dchan);
1300 chan->hw_handshake_num = dma_spec->args[0];
1301 return dchan;
1302 }
1303
parse_device_properties(struct axi_dma_chip * chip)1304 static int parse_device_properties(struct axi_dma_chip *chip)
1305 {
1306 struct device *dev = chip->dev;
1307 u32 tmp, carr[DMAC_MAX_CHANNELS];
1308 int ret;
1309
1310 ret = device_property_read_u32(dev, "dma-channels", &tmp);
1311 if (ret)
1312 return ret;
1313 if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1314 return -EINVAL;
1315
1316 chip->dw->hdata->nr_channels = tmp;
1317 if (tmp <= DMA_REG_MAP_CH_REF)
1318 chip->dw->hdata->reg_map_8_channels = true;
1319
1320 ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1321 if (ret)
1322 return ret;
1323 if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1324 return -EINVAL;
1325
1326 chip->dw->hdata->nr_masters = tmp;
1327
1328 ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1329 if (ret)
1330 return ret;
1331 if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1332 return -EINVAL;
1333
1334 chip->dw->hdata->m_data_width = tmp;
1335
1336 ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1337 chip->dw->hdata->nr_channels);
1338 if (ret)
1339 return ret;
1340 for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1341 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1342 return -EINVAL;
1343
1344 chip->dw->hdata->block_size[tmp] = carr[tmp];
1345 }
1346
1347 ret = device_property_read_u32_array(dev, "snps,priority", carr,
1348 chip->dw->hdata->nr_channels);
1349 if (ret)
1350 return ret;
1351 /* Priority value must be programmed within [0:nr_channels-1] range */
1352 for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1353 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1354 return -EINVAL;
1355
1356 chip->dw->hdata->priority[tmp] = carr[tmp];
1357 }
1358
1359 /* axi-max-burst-len is optional property */
1360 ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1361 if (!ret) {
1362 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1363 return -EINVAL;
1364 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1365 return -EINVAL;
1366
1367 chip->dw->hdata->restrict_axi_burst_len = true;
1368 chip->dw->hdata->axi_rw_burst_len = tmp;
1369 }
1370
1371 return 0;
1372 }
1373
dw_probe(struct platform_device * pdev)1374 static int dw_probe(struct platform_device *pdev)
1375 {
1376 struct axi_dma_chip *chip;
1377 struct dw_axi_dma *dw;
1378 struct dw_axi_dma_hcfg *hdata;
1379 struct reset_control *resets;
1380 unsigned int flags;
1381 u32 i;
1382 int ret;
1383
1384 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1385 if (!chip)
1386 return -ENOMEM;
1387
1388 dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1389 if (!dw)
1390 return -ENOMEM;
1391
1392 hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1393 if (!hdata)
1394 return -ENOMEM;
1395
1396 chip->dw = dw;
1397 chip->dev = &pdev->dev;
1398 chip->dw->hdata = hdata;
1399
1400 chip->irq = platform_get_irq(pdev, 0);
1401 if (chip->irq < 0)
1402 return chip->irq;
1403
1404 chip->regs = devm_platform_ioremap_resource(pdev, 0);
1405 if (IS_ERR(chip->regs))
1406 return PTR_ERR(chip->regs);
1407
1408 flags = (uintptr_t)of_device_get_match_data(&pdev->dev);
1409 if (flags & AXI_DMA_FLAG_HAS_APB_REGS) {
1410 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1411 if (IS_ERR(chip->apb_regs))
1412 return PTR_ERR(chip->apb_regs);
1413 }
1414
1415 if (flags & AXI_DMA_FLAG_HAS_RESETS) {
1416 resets = devm_reset_control_array_get_exclusive(&pdev->dev);
1417 if (IS_ERR(resets))
1418 return PTR_ERR(resets);
1419
1420 ret = reset_control_deassert(resets);
1421 if (ret)
1422 return ret;
1423 }
1424
1425 chip->dw->hdata->use_cfg2 = !!(flags & AXI_DMA_FLAG_USE_CFG2);
1426
1427 chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1428 if (IS_ERR(chip->core_clk))
1429 return PTR_ERR(chip->core_clk);
1430
1431 chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1432 if (IS_ERR(chip->cfgr_clk))
1433 return PTR_ERR(chip->cfgr_clk);
1434
1435 ret = parse_device_properties(chip);
1436 if (ret)
1437 return ret;
1438
1439 dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1440 sizeof(*dw->chan), GFP_KERNEL);
1441 if (!dw->chan)
1442 return -ENOMEM;
1443
1444 ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1445 IRQF_SHARED, KBUILD_MODNAME, chip);
1446 if (ret)
1447 return ret;
1448
1449 INIT_LIST_HEAD(&dw->dma.channels);
1450 for (i = 0; i < hdata->nr_channels; i++) {
1451 struct axi_dma_chan *chan = &dw->chan[i];
1452
1453 chan->chip = chip;
1454 chan->id = i;
1455 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1456 atomic_set(&chan->descs_allocated, 0);
1457
1458 chan->vc.desc_free = vchan_desc_put;
1459 vchan_init(&chan->vc, &dw->dma);
1460 }
1461
1462 /* Set capabilities */
1463 dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1464 dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1465 dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1466
1467 /* DMA capabilities */
1468 dw->dma.max_burst = hdata->axi_rw_burst_len;
1469 dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1470 dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1471 dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1472 dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1473 dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1474
1475 dw->dma.dev = chip->dev;
1476 dw->dma.device_tx_status = dma_chan_tx_status;
1477 dw->dma.device_issue_pending = dma_chan_issue_pending;
1478 dw->dma.device_terminate_all = dma_chan_terminate_all;
1479 dw->dma.device_pause = dma_chan_pause;
1480 dw->dma.device_resume = dma_chan_resume;
1481
1482 dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1483 dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1484
1485 dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1486 dw->dma.device_synchronize = dw_axi_dma_synchronize;
1487 dw->dma.device_config = dw_axi_dma_chan_slave_config;
1488 dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1489 dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1490
1491 /*
1492 * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1493 * supported blocks is 1024. Device register width is 4 bytes.
1494 * Therefore, set constraint to 1024 * 4.
1495 */
1496 dw->dma.dev->dma_parms = &dw->dma_parms;
1497 dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1498 platform_set_drvdata(pdev, chip);
1499
1500 pm_runtime_enable(chip->dev);
1501
1502 /*
1503 * We can't just call pm_runtime_get here instead of
1504 * pm_runtime_get_noresume + axi_dma_resume because we need
1505 * driver to work also without Runtime PM.
1506 */
1507 pm_runtime_get_noresume(chip->dev);
1508 ret = axi_dma_resume(chip);
1509 if (ret < 0)
1510 goto err_pm_disable;
1511
1512 axi_dma_hw_init(chip);
1513
1514 pm_runtime_put(chip->dev);
1515
1516 ret = dmaenginem_async_device_register(&dw->dma);
1517 if (ret)
1518 goto err_pm_disable;
1519
1520 /* Register with OF helpers for DMA lookups */
1521 ret = of_dma_controller_register(pdev->dev.of_node,
1522 dw_axi_dma_of_xlate, dw);
1523 if (ret < 0)
1524 dev_warn(&pdev->dev,
1525 "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1526
1527 dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1528 dw->hdata->nr_channels);
1529
1530 return 0;
1531
1532 err_pm_disable:
1533 pm_runtime_disable(chip->dev);
1534
1535 return ret;
1536 }
1537
dw_remove(struct platform_device * pdev)1538 static int dw_remove(struct platform_device *pdev)
1539 {
1540 struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1541 struct dw_axi_dma *dw = chip->dw;
1542 struct axi_dma_chan *chan, *_chan;
1543 u32 i;
1544
1545 /* Enable clk before accessing to registers */
1546 clk_prepare_enable(chip->cfgr_clk);
1547 clk_prepare_enable(chip->core_clk);
1548 axi_dma_irq_disable(chip);
1549 for (i = 0; i < dw->hdata->nr_channels; i++) {
1550 axi_chan_disable(&chip->dw->chan[i]);
1551 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1552 }
1553 axi_dma_disable(chip);
1554
1555 pm_runtime_disable(chip->dev);
1556 axi_dma_suspend(chip);
1557
1558 devm_free_irq(chip->dev, chip->irq, chip);
1559
1560 of_dma_controller_free(chip->dev->of_node);
1561
1562 list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1563 vc.chan.device_node) {
1564 list_del(&chan->vc.chan.device_node);
1565 tasklet_kill(&chan->vc.task);
1566 }
1567
1568 return 0;
1569 }
1570
1571 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1572 SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1573 };
1574
1575 static const struct of_device_id dw_dma_of_id_table[] = {
1576 {
1577 .compatible = "snps,axi-dma-1.01a"
1578 }, {
1579 .compatible = "intel,kmb-axi-dma",
1580 .data = (void *)AXI_DMA_FLAG_HAS_APB_REGS,
1581 }, {
1582 .compatible = "starfive,jh7110-axi-dma",
1583 .data = (void *)(AXI_DMA_FLAG_HAS_RESETS | AXI_DMA_FLAG_USE_CFG2),
1584 },
1585 {}
1586 };
1587 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1588
1589 static struct platform_driver dw_driver = {
1590 .probe = dw_probe,
1591 .remove = dw_remove,
1592 .driver = {
1593 .name = KBUILD_MODNAME,
1594 .of_match_table = dw_dma_of_id_table,
1595 .pm = &dw_axi_dma_pm_ops,
1596 },
1597 };
1598 module_platform_driver(dw_driver);
1599
1600 MODULE_LICENSE("GPL v2");
1601 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1602 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");
1603