1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135
136 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148
149 /*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154 static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .llseek = no_llseek,
157 .read_iter = sock_read_iter,
158 .write_iter = sock_write_iter,
159 .poll = sock_poll,
160 .unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 .compat_ioctl = compat_sock_ioctl,
163 #endif
164 .uring_cmd = io_uring_cmd_sock,
165 .mmap = sock_mmap,
166 .release = sock_close,
167 .fasync = sock_fasync,
168 .splice_write = splice_to_socket,
169 .splice_read = sock_splice_read,
170 .splice_eof = sock_splice_eof,
171 .show_fdinfo = sock_show_fdinfo,
172 };
173
174 static const char * const pf_family_names[] = {
175 [PF_UNSPEC] = "PF_UNSPEC",
176 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
177 [PF_INET] = "PF_INET",
178 [PF_AX25] = "PF_AX25",
179 [PF_IPX] = "PF_IPX",
180 [PF_APPLETALK] = "PF_APPLETALK",
181 [PF_NETROM] = "PF_NETROM",
182 [PF_BRIDGE] = "PF_BRIDGE",
183 [PF_ATMPVC] = "PF_ATMPVC",
184 [PF_X25] = "PF_X25",
185 [PF_INET6] = "PF_INET6",
186 [PF_ROSE] = "PF_ROSE",
187 [PF_DECnet] = "PF_DECnet",
188 [PF_NETBEUI] = "PF_NETBEUI",
189 [PF_SECURITY] = "PF_SECURITY",
190 [PF_KEY] = "PF_KEY",
191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
192 [PF_PACKET] = "PF_PACKET",
193 [PF_ASH] = "PF_ASH",
194 [PF_ECONET] = "PF_ECONET",
195 [PF_ATMSVC] = "PF_ATMSVC",
196 [PF_RDS] = "PF_RDS",
197 [PF_SNA] = "PF_SNA",
198 [PF_IRDA] = "PF_IRDA",
199 [PF_PPPOX] = "PF_PPPOX",
200 [PF_WANPIPE] = "PF_WANPIPE",
201 [PF_LLC] = "PF_LLC",
202 [PF_IB] = "PF_IB",
203 [PF_MPLS] = "PF_MPLS",
204 [PF_CAN] = "PF_CAN",
205 [PF_TIPC] = "PF_TIPC",
206 [PF_BLUETOOTH] = "PF_BLUETOOTH",
207 [PF_IUCV] = "PF_IUCV",
208 [PF_RXRPC] = "PF_RXRPC",
209 [PF_ISDN] = "PF_ISDN",
210 [PF_PHONET] = "PF_PHONET",
211 [PF_IEEE802154] = "PF_IEEE802154",
212 [PF_CAIF] = "PF_CAIF",
213 [PF_ALG] = "PF_ALG",
214 [PF_NFC] = "PF_NFC",
215 [PF_VSOCK] = "PF_VSOCK",
216 [PF_KCM] = "PF_KCM",
217 [PF_QIPCRTR] = "PF_QIPCRTR",
218 [PF_SMC] = "PF_SMC",
219 [PF_XDP] = "PF_XDP",
220 [PF_MCTP] = "PF_MCTP",
221 };
222
223 /*
224 * The protocol list. Each protocol is registered in here.
225 */
226
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229
230 /*
231 * Support routines.
232 * Move socket addresses back and forth across the kernel/user
233 * divide and look after the messy bits.
234 */
235
236 /**
237 * move_addr_to_kernel - copy a socket address into kernel space
238 * @uaddr: Address in user space
239 * @kaddr: Address in kernel space
240 * @ulen: Length in user space
241 *
242 * The address is copied into kernel space. If the provided address is
243 * too long an error code of -EINVAL is returned. If the copy gives
244 * invalid addresses -EFAULT is returned. On a success 0 is returned.
245 */
246
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 return -EINVAL;
251 if (ulen == 0)
252 return 0;
253 if (copy_from_user(kaddr, uaddr, ulen))
254 return -EFAULT;
255 return audit_sockaddr(ulen, kaddr);
256 }
257
258 /**
259 * move_addr_to_user - copy an address to user space
260 * @kaddr: kernel space address
261 * @klen: length of address in kernel
262 * @uaddr: user space address
263 * @ulen: pointer to user length field
264 *
265 * The value pointed to by ulen on entry is the buffer length available.
266 * This is overwritten with the buffer space used. -EINVAL is returned
267 * if an overlong buffer is specified or a negative buffer size. -EFAULT
268 * is returned if either the buffer or the length field are not
269 * accessible.
270 * After copying the data up to the limit the user specifies, the true
271 * length of the data is written over the length limit the user
272 * specified. Zero is returned for a success.
273 */
274
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 void __user *uaddr, int __user *ulen)
277 {
278 int err;
279 int len;
280
281 BUG_ON(klen > sizeof(struct sockaddr_storage));
282 err = get_user(len, ulen);
283 if (err)
284 return err;
285 if (len > klen)
286 len = klen;
287 if (len < 0)
288 return -EINVAL;
289 if (len) {
290 if (audit_sockaddr(klen, kaddr))
291 return -ENOMEM;
292 if (copy_to_user(uaddr, kaddr, len))
293 return -EFAULT;
294 }
295 /*
296 * "fromlen shall refer to the value before truncation.."
297 * 1003.1g
298 */
299 return __put_user(klen, ulen);
300 }
301
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303
sock_alloc_inode(struct super_block * sb)304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 struct socket_alloc *ei;
307
308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 if (!ei)
310 return NULL;
311 init_waitqueue_head(&ei->socket.wq.wait);
312 ei->socket.wq.fasync_list = NULL;
313 ei->socket.wq.flags = 0;
314
315 ei->socket.state = SS_UNCONNECTED;
316 ei->socket.flags = 0;
317 ei->socket.ops = NULL;
318 ei->socket.sk = NULL;
319 ei->socket.file = NULL;
320
321 return &ei->vfs_inode;
322 }
323
sock_free_inode(struct inode * inode)324 static void sock_free_inode(struct inode *inode)
325 {
326 struct socket_alloc *ei;
327
328 ei = container_of(inode, struct socket_alloc, vfs_inode);
329 kmem_cache_free(sock_inode_cachep, ei);
330 }
331
init_once(void * foo)332 static void init_once(void *foo)
333 {
334 struct socket_alloc *ei = (struct socket_alloc *)foo;
335
336 inode_init_once(&ei->vfs_inode);
337 }
338
init_inodecache(void)339 static void init_inodecache(void)
340 {
341 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 sizeof(struct socket_alloc),
343 0,
344 (SLAB_HWCACHE_ALIGN |
345 SLAB_RECLAIM_ACCOUNT |
346 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 init_once);
348 BUG_ON(sock_inode_cachep == NULL);
349 }
350
351 static const struct super_operations sockfs_ops = {
352 .alloc_inode = sock_alloc_inode,
353 .free_inode = sock_free_inode,
354 .statfs = simple_statfs,
355 };
356
357 /*
358 * sockfs_dname() is called from d_path().
359 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 d_inode(dentry)->i_ino);
364 }
365
366 static const struct dentry_operations sockfs_dentry_operations = {
367 .d_dname = sockfs_dname,
368 };
369
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 struct dentry *dentry, struct inode *inode,
372 const char *suffix, void *value, size_t size)
373 {
374 if (value) {
375 if (dentry->d_name.len + 1 > size)
376 return -ERANGE;
377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 }
379 return dentry->d_name.len + 1;
380 }
381
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385
386 static const struct xattr_handler sockfs_xattr_handler = {
387 .name = XATTR_NAME_SOCKPROTONAME,
388 .get = sockfs_xattr_get,
389 };
390
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 struct mnt_idmap *idmap,
393 struct dentry *dentry, struct inode *inode,
394 const char *suffix, const void *value,
395 size_t size, int flags)
396 {
397 /* Handled by LSM. */
398 return -EAGAIN;
399 }
400
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 .prefix = XATTR_SECURITY_PREFIX,
403 .set = sockfs_security_xattr_set,
404 };
405
406 static const struct xattr_handler *sockfs_xattr_handlers[] = {
407 &sockfs_xattr_handler,
408 &sockfs_security_xattr_handler,
409 NULL
410 };
411
sockfs_init_fs_context(struct fs_context * fc)412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 if (!ctx)
416 return -ENOMEM;
417 ctx->ops = &sockfs_ops;
418 ctx->dops = &sockfs_dentry_operations;
419 ctx->xattr = sockfs_xattr_handlers;
420 return 0;
421 }
422
423 static struct vfsmount *sock_mnt __read_mostly;
424
425 static struct file_system_type sock_fs_type = {
426 .name = "sockfs",
427 .init_fs_context = sockfs_init_fs_context,
428 .kill_sb = kill_anon_super,
429 };
430
431 /*
432 * Obtains the first available file descriptor and sets it up for use.
433 *
434 * These functions create file structures and maps them to fd space
435 * of the current process. On success it returns file descriptor
436 * and file struct implicitly stored in sock->file.
437 * Note that another thread may close file descriptor before we return
438 * from this function. We use the fact that now we do not refer
439 * to socket after mapping. If one day we will need it, this
440 * function will increment ref. count on file by 1.
441 *
442 * In any case returned fd MAY BE not valid!
443 * This race condition is unavoidable
444 * with shared fd spaces, we cannot solve it inside kernel,
445 * but we take care of internal coherence yet.
446 */
447
448 /**
449 * sock_alloc_file - Bind a &socket to a &file
450 * @sock: socket
451 * @flags: file status flags
452 * @dname: protocol name
453 *
454 * Returns the &file bound with @sock, implicitly storing it
455 * in sock->file. If dname is %NULL, sets to "".
456 *
457 * On failure @sock is released, and an ERR pointer is returned.
458 *
459 * This function uses GFP_KERNEL internally.
460 */
461
sock_alloc_file(struct socket * sock,int flags,const char * dname)462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 struct file *file;
465
466 if (!dname)
467 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468
469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 O_RDWR | (flags & O_NONBLOCK),
471 &socket_file_ops);
472 if (IS_ERR(file)) {
473 sock_release(sock);
474 return file;
475 }
476
477 file->f_mode |= FMODE_NOWAIT;
478 sock->file = file;
479 file->private_data = sock;
480 stream_open(SOCK_INODE(sock), file);
481 return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484
sock_map_fd(struct socket * sock,int flags)485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 struct file *newfile;
488 int fd = get_unused_fd_flags(flags);
489 if (unlikely(fd < 0)) {
490 sock_release(sock);
491 return fd;
492 }
493
494 newfile = sock_alloc_file(sock, flags, NULL);
495 if (!IS_ERR(newfile)) {
496 fd_install(fd, newfile);
497 return fd;
498 }
499
500 put_unused_fd(fd);
501 return PTR_ERR(newfile);
502 }
503
504 /**
505 * sock_from_file - Return the &socket bounded to @file.
506 * @file: file
507 *
508 * On failure returns %NULL.
509 */
510
sock_from_file(struct file * file)511 struct socket *sock_from_file(struct file *file)
512 {
513 if (file->f_op == &socket_file_ops)
514 return file->private_data; /* set in sock_alloc_file */
515
516 return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519
520 /**
521 * sockfd_lookup - Go from a file number to its socket slot
522 * @fd: file handle
523 * @err: pointer to an error code return
524 *
525 * The file handle passed in is locked and the socket it is bound
526 * to is returned. If an error occurs the err pointer is overwritten
527 * with a negative errno code and NULL is returned. The function checks
528 * for both invalid handles and passing a handle which is not a socket.
529 *
530 * On a success the socket object pointer is returned.
531 */
532
sockfd_lookup(int fd,int * err)533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 struct file *file;
536 struct socket *sock;
537
538 file = fget(fd);
539 if (!file) {
540 *err = -EBADF;
541 return NULL;
542 }
543
544 sock = sock_from_file(file);
545 if (!sock) {
546 *err = -ENOTSOCK;
547 fput(file);
548 }
549 return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552
sockfd_lookup_light(int fd,int * err,int * fput_needed)553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 struct fd f = fdget(fd);
556 struct socket *sock;
557
558 *err = -EBADF;
559 if (f.file) {
560 sock = sock_from_file(f.file);
561 if (likely(sock)) {
562 *fput_needed = f.flags & FDPUT_FPUT;
563 return sock;
564 }
565 *err = -ENOTSOCK;
566 fdput(f);
567 }
568 return NULL;
569 }
570
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 size_t size)
573 {
574 ssize_t len;
575 ssize_t used = 0;
576
577 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 if (len < 0)
579 return len;
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 buffer += len;
585 }
586
587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 used += len;
589 if (buffer) {
590 if (size < used)
591 return -ERANGE;
592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 buffer += len;
594 }
595
596 return used;
597 }
598
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 struct dentry *dentry, struct iattr *iattr)
601 {
602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603
604 if (!err && (iattr->ia_valid & ATTR_UID)) {
605 struct socket *sock = SOCKET_I(d_inode(dentry));
606
607 if (sock->sk)
608 sock->sk->sk_uid = iattr->ia_uid;
609 else
610 err = -ENOENT;
611 }
612
613 return err;
614 }
615
616 static const struct inode_operations sockfs_inode_ops = {
617 .listxattr = sockfs_listxattr,
618 .setattr = sockfs_setattr,
619 };
620
621 /**
622 * sock_alloc - allocate a socket
623 *
624 * Allocate a new inode and socket object. The two are bound together
625 * and initialised. The socket is then returned. If we are out of inodes
626 * NULL is returned. This functions uses GFP_KERNEL internally.
627 */
628
sock_alloc(void)629 struct socket *sock_alloc(void)
630 {
631 struct inode *inode;
632 struct socket *sock;
633
634 inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 if (!inode)
636 return NULL;
637
638 sock = SOCKET_I(inode);
639
640 inode->i_ino = get_next_ino();
641 inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 inode->i_uid = current_fsuid();
643 inode->i_gid = current_fsgid();
644 inode->i_op = &sockfs_inode_ops;
645
646 return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649
__sock_release(struct socket * sock,struct inode * inode)650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 const struct proto_ops *ops = READ_ONCE(sock->ops);
653
654 if (ops) {
655 struct module *owner = ops->owner;
656
657 if (inode)
658 inode_lock(inode);
659 ops->release(sock);
660 sock->sk = NULL;
661 if (inode)
662 inode_unlock(inode);
663 sock->ops = NULL;
664 module_put(owner);
665 }
666
667 if (sock->wq.fasync_list)
668 pr_err("%s: fasync list not empty!\n", __func__);
669
670 if (!sock->file) {
671 iput(SOCK_INODE(sock));
672 return;
673 }
674 sock->file = NULL;
675 }
676
677 /**
678 * sock_release - close a socket
679 * @sock: socket to close
680 *
681 * The socket is released from the protocol stack if it has a release
682 * callback, and the inode is then released if the socket is bound to
683 * an inode not a file.
684 */
sock_release(struct socket * sock)685 void sock_release(struct socket *sock)
686 {
687 __sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 u8 flags = *tx_flags;
694
695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 flags |= SKBTX_HW_TSTAMP;
697
698 /* PTP hardware clocks can provide a free running cycle counter
699 * as a time base for virtual clocks. Tell driver to use the
700 * free running cycle counter for timestamp if socket is bound
701 * to virtual clock.
702 */
703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 }
706
707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 flags |= SKBTX_SW_TSTAMP;
709
710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 flags |= SKBTX_SCHED_TSTAMP;
712
713 *tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 size_t));
721
call_trace_sock_send_length(struct sock * sk,int ret,int flags)722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 int flags)
724 {
725 trace_sock_send_length(sk, ret, 0);
726 }
727
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 inet_sendmsg, sock, msg,
732 msg_data_left(msg));
733 BUG_ON(ret == -EIOCBQUEUED);
734
735 if (trace_sock_send_length_enabled())
736 call_trace_sock_send_length(sock->sk, ret, 0);
737 return ret;
738 }
739
__sock_sendmsg(struct socket * sock,struct msghdr * msg)740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 int err = security_socket_sendmsg(sock, msg,
743 msg_data_left(msg));
744
745 return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747
748 /**
749 * sock_sendmsg - send a message through @sock
750 * @sock: socket
751 * @msg: message to send
752 *
753 * Sends @msg through @sock, passing through LSM.
754 * Returns the number of bytes sent, or an error code.
755 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 struct sockaddr_storage address;
760 int ret;
761
762 if (msg->msg_name) {
763 memcpy(&address, msg->msg_name, msg->msg_namelen);
764 msg->msg_name = &address;
765 }
766
767 ret = __sock_sendmsg(sock, msg);
768 msg->msg_name = save_addr;
769
770 return ret;
771 }
772 EXPORT_SYMBOL(sock_sendmsg);
773
774 /**
775 * kernel_sendmsg - send a message through @sock (kernel-space)
776 * @sock: socket
777 * @msg: message header
778 * @vec: kernel vec
779 * @num: vec array length
780 * @size: total message data size
781 *
782 * Builds the message data with @vec and sends it through @sock.
783 * Returns the number of bytes sent, or an error code.
784 */
785
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)786 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
787 struct kvec *vec, size_t num, size_t size)
788 {
789 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
790 return sock_sendmsg(sock, msg);
791 }
792 EXPORT_SYMBOL(kernel_sendmsg);
793
794 /**
795 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
796 * @sk: sock
797 * @msg: message header
798 * @vec: output s/g array
799 * @num: output s/g array length
800 * @size: total message data size
801 *
802 * Builds the message data with @vec and sends it through @sock.
803 * Returns the number of bytes sent, or an error code.
804 * Caller must hold @sk.
805 */
806
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)807 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
808 struct kvec *vec, size_t num, size_t size)
809 {
810 struct socket *sock = sk->sk_socket;
811 const struct proto_ops *ops = READ_ONCE(sock->ops);
812
813 if (!ops->sendmsg_locked)
814 return sock_no_sendmsg_locked(sk, msg, size);
815
816 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
817
818 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
819 }
820 EXPORT_SYMBOL(kernel_sendmsg_locked);
821
skb_is_err_queue(const struct sk_buff * skb)822 static bool skb_is_err_queue(const struct sk_buff *skb)
823 {
824 /* pkt_type of skbs enqueued on the error queue are set to
825 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
826 * in recvmsg, since skbs received on a local socket will never
827 * have a pkt_type of PACKET_OUTGOING.
828 */
829 return skb->pkt_type == PACKET_OUTGOING;
830 }
831
832 /* On transmit, software and hardware timestamps are returned independently.
833 * As the two skb clones share the hardware timestamp, which may be updated
834 * before the software timestamp is received, a hardware TX timestamp may be
835 * returned only if there is no software TX timestamp. Ignore false software
836 * timestamps, which may be made in the __sock_recv_timestamp() call when the
837 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
838 * hardware timestamp.
839 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)840 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
841 {
842 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
843 }
844
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)845 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
846 {
847 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
848 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
849 struct net_device *orig_dev;
850 ktime_t hwtstamp;
851
852 rcu_read_lock();
853 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
854 if (orig_dev) {
855 *if_index = orig_dev->ifindex;
856 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
857 } else {
858 hwtstamp = shhwtstamps->hwtstamp;
859 }
860 rcu_read_unlock();
861
862 return hwtstamp;
863 }
864
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)865 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
866 int if_index)
867 {
868 struct scm_ts_pktinfo ts_pktinfo;
869 struct net_device *orig_dev;
870
871 if (!skb_mac_header_was_set(skb))
872 return;
873
874 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
875
876 if (!if_index) {
877 rcu_read_lock();
878 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
879 if (orig_dev)
880 if_index = orig_dev->ifindex;
881 rcu_read_unlock();
882 }
883 ts_pktinfo.if_index = if_index;
884
885 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
886 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
887 sizeof(ts_pktinfo), &ts_pktinfo);
888 }
889
890 /*
891 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
892 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)893 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
894 struct sk_buff *skb)
895 {
896 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
897 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
898 struct scm_timestamping_internal tss;
899 int empty = 1, false_tstamp = 0;
900 struct skb_shared_hwtstamps *shhwtstamps =
901 skb_hwtstamps(skb);
902 int if_index;
903 ktime_t hwtstamp;
904 u32 tsflags;
905
906 /* Race occurred between timestamp enabling and packet
907 receiving. Fill in the current time for now. */
908 if (need_software_tstamp && skb->tstamp == 0) {
909 __net_timestamp(skb);
910 false_tstamp = 1;
911 }
912
913 if (need_software_tstamp) {
914 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
915 if (new_tstamp) {
916 struct __kernel_sock_timeval tv;
917
918 skb_get_new_timestamp(skb, &tv);
919 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
920 sizeof(tv), &tv);
921 } else {
922 struct __kernel_old_timeval tv;
923
924 skb_get_timestamp(skb, &tv);
925 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
926 sizeof(tv), &tv);
927 }
928 } else {
929 if (new_tstamp) {
930 struct __kernel_timespec ts;
931
932 skb_get_new_timestampns(skb, &ts);
933 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
934 sizeof(ts), &ts);
935 } else {
936 struct __kernel_old_timespec ts;
937
938 skb_get_timestampns(skb, &ts);
939 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
940 sizeof(ts), &ts);
941 }
942 }
943 }
944
945 memset(&tss, 0, sizeof(tss));
946 tsflags = READ_ONCE(sk->sk_tsflags);
947 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
948 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
949 empty = 0;
950 if (shhwtstamps &&
951 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
952 !skb_is_swtx_tstamp(skb, false_tstamp)) {
953 if_index = 0;
954 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
955 hwtstamp = get_timestamp(sk, skb, &if_index);
956 else
957 hwtstamp = shhwtstamps->hwtstamp;
958
959 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
960 hwtstamp = ptp_convert_timestamp(&hwtstamp,
961 READ_ONCE(sk->sk_bind_phc));
962
963 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
964 empty = 0;
965
966 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
967 !skb_is_err_queue(skb))
968 put_ts_pktinfo(msg, skb, if_index);
969 }
970 }
971 if (!empty) {
972 if (sock_flag(sk, SOCK_TSTAMP_NEW))
973 put_cmsg_scm_timestamping64(msg, &tss);
974 else
975 put_cmsg_scm_timestamping(msg, &tss);
976
977 if (skb_is_err_queue(skb) && skb->len &&
978 SKB_EXT_ERR(skb)->opt_stats)
979 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
980 skb->len, skb->data);
981 }
982 }
983 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
984
985 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)986 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
987 struct sk_buff *skb)
988 {
989 int ack;
990
991 if (!sock_flag(sk, SOCK_WIFI_STATUS))
992 return;
993 if (!skb->wifi_acked_valid)
994 return;
995
996 ack = skb->wifi_acked;
997
998 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
999 }
1000 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1001 #endif
1002
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1003 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1004 struct sk_buff *skb)
1005 {
1006 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1007 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1008 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1009 }
1010
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1011 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1012 struct sk_buff *skb)
1013 {
1014 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1015 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1016 __u32 mark = skb->mark;
1017
1018 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1019 }
1020 }
1021
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1022 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1023 struct sk_buff *skb)
1024 {
1025 sock_recv_timestamp(msg, sk, skb);
1026 sock_recv_drops(msg, sk, skb);
1027 sock_recv_mark(msg, sk, skb);
1028 }
1029 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1030
1031 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1032 size_t, int));
1033 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1034 size_t, int));
1035
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1036 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1037 {
1038 trace_sock_recv_length(sk, ret, flags);
1039 }
1040
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1041 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1042 int flags)
1043 {
1044 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1045 inet6_recvmsg,
1046 inet_recvmsg, sock, msg,
1047 msg_data_left(msg), flags);
1048 if (trace_sock_recv_length_enabled())
1049 call_trace_sock_recv_length(sock->sk, ret, flags);
1050 return ret;
1051 }
1052
1053 /**
1054 * sock_recvmsg - receive a message from @sock
1055 * @sock: socket
1056 * @msg: message to receive
1057 * @flags: message flags
1058 *
1059 * Receives @msg from @sock, passing through LSM. Returns the total number
1060 * of bytes received, or an error.
1061 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1062 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1063 {
1064 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1065
1066 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1067 }
1068 EXPORT_SYMBOL(sock_recvmsg);
1069
1070 /**
1071 * kernel_recvmsg - Receive a message from a socket (kernel space)
1072 * @sock: The socket to receive the message from
1073 * @msg: Received message
1074 * @vec: Input s/g array for message data
1075 * @num: Size of input s/g array
1076 * @size: Number of bytes to read
1077 * @flags: Message flags (MSG_DONTWAIT, etc...)
1078 *
1079 * On return the msg structure contains the scatter/gather array passed in the
1080 * vec argument. The array is modified so that it consists of the unfilled
1081 * portion of the original array.
1082 *
1083 * The returned value is the total number of bytes received, or an error.
1084 */
1085
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1086 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1087 struct kvec *vec, size_t num, size_t size, int flags)
1088 {
1089 msg->msg_control_is_user = false;
1090 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1091 return sock_recvmsg(sock, msg, flags);
1092 }
1093 EXPORT_SYMBOL(kernel_recvmsg);
1094
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1095 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1096 struct pipe_inode_info *pipe, size_t len,
1097 unsigned int flags)
1098 {
1099 struct socket *sock = file->private_data;
1100 const struct proto_ops *ops;
1101
1102 ops = READ_ONCE(sock->ops);
1103 if (unlikely(!ops->splice_read))
1104 return copy_splice_read(file, ppos, pipe, len, flags);
1105
1106 return ops->splice_read(sock, ppos, pipe, len, flags);
1107 }
1108
sock_splice_eof(struct file * file)1109 static void sock_splice_eof(struct file *file)
1110 {
1111 struct socket *sock = file->private_data;
1112 const struct proto_ops *ops;
1113
1114 ops = READ_ONCE(sock->ops);
1115 if (ops->splice_eof)
1116 ops->splice_eof(sock);
1117 }
1118
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1119 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1120 {
1121 struct file *file = iocb->ki_filp;
1122 struct socket *sock = file->private_data;
1123 struct msghdr msg = {.msg_iter = *to,
1124 .msg_iocb = iocb};
1125 ssize_t res;
1126
1127 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1128 msg.msg_flags = MSG_DONTWAIT;
1129
1130 if (iocb->ki_pos != 0)
1131 return -ESPIPE;
1132
1133 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1134 return 0;
1135
1136 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1137 *to = msg.msg_iter;
1138 return res;
1139 }
1140
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1141 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1142 {
1143 struct file *file = iocb->ki_filp;
1144 struct socket *sock = file->private_data;
1145 struct msghdr msg = {.msg_iter = *from,
1146 .msg_iocb = iocb};
1147 ssize_t res;
1148
1149 if (iocb->ki_pos != 0)
1150 return -ESPIPE;
1151
1152 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1153 msg.msg_flags = MSG_DONTWAIT;
1154
1155 if (sock->type == SOCK_SEQPACKET)
1156 msg.msg_flags |= MSG_EOR;
1157
1158 res = __sock_sendmsg(sock, &msg);
1159 *from = msg.msg_iter;
1160 return res;
1161 }
1162
1163 /*
1164 * Atomic setting of ioctl hooks to avoid race
1165 * with module unload.
1166 */
1167
1168 static DEFINE_MUTEX(br_ioctl_mutex);
1169 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1170 unsigned int cmd, struct ifreq *ifr,
1171 void __user *uarg);
1172
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1173 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1174 unsigned int cmd, struct ifreq *ifr,
1175 void __user *uarg))
1176 {
1177 mutex_lock(&br_ioctl_mutex);
1178 br_ioctl_hook = hook;
1179 mutex_unlock(&br_ioctl_mutex);
1180 }
1181 EXPORT_SYMBOL(brioctl_set);
1182
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1183 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1184 struct ifreq *ifr, void __user *uarg)
1185 {
1186 int err = -ENOPKG;
1187
1188 if (!br_ioctl_hook)
1189 request_module("bridge");
1190
1191 mutex_lock(&br_ioctl_mutex);
1192 if (br_ioctl_hook)
1193 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1194 mutex_unlock(&br_ioctl_mutex);
1195
1196 return err;
1197 }
1198
1199 static DEFINE_MUTEX(vlan_ioctl_mutex);
1200 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1201
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1202 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1203 {
1204 mutex_lock(&vlan_ioctl_mutex);
1205 vlan_ioctl_hook = hook;
1206 mutex_unlock(&vlan_ioctl_mutex);
1207 }
1208 EXPORT_SYMBOL(vlan_ioctl_set);
1209
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1210 static long sock_do_ioctl(struct net *net, struct socket *sock,
1211 unsigned int cmd, unsigned long arg)
1212 {
1213 const struct proto_ops *ops = READ_ONCE(sock->ops);
1214 struct ifreq ifr;
1215 bool need_copyout;
1216 int err;
1217 void __user *argp = (void __user *)arg;
1218 void __user *data;
1219
1220 err = ops->ioctl(sock, cmd, arg);
1221
1222 /*
1223 * If this ioctl is unknown try to hand it down
1224 * to the NIC driver.
1225 */
1226 if (err != -ENOIOCTLCMD)
1227 return err;
1228
1229 if (!is_socket_ioctl_cmd(cmd))
1230 return -ENOTTY;
1231
1232 if (get_user_ifreq(&ifr, &data, argp))
1233 return -EFAULT;
1234 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1235 if (!err && need_copyout)
1236 if (put_user_ifreq(&ifr, argp))
1237 return -EFAULT;
1238
1239 return err;
1240 }
1241
1242 /*
1243 * With an ioctl, arg may well be a user mode pointer, but we don't know
1244 * what to do with it - that's up to the protocol still.
1245 */
1246
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1247 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1248 {
1249 const struct proto_ops *ops;
1250 struct socket *sock;
1251 struct sock *sk;
1252 void __user *argp = (void __user *)arg;
1253 int pid, err;
1254 struct net *net;
1255
1256 sock = file->private_data;
1257 ops = READ_ONCE(sock->ops);
1258 sk = sock->sk;
1259 net = sock_net(sk);
1260 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1261 struct ifreq ifr;
1262 void __user *data;
1263 bool need_copyout;
1264 if (get_user_ifreq(&ifr, &data, argp))
1265 return -EFAULT;
1266 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1267 if (!err && need_copyout)
1268 if (put_user_ifreq(&ifr, argp))
1269 return -EFAULT;
1270 } else
1271 #ifdef CONFIG_WEXT_CORE
1272 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1273 err = wext_handle_ioctl(net, cmd, argp);
1274 } else
1275 #endif
1276 switch (cmd) {
1277 case FIOSETOWN:
1278 case SIOCSPGRP:
1279 err = -EFAULT;
1280 if (get_user(pid, (int __user *)argp))
1281 break;
1282 err = f_setown(sock->file, pid, 1);
1283 break;
1284 case FIOGETOWN:
1285 case SIOCGPGRP:
1286 err = put_user(f_getown(sock->file),
1287 (int __user *)argp);
1288 break;
1289 case SIOCGIFBR:
1290 case SIOCSIFBR:
1291 case SIOCBRADDBR:
1292 case SIOCBRDELBR:
1293 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1294 break;
1295 case SIOCGIFVLAN:
1296 case SIOCSIFVLAN:
1297 err = -ENOPKG;
1298 if (!vlan_ioctl_hook)
1299 request_module("8021q");
1300
1301 mutex_lock(&vlan_ioctl_mutex);
1302 if (vlan_ioctl_hook)
1303 err = vlan_ioctl_hook(net, argp);
1304 mutex_unlock(&vlan_ioctl_mutex);
1305 break;
1306 case SIOCGSKNS:
1307 err = -EPERM;
1308 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1309 break;
1310
1311 err = open_related_ns(&net->ns, get_net_ns);
1312 break;
1313 case SIOCGSTAMP_OLD:
1314 case SIOCGSTAMPNS_OLD:
1315 if (!ops->gettstamp) {
1316 err = -ENOIOCTLCMD;
1317 break;
1318 }
1319 err = ops->gettstamp(sock, argp,
1320 cmd == SIOCGSTAMP_OLD,
1321 !IS_ENABLED(CONFIG_64BIT));
1322 break;
1323 case SIOCGSTAMP_NEW:
1324 case SIOCGSTAMPNS_NEW:
1325 if (!ops->gettstamp) {
1326 err = -ENOIOCTLCMD;
1327 break;
1328 }
1329 err = ops->gettstamp(sock, argp,
1330 cmd == SIOCGSTAMP_NEW,
1331 false);
1332 break;
1333
1334 case SIOCGIFCONF:
1335 err = dev_ifconf(net, argp);
1336 break;
1337
1338 default:
1339 err = sock_do_ioctl(net, sock, cmd, arg);
1340 break;
1341 }
1342 return err;
1343 }
1344
1345 /**
1346 * sock_create_lite - creates a socket
1347 * @family: protocol family (AF_INET, ...)
1348 * @type: communication type (SOCK_STREAM, ...)
1349 * @protocol: protocol (0, ...)
1350 * @res: new socket
1351 *
1352 * Creates a new socket and assigns it to @res, passing through LSM.
1353 * The new socket initialization is not complete, see kernel_accept().
1354 * Returns 0 or an error. On failure @res is set to %NULL.
1355 * This function internally uses GFP_KERNEL.
1356 */
1357
sock_create_lite(int family,int type,int protocol,struct socket ** res)1358 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1359 {
1360 int err;
1361 struct socket *sock = NULL;
1362
1363 err = security_socket_create(family, type, protocol, 1);
1364 if (err)
1365 goto out;
1366
1367 sock = sock_alloc();
1368 if (!sock) {
1369 err = -ENOMEM;
1370 goto out;
1371 }
1372
1373 sock->type = type;
1374 err = security_socket_post_create(sock, family, type, protocol, 1);
1375 if (err)
1376 goto out_release;
1377
1378 out:
1379 *res = sock;
1380 return err;
1381 out_release:
1382 sock_release(sock);
1383 sock = NULL;
1384 goto out;
1385 }
1386 EXPORT_SYMBOL(sock_create_lite);
1387
1388 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1389 static __poll_t sock_poll(struct file *file, poll_table *wait)
1390 {
1391 struct socket *sock = file->private_data;
1392 const struct proto_ops *ops = READ_ONCE(sock->ops);
1393 __poll_t events = poll_requested_events(wait), flag = 0;
1394
1395 if (!ops->poll)
1396 return 0;
1397
1398 if (sk_can_busy_loop(sock->sk)) {
1399 /* poll once if requested by the syscall */
1400 if (events & POLL_BUSY_LOOP)
1401 sk_busy_loop(sock->sk, 1);
1402
1403 /* if this socket can poll_ll, tell the system call */
1404 flag = POLL_BUSY_LOOP;
1405 }
1406
1407 return ops->poll(file, sock, wait) | flag;
1408 }
1409
sock_mmap(struct file * file,struct vm_area_struct * vma)1410 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1411 {
1412 struct socket *sock = file->private_data;
1413
1414 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1415 }
1416
sock_close(struct inode * inode,struct file * filp)1417 static int sock_close(struct inode *inode, struct file *filp)
1418 {
1419 __sock_release(SOCKET_I(inode), inode);
1420 return 0;
1421 }
1422
1423 /*
1424 * Update the socket async list
1425 *
1426 * Fasync_list locking strategy.
1427 *
1428 * 1. fasync_list is modified only under process context socket lock
1429 * i.e. under semaphore.
1430 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1431 * or under socket lock
1432 */
1433
sock_fasync(int fd,struct file * filp,int on)1434 static int sock_fasync(int fd, struct file *filp, int on)
1435 {
1436 struct socket *sock = filp->private_data;
1437 struct sock *sk = sock->sk;
1438 struct socket_wq *wq = &sock->wq;
1439
1440 if (sk == NULL)
1441 return -EINVAL;
1442
1443 lock_sock(sk);
1444 fasync_helper(fd, filp, on, &wq->fasync_list);
1445
1446 if (!wq->fasync_list)
1447 sock_reset_flag(sk, SOCK_FASYNC);
1448 else
1449 sock_set_flag(sk, SOCK_FASYNC);
1450
1451 release_sock(sk);
1452 return 0;
1453 }
1454
1455 /* This function may be called only under rcu_lock */
1456
sock_wake_async(struct socket_wq * wq,int how,int band)1457 int sock_wake_async(struct socket_wq *wq, int how, int band)
1458 {
1459 if (!wq || !wq->fasync_list)
1460 return -1;
1461
1462 switch (how) {
1463 case SOCK_WAKE_WAITD:
1464 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1465 break;
1466 goto call_kill;
1467 case SOCK_WAKE_SPACE:
1468 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1469 break;
1470 fallthrough;
1471 case SOCK_WAKE_IO:
1472 call_kill:
1473 kill_fasync(&wq->fasync_list, SIGIO, band);
1474 break;
1475 case SOCK_WAKE_URG:
1476 kill_fasync(&wq->fasync_list, SIGURG, band);
1477 }
1478
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(sock_wake_async);
1482
1483 /**
1484 * __sock_create - creates a socket
1485 * @net: net namespace
1486 * @family: protocol family (AF_INET, ...)
1487 * @type: communication type (SOCK_STREAM, ...)
1488 * @protocol: protocol (0, ...)
1489 * @res: new socket
1490 * @kern: boolean for kernel space sockets
1491 *
1492 * Creates a new socket and assigns it to @res, passing through LSM.
1493 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1494 * be set to true if the socket resides in kernel space.
1495 * This function internally uses GFP_KERNEL.
1496 */
1497
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1498 int __sock_create(struct net *net, int family, int type, int protocol,
1499 struct socket **res, int kern)
1500 {
1501 int err;
1502 struct socket *sock;
1503 const struct net_proto_family *pf;
1504
1505 /*
1506 * Check protocol is in range
1507 */
1508 if (family < 0 || family >= NPROTO)
1509 return -EAFNOSUPPORT;
1510 if (type < 0 || type >= SOCK_MAX)
1511 return -EINVAL;
1512
1513 /* Compatibility.
1514
1515 This uglymoron is moved from INET layer to here to avoid
1516 deadlock in module load.
1517 */
1518 if (family == PF_INET && type == SOCK_PACKET) {
1519 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1520 current->comm);
1521 family = PF_PACKET;
1522 }
1523
1524 err = security_socket_create(family, type, protocol, kern);
1525 if (err)
1526 return err;
1527
1528 /*
1529 * Allocate the socket and allow the family to set things up. if
1530 * the protocol is 0, the family is instructed to select an appropriate
1531 * default.
1532 */
1533 sock = sock_alloc();
1534 if (!sock) {
1535 net_warn_ratelimited("socket: no more sockets\n");
1536 return -ENFILE; /* Not exactly a match, but its the
1537 closest posix thing */
1538 }
1539
1540 sock->type = type;
1541
1542 #ifdef CONFIG_MODULES
1543 /* Attempt to load a protocol module if the find failed.
1544 *
1545 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1546 * requested real, full-featured networking support upon configuration.
1547 * Otherwise module support will break!
1548 */
1549 if (rcu_access_pointer(net_families[family]) == NULL)
1550 request_module("net-pf-%d", family);
1551 #endif
1552
1553 rcu_read_lock();
1554 pf = rcu_dereference(net_families[family]);
1555 err = -EAFNOSUPPORT;
1556 if (!pf)
1557 goto out_release;
1558
1559 /*
1560 * We will call the ->create function, that possibly is in a loadable
1561 * module, so we have to bump that loadable module refcnt first.
1562 */
1563 if (!try_module_get(pf->owner))
1564 goto out_release;
1565
1566 /* Now protected by module ref count */
1567 rcu_read_unlock();
1568
1569 err = pf->create(net, sock, protocol, kern);
1570 if (err < 0)
1571 goto out_module_put;
1572
1573 /*
1574 * Now to bump the refcnt of the [loadable] module that owns this
1575 * socket at sock_release time we decrement its refcnt.
1576 */
1577 if (!try_module_get(sock->ops->owner))
1578 goto out_module_busy;
1579
1580 /*
1581 * Now that we're done with the ->create function, the [loadable]
1582 * module can have its refcnt decremented
1583 */
1584 module_put(pf->owner);
1585 err = security_socket_post_create(sock, family, type, protocol, kern);
1586 if (err)
1587 goto out_sock_release;
1588 *res = sock;
1589
1590 return 0;
1591
1592 out_module_busy:
1593 err = -EAFNOSUPPORT;
1594 out_module_put:
1595 sock->ops = NULL;
1596 module_put(pf->owner);
1597 out_sock_release:
1598 sock_release(sock);
1599 return err;
1600
1601 out_release:
1602 rcu_read_unlock();
1603 goto out_sock_release;
1604 }
1605 EXPORT_SYMBOL(__sock_create);
1606
1607 /**
1608 * sock_create - creates a socket
1609 * @family: protocol family (AF_INET, ...)
1610 * @type: communication type (SOCK_STREAM, ...)
1611 * @protocol: protocol (0, ...)
1612 * @res: new socket
1613 *
1614 * A wrapper around __sock_create().
1615 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1616 */
1617
sock_create(int family,int type,int protocol,struct socket ** res)1618 int sock_create(int family, int type, int protocol, struct socket **res)
1619 {
1620 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1621 }
1622 EXPORT_SYMBOL(sock_create);
1623
1624 /**
1625 * sock_create_kern - creates a socket (kernel space)
1626 * @net: net namespace
1627 * @family: protocol family (AF_INET, ...)
1628 * @type: communication type (SOCK_STREAM, ...)
1629 * @protocol: protocol (0, ...)
1630 * @res: new socket
1631 *
1632 * A wrapper around __sock_create().
1633 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1634 */
1635
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1636 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1637 {
1638 return __sock_create(net, family, type, protocol, res, 1);
1639 }
1640 EXPORT_SYMBOL(sock_create_kern);
1641
__sys_socket_create(int family,int type,int protocol)1642 static struct socket *__sys_socket_create(int family, int type, int protocol)
1643 {
1644 struct socket *sock;
1645 int retval;
1646
1647 /* Check the SOCK_* constants for consistency. */
1648 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1649 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1650 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1651 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1652
1653 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1654 return ERR_PTR(-EINVAL);
1655 type &= SOCK_TYPE_MASK;
1656
1657 retval = sock_create(family, type, protocol, &sock);
1658 if (retval < 0)
1659 return ERR_PTR(retval);
1660
1661 return sock;
1662 }
1663
__sys_socket_file(int family,int type,int protocol)1664 struct file *__sys_socket_file(int family, int type, int protocol)
1665 {
1666 struct socket *sock;
1667 int flags;
1668
1669 sock = __sys_socket_create(family, type, protocol);
1670 if (IS_ERR(sock))
1671 return ERR_CAST(sock);
1672
1673 flags = type & ~SOCK_TYPE_MASK;
1674 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1675 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1676
1677 return sock_alloc_file(sock, flags, NULL);
1678 }
1679
1680 /* A hook for bpf progs to attach to and update socket protocol.
1681 *
1682 * A static noinline declaration here could cause the compiler to
1683 * optimize away the function. A global noinline declaration will
1684 * keep the definition, but may optimize away the callsite.
1685 * Therefore, __weak is needed to ensure that the call is still
1686 * emitted, by telling the compiler that we don't know what the
1687 * function might eventually be.
1688 *
1689 * __diag_* below are needed to dismiss the missing prototype warning.
1690 */
1691
1692 __diag_push();
1693 __diag_ignore_all("-Wmissing-prototypes",
1694 "A fmod_ret entry point for BPF programs");
1695
update_socket_protocol(int family,int type,int protocol)1696 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1697 {
1698 return protocol;
1699 }
1700
1701 __diag_pop();
1702
__sys_socket(int family,int type,int protocol)1703 int __sys_socket(int family, int type, int protocol)
1704 {
1705 struct socket *sock;
1706 int flags;
1707
1708 sock = __sys_socket_create(family, type,
1709 update_socket_protocol(family, type, protocol));
1710 if (IS_ERR(sock))
1711 return PTR_ERR(sock);
1712
1713 flags = type & ~SOCK_TYPE_MASK;
1714 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1715 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1716
1717 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1718 }
1719
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1720 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1721 {
1722 return __sys_socket(family, type, protocol);
1723 }
1724
1725 /*
1726 * Create a pair of connected sockets.
1727 */
1728
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1729 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1730 {
1731 struct socket *sock1, *sock2;
1732 int fd1, fd2, err;
1733 struct file *newfile1, *newfile2;
1734 int flags;
1735
1736 flags = type & ~SOCK_TYPE_MASK;
1737 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738 return -EINVAL;
1739 type &= SOCK_TYPE_MASK;
1740
1741 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1742 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1743
1744 /*
1745 * reserve descriptors and make sure we won't fail
1746 * to return them to userland.
1747 */
1748 fd1 = get_unused_fd_flags(flags);
1749 if (unlikely(fd1 < 0))
1750 return fd1;
1751
1752 fd2 = get_unused_fd_flags(flags);
1753 if (unlikely(fd2 < 0)) {
1754 put_unused_fd(fd1);
1755 return fd2;
1756 }
1757
1758 err = put_user(fd1, &usockvec[0]);
1759 if (err)
1760 goto out;
1761
1762 err = put_user(fd2, &usockvec[1]);
1763 if (err)
1764 goto out;
1765
1766 /*
1767 * Obtain the first socket and check if the underlying protocol
1768 * supports the socketpair call.
1769 */
1770
1771 err = sock_create(family, type, protocol, &sock1);
1772 if (unlikely(err < 0))
1773 goto out;
1774
1775 err = sock_create(family, type, protocol, &sock2);
1776 if (unlikely(err < 0)) {
1777 sock_release(sock1);
1778 goto out;
1779 }
1780
1781 err = security_socket_socketpair(sock1, sock2);
1782 if (unlikely(err)) {
1783 sock_release(sock2);
1784 sock_release(sock1);
1785 goto out;
1786 }
1787
1788 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1789 if (unlikely(err < 0)) {
1790 sock_release(sock2);
1791 sock_release(sock1);
1792 goto out;
1793 }
1794
1795 newfile1 = sock_alloc_file(sock1, flags, NULL);
1796 if (IS_ERR(newfile1)) {
1797 err = PTR_ERR(newfile1);
1798 sock_release(sock2);
1799 goto out;
1800 }
1801
1802 newfile2 = sock_alloc_file(sock2, flags, NULL);
1803 if (IS_ERR(newfile2)) {
1804 err = PTR_ERR(newfile2);
1805 fput(newfile1);
1806 goto out;
1807 }
1808
1809 audit_fd_pair(fd1, fd2);
1810
1811 fd_install(fd1, newfile1);
1812 fd_install(fd2, newfile2);
1813 return 0;
1814
1815 out:
1816 put_unused_fd(fd2);
1817 put_unused_fd(fd1);
1818 return err;
1819 }
1820
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1821 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1822 int __user *, usockvec)
1823 {
1824 return __sys_socketpair(family, type, protocol, usockvec);
1825 }
1826
1827 /*
1828 * Bind a name to a socket. Nothing much to do here since it's
1829 * the protocol's responsibility to handle the local address.
1830 *
1831 * We move the socket address to kernel space before we call
1832 * the protocol layer (having also checked the address is ok).
1833 */
1834
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1835 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1836 {
1837 struct socket *sock;
1838 struct sockaddr_storage address;
1839 int err, fput_needed;
1840
1841 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1842 if (sock) {
1843 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1844 if (!err) {
1845 err = security_socket_bind(sock,
1846 (struct sockaddr *)&address,
1847 addrlen);
1848 if (!err)
1849 err = READ_ONCE(sock->ops)->bind(sock,
1850 (struct sockaddr *)
1851 &address, addrlen);
1852 }
1853 fput_light(sock->file, fput_needed);
1854 }
1855 return err;
1856 }
1857
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1858 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1859 {
1860 return __sys_bind(fd, umyaddr, addrlen);
1861 }
1862
1863 /*
1864 * Perform a listen. Basically, we allow the protocol to do anything
1865 * necessary for a listen, and if that works, we mark the socket as
1866 * ready for listening.
1867 */
1868
__sys_listen(int fd,int backlog)1869 int __sys_listen(int fd, int backlog)
1870 {
1871 struct socket *sock;
1872 int err, fput_needed;
1873 int somaxconn;
1874
1875 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1876 if (sock) {
1877 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1878 if ((unsigned int)backlog > somaxconn)
1879 backlog = somaxconn;
1880
1881 err = security_socket_listen(sock, backlog);
1882 if (!err)
1883 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1884
1885 fput_light(sock->file, fput_needed);
1886 }
1887 return err;
1888 }
1889
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1890 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1891 {
1892 return __sys_listen(fd, backlog);
1893 }
1894
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1895 struct file *do_accept(struct file *file, unsigned file_flags,
1896 struct sockaddr __user *upeer_sockaddr,
1897 int __user *upeer_addrlen, int flags)
1898 {
1899 struct socket *sock, *newsock;
1900 struct file *newfile;
1901 int err, len;
1902 struct sockaddr_storage address;
1903 const struct proto_ops *ops;
1904
1905 sock = sock_from_file(file);
1906 if (!sock)
1907 return ERR_PTR(-ENOTSOCK);
1908
1909 newsock = sock_alloc();
1910 if (!newsock)
1911 return ERR_PTR(-ENFILE);
1912 ops = READ_ONCE(sock->ops);
1913
1914 newsock->type = sock->type;
1915 newsock->ops = ops;
1916
1917 /*
1918 * We don't need try_module_get here, as the listening socket (sock)
1919 * has the protocol module (sock->ops->owner) held.
1920 */
1921 __module_get(ops->owner);
1922
1923 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1924 if (IS_ERR(newfile))
1925 return newfile;
1926
1927 err = security_socket_accept(sock, newsock);
1928 if (err)
1929 goto out_fd;
1930
1931 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1932 false);
1933 if (err < 0)
1934 goto out_fd;
1935
1936 if (upeer_sockaddr) {
1937 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1938 if (len < 0) {
1939 err = -ECONNABORTED;
1940 goto out_fd;
1941 }
1942 err = move_addr_to_user(&address,
1943 len, upeer_sockaddr, upeer_addrlen);
1944 if (err < 0)
1945 goto out_fd;
1946 }
1947
1948 /* File flags are not inherited via accept() unlike another OSes. */
1949 return newfile;
1950 out_fd:
1951 fput(newfile);
1952 return ERR_PTR(err);
1953 }
1954
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1955 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1956 int __user *upeer_addrlen, int flags)
1957 {
1958 struct file *newfile;
1959 int newfd;
1960
1961 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1962 return -EINVAL;
1963
1964 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1965 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1966
1967 newfd = get_unused_fd_flags(flags);
1968 if (unlikely(newfd < 0))
1969 return newfd;
1970
1971 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1972 flags);
1973 if (IS_ERR(newfile)) {
1974 put_unused_fd(newfd);
1975 return PTR_ERR(newfile);
1976 }
1977 fd_install(newfd, newfile);
1978 return newfd;
1979 }
1980
1981 /*
1982 * For accept, we attempt to create a new socket, set up the link
1983 * with the client, wake up the client, then return the new
1984 * connected fd. We collect the address of the connector in kernel
1985 * space and move it to user at the very end. This is unclean because
1986 * we open the socket then return an error.
1987 *
1988 * 1003.1g adds the ability to recvmsg() to query connection pending
1989 * status to recvmsg. We need to add that support in a way thats
1990 * clean when we restructure accept also.
1991 */
1992
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1993 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1994 int __user *upeer_addrlen, int flags)
1995 {
1996 int ret = -EBADF;
1997 struct fd f;
1998
1999 f = fdget(fd);
2000 if (f.file) {
2001 ret = __sys_accept4_file(f.file, upeer_sockaddr,
2002 upeer_addrlen, flags);
2003 fdput(f);
2004 }
2005
2006 return ret;
2007 }
2008
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2009 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2010 int __user *, upeer_addrlen, int, flags)
2011 {
2012 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2013 }
2014
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2015 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2016 int __user *, upeer_addrlen)
2017 {
2018 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2019 }
2020
2021 /*
2022 * Attempt to connect to a socket with the server address. The address
2023 * is in user space so we verify it is OK and move it to kernel space.
2024 *
2025 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2026 * break bindings
2027 *
2028 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2029 * other SEQPACKET protocols that take time to connect() as it doesn't
2030 * include the -EINPROGRESS status for such sockets.
2031 */
2032
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2033 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2034 int addrlen, int file_flags)
2035 {
2036 struct socket *sock;
2037 int err;
2038
2039 sock = sock_from_file(file);
2040 if (!sock) {
2041 err = -ENOTSOCK;
2042 goto out;
2043 }
2044
2045 err =
2046 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2047 if (err)
2048 goto out;
2049
2050 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2051 addrlen, sock->file->f_flags | file_flags);
2052 out:
2053 return err;
2054 }
2055
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2056 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2057 {
2058 int ret = -EBADF;
2059 struct fd f;
2060
2061 f = fdget(fd);
2062 if (f.file) {
2063 struct sockaddr_storage address;
2064
2065 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2066 if (!ret)
2067 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2068 fdput(f);
2069 }
2070
2071 return ret;
2072 }
2073
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2074 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2075 int, addrlen)
2076 {
2077 return __sys_connect(fd, uservaddr, addrlen);
2078 }
2079
2080 /*
2081 * Get the local address ('name') of a socket object. Move the obtained
2082 * name to user space.
2083 */
2084
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2085 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2086 int __user *usockaddr_len)
2087 {
2088 struct socket *sock;
2089 struct sockaddr_storage address;
2090 int err, fput_needed;
2091
2092 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2093 if (!sock)
2094 goto out;
2095
2096 err = security_socket_getsockname(sock);
2097 if (err)
2098 goto out_put;
2099
2100 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2101 if (err < 0)
2102 goto out_put;
2103 /* "err" is actually length in this case */
2104 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2105
2106 out_put:
2107 fput_light(sock->file, fput_needed);
2108 out:
2109 return err;
2110 }
2111
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2112 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2113 int __user *, usockaddr_len)
2114 {
2115 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2116 }
2117
2118 /*
2119 * Get the remote address ('name') of a socket object. Move the obtained
2120 * name to user space.
2121 */
2122
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2123 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2124 int __user *usockaddr_len)
2125 {
2126 struct socket *sock;
2127 struct sockaddr_storage address;
2128 int err, fput_needed;
2129
2130 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2131 if (sock != NULL) {
2132 const struct proto_ops *ops = READ_ONCE(sock->ops);
2133
2134 err = security_socket_getpeername(sock);
2135 if (err) {
2136 fput_light(sock->file, fput_needed);
2137 return err;
2138 }
2139
2140 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2141 if (err >= 0)
2142 /* "err" is actually length in this case */
2143 err = move_addr_to_user(&address, err, usockaddr,
2144 usockaddr_len);
2145 fput_light(sock->file, fput_needed);
2146 }
2147 return err;
2148 }
2149
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2150 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2151 int __user *, usockaddr_len)
2152 {
2153 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2154 }
2155
2156 /*
2157 * Send a datagram to a given address. We move the address into kernel
2158 * space and check the user space data area is readable before invoking
2159 * the protocol.
2160 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2161 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2162 struct sockaddr __user *addr, int addr_len)
2163 {
2164 struct socket *sock;
2165 struct sockaddr_storage address;
2166 int err;
2167 struct msghdr msg;
2168 struct iovec iov;
2169 int fput_needed;
2170
2171 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2172 if (unlikely(err))
2173 return err;
2174 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2175 if (!sock)
2176 goto out;
2177
2178 msg.msg_name = NULL;
2179 msg.msg_control = NULL;
2180 msg.msg_controllen = 0;
2181 msg.msg_namelen = 0;
2182 msg.msg_ubuf = NULL;
2183 if (addr) {
2184 err = move_addr_to_kernel(addr, addr_len, &address);
2185 if (err < 0)
2186 goto out_put;
2187 msg.msg_name = (struct sockaddr *)&address;
2188 msg.msg_namelen = addr_len;
2189 }
2190 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2191 if (sock->file->f_flags & O_NONBLOCK)
2192 flags |= MSG_DONTWAIT;
2193 msg.msg_flags = flags;
2194 err = __sock_sendmsg(sock, &msg);
2195
2196 out_put:
2197 fput_light(sock->file, fput_needed);
2198 out:
2199 return err;
2200 }
2201
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2202 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2203 unsigned int, flags, struct sockaddr __user *, addr,
2204 int, addr_len)
2205 {
2206 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2207 }
2208
2209 /*
2210 * Send a datagram down a socket.
2211 */
2212
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2213 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2214 unsigned int, flags)
2215 {
2216 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2217 }
2218
2219 /*
2220 * Receive a frame from the socket and optionally record the address of the
2221 * sender. We verify the buffers are writable and if needed move the
2222 * sender address from kernel to user space.
2223 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2224 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2225 struct sockaddr __user *addr, int __user *addr_len)
2226 {
2227 struct sockaddr_storage address;
2228 struct msghdr msg = {
2229 /* Save some cycles and don't copy the address if not needed */
2230 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2231 };
2232 struct socket *sock;
2233 struct iovec iov;
2234 int err, err2;
2235 int fput_needed;
2236
2237 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2238 if (unlikely(err))
2239 return err;
2240 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2241 if (!sock)
2242 goto out;
2243
2244 if (sock->file->f_flags & O_NONBLOCK)
2245 flags |= MSG_DONTWAIT;
2246 err = sock_recvmsg(sock, &msg, flags);
2247
2248 if (err >= 0 && addr != NULL) {
2249 err2 = move_addr_to_user(&address,
2250 msg.msg_namelen, addr, addr_len);
2251 if (err2 < 0)
2252 err = err2;
2253 }
2254
2255 fput_light(sock->file, fput_needed);
2256 out:
2257 return err;
2258 }
2259
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2260 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2261 unsigned int, flags, struct sockaddr __user *, addr,
2262 int __user *, addr_len)
2263 {
2264 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2265 }
2266
2267 /*
2268 * Receive a datagram from a socket.
2269 */
2270
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2271 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2272 unsigned int, flags)
2273 {
2274 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2275 }
2276
sock_use_custom_sol_socket(const struct socket * sock)2277 static bool sock_use_custom_sol_socket(const struct socket *sock)
2278 {
2279 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2280 }
2281
2282 /*
2283 * Set a socket option. Because we don't know the option lengths we have
2284 * to pass the user mode parameter for the protocols to sort out.
2285 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2286 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2287 int optlen)
2288 {
2289 sockptr_t optval = USER_SOCKPTR(user_optval);
2290 const struct proto_ops *ops;
2291 char *kernel_optval = NULL;
2292 int err, fput_needed;
2293 struct socket *sock;
2294
2295 if (optlen < 0)
2296 return -EINVAL;
2297
2298 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2299 if (!sock)
2300 return err;
2301
2302 err = security_socket_setsockopt(sock, level, optname);
2303 if (err)
2304 goto out_put;
2305
2306 if (!in_compat_syscall())
2307 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2308 user_optval, &optlen,
2309 &kernel_optval);
2310 if (err < 0)
2311 goto out_put;
2312 if (err > 0) {
2313 err = 0;
2314 goto out_put;
2315 }
2316
2317 if (kernel_optval)
2318 optval = KERNEL_SOCKPTR(kernel_optval);
2319 ops = READ_ONCE(sock->ops);
2320 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2321 err = sock_setsockopt(sock, level, optname, optval, optlen);
2322 else if (unlikely(!ops->setsockopt))
2323 err = -EOPNOTSUPP;
2324 else
2325 err = ops->setsockopt(sock, level, optname, optval,
2326 optlen);
2327 kfree(kernel_optval);
2328 out_put:
2329 fput_light(sock->file, fput_needed);
2330 return err;
2331 }
2332
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2333 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2334 char __user *, optval, int, optlen)
2335 {
2336 return __sys_setsockopt(fd, level, optname, optval, optlen);
2337 }
2338
2339 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2340 int optname));
2341
2342 /*
2343 * Get a socket option. Because we don't know the option lengths we have
2344 * to pass a user mode parameter for the protocols to sort out.
2345 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2346 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2347 int __user *optlen)
2348 {
2349 int max_optlen __maybe_unused;
2350 const struct proto_ops *ops;
2351 int err, fput_needed;
2352 struct socket *sock;
2353
2354 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2355 if (!sock)
2356 return err;
2357
2358 err = security_socket_getsockopt(sock, level, optname);
2359 if (err)
2360 goto out_put;
2361
2362 if (!in_compat_syscall())
2363 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2364
2365 ops = READ_ONCE(sock->ops);
2366 if (level == SOL_SOCKET)
2367 err = sock_getsockopt(sock, level, optname, optval, optlen);
2368 else if (unlikely(!ops->getsockopt))
2369 err = -EOPNOTSUPP;
2370 else
2371 err = ops->getsockopt(sock, level, optname, optval,
2372 optlen);
2373
2374 if (!in_compat_syscall())
2375 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2376 optval, optlen, max_optlen,
2377 err);
2378 out_put:
2379 fput_light(sock->file, fput_needed);
2380 return err;
2381 }
2382
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2383 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2384 char __user *, optval, int __user *, optlen)
2385 {
2386 return __sys_getsockopt(fd, level, optname, optval, optlen);
2387 }
2388
2389 /*
2390 * Shutdown a socket.
2391 */
2392
__sys_shutdown_sock(struct socket * sock,int how)2393 int __sys_shutdown_sock(struct socket *sock, int how)
2394 {
2395 int err;
2396
2397 err = security_socket_shutdown(sock, how);
2398 if (!err)
2399 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2400
2401 return err;
2402 }
2403
__sys_shutdown(int fd,int how)2404 int __sys_shutdown(int fd, int how)
2405 {
2406 int err, fput_needed;
2407 struct socket *sock;
2408
2409 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2410 if (sock != NULL) {
2411 err = __sys_shutdown_sock(sock, how);
2412 fput_light(sock->file, fput_needed);
2413 }
2414 return err;
2415 }
2416
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2417 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2418 {
2419 return __sys_shutdown(fd, how);
2420 }
2421
2422 /* A couple of helpful macros for getting the address of the 32/64 bit
2423 * fields which are the same type (int / unsigned) on our platforms.
2424 */
2425 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2426 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2427 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2428
2429 struct used_address {
2430 struct sockaddr_storage name;
2431 unsigned int name_len;
2432 };
2433
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2434 int __copy_msghdr(struct msghdr *kmsg,
2435 struct user_msghdr *msg,
2436 struct sockaddr __user **save_addr)
2437 {
2438 ssize_t err;
2439
2440 kmsg->msg_control_is_user = true;
2441 kmsg->msg_get_inq = 0;
2442 kmsg->msg_control_user = msg->msg_control;
2443 kmsg->msg_controllen = msg->msg_controllen;
2444 kmsg->msg_flags = msg->msg_flags;
2445
2446 kmsg->msg_namelen = msg->msg_namelen;
2447 if (!msg->msg_name)
2448 kmsg->msg_namelen = 0;
2449
2450 if (kmsg->msg_namelen < 0)
2451 return -EINVAL;
2452
2453 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2454 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2455
2456 if (save_addr)
2457 *save_addr = msg->msg_name;
2458
2459 if (msg->msg_name && kmsg->msg_namelen) {
2460 if (!save_addr) {
2461 err = move_addr_to_kernel(msg->msg_name,
2462 kmsg->msg_namelen,
2463 kmsg->msg_name);
2464 if (err < 0)
2465 return err;
2466 }
2467 } else {
2468 kmsg->msg_name = NULL;
2469 kmsg->msg_namelen = 0;
2470 }
2471
2472 if (msg->msg_iovlen > UIO_MAXIOV)
2473 return -EMSGSIZE;
2474
2475 kmsg->msg_iocb = NULL;
2476 kmsg->msg_ubuf = NULL;
2477 return 0;
2478 }
2479
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2480 static int copy_msghdr_from_user(struct msghdr *kmsg,
2481 struct user_msghdr __user *umsg,
2482 struct sockaddr __user **save_addr,
2483 struct iovec **iov)
2484 {
2485 struct user_msghdr msg;
2486 ssize_t err;
2487
2488 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2489 return -EFAULT;
2490
2491 err = __copy_msghdr(kmsg, &msg, save_addr);
2492 if (err)
2493 return err;
2494
2495 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2496 msg.msg_iov, msg.msg_iovlen,
2497 UIO_FASTIOV, iov, &kmsg->msg_iter);
2498 return err < 0 ? err : 0;
2499 }
2500
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2501 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2502 unsigned int flags, struct used_address *used_address,
2503 unsigned int allowed_msghdr_flags)
2504 {
2505 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2506 __aligned(sizeof(__kernel_size_t));
2507 /* 20 is size of ipv6_pktinfo */
2508 unsigned char *ctl_buf = ctl;
2509 int ctl_len;
2510 ssize_t err;
2511
2512 err = -ENOBUFS;
2513
2514 if (msg_sys->msg_controllen > INT_MAX)
2515 goto out;
2516 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2517 ctl_len = msg_sys->msg_controllen;
2518 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2519 err =
2520 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2521 sizeof(ctl));
2522 if (err)
2523 goto out;
2524 ctl_buf = msg_sys->msg_control;
2525 ctl_len = msg_sys->msg_controllen;
2526 } else if (ctl_len) {
2527 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2528 CMSG_ALIGN(sizeof(struct cmsghdr)));
2529 if (ctl_len > sizeof(ctl)) {
2530 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2531 if (ctl_buf == NULL)
2532 goto out;
2533 }
2534 err = -EFAULT;
2535 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2536 goto out_freectl;
2537 msg_sys->msg_control = ctl_buf;
2538 msg_sys->msg_control_is_user = false;
2539 }
2540 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2541 msg_sys->msg_flags = flags;
2542
2543 if (sock->file->f_flags & O_NONBLOCK)
2544 msg_sys->msg_flags |= MSG_DONTWAIT;
2545 /*
2546 * If this is sendmmsg() and current destination address is same as
2547 * previously succeeded address, omit asking LSM's decision.
2548 * used_address->name_len is initialized to UINT_MAX so that the first
2549 * destination address never matches.
2550 */
2551 if (used_address && msg_sys->msg_name &&
2552 used_address->name_len == msg_sys->msg_namelen &&
2553 !memcmp(&used_address->name, msg_sys->msg_name,
2554 used_address->name_len)) {
2555 err = sock_sendmsg_nosec(sock, msg_sys);
2556 goto out_freectl;
2557 }
2558 err = __sock_sendmsg(sock, msg_sys);
2559 /*
2560 * If this is sendmmsg() and sending to current destination address was
2561 * successful, remember it.
2562 */
2563 if (used_address && err >= 0) {
2564 used_address->name_len = msg_sys->msg_namelen;
2565 if (msg_sys->msg_name)
2566 memcpy(&used_address->name, msg_sys->msg_name,
2567 used_address->name_len);
2568 }
2569
2570 out_freectl:
2571 if (ctl_buf != ctl)
2572 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2573 out:
2574 return err;
2575 }
2576
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2577 int sendmsg_copy_msghdr(struct msghdr *msg,
2578 struct user_msghdr __user *umsg, unsigned flags,
2579 struct iovec **iov)
2580 {
2581 int err;
2582
2583 if (flags & MSG_CMSG_COMPAT) {
2584 struct compat_msghdr __user *msg_compat;
2585
2586 msg_compat = (struct compat_msghdr __user *) umsg;
2587 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2588 } else {
2589 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2590 }
2591 if (err < 0)
2592 return err;
2593
2594 return 0;
2595 }
2596
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2597 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2598 struct msghdr *msg_sys, unsigned int flags,
2599 struct used_address *used_address,
2600 unsigned int allowed_msghdr_flags)
2601 {
2602 struct sockaddr_storage address;
2603 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2604 ssize_t err;
2605
2606 msg_sys->msg_name = &address;
2607
2608 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2609 if (err < 0)
2610 return err;
2611
2612 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2613 allowed_msghdr_flags);
2614 kfree(iov);
2615 return err;
2616 }
2617
2618 /*
2619 * BSD sendmsg interface
2620 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2621 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2622 unsigned int flags)
2623 {
2624 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2625 }
2626
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2627 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2628 bool forbid_cmsg_compat)
2629 {
2630 int fput_needed, err;
2631 struct msghdr msg_sys;
2632 struct socket *sock;
2633
2634 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2635 return -EINVAL;
2636
2637 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2638 if (!sock)
2639 goto out;
2640
2641 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2642
2643 fput_light(sock->file, fput_needed);
2644 out:
2645 return err;
2646 }
2647
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2648 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2649 {
2650 return __sys_sendmsg(fd, msg, flags, true);
2651 }
2652
2653 /*
2654 * Linux sendmmsg interface
2655 */
2656
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2657 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2658 unsigned int flags, bool forbid_cmsg_compat)
2659 {
2660 int fput_needed, err, datagrams;
2661 struct socket *sock;
2662 struct mmsghdr __user *entry;
2663 struct compat_mmsghdr __user *compat_entry;
2664 struct msghdr msg_sys;
2665 struct used_address used_address;
2666 unsigned int oflags = flags;
2667
2668 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2669 return -EINVAL;
2670
2671 if (vlen > UIO_MAXIOV)
2672 vlen = UIO_MAXIOV;
2673
2674 datagrams = 0;
2675
2676 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2677 if (!sock)
2678 return err;
2679
2680 used_address.name_len = UINT_MAX;
2681 entry = mmsg;
2682 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2683 err = 0;
2684 flags |= MSG_BATCH;
2685
2686 while (datagrams < vlen) {
2687 if (datagrams == vlen - 1)
2688 flags = oflags;
2689
2690 if (MSG_CMSG_COMPAT & flags) {
2691 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2692 &msg_sys, flags, &used_address, MSG_EOR);
2693 if (err < 0)
2694 break;
2695 err = __put_user(err, &compat_entry->msg_len);
2696 ++compat_entry;
2697 } else {
2698 err = ___sys_sendmsg(sock,
2699 (struct user_msghdr __user *)entry,
2700 &msg_sys, flags, &used_address, MSG_EOR);
2701 if (err < 0)
2702 break;
2703 err = put_user(err, &entry->msg_len);
2704 ++entry;
2705 }
2706
2707 if (err)
2708 break;
2709 ++datagrams;
2710 if (msg_data_left(&msg_sys))
2711 break;
2712 cond_resched();
2713 }
2714
2715 fput_light(sock->file, fput_needed);
2716
2717 /* We only return an error if no datagrams were able to be sent */
2718 if (datagrams != 0)
2719 return datagrams;
2720
2721 return err;
2722 }
2723
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2724 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2725 unsigned int, vlen, unsigned int, flags)
2726 {
2727 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2728 }
2729
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2730 int recvmsg_copy_msghdr(struct msghdr *msg,
2731 struct user_msghdr __user *umsg, unsigned flags,
2732 struct sockaddr __user **uaddr,
2733 struct iovec **iov)
2734 {
2735 ssize_t err;
2736
2737 if (MSG_CMSG_COMPAT & flags) {
2738 struct compat_msghdr __user *msg_compat;
2739
2740 msg_compat = (struct compat_msghdr __user *) umsg;
2741 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2742 } else {
2743 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2744 }
2745 if (err < 0)
2746 return err;
2747
2748 return 0;
2749 }
2750
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2751 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2752 struct user_msghdr __user *msg,
2753 struct sockaddr __user *uaddr,
2754 unsigned int flags, int nosec)
2755 {
2756 struct compat_msghdr __user *msg_compat =
2757 (struct compat_msghdr __user *) msg;
2758 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2759 struct sockaddr_storage addr;
2760 unsigned long cmsg_ptr;
2761 int len;
2762 ssize_t err;
2763
2764 msg_sys->msg_name = &addr;
2765 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2766 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2767
2768 /* We assume all kernel code knows the size of sockaddr_storage */
2769 msg_sys->msg_namelen = 0;
2770
2771 if (sock->file->f_flags & O_NONBLOCK)
2772 flags |= MSG_DONTWAIT;
2773
2774 if (unlikely(nosec))
2775 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2776 else
2777 err = sock_recvmsg(sock, msg_sys, flags);
2778
2779 if (err < 0)
2780 goto out;
2781 len = err;
2782
2783 if (uaddr != NULL) {
2784 err = move_addr_to_user(&addr,
2785 msg_sys->msg_namelen, uaddr,
2786 uaddr_len);
2787 if (err < 0)
2788 goto out;
2789 }
2790 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2791 COMPAT_FLAGS(msg));
2792 if (err)
2793 goto out;
2794 if (MSG_CMSG_COMPAT & flags)
2795 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2796 &msg_compat->msg_controllen);
2797 else
2798 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2799 &msg->msg_controllen);
2800 if (err)
2801 goto out;
2802 err = len;
2803 out:
2804 return err;
2805 }
2806
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2807 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2808 struct msghdr *msg_sys, unsigned int flags, int nosec)
2809 {
2810 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2811 /* user mode address pointers */
2812 struct sockaddr __user *uaddr;
2813 ssize_t err;
2814
2815 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2816 if (err < 0)
2817 return err;
2818
2819 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2820 kfree(iov);
2821 return err;
2822 }
2823
2824 /*
2825 * BSD recvmsg interface
2826 */
2827
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2828 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2829 struct user_msghdr __user *umsg,
2830 struct sockaddr __user *uaddr, unsigned int flags)
2831 {
2832 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2833 }
2834
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2835 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2836 bool forbid_cmsg_compat)
2837 {
2838 int fput_needed, err;
2839 struct msghdr msg_sys;
2840 struct socket *sock;
2841
2842 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2843 return -EINVAL;
2844
2845 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2846 if (!sock)
2847 goto out;
2848
2849 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2850
2851 fput_light(sock->file, fput_needed);
2852 out:
2853 return err;
2854 }
2855
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2856 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2857 unsigned int, flags)
2858 {
2859 return __sys_recvmsg(fd, msg, flags, true);
2860 }
2861
2862 /*
2863 * Linux recvmmsg interface
2864 */
2865
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2866 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2867 unsigned int vlen, unsigned int flags,
2868 struct timespec64 *timeout)
2869 {
2870 int fput_needed, err, datagrams;
2871 struct socket *sock;
2872 struct mmsghdr __user *entry;
2873 struct compat_mmsghdr __user *compat_entry;
2874 struct msghdr msg_sys;
2875 struct timespec64 end_time;
2876 struct timespec64 timeout64;
2877
2878 if (timeout &&
2879 poll_select_set_timeout(&end_time, timeout->tv_sec,
2880 timeout->tv_nsec))
2881 return -EINVAL;
2882
2883 datagrams = 0;
2884
2885 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2886 if (!sock)
2887 return err;
2888
2889 if (likely(!(flags & MSG_ERRQUEUE))) {
2890 err = sock_error(sock->sk);
2891 if (err) {
2892 datagrams = err;
2893 goto out_put;
2894 }
2895 }
2896
2897 entry = mmsg;
2898 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2899
2900 while (datagrams < vlen) {
2901 /*
2902 * No need to ask LSM for more than the first datagram.
2903 */
2904 if (MSG_CMSG_COMPAT & flags) {
2905 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2906 &msg_sys, flags & ~MSG_WAITFORONE,
2907 datagrams);
2908 if (err < 0)
2909 break;
2910 err = __put_user(err, &compat_entry->msg_len);
2911 ++compat_entry;
2912 } else {
2913 err = ___sys_recvmsg(sock,
2914 (struct user_msghdr __user *)entry,
2915 &msg_sys, flags & ~MSG_WAITFORONE,
2916 datagrams);
2917 if (err < 0)
2918 break;
2919 err = put_user(err, &entry->msg_len);
2920 ++entry;
2921 }
2922
2923 if (err)
2924 break;
2925 ++datagrams;
2926
2927 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2928 if (flags & MSG_WAITFORONE)
2929 flags |= MSG_DONTWAIT;
2930
2931 if (timeout) {
2932 ktime_get_ts64(&timeout64);
2933 *timeout = timespec64_sub(end_time, timeout64);
2934 if (timeout->tv_sec < 0) {
2935 timeout->tv_sec = timeout->tv_nsec = 0;
2936 break;
2937 }
2938
2939 /* Timeout, return less than vlen datagrams */
2940 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2941 break;
2942 }
2943
2944 /* Out of band data, return right away */
2945 if (msg_sys.msg_flags & MSG_OOB)
2946 break;
2947 cond_resched();
2948 }
2949
2950 if (err == 0)
2951 goto out_put;
2952
2953 if (datagrams == 0) {
2954 datagrams = err;
2955 goto out_put;
2956 }
2957
2958 /*
2959 * We may return less entries than requested (vlen) if the
2960 * sock is non block and there aren't enough datagrams...
2961 */
2962 if (err != -EAGAIN) {
2963 /*
2964 * ... or if recvmsg returns an error after we
2965 * received some datagrams, where we record the
2966 * error to return on the next call or if the
2967 * app asks about it using getsockopt(SO_ERROR).
2968 */
2969 WRITE_ONCE(sock->sk->sk_err, -err);
2970 }
2971 out_put:
2972 fput_light(sock->file, fput_needed);
2973
2974 return datagrams;
2975 }
2976
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2977 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2978 unsigned int vlen, unsigned int flags,
2979 struct __kernel_timespec __user *timeout,
2980 struct old_timespec32 __user *timeout32)
2981 {
2982 int datagrams;
2983 struct timespec64 timeout_sys;
2984
2985 if (timeout && get_timespec64(&timeout_sys, timeout))
2986 return -EFAULT;
2987
2988 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2989 return -EFAULT;
2990
2991 if (!timeout && !timeout32)
2992 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2993
2994 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2995
2996 if (datagrams <= 0)
2997 return datagrams;
2998
2999 if (timeout && put_timespec64(&timeout_sys, timeout))
3000 datagrams = -EFAULT;
3001
3002 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3003 datagrams = -EFAULT;
3004
3005 return datagrams;
3006 }
3007
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3008 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3009 unsigned int, vlen, unsigned int, flags,
3010 struct __kernel_timespec __user *, timeout)
3011 {
3012 if (flags & MSG_CMSG_COMPAT)
3013 return -EINVAL;
3014
3015 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3016 }
3017
3018 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3019 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3020 unsigned int, vlen, unsigned int, flags,
3021 struct old_timespec32 __user *, timeout)
3022 {
3023 if (flags & MSG_CMSG_COMPAT)
3024 return -EINVAL;
3025
3026 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3027 }
3028 #endif
3029
3030 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3031 /* Argument list sizes for sys_socketcall */
3032 #define AL(x) ((x) * sizeof(unsigned long))
3033 static const unsigned char nargs[21] = {
3034 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3035 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3036 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3037 AL(4), AL(5), AL(4)
3038 };
3039
3040 #undef AL
3041
3042 /*
3043 * System call vectors.
3044 *
3045 * Argument checking cleaned up. Saved 20% in size.
3046 * This function doesn't need to set the kernel lock because
3047 * it is set by the callees.
3048 */
3049
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3050 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3051 {
3052 unsigned long a[AUDITSC_ARGS];
3053 unsigned long a0, a1;
3054 int err;
3055 unsigned int len;
3056
3057 if (call < 1 || call > SYS_SENDMMSG)
3058 return -EINVAL;
3059 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3060
3061 len = nargs[call];
3062 if (len > sizeof(a))
3063 return -EINVAL;
3064
3065 /* copy_from_user should be SMP safe. */
3066 if (copy_from_user(a, args, len))
3067 return -EFAULT;
3068
3069 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3070 if (err)
3071 return err;
3072
3073 a0 = a[0];
3074 a1 = a[1];
3075
3076 switch (call) {
3077 case SYS_SOCKET:
3078 err = __sys_socket(a0, a1, a[2]);
3079 break;
3080 case SYS_BIND:
3081 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3082 break;
3083 case SYS_CONNECT:
3084 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3085 break;
3086 case SYS_LISTEN:
3087 err = __sys_listen(a0, a1);
3088 break;
3089 case SYS_ACCEPT:
3090 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3091 (int __user *)a[2], 0);
3092 break;
3093 case SYS_GETSOCKNAME:
3094 err =
3095 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3096 (int __user *)a[2]);
3097 break;
3098 case SYS_GETPEERNAME:
3099 err =
3100 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3101 (int __user *)a[2]);
3102 break;
3103 case SYS_SOCKETPAIR:
3104 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3105 break;
3106 case SYS_SEND:
3107 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3108 NULL, 0);
3109 break;
3110 case SYS_SENDTO:
3111 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3112 (struct sockaddr __user *)a[4], a[5]);
3113 break;
3114 case SYS_RECV:
3115 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3116 NULL, NULL);
3117 break;
3118 case SYS_RECVFROM:
3119 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3120 (struct sockaddr __user *)a[4],
3121 (int __user *)a[5]);
3122 break;
3123 case SYS_SHUTDOWN:
3124 err = __sys_shutdown(a0, a1);
3125 break;
3126 case SYS_SETSOCKOPT:
3127 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3128 a[4]);
3129 break;
3130 case SYS_GETSOCKOPT:
3131 err =
3132 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3133 (int __user *)a[4]);
3134 break;
3135 case SYS_SENDMSG:
3136 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3137 a[2], true);
3138 break;
3139 case SYS_SENDMMSG:
3140 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3141 a[3], true);
3142 break;
3143 case SYS_RECVMSG:
3144 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3145 a[2], true);
3146 break;
3147 case SYS_RECVMMSG:
3148 if (IS_ENABLED(CONFIG_64BIT))
3149 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3150 a[2], a[3],
3151 (struct __kernel_timespec __user *)a[4],
3152 NULL);
3153 else
3154 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3155 a[2], a[3], NULL,
3156 (struct old_timespec32 __user *)a[4]);
3157 break;
3158 case SYS_ACCEPT4:
3159 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3160 (int __user *)a[2], a[3]);
3161 break;
3162 default:
3163 err = -EINVAL;
3164 break;
3165 }
3166 return err;
3167 }
3168
3169 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3170
3171 /**
3172 * sock_register - add a socket protocol handler
3173 * @ops: description of protocol
3174 *
3175 * This function is called by a protocol handler that wants to
3176 * advertise its address family, and have it linked into the
3177 * socket interface. The value ops->family corresponds to the
3178 * socket system call protocol family.
3179 */
sock_register(const struct net_proto_family * ops)3180 int sock_register(const struct net_proto_family *ops)
3181 {
3182 int err;
3183
3184 if (ops->family >= NPROTO) {
3185 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3186 return -ENOBUFS;
3187 }
3188
3189 spin_lock(&net_family_lock);
3190 if (rcu_dereference_protected(net_families[ops->family],
3191 lockdep_is_held(&net_family_lock)))
3192 err = -EEXIST;
3193 else {
3194 rcu_assign_pointer(net_families[ops->family], ops);
3195 err = 0;
3196 }
3197 spin_unlock(&net_family_lock);
3198
3199 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3200 return err;
3201 }
3202 EXPORT_SYMBOL(sock_register);
3203
3204 /**
3205 * sock_unregister - remove a protocol handler
3206 * @family: protocol family to remove
3207 *
3208 * This function is called by a protocol handler that wants to
3209 * remove its address family, and have it unlinked from the
3210 * new socket creation.
3211 *
3212 * If protocol handler is a module, then it can use module reference
3213 * counts to protect against new references. If protocol handler is not
3214 * a module then it needs to provide its own protection in
3215 * the ops->create routine.
3216 */
sock_unregister(int family)3217 void sock_unregister(int family)
3218 {
3219 BUG_ON(family < 0 || family >= NPROTO);
3220
3221 spin_lock(&net_family_lock);
3222 RCU_INIT_POINTER(net_families[family], NULL);
3223 spin_unlock(&net_family_lock);
3224
3225 synchronize_rcu();
3226
3227 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3228 }
3229 EXPORT_SYMBOL(sock_unregister);
3230
sock_is_registered(int family)3231 bool sock_is_registered(int family)
3232 {
3233 return family < NPROTO && rcu_access_pointer(net_families[family]);
3234 }
3235
sock_init(void)3236 static int __init sock_init(void)
3237 {
3238 int err;
3239 /*
3240 * Initialize the network sysctl infrastructure.
3241 */
3242 err = net_sysctl_init();
3243 if (err)
3244 goto out;
3245
3246 /*
3247 * Initialize skbuff SLAB cache
3248 */
3249 skb_init();
3250
3251 /*
3252 * Initialize the protocols module.
3253 */
3254
3255 init_inodecache();
3256
3257 err = register_filesystem(&sock_fs_type);
3258 if (err)
3259 goto out;
3260 sock_mnt = kern_mount(&sock_fs_type);
3261 if (IS_ERR(sock_mnt)) {
3262 err = PTR_ERR(sock_mnt);
3263 goto out_mount;
3264 }
3265
3266 /* The real protocol initialization is performed in later initcalls.
3267 */
3268
3269 #ifdef CONFIG_NETFILTER
3270 err = netfilter_init();
3271 if (err)
3272 goto out;
3273 #endif
3274
3275 ptp_classifier_init();
3276
3277 out:
3278 return err;
3279
3280 out_mount:
3281 unregister_filesystem(&sock_fs_type);
3282 goto out;
3283 }
3284
3285 core_initcall(sock_init); /* early initcall */
3286
3287 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3288 void socket_seq_show(struct seq_file *seq)
3289 {
3290 seq_printf(seq, "sockets: used %d\n",
3291 sock_inuse_get(seq->private));
3292 }
3293 #endif /* CONFIG_PROC_FS */
3294
3295 /* Handle the fact that while struct ifreq has the same *layout* on
3296 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3297 * which are handled elsewhere, it still has different *size* due to
3298 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3299 * resulting in struct ifreq being 32 and 40 bytes respectively).
3300 * As a result, if the struct happens to be at the end of a page and
3301 * the next page isn't readable/writable, we get a fault. To prevent
3302 * that, copy back and forth to the full size.
3303 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3304 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3305 {
3306 if (in_compat_syscall()) {
3307 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3308
3309 memset(ifr, 0, sizeof(*ifr));
3310 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3311 return -EFAULT;
3312
3313 if (ifrdata)
3314 *ifrdata = compat_ptr(ifr32->ifr_data);
3315
3316 return 0;
3317 }
3318
3319 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3320 return -EFAULT;
3321
3322 if (ifrdata)
3323 *ifrdata = ifr->ifr_data;
3324
3325 return 0;
3326 }
3327 EXPORT_SYMBOL(get_user_ifreq);
3328
put_user_ifreq(struct ifreq * ifr,void __user * arg)3329 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3330 {
3331 size_t size = sizeof(*ifr);
3332
3333 if (in_compat_syscall())
3334 size = sizeof(struct compat_ifreq);
3335
3336 if (copy_to_user(arg, ifr, size))
3337 return -EFAULT;
3338
3339 return 0;
3340 }
3341 EXPORT_SYMBOL(put_user_ifreq);
3342
3343 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3344 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3345 {
3346 compat_uptr_t uptr32;
3347 struct ifreq ifr;
3348 void __user *saved;
3349 int err;
3350
3351 if (get_user_ifreq(&ifr, NULL, uifr32))
3352 return -EFAULT;
3353
3354 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3355 return -EFAULT;
3356
3357 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3358 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3359
3360 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3361 if (!err) {
3362 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3363 if (put_user_ifreq(&ifr, uifr32))
3364 err = -EFAULT;
3365 }
3366 return err;
3367 }
3368
3369 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3370 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3371 struct compat_ifreq __user *u_ifreq32)
3372 {
3373 struct ifreq ifreq;
3374 void __user *data;
3375
3376 if (!is_socket_ioctl_cmd(cmd))
3377 return -ENOTTY;
3378 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3379 return -EFAULT;
3380 ifreq.ifr_data = data;
3381
3382 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3383 }
3384
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3385 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3386 unsigned int cmd, unsigned long arg)
3387 {
3388 void __user *argp = compat_ptr(arg);
3389 struct sock *sk = sock->sk;
3390 struct net *net = sock_net(sk);
3391 const struct proto_ops *ops;
3392
3393 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3394 return sock_ioctl(file, cmd, (unsigned long)argp);
3395
3396 switch (cmd) {
3397 case SIOCWANDEV:
3398 return compat_siocwandev(net, argp);
3399 case SIOCGSTAMP_OLD:
3400 case SIOCGSTAMPNS_OLD:
3401 ops = READ_ONCE(sock->ops);
3402 if (!ops->gettstamp)
3403 return -ENOIOCTLCMD;
3404 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3405 !COMPAT_USE_64BIT_TIME);
3406
3407 case SIOCETHTOOL:
3408 case SIOCBONDSLAVEINFOQUERY:
3409 case SIOCBONDINFOQUERY:
3410 case SIOCSHWTSTAMP:
3411 case SIOCGHWTSTAMP:
3412 return compat_ifr_data_ioctl(net, cmd, argp);
3413
3414 case FIOSETOWN:
3415 case SIOCSPGRP:
3416 case FIOGETOWN:
3417 case SIOCGPGRP:
3418 case SIOCBRADDBR:
3419 case SIOCBRDELBR:
3420 case SIOCGIFVLAN:
3421 case SIOCSIFVLAN:
3422 case SIOCGSKNS:
3423 case SIOCGSTAMP_NEW:
3424 case SIOCGSTAMPNS_NEW:
3425 case SIOCGIFCONF:
3426 case SIOCSIFBR:
3427 case SIOCGIFBR:
3428 return sock_ioctl(file, cmd, arg);
3429
3430 case SIOCGIFFLAGS:
3431 case SIOCSIFFLAGS:
3432 case SIOCGIFMAP:
3433 case SIOCSIFMAP:
3434 case SIOCGIFMETRIC:
3435 case SIOCSIFMETRIC:
3436 case SIOCGIFMTU:
3437 case SIOCSIFMTU:
3438 case SIOCGIFMEM:
3439 case SIOCSIFMEM:
3440 case SIOCGIFHWADDR:
3441 case SIOCSIFHWADDR:
3442 case SIOCADDMULTI:
3443 case SIOCDELMULTI:
3444 case SIOCGIFINDEX:
3445 case SIOCGIFADDR:
3446 case SIOCSIFADDR:
3447 case SIOCSIFHWBROADCAST:
3448 case SIOCDIFADDR:
3449 case SIOCGIFBRDADDR:
3450 case SIOCSIFBRDADDR:
3451 case SIOCGIFDSTADDR:
3452 case SIOCSIFDSTADDR:
3453 case SIOCGIFNETMASK:
3454 case SIOCSIFNETMASK:
3455 case SIOCSIFPFLAGS:
3456 case SIOCGIFPFLAGS:
3457 case SIOCGIFTXQLEN:
3458 case SIOCSIFTXQLEN:
3459 case SIOCBRADDIF:
3460 case SIOCBRDELIF:
3461 case SIOCGIFNAME:
3462 case SIOCSIFNAME:
3463 case SIOCGMIIPHY:
3464 case SIOCGMIIREG:
3465 case SIOCSMIIREG:
3466 case SIOCBONDENSLAVE:
3467 case SIOCBONDRELEASE:
3468 case SIOCBONDSETHWADDR:
3469 case SIOCBONDCHANGEACTIVE:
3470 case SIOCSARP:
3471 case SIOCGARP:
3472 case SIOCDARP:
3473 case SIOCOUTQ:
3474 case SIOCOUTQNSD:
3475 case SIOCATMARK:
3476 return sock_do_ioctl(net, sock, cmd, arg);
3477 }
3478
3479 return -ENOIOCTLCMD;
3480 }
3481
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3482 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3483 unsigned long arg)
3484 {
3485 struct socket *sock = file->private_data;
3486 const struct proto_ops *ops = READ_ONCE(sock->ops);
3487 int ret = -ENOIOCTLCMD;
3488 struct sock *sk;
3489 struct net *net;
3490
3491 sk = sock->sk;
3492 net = sock_net(sk);
3493
3494 if (ops->compat_ioctl)
3495 ret = ops->compat_ioctl(sock, cmd, arg);
3496
3497 if (ret == -ENOIOCTLCMD &&
3498 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3499 ret = compat_wext_handle_ioctl(net, cmd, arg);
3500
3501 if (ret == -ENOIOCTLCMD)
3502 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3503
3504 return ret;
3505 }
3506 #endif
3507
3508 /**
3509 * kernel_bind - bind an address to a socket (kernel space)
3510 * @sock: socket
3511 * @addr: address
3512 * @addrlen: length of address
3513 *
3514 * Returns 0 or an error.
3515 */
3516
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3517 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3518 {
3519 struct sockaddr_storage address;
3520
3521 memcpy(&address, addr, addrlen);
3522
3523 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3524 addrlen);
3525 }
3526 EXPORT_SYMBOL(kernel_bind);
3527
3528 /**
3529 * kernel_listen - move socket to listening state (kernel space)
3530 * @sock: socket
3531 * @backlog: pending connections queue size
3532 *
3533 * Returns 0 or an error.
3534 */
3535
kernel_listen(struct socket * sock,int backlog)3536 int kernel_listen(struct socket *sock, int backlog)
3537 {
3538 return READ_ONCE(sock->ops)->listen(sock, backlog);
3539 }
3540 EXPORT_SYMBOL(kernel_listen);
3541
3542 /**
3543 * kernel_accept - accept a connection (kernel space)
3544 * @sock: listening socket
3545 * @newsock: new connected socket
3546 * @flags: flags
3547 *
3548 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3549 * If it fails, @newsock is guaranteed to be %NULL.
3550 * Returns 0 or an error.
3551 */
3552
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3553 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3554 {
3555 struct sock *sk = sock->sk;
3556 const struct proto_ops *ops = READ_ONCE(sock->ops);
3557 int err;
3558
3559 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3560 newsock);
3561 if (err < 0)
3562 goto done;
3563
3564 err = ops->accept(sock, *newsock, flags, true);
3565 if (err < 0) {
3566 sock_release(*newsock);
3567 *newsock = NULL;
3568 goto done;
3569 }
3570
3571 (*newsock)->ops = ops;
3572 __module_get(ops->owner);
3573
3574 done:
3575 return err;
3576 }
3577 EXPORT_SYMBOL(kernel_accept);
3578
3579 /**
3580 * kernel_connect - connect a socket (kernel space)
3581 * @sock: socket
3582 * @addr: address
3583 * @addrlen: address length
3584 * @flags: flags (O_NONBLOCK, ...)
3585 *
3586 * For datagram sockets, @addr is the address to which datagrams are sent
3587 * by default, and the only address from which datagrams are received.
3588 * For stream sockets, attempts to connect to @addr.
3589 * Returns 0 or an error code.
3590 */
3591
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3592 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3593 int flags)
3594 {
3595 struct sockaddr_storage address;
3596
3597 memcpy(&address, addr, addrlen);
3598
3599 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3600 addrlen, flags);
3601 }
3602 EXPORT_SYMBOL(kernel_connect);
3603
3604 /**
3605 * kernel_getsockname - get the address which the socket is bound (kernel space)
3606 * @sock: socket
3607 * @addr: address holder
3608 *
3609 * Fills the @addr pointer with the address which the socket is bound.
3610 * Returns the length of the address in bytes or an error code.
3611 */
3612
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3613 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3614 {
3615 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3616 }
3617 EXPORT_SYMBOL(kernel_getsockname);
3618
3619 /**
3620 * kernel_getpeername - get the address which the socket is connected (kernel space)
3621 * @sock: socket
3622 * @addr: address holder
3623 *
3624 * Fills the @addr pointer with the address which the socket is connected.
3625 * Returns the length of the address in bytes or an error code.
3626 */
3627
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3628 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3629 {
3630 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3631 }
3632 EXPORT_SYMBOL(kernel_getpeername);
3633
3634 /**
3635 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3636 * @sock: socket
3637 * @how: connection part
3638 *
3639 * Returns 0 or an error.
3640 */
3641
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3642 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3643 {
3644 return READ_ONCE(sock->ops)->shutdown(sock, how);
3645 }
3646 EXPORT_SYMBOL(kernel_sock_shutdown);
3647
3648 /**
3649 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3650 * @sk: socket
3651 *
3652 * This routine returns the IP overhead imposed by a socket i.e.
3653 * the length of the underlying IP header, depending on whether
3654 * this is an IPv4 or IPv6 socket and the length from IP options turned
3655 * on at the socket. Assumes that the caller has a lock on the socket.
3656 */
3657
kernel_sock_ip_overhead(struct sock * sk)3658 u32 kernel_sock_ip_overhead(struct sock *sk)
3659 {
3660 struct inet_sock *inet;
3661 struct ip_options_rcu *opt;
3662 u32 overhead = 0;
3663 #if IS_ENABLED(CONFIG_IPV6)
3664 struct ipv6_pinfo *np;
3665 struct ipv6_txoptions *optv6 = NULL;
3666 #endif /* IS_ENABLED(CONFIG_IPV6) */
3667
3668 if (!sk)
3669 return overhead;
3670
3671 switch (sk->sk_family) {
3672 case AF_INET:
3673 inet = inet_sk(sk);
3674 overhead += sizeof(struct iphdr);
3675 opt = rcu_dereference_protected(inet->inet_opt,
3676 sock_owned_by_user(sk));
3677 if (opt)
3678 overhead += opt->opt.optlen;
3679 return overhead;
3680 #if IS_ENABLED(CONFIG_IPV6)
3681 case AF_INET6:
3682 np = inet6_sk(sk);
3683 overhead += sizeof(struct ipv6hdr);
3684 if (np)
3685 optv6 = rcu_dereference_protected(np->opt,
3686 sock_owned_by_user(sk));
3687 if (optv6)
3688 overhead += (optv6->opt_flen + optv6->opt_nflen);
3689 return overhead;
3690 #endif /* IS_ENABLED(CONFIG_IPV6) */
3691 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3692 return overhead;
3693 }
3694 }
3695 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3696