1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4 * All rights reserved.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/spi/spi.h>
9 #include <linux/crc7.h>
10 #include <linux/crc-itu-t.h>
11 #include <linux/gpio/consumer.h>
12
13 #include "netdev.h"
14 #include "cfg80211.h"
15
16 #define SPI_MODALIAS "wilc1000_spi"
17
18 static bool enable_crc7; /* protect SPI commands with CRC7 */
19 module_param(enable_crc7, bool, 0644);
20 MODULE_PARM_DESC(enable_crc7,
21 "Enable CRC7 checksum to protect command transfers\n"
22 "\t\t\tagainst corruption during the SPI transfer.\n"
23 "\t\t\tCommand transfers are short and the CPU-cycle cost\n"
24 "\t\t\tof enabling this is small.");
25
26 static bool enable_crc16; /* protect SPI data with CRC16 */
27 module_param(enable_crc16, bool, 0644);
28 MODULE_PARM_DESC(enable_crc16,
29 "Enable CRC16 checksum to protect data transfers\n"
30 "\t\t\tagainst corruption during the SPI transfer.\n"
31 "\t\t\tData transfers can be large and the CPU-cycle cost\n"
32 "\t\t\tof enabling this may be substantial.");
33
34 /*
35 * For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or
36 * more zero bytes between the command response and the DATA Start tag
37 * (0xf3). This behavior appears to be undocumented in "ATWILC1000
38 * USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4
39 * zero bytes when the SPI bus operates at 48MHz and none when it
40 * operates at 1MHz.
41 */
42 #define WILC_SPI_RSP_HDR_EXTRA_DATA 8
43
44 struct wilc_spi {
45 bool isinit; /* true if SPI protocol has been configured */
46 bool probing_crc; /* true if we're probing chip's CRC config */
47 bool crc7_enabled; /* true if crc7 is currently enabled */
48 bool crc16_enabled; /* true if crc16 is currently enabled */
49 struct wilc_gpios {
50 struct gpio_desc *enable; /* ENABLE GPIO or NULL */
51 struct gpio_desc *reset; /* RESET GPIO or NULL */
52 } gpios;
53 };
54
55 static const struct wilc_hif_func wilc_hif_spi;
56
57 static int wilc_spi_reset(struct wilc *wilc);
58
59 /********************************************
60 *
61 * Spi protocol Function
62 *
63 ********************************************/
64
65 #define CMD_DMA_WRITE 0xc1
66 #define CMD_DMA_READ 0xc2
67 #define CMD_INTERNAL_WRITE 0xc3
68 #define CMD_INTERNAL_READ 0xc4
69 #define CMD_TERMINATE 0xc5
70 #define CMD_REPEAT 0xc6
71 #define CMD_DMA_EXT_WRITE 0xc7
72 #define CMD_DMA_EXT_READ 0xc8
73 #define CMD_SINGLE_WRITE 0xc9
74 #define CMD_SINGLE_READ 0xca
75 #define CMD_RESET 0xcf
76
77 #define SPI_RETRY_MAX_LIMIT 10
78 #define SPI_ENABLE_VMM_RETRY_LIMIT 2
79
80 /* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */
81 #define RSP_START_FIELD GENMASK(7, 4)
82 #define RSP_TYPE_FIELD GENMASK(3, 0)
83
84 /* SPI response values for the response fields: */
85 #define RSP_START_TAG 0xc
86 #define RSP_TYPE_FIRST_PACKET 0x1
87 #define RSP_TYPE_INNER_PACKET 0x2
88 #define RSP_TYPE_LAST_PACKET 0x3
89 #define RSP_STATE_NO_ERROR 0x00
90
91 #define PROTOCOL_REG_PKT_SZ_MASK GENMASK(6, 4)
92 #define PROTOCOL_REG_CRC16_MASK GENMASK(3, 3)
93 #define PROTOCOL_REG_CRC7_MASK GENMASK(2, 2)
94
95 /*
96 * The SPI data packet size may be any integer power of two in the
97 * range from 256 to 8192 bytes.
98 */
99 #define DATA_PKT_LOG_SZ_MIN 8 /* 256 B */
100 #define DATA_PKT_LOG_SZ_MAX 13 /* 8 KiB */
101
102 /*
103 * Select the data packet size (log2 of number of bytes): Use the
104 * maximum data packet size. We only retransmit complete packets, so
105 * there is no benefit from using smaller data packets.
106 */
107 #define DATA_PKT_LOG_SZ DATA_PKT_LOG_SZ_MAX
108 #define DATA_PKT_SZ (1 << DATA_PKT_LOG_SZ)
109
110 #define WILC_SPI_COMMAND_STAT_SUCCESS 0
111 #define WILC_GET_RESP_HDR_START(h) (((h) >> 4) & 0xf)
112
113 struct wilc_spi_cmd {
114 u8 cmd_type;
115 union {
116 struct {
117 u8 addr[3];
118 u8 crc[];
119 } __packed simple_cmd;
120 struct {
121 u8 addr[3];
122 u8 size[2];
123 u8 crc[];
124 } __packed dma_cmd;
125 struct {
126 u8 addr[3];
127 u8 size[3];
128 u8 crc[];
129 } __packed dma_cmd_ext;
130 struct {
131 u8 addr[2];
132 __be32 data;
133 u8 crc[];
134 } __packed internal_w_cmd;
135 struct {
136 u8 addr[3];
137 __be32 data;
138 u8 crc[];
139 } __packed w_cmd;
140 } u;
141 } __packed;
142
143 struct wilc_spi_read_rsp_data {
144 u8 header;
145 u8 data[4];
146 u8 crc[];
147 } __packed;
148
149 struct wilc_spi_rsp_data {
150 u8 rsp_cmd_type;
151 u8 status;
152 u8 data[];
153 } __packed;
154
155 struct wilc_spi_special_cmd_rsp {
156 u8 skip_byte;
157 u8 rsp_cmd_type;
158 u8 status;
159 } __packed;
160
wilc_parse_gpios(struct wilc * wilc)161 static int wilc_parse_gpios(struct wilc *wilc)
162 {
163 struct spi_device *spi = to_spi_device(wilc->dev);
164 struct wilc_spi *spi_priv = wilc->bus_data;
165 struct wilc_gpios *gpios = &spi_priv->gpios;
166
167 /* get ENABLE pin and deassert it (if it is defined): */
168 gpios->enable = devm_gpiod_get_optional(&spi->dev,
169 "enable", GPIOD_OUT_LOW);
170 /* get RESET pin and assert it (if it is defined): */
171 if (gpios->enable) {
172 /* if enable pin exists, reset must exist as well */
173 gpios->reset = devm_gpiod_get(&spi->dev,
174 "reset", GPIOD_OUT_HIGH);
175 if (IS_ERR(gpios->reset)) {
176 dev_err(&spi->dev, "missing reset gpio.\n");
177 return PTR_ERR(gpios->reset);
178 }
179 } else {
180 gpios->reset = devm_gpiod_get_optional(&spi->dev,
181 "reset", GPIOD_OUT_HIGH);
182 }
183 return 0;
184 }
185
wilc_wlan_power(struct wilc * wilc,bool on)186 static void wilc_wlan_power(struct wilc *wilc, bool on)
187 {
188 struct wilc_spi *spi_priv = wilc->bus_data;
189 struct wilc_gpios *gpios = &spi_priv->gpios;
190
191 if (on) {
192 /* assert ENABLE: */
193 gpiod_set_value(gpios->enable, 1);
194 mdelay(5);
195 /* assert RESET: */
196 gpiod_set_value(gpios->reset, 1);
197 } else {
198 /* deassert RESET: */
199 gpiod_set_value(gpios->reset, 0);
200 /* deassert ENABLE: */
201 gpiod_set_value(gpios->enable, 0);
202 }
203 }
204
wilc_bus_probe(struct spi_device * spi)205 static int wilc_bus_probe(struct spi_device *spi)
206 {
207 int ret;
208 struct wilc *wilc;
209 struct wilc_spi *spi_priv;
210
211 spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
212 if (!spi_priv)
213 return -ENOMEM;
214
215 ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
216 if (ret)
217 goto free;
218
219 spi_set_drvdata(spi, wilc);
220 wilc->dev = &spi->dev;
221 wilc->bus_data = spi_priv;
222 wilc->dev_irq_num = spi->irq;
223
224 ret = wilc_parse_gpios(wilc);
225 if (ret < 0)
226 goto netdev_cleanup;
227
228 wilc->rtc_clk = devm_clk_get_optional(&spi->dev, "rtc");
229 if (IS_ERR(wilc->rtc_clk)) {
230 ret = PTR_ERR(wilc->rtc_clk);
231 goto netdev_cleanup;
232 }
233 clk_prepare_enable(wilc->rtc_clk);
234
235 return 0;
236
237 netdev_cleanup:
238 wilc_netdev_cleanup(wilc);
239 free:
240 kfree(spi_priv);
241 return ret;
242 }
243
wilc_bus_remove(struct spi_device * spi)244 static void wilc_bus_remove(struct spi_device *spi)
245 {
246 struct wilc *wilc = spi_get_drvdata(spi);
247 struct wilc_spi *spi_priv = wilc->bus_data;
248
249 clk_disable_unprepare(wilc->rtc_clk);
250 wilc_netdev_cleanup(wilc);
251 kfree(spi_priv);
252 }
253
254 static const struct of_device_id wilc_of_match[] = {
255 { .compatible = "microchip,wilc1000", },
256 { /* sentinel */ }
257 };
258 MODULE_DEVICE_TABLE(of, wilc_of_match);
259
260 static const struct spi_device_id wilc_spi_id[] = {
261 { "wilc1000", 0 },
262 { /* sentinel */ }
263 };
264 MODULE_DEVICE_TABLE(spi, wilc_spi_id);
265
266 static struct spi_driver wilc_spi_driver = {
267 .driver = {
268 .name = SPI_MODALIAS,
269 .of_match_table = wilc_of_match,
270 },
271 .id_table = wilc_spi_id,
272 .probe = wilc_bus_probe,
273 .remove = wilc_bus_remove,
274 };
275 module_spi_driver(wilc_spi_driver);
276 MODULE_LICENSE("GPL");
277
wilc_spi_tx(struct wilc * wilc,u8 * b,u32 len)278 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
279 {
280 struct spi_device *spi = to_spi_device(wilc->dev);
281 int ret;
282 struct spi_message msg;
283
284 if (len > 0 && b) {
285 struct spi_transfer tr = {
286 .tx_buf = b,
287 .len = len,
288 .delay = {
289 .value = 0,
290 .unit = SPI_DELAY_UNIT_USECS
291 },
292 };
293 char *r_buffer = kzalloc(len, GFP_KERNEL);
294
295 if (!r_buffer)
296 return -ENOMEM;
297
298 tr.rx_buf = r_buffer;
299 dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
300
301 memset(&msg, 0, sizeof(msg));
302 spi_message_init(&msg);
303 msg.spi = spi;
304 spi_message_add_tail(&tr, &msg);
305
306 ret = spi_sync(spi, &msg);
307 if (ret < 0)
308 dev_err(&spi->dev, "SPI transaction failed\n");
309
310 kfree(r_buffer);
311 } else {
312 dev_err(&spi->dev,
313 "can't write data with the following length: %d\n",
314 len);
315 ret = -EINVAL;
316 }
317
318 return ret;
319 }
320
wilc_spi_rx(struct wilc * wilc,u8 * rb,u32 rlen)321 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
322 {
323 struct spi_device *spi = to_spi_device(wilc->dev);
324 int ret;
325
326 if (rlen > 0) {
327 struct spi_message msg;
328 struct spi_transfer tr = {
329 .rx_buf = rb,
330 .len = rlen,
331 .delay = {
332 .value = 0,
333 .unit = SPI_DELAY_UNIT_USECS
334 },
335
336 };
337 char *t_buffer = kzalloc(rlen, GFP_KERNEL);
338
339 if (!t_buffer)
340 return -ENOMEM;
341
342 tr.tx_buf = t_buffer;
343
344 memset(&msg, 0, sizeof(msg));
345 spi_message_init(&msg);
346 msg.spi = spi;
347 spi_message_add_tail(&tr, &msg);
348
349 ret = spi_sync(spi, &msg);
350 if (ret < 0)
351 dev_err(&spi->dev, "SPI transaction failed\n");
352 kfree(t_buffer);
353 } else {
354 dev_err(&spi->dev,
355 "can't read data with the following length: %u\n",
356 rlen);
357 ret = -EINVAL;
358 }
359
360 return ret;
361 }
362
wilc_spi_tx_rx(struct wilc * wilc,u8 * wb,u8 * rb,u32 rlen)363 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
364 {
365 struct spi_device *spi = to_spi_device(wilc->dev);
366 int ret;
367
368 if (rlen > 0) {
369 struct spi_message msg;
370 struct spi_transfer tr = {
371 .rx_buf = rb,
372 .tx_buf = wb,
373 .len = rlen,
374 .bits_per_word = 8,
375 .delay = {
376 .value = 0,
377 .unit = SPI_DELAY_UNIT_USECS
378 },
379
380 };
381
382 memset(&msg, 0, sizeof(msg));
383 spi_message_init(&msg);
384 msg.spi = spi;
385
386 spi_message_add_tail(&tr, &msg);
387 ret = spi_sync(spi, &msg);
388 if (ret < 0)
389 dev_err(&spi->dev, "SPI transaction failed\n");
390 } else {
391 dev_err(&spi->dev,
392 "can't read data with the following length: %u\n",
393 rlen);
394 ret = -EINVAL;
395 }
396
397 return ret;
398 }
399
spi_data_write(struct wilc * wilc,u8 * b,u32 sz)400 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
401 {
402 struct spi_device *spi = to_spi_device(wilc->dev);
403 struct wilc_spi *spi_priv = wilc->bus_data;
404 int ix, nbytes;
405 int result = 0;
406 u8 cmd, order, crc[2];
407 u16 crc_calc;
408
409 /*
410 * Data
411 */
412 ix = 0;
413 do {
414 if (sz <= DATA_PKT_SZ) {
415 nbytes = sz;
416 order = 0x3;
417 } else {
418 nbytes = DATA_PKT_SZ;
419 if (ix == 0)
420 order = 0x1;
421 else
422 order = 0x02;
423 }
424
425 /*
426 * Write command
427 */
428 cmd = 0xf0;
429 cmd |= order;
430
431 if (wilc_spi_tx(wilc, &cmd, 1)) {
432 dev_err(&spi->dev,
433 "Failed data block cmd write, bus error...\n");
434 result = -EINVAL;
435 break;
436 }
437
438 /*
439 * Write data
440 */
441 if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
442 dev_err(&spi->dev,
443 "Failed data block write, bus error...\n");
444 result = -EINVAL;
445 break;
446 }
447
448 /*
449 * Write CRC
450 */
451 if (spi_priv->crc16_enabled) {
452 crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
453 crc[0] = crc_calc >> 8;
454 crc[1] = crc_calc;
455 if (wilc_spi_tx(wilc, crc, 2)) {
456 dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
457 result = -EINVAL;
458 break;
459 }
460 }
461
462 /*
463 * No need to wait for response
464 */
465 ix += nbytes;
466 sz -= nbytes;
467 } while (sz);
468
469 return result;
470 }
471
472 /********************************************
473 *
474 * Spi Internal Read/Write Function
475 *
476 ********************************************/
wilc_get_crc7(u8 * buffer,u32 len)477 static u8 wilc_get_crc7(u8 *buffer, u32 len)
478 {
479 return crc7_be(0xfe, buffer, len);
480 }
481
wilc_spi_single_read(struct wilc * wilc,u8 cmd,u32 adr,void * b,u8 clockless)482 static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b,
483 u8 clockless)
484 {
485 struct spi_device *spi = to_spi_device(wilc->dev);
486 struct wilc_spi *spi_priv = wilc->bus_data;
487 u8 wb[32], rb[32];
488 int cmd_len, resp_len, i;
489 u16 crc_calc, crc_recv;
490 struct wilc_spi_cmd *c;
491 struct wilc_spi_rsp_data *r;
492 struct wilc_spi_read_rsp_data *r_data;
493
494 memset(wb, 0x0, sizeof(wb));
495 memset(rb, 0x0, sizeof(rb));
496 c = (struct wilc_spi_cmd *)wb;
497 c->cmd_type = cmd;
498 if (cmd == CMD_SINGLE_READ) {
499 c->u.simple_cmd.addr[0] = adr >> 16;
500 c->u.simple_cmd.addr[1] = adr >> 8;
501 c->u.simple_cmd.addr[2] = adr;
502 } else if (cmd == CMD_INTERNAL_READ) {
503 c->u.simple_cmd.addr[0] = adr >> 8;
504 if (clockless == 1)
505 c->u.simple_cmd.addr[0] |= BIT(7);
506 c->u.simple_cmd.addr[1] = adr;
507 c->u.simple_cmd.addr[2] = 0x0;
508 } else {
509 dev_err(&spi->dev, "cmd [%x] not supported\n", cmd);
510 return -EINVAL;
511 }
512
513 cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
514 resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA;
515
516 if (spi_priv->crc7_enabled) {
517 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
518 cmd_len += 1;
519 resp_len += 2;
520 }
521
522 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
523 dev_err(&spi->dev,
524 "spi buffer size too small (%d) (%d) (%zu)\n",
525 cmd_len, resp_len, ARRAY_SIZE(wb));
526 return -EINVAL;
527 }
528
529 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
530 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
531 return -EINVAL;
532 }
533
534 r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
535 if (r->rsp_cmd_type != cmd && !clockless) {
536 if (!spi_priv->probing_crc)
537 dev_err(&spi->dev,
538 "Failed cmd, cmd (%02x), resp (%02x)\n",
539 cmd, r->rsp_cmd_type);
540 return -EINVAL;
541 }
542
543 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
544 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
545 r->status);
546 return -EINVAL;
547 }
548
549 for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i)
550 if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf)
551 break;
552
553 if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) {
554 dev_err(&spi->dev, "Error, data start missing\n");
555 return -EINVAL;
556 }
557
558 r_data = (struct wilc_spi_read_rsp_data *)&r->data[i];
559
560 if (b)
561 memcpy(b, r_data->data, 4);
562
563 if (!clockless && spi_priv->crc16_enabled) {
564 crc_recv = (r_data->crc[0] << 8) | r_data->crc[1];
565 crc_calc = crc_itu_t(0xffff, r_data->data, 4);
566 if (crc_recv != crc_calc) {
567 dev_err(&spi->dev, "%s: bad CRC 0x%04x "
568 "(calculated 0x%04x)\n", __func__,
569 crc_recv, crc_calc);
570 return -EINVAL;
571 }
572 }
573
574 return 0;
575 }
576
wilc_spi_write_cmd(struct wilc * wilc,u8 cmd,u32 adr,u32 data,u8 clockless)577 static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data,
578 u8 clockless)
579 {
580 struct spi_device *spi = to_spi_device(wilc->dev);
581 struct wilc_spi *spi_priv = wilc->bus_data;
582 u8 wb[32], rb[32];
583 int cmd_len, resp_len;
584 struct wilc_spi_cmd *c;
585 struct wilc_spi_rsp_data *r;
586
587 memset(wb, 0x0, sizeof(wb));
588 memset(rb, 0x0, sizeof(rb));
589 c = (struct wilc_spi_cmd *)wb;
590 c->cmd_type = cmd;
591 if (cmd == CMD_INTERNAL_WRITE) {
592 c->u.internal_w_cmd.addr[0] = adr >> 8;
593 if (clockless == 1)
594 c->u.internal_w_cmd.addr[0] |= BIT(7);
595
596 c->u.internal_w_cmd.addr[1] = adr;
597 c->u.internal_w_cmd.data = cpu_to_be32(data);
598 cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc);
599 if (spi_priv->crc7_enabled)
600 c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
601 } else if (cmd == CMD_SINGLE_WRITE) {
602 c->u.w_cmd.addr[0] = adr >> 16;
603 c->u.w_cmd.addr[1] = adr >> 8;
604 c->u.w_cmd.addr[2] = adr;
605 c->u.w_cmd.data = cpu_to_be32(data);
606 cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc);
607 if (spi_priv->crc7_enabled)
608 c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
609 } else {
610 dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd);
611 return -EINVAL;
612 }
613
614 if (spi_priv->crc7_enabled)
615 cmd_len += 1;
616
617 resp_len = sizeof(*r);
618
619 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
620 dev_err(&spi->dev,
621 "spi buffer size too small (%d) (%d) (%zu)\n",
622 cmd_len, resp_len, ARRAY_SIZE(wb));
623 return -EINVAL;
624 }
625
626 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
627 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
628 return -EINVAL;
629 }
630
631 r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
632 /*
633 * Clockless registers operations might return unexptected responses,
634 * even if successful.
635 */
636 if (r->rsp_cmd_type != cmd && !clockless) {
637 dev_err(&spi->dev,
638 "Failed cmd response, cmd (%02x), resp (%02x)\n",
639 cmd, r->rsp_cmd_type);
640 return -EINVAL;
641 }
642
643 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
644 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
645 r->status);
646 return -EINVAL;
647 }
648
649 return 0;
650 }
651
wilc_spi_dma_rw(struct wilc * wilc,u8 cmd,u32 adr,u8 * b,u32 sz)652 static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz)
653 {
654 struct spi_device *spi = to_spi_device(wilc->dev);
655 struct wilc_spi *spi_priv = wilc->bus_data;
656 u16 crc_recv, crc_calc;
657 u8 wb[32], rb[32];
658 int cmd_len, resp_len;
659 int retry, ix = 0;
660 u8 crc[2];
661 struct wilc_spi_cmd *c;
662 struct wilc_spi_rsp_data *r;
663
664 memset(wb, 0x0, sizeof(wb));
665 memset(rb, 0x0, sizeof(rb));
666 c = (struct wilc_spi_cmd *)wb;
667 c->cmd_type = cmd;
668 if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) {
669 c->u.dma_cmd.addr[0] = adr >> 16;
670 c->u.dma_cmd.addr[1] = adr >> 8;
671 c->u.dma_cmd.addr[2] = adr;
672 c->u.dma_cmd.size[0] = sz >> 8;
673 c->u.dma_cmd.size[1] = sz;
674 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc);
675 if (spi_priv->crc7_enabled)
676 c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
677 } else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) {
678 c->u.dma_cmd_ext.addr[0] = adr >> 16;
679 c->u.dma_cmd_ext.addr[1] = adr >> 8;
680 c->u.dma_cmd_ext.addr[2] = adr;
681 c->u.dma_cmd_ext.size[0] = sz >> 16;
682 c->u.dma_cmd_ext.size[1] = sz >> 8;
683 c->u.dma_cmd_ext.size[2] = sz;
684 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc);
685 if (spi_priv->crc7_enabled)
686 c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len);
687 } else {
688 dev_err(&spi->dev, "dma read write cmd [%x] not supported\n",
689 cmd);
690 return -EINVAL;
691 }
692 if (spi_priv->crc7_enabled)
693 cmd_len += 1;
694
695 resp_len = sizeof(*r);
696
697 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
698 dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n",
699 cmd_len, resp_len, ARRAY_SIZE(wb));
700 return -EINVAL;
701 }
702
703 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
704 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
705 return -EINVAL;
706 }
707
708 r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
709 if (r->rsp_cmd_type != cmd) {
710 dev_err(&spi->dev,
711 "Failed cmd response, cmd (%02x), resp (%02x)\n",
712 cmd, r->rsp_cmd_type);
713 return -EINVAL;
714 }
715
716 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
717 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
718 r->status);
719 return -EINVAL;
720 }
721
722 if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE)
723 return 0;
724
725 while (sz > 0) {
726 int nbytes;
727 u8 rsp;
728
729 nbytes = min_t(u32, sz, DATA_PKT_SZ);
730
731 /*
732 * Data Response header
733 */
734 retry = 100;
735 do {
736 if (wilc_spi_rx(wilc, &rsp, 1)) {
737 dev_err(&spi->dev,
738 "Failed resp read, bus err\n");
739 return -EINVAL;
740 }
741 if (WILC_GET_RESP_HDR_START(rsp) == 0xf)
742 break;
743 } while (retry--);
744
745 /*
746 * Read bytes
747 */
748 if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
749 dev_err(&spi->dev,
750 "Failed block read, bus err\n");
751 return -EINVAL;
752 }
753
754 /*
755 * Read CRC
756 */
757 if (spi_priv->crc16_enabled) {
758 if (wilc_spi_rx(wilc, crc, 2)) {
759 dev_err(&spi->dev,
760 "Failed block CRC read, bus err\n");
761 return -EINVAL;
762 }
763 crc_recv = (crc[0] << 8) | crc[1];
764 crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
765 if (crc_recv != crc_calc) {
766 dev_err(&spi->dev, "%s: bad CRC 0x%04x "
767 "(calculated 0x%04x)\n", __func__,
768 crc_recv, crc_calc);
769 return -EINVAL;
770 }
771 }
772
773 ix += nbytes;
774 sz -= nbytes;
775 }
776 return 0;
777 }
778
wilc_spi_special_cmd(struct wilc * wilc,u8 cmd)779 static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd)
780 {
781 struct spi_device *spi = to_spi_device(wilc->dev);
782 struct wilc_spi *spi_priv = wilc->bus_data;
783 u8 wb[32], rb[32];
784 int cmd_len, resp_len = 0;
785 struct wilc_spi_cmd *c;
786 struct wilc_spi_special_cmd_rsp *r;
787
788 if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET)
789 return -EINVAL;
790
791 memset(wb, 0x0, sizeof(wb));
792 memset(rb, 0x0, sizeof(rb));
793 c = (struct wilc_spi_cmd *)wb;
794 c->cmd_type = cmd;
795
796 if (cmd == CMD_RESET)
797 memset(c->u.simple_cmd.addr, 0xFF, 3);
798
799 cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
800 resp_len = sizeof(*r);
801
802 if (spi_priv->crc7_enabled) {
803 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
804 cmd_len += 1;
805 }
806 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
807 dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n",
808 cmd_len, resp_len, ARRAY_SIZE(wb));
809 return -EINVAL;
810 }
811
812 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
813 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
814 return -EINVAL;
815 }
816
817 r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len];
818 if (r->rsp_cmd_type != cmd) {
819 if (!spi_priv->probing_crc)
820 dev_err(&spi->dev,
821 "Failed cmd response, cmd (%02x), resp (%02x)\n",
822 cmd, r->rsp_cmd_type);
823 return -EINVAL;
824 }
825
826 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
827 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
828 r->status);
829 return -EINVAL;
830 }
831 return 0;
832 }
833
wilc_spi_reset_cmd_sequence(struct wilc * wl,u8 attempt,u32 addr)834 static void wilc_spi_reset_cmd_sequence(struct wilc *wl, u8 attempt, u32 addr)
835 {
836 struct spi_device *spi = to_spi_device(wl->dev);
837 struct wilc_spi *spi_priv = wl->bus_data;
838
839 if (!spi_priv->probing_crc)
840 dev_err(&spi->dev, "Reset and retry %d %x\n", attempt, addr);
841
842 usleep_range(1000, 1100);
843 wilc_spi_reset(wl);
844 usleep_range(1000, 1100);
845 }
846
wilc_spi_read_reg(struct wilc * wilc,u32 addr,u32 * data)847 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
848 {
849 struct spi_device *spi = to_spi_device(wilc->dev);
850 int result;
851 u8 cmd = CMD_SINGLE_READ;
852 u8 clockless = 0;
853 u8 i;
854
855 if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
856 /* Clockless register */
857 cmd = CMD_INTERNAL_READ;
858 clockless = 1;
859 }
860
861 for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
862 result = wilc_spi_single_read(wilc, cmd, addr, data, clockless);
863 if (!result) {
864 le32_to_cpus(data);
865 return 0;
866 }
867
868 /* retry is not applicable for clockless registers */
869 if (clockless)
870 break;
871
872 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
873 wilc_spi_reset_cmd_sequence(wilc, i, addr);
874 }
875
876 return result;
877 }
878
wilc_spi_read(struct wilc * wilc,u32 addr,u8 * buf,u32 size)879 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
880 {
881 struct spi_device *spi = to_spi_device(wilc->dev);
882 int result;
883 u8 i;
884
885 if (size <= 4)
886 return -EINVAL;
887
888 for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
889 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr,
890 buf, size);
891 if (!result)
892 return 0;
893
894 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
895
896 wilc_spi_reset_cmd_sequence(wilc, i, addr);
897 }
898
899 return result;
900 }
901
spi_internal_write(struct wilc * wilc,u32 adr,u32 dat)902 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
903 {
904 struct spi_device *spi = to_spi_device(wilc->dev);
905 int result;
906 u8 i;
907
908 for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
909 result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr,
910 dat, 0);
911 if (!result)
912 return 0;
913 dev_err(&spi->dev, "Failed internal write cmd...\n");
914
915 wilc_spi_reset_cmd_sequence(wilc, i, adr);
916 }
917
918 return result;
919 }
920
spi_internal_read(struct wilc * wilc,u32 adr,u32 * data)921 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
922 {
923 struct spi_device *spi = to_spi_device(wilc->dev);
924 struct wilc_spi *spi_priv = wilc->bus_data;
925 int result;
926 u8 i;
927
928 for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
929 result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr,
930 data, 0);
931 if (!result) {
932 le32_to_cpus(data);
933 return 0;
934 }
935 if (!spi_priv->probing_crc)
936 dev_err(&spi->dev, "Failed internal read cmd...\n");
937
938 wilc_spi_reset_cmd_sequence(wilc, i, adr);
939 }
940
941 return result;
942 }
943
944 /********************************************
945 *
946 * Spi interfaces
947 *
948 ********************************************/
949
wilc_spi_write_reg(struct wilc * wilc,u32 addr,u32 data)950 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
951 {
952 struct spi_device *spi = to_spi_device(wilc->dev);
953 int result;
954 u8 cmd = CMD_SINGLE_WRITE;
955 u8 clockless = 0;
956 u8 i;
957
958 if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
959 /* Clockless register */
960 cmd = CMD_INTERNAL_WRITE;
961 clockless = 1;
962 }
963
964 for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
965 result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless);
966 if (!result)
967 return 0;
968
969 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
970
971 if (clockless)
972 break;
973
974 wilc_spi_reset_cmd_sequence(wilc, i, addr);
975 }
976 return result;
977 }
978
spi_data_rsp(struct wilc * wilc,u8 cmd)979 static int spi_data_rsp(struct wilc *wilc, u8 cmd)
980 {
981 struct spi_device *spi = to_spi_device(wilc->dev);
982 int result, i;
983 u8 rsp[4];
984
985 /*
986 * The response to data packets is two bytes long. For
987 * efficiency's sake, wilc_spi_write() wisely ignores the
988 * responses for all packets but the final one. The downside
989 * of that optimization is that when the final data packet is
990 * short, we may receive (part of) the response to the
991 * second-to-last packet before the one for the final packet.
992 * To handle this, we always read 4 bytes and then search for
993 * the last byte that contains the "Response Start" code (0xc
994 * in the top 4 bits). We then know that this byte is the
995 * first response byte of the final data packet.
996 */
997 result = wilc_spi_rx(wilc, rsp, sizeof(rsp));
998 if (result) {
999 dev_err(&spi->dev, "Failed bus error...\n");
1000 return result;
1001 }
1002
1003 for (i = sizeof(rsp) - 2; i >= 0; --i)
1004 if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG)
1005 break;
1006
1007 if (i < 0) {
1008 dev_err(&spi->dev,
1009 "Data packet response missing (%02x %02x %02x %02x)\n",
1010 rsp[0], rsp[1], rsp[2], rsp[3]);
1011 return -1;
1012 }
1013
1014 /* rsp[i] is the last response start byte */
1015
1016 if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET
1017 || rsp[i + 1] != RSP_STATE_NO_ERROR) {
1018 dev_err(&spi->dev, "Data response error (%02x %02x)\n",
1019 rsp[i], rsp[i + 1]);
1020 return -1;
1021 }
1022 return 0;
1023 }
1024
wilc_spi_write(struct wilc * wilc,u32 addr,u8 * buf,u32 size)1025 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
1026 {
1027 struct spi_device *spi = to_spi_device(wilc->dev);
1028 int result;
1029 u8 i;
1030
1031 /*
1032 * has to be greated than 4
1033 */
1034 if (size <= 4)
1035 return -EINVAL;
1036
1037 for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
1038 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr,
1039 NULL, size);
1040 if (result) {
1041 dev_err(&spi->dev,
1042 "Failed cmd, write block (%08x)...\n", addr);
1043 wilc_spi_reset_cmd_sequence(wilc, i, addr);
1044 continue;
1045 }
1046
1047 /*
1048 * Data
1049 */
1050 result = spi_data_write(wilc, buf, size);
1051 if (result) {
1052 dev_err(&spi->dev, "Failed block data write...\n");
1053 wilc_spi_reset_cmd_sequence(wilc, i, addr);
1054 continue;
1055 }
1056
1057 /*
1058 * Data response
1059 */
1060 result = spi_data_rsp(wilc, CMD_DMA_EXT_WRITE);
1061 if (result) {
1062 dev_err(&spi->dev, "Failed block data rsp...\n");
1063 wilc_spi_reset_cmd_sequence(wilc, i, addr);
1064 continue;
1065 }
1066 break;
1067 }
1068 return result;
1069 }
1070
1071 /********************************************
1072 *
1073 * Bus interfaces
1074 *
1075 ********************************************/
1076
wilc_spi_reset(struct wilc * wilc)1077 static int wilc_spi_reset(struct wilc *wilc)
1078 {
1079 struct spi_device *spi = to_spi_device(wilc->dev);
1080 struct wilc_spi *spi_priv = wilc->bus_data;
1081 int result;
1082
1083 result = wilc_spi_special_cmd(wilc, CMD_RESET);
1084 if (result && !spi_priv->probing_crc)
1085 dev_err(&spi->dev, "Failed cmd reset\n");
1086
1087 return result;
1088 }
1089
wilc_spi_is_init(struct wilc * wilc)1090 static bool wilc_spi_is_init(struct wilc *wilc)
1091 {
1092 struct wilc_spi *spi_priv = wilc->bus_data;
1093
1094 return spi_priv->isinit;
1095 }
1096
wilc_spi_deinit(struct wilc * wilc)1097 static int wilc_spi_deinit(struct wilc *wilc)
1098 {
1099 struct wilc_spi *spi_priv = wilc->bus_data;
1100
1101 spi_priv->isinit = false;
1102 wilc_wlan_power(wilc, false);
1103 return 0;
1104 }
1105
wilc_spi_init(struct wilc * wilc,bool resume)1106 static int wilc_spi_init(struct wilc *wilc, bool resume)
1107 {
1108 struct spi_device *spi = to_spi_device(wilc->dev);
1109 struct wilc_spi *spi_priv = wilc->bus_data;
1110 u32 reg;
1111 u32 chipid;
1112 int ret, i;
1113
1114 if (spi_priv->isinit) {
1115 /* Confirm we can read chipid register without error: */
1116 ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1117 if (ret == 0)
1118 return 0;
1119
1120 dev_err(&spi->dev, "Fail cmd read chip id...\n");
1121 }
1122
1123 wilc_wlan_power(wilc, true);
1124
1125 /*
1126 * configure protocol
1127 */
1128
1129 /*
1130 * Infer the CRC settings that are currently in effect. This
1131 * is necessary because we can't be sure that the chip has
1132 * been RESET (e.g, after module unload and reload).
1133 */
1134 spi_priv->probing_crc = true;
1135 spi_priv->crc7_enabled = enable_crc7;
1136 spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */
1137 for (i = 0; i < 2; ++i) {
1138 ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®);
1139 if (ret == 0)
1140 break;
1141 spi_priv->crc7_enabled = !enable_crc7;
1142 }
1143 if (ret) {
1144 dev_err(&spi->dev, "Failed with CRC7 on and off.\n");
1145 return ret;
1146 }
1147
1148 /* set up the desired CRC configuration: */
1149 reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK);
1150 if (enable_crc7)
1151 reg |= PROTOCOL_REG_CRC7_MASK;
1152 if (enable_crc16)
1153 reg |= PROTOCOL_REG_CRC16_MASK;
1154
1155 /* set up the data packet size: */
1156 BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN
1157 || DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX);
1158 reg &= ~PROTOCOL_REG_PKT_SZ_MASK;
1159 reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK,
1160 DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN);
1161
1162 /* establish the new setup: */
1163 ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg);
1164 if (ret) {
1165 dev_err(&spi->dev,
1166 "[wilc spi %d]: Failed internal write reg\n",
1167 __LINE__);
1168 return ret;
1169 }
1170 /* update our state to match new protocol settings: */
1171 spi_priv->crc7_enabled = enable_crc7;
1172 spi_priv->crc16_enabled = enable_crc16;
1173
1174 /* re-read to make sure new settings are in effect: */
1175 spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®);
1176
1177 spi_priv->probing_crc = false;
1178
1179 /*
1180 * make sure can read chip id without protocol error
1181 */
1182 ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1183 if (ret) {
1184 dev_err(&spi->dev, "Fail cmd read chip id...\n");
1185 return ret;
1186 }
1187
1188 spi_priv->isinit = true;
1189
1190 return 0;
1191 }
1192
wilc_spi_read_size(struct wilc * wilc,u32 * size)1193 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
1194 {
1195 int ret;
1196
1197 ret = spi_internal_read(wilc,
1198 WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size);
1199 *size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size);
1200
1201 return ret;
1202 }
1203
wilc_spi_read_int(struct wilc * wilc,u32 * int_status)1204 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
1205 {
1206 return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE,
1207 int_status);
1208 }
1209
wilc_spi_clear_int_ext(struct wilc * wilc,u32 val)1210 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
1211 {
1212 int ret;
1213 int retry = SPI_ENABLE_VMM_RETRY_LIMIT;
1214 u32 check;
1215
1216 while (retry) {
1217 ret = spi_internal_write(wilc,
1218 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1219 val);
1220 if (ret)
1221 break;
1222
1223 ret = spi_internal_read(wilc,
1224 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1225 &check);
1226 if (ret || ((check & EN_VMM) == (val & EN_VMM)))
1227 break;
1228
1229 retry--;
1230 }
1231 return ret;
1232 }
1233
wilc_spi_sync_ext(struct wilc * wilc,int nint)1234 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1235 {
1236 struct spi_device *spi = to_spi_device(wilc->dev);
1237 u32 reg;
1238 int ret, i;
1239
1240 if (nint > MAX_NUM_INT) {
1241 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1242 return -EINVAL;
1243 }
1244
1245 /*
1246 * interrupt pin mux select
1247 */
1248 ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, ®);
1249 if (ret) {
1250 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1251 WILC_PIN_MUX_0);
1252 return ret;
1253 }
1254 reg |= BIT(8);
1255 ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1256 if (ret) {
1257 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1258 WILC_PIN_MUX_0);
1259 return ret;
1260 }
1261
1262 /*
1263 * interrupt enable
1264 */
1265 ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, ®);
1266 if (ret) {
1267 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1268 WILC_INTR_ENABLE);
1269 return ret;
1270 }
1271
1272 for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1273 reg |= (BIT((27 + i)));
1274
1275 ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1276 if (ret) {
1277 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1278 WILC_INTR_ENABLE);
1279 return ret;
1280 }
1281 if (nint) {
1282 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®);
1283 if (ret) {
1284 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1285 WILC_INTR2_ENABLE);
1286 return ret;
1287 }
1288
1289 for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1290 reg |= BIT(i);
1291
1292 ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg);
1293 if (ret) {
1294 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1295 WILC_INTR2_ENABLE);
1296 return ret;
1297 }
1298 }
1299
1300 return 0;
1301 }
1302
1303 /* Global spi HIF function table */
1304 static const struct wilc_hif_func wilc_hif_spi = {
1305 .hif_init = wilc_spi_init,
1306 .hif_deinit = wilc_spi_deinit,
1307 .hif_read_reg = wilc_spi_read_reg,
1308 .hif_write_reg = wilc_spi_write_reg,
1309 .hif_block_rx = wilc_spi_read,
1310 .hif_block_tx = wilc_spi_write,
1311 .hif_read_int = wilc_spi_read_int,
1312 .hif_clear_int_ext = wilc_spi_clear_int_ext,
1313 .hif_read_size = wilc_spi_read_size,
1314 .hif_block_tx_ext = wilc_spi_write,
1315 .hif_block_rx_ext = wilc_spi_read,
1316 .hif_sync_ext = wilc_spi_sync_ext,
1317 .hif_reset = wilc_spi_reset,
1318 .hif_is_init = wilc_spi_is_init,
1319 };
1320