1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/net/phy/micrel.c
4 *
5 * Driver for Micrel PHYs
6 *
7 * Author: David J. Choi
8 *
9 * Copyright (c) 2010-2013 Micrel, Inc.
10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11 *
12 * Support : Micrel Phys:
13 * Giga phys: ksz9021, ksz9031, ksz9131
14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15 * ksz8021, ksz8031, ksz8051,
16 * ksz8081, ksz8091,
17 * ksz8061,
18 * Switch : ksz8873, ksz886x
19 * ksz9477
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO 0x16
39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
44
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS 0x1B
47 #define KSZPHY_INTCS_JABBER BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
50 #define KSZPHY_INTCS_PARELLEL BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
54 #define KSZPHY_INTCS_LINK_UP BIT(8)
55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
56 KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 KSZPHY_INTCS_LINK_UP_STATUS)
61
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD 0x1d
64 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL 0
66 #define KSZ8081_LMD_STAT_OPEN 1
67 #define KSZ8081_LMD_STAT_SHORT 2
68 #define KSZ8081_LMD_STAT_FAIL 3
69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
73
74 #define KSZ9x31_LMD 0x12
75 #define KSZ9x31_LMD_VCT_EN BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
83 #define KSZ9x31_LMD_VCT_ST_OPEN 1
84 #define KSZ9x31_LMD_VCT_ST_SHORT 2
85 #define KSZ9x31_LMD_VCT_ST_FAIL 3
86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
94
95 #define KSZPHY_WIRE_PAIR_MASK 0x3
96
97 #define LAN8814_CABLE_DIAG 0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT 12
101
102 #define LAN8814_WIRE_PAIR_MASK 0xF
103
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC 0x18
106 #define LAN8814_INTS 0x1B
107
108 #define LAN8814_INT_LINK_DOWN BIT(2)
109 #define LAN8814_INT_LINK_UP BIT(0)
110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
111 LAN8814_INT_LINK_DOWN)
112
113 #define LAN8814_INTR_CTRL_REG 0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
116
117 /* Represents 1ppm adjustment in 2^32 format with
118 * each nsec contains 4 clock cycles.
119 * The value is calculated as following: (1/1000000)/((2^-32)/4)
120 */
121 #define LAN8814_1PPM_FORMAT 17179
122
123 #define PTP_RX_MOD 0x024F
124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
125 #define PTP_RX_TIMESTAMP_EN 0x024D
126 #define PTP_TX_TIMESTAMP_EN 0x028D
127
128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
132
133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
135
136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
138 #define LTC_HARD_RESET 0x023F
139 #define LTC_HARD_RESET_ BIT(0)
140
141 #define TSU_HARD_RESET 0x02C1
142 #define TSU_HARD_RESET_ BIT(0)
143
144 #define PTP_CMD_CTL 0x0200
145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
151
152 #define PTP_CLOCK_SET_SEC_MID 0x0206
153 #define PTP_CLOCK_SET_SEC_LO 0x0207
154 #define PTP_CLOCK_SET_NS_HI 0x0208
155 #define PTP_CLOCK_SET_NS_LO 0x0209
156
157 #define PTP_CLOCK_READ_SEC_MID 0x022A
158 #define PTP_CLOCK_READ_SEC_LO 0x022B
159 #define PTP_CLOCK_READ_NS_HI 0x022C
160 #define PTP_CLOCK_READ_NS_LO 0x022D
161
162 #define PTP_OPERATING_MODE 0x0241
163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
164
165 #define PTP_TX_MOD 0x028F
166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
168
169 #define PTP_RX_PARSE_CONFIG 0x0242
170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
173
174 #define PTP_TX_PARSE_CONFIG 0x0282
175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
178
179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
182
183 #define PTP_LTC_STEP_ADJ_HI 0x0212
184 #define PTP_LTC_STEP_ADJ_LO 0x0213
185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
186
187 #define LAN8814_INTR_STS_REG 0x0033
188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
192
193 #define PTP_CAP_INFO 0x022A
194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
196
197 #define PTP_TX_EGRESS_SEC_HI 0x0296
198 #define PTP_TX_EGRESS_SEC_LO 0x0297
199 #define PTP_TX_EGRESS_NS_HI 0x0294
200 #define PTP_TX_EGRESS_NS_LO 0x0295
201 #define PTP_TX_MSG_HEADER2 0x0299
202
203 #define PTP_RX_INGRESS_SEC_HI 0x0256
204 #define PTP_RX_INGRESS_SEC_LO 0x0257
205 #define PTP_RX_INGRESS_NS_HI 0x0254
206 #define PTP_RX_INGRESS_NS_LO 0x0255
207 #define PTP_RX_MSG_HEADER2 0x0259
208
209 #define PTP_TSU_INT_EN 0x0200
210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
214
215 #define PTP_TSU_INT_STS 0x0201
216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
220
221 #define LAN8814_LED_CTRL_1 0x0
222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
223
224 /* PHY Control 1 */
225 #define MII_KSZPHY_CTRL_1 0x1e
226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
227
228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
229 #define MII_KSZPHY_CTRL_2 0x1f
230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
231 /* bitmap of PHY register to set interrupt mode */
232 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
239
240 /* Write/read to/from extended registers */
241 #define MII_KSZPHY_EXTREG 0x0b
242 #define KSZPHY_EXTREG_WRITE 0x8000
243
244 #define MII_KSZPHY_EXTREG_WRITE 0x0c
245 #define MII_KSZPHY_EXTREG_READ 0x0d
246
247 /* Extended registers */
248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
251
252 #define PS_TO_REG 200
253 #define FIFO_SIZE 8
254
255 struct kszphy_hw_stat {
256 const char *string;
257 u8 reg;
258 u8 bits;
259 };
260
261 static struct kszphy_hw_stat kszphy_hw_stats[] = {
262 { "phy_receive_errors", 21, 16},
263 { "phy_idle_errors", 10, 8 },
264 };
265
266 struct kszphy_type {
267 u32 led_mode_reg;
268 u16 interrupt_level_mask;
269 u16 cable_diag_reg;
270 unsigned long pair_mask;
271 bool has_broadcast_disable;
272 bool has_nand_tree_disable;
273 bool has_rmii_ref_clk_sel;
274 };
275
276 /* Shared structure between the PHYs of the same package. */
277 struct lan8814_shared_priv {
278 struct phy_device *phydev;
279 struct ptp_clock *ptp_clock;
280 struct ptp_clock_info ptp_clock_info;
281
282 /* Reference counter to how many ports in the package are enabling the
283 * timestamping
284 */
285 u8 ref;
286
287 /* Lock for ptp_clock and ref */
288 struct mutex shared_lock;
289 };
290
291 struct lan8814_ptp_rx_ts {
292 struct list_head list;
293 u32 seconds;
294 u32 nsec;
295 u16 seq_id;
296 };
297
298 struct kszphy_ptp_priv {
299 struct mii_timestamper mii_ts;
300 struct phy_device *phydev;
301
302 struct sk_buff_head tx_queue;
303 struct sk_buff_head rx_queue;
304
305 struct list_head rx_ts_list;
306 /* Lock for Rx ts fifo */
307 spinlock_t rx_ts_lock;
308
309 int hwts_tx_type;
310 enum hwtstamp_rx_filters rx_filter;
311 int layer;
312 int version;
313 };
314
315 struct kszphy_priv {
316 struct kszphy_ptp_priv ptp_priv;
317 const struct kszphy_type *type;
318 int led_mode;
319 u16 vct_ctrl1000;
320 bool rmii_ref_clk_sel;
321 bool rmii_ref_clk_sel_val;
322 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
323 };
324
325 static const struct kszphy_type lan8814_type = {
326 .led_mode_reg = ~LAN8814_LED_CTRL_1,
327 .cable_diag_reg = LAN8814_CABLE_DIAG,
328 .pair_mask = LAN8814_WIRE_PAIR_MASK,
329 };
330
331 static const struct kszphy_type ksz886x_type = {
332 .cable_diag_reg = KSZ8081_LMD,
333 .pair_mask = KSZPHY_WIRE_PAIR_MASK,
334 };
335
336 static const struct kszphy_type ksz8021_type = {
337 .led_mode_reg = MII_KSZPHY_CTRL_2,
338 .has_broadcast_disable = true,
339 .has_nand_tree_disable = true,
340 .has_rmii_ref_clk_sel = true,
341 };
342
343 static const struct kszphy_type ksz8041_type = {
344 .led_mode_reg = MII_KSZPHY_CTRL_1,
345 };
346
347 static const struct kszphy_type ksz8051_type = {
348 .led_mode_reg = MII_KSZPHY_CTRL_2,
349 .has_nand_tree_disable = true,
350 };
351
352 static const struct kszphy_type ksz8081_type = {
353 .led_mode_reg = MII_KSZPHY_CTRL_2,
354 .has_broadcast_disable = true,
355 .has_nand_tree_disable = true,
356 .has_rmii_ref_clk_sel = true,
357 };
358
359 static const struct kszphy_type ks8737_type = {
360 .interrupt_level_mask = BIT(14),
361 };
362
363 static const struct kszphy_type ksz9021_type = {
364 .interrupt_level_mask = BIT(14),
365 };
366
kszphy_extended_write(struct phy_device * phydev,u32 regnum,u16 val)367 static int kszphy_extended_write(struct phy_device *phydev,
368 u32 regnum, u16 val)
369 {
370 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
371 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
372 }
373
kszphy_extended_read(struct phy_device * phydev,u32 regnum)374 static int kszphy_extended_read(struct phy_device *phydev,
375 u32 regnum)
376 {
377 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
378 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
379 }
380
kszphy_ack_interrupt(struct phy_device * phydev)381 static int kszphy_ack_interrupt(struct phy_device *phydev)
382 {
383 /* bit[7..0] int status, which is a read and clear register. */
384 int rc;
385
386 rc = phy_read(phydev, MII_KSZPHY_INTCS);
387
388 return (rc < 0) ? rc : 0;
389 }
390
kszphy_config_intr(struct phy_device * phydev)391 static int kszphy_config_intr(struct phy_device *phydev)
392 {
393 const struct kszphy_type *type = phydev->drv->driver_data;
394 int temp, err;
395 u16 mask;
396
397 if (type && type->interrupt_level_mask)
398 mask = type->interrupt_level_mask;
399 else
400 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
401
402 /* set the interrupt pin active low */
403 temp = phy_read(phydev, MII_KSZPHY_CTRL);
404 if (temp < 0)
405 return temp;
406 temp &= ~mask;
407 phy_write(phydev, MII_KSZPHY_CTRL, temp);
408
409 /* enable / disable interrupts */
410 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
411 err = kszphy_ack_interrupt(phydev);
412 if (err)
413 return err;
414
415 temp = KSZPHY_INTCS_ALL;
416 err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
417 } else {
418 temp = 0;
419 err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
420 if (err)
421 return err;
422
423 err = kszphy_ack_interrupt(phydev);
424 }
425
426 return err;
427 }
428
kszphy_handle_interrupt(struct phy_device * phydev)429 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
430 {
431 int irq_status;
432
433 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
434 if (irq_status < 0) {
435 phy_error(phydev);
436 return IRQ_NONE;
437 }
438
439 if (!(irq_status & KSZPHY_INTCS_STATUS))
440 return IRQ_NONE;
441
442 phy_trigger_machine(phydev);
443
444 return IRQ_HANDLED;
445 }
446
kszphy_rmii_clk_sel(struct phy_device * phydev,bool val)447 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
448 {
449 int ctrl;
450
451 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
452 if (ctrl < 0)
453 return ctrl;
454
455 if (val)
456 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
457 else
458 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
459
460 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
461 }
462
kszphy_setup_led(struct phy_device * phydev,u32 reg,int val)463 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
464 {
465 int rc, temp, shift;
466
467 switch (reg) {
468 case MII_KSZPHY_CTRL_1:
469 shift = 14;
470 break;
471 case MII_KSZPHY_CTRL_2:
472 shift = 4;
473 break;
474 default:
475 return -EINVAL;
476 }
477
478 temp = phy_read(phydev, reg);
479 if (temp < 0) {
480 rc = temp;
481 goto out;
482 }
483
484 temp &= ~(3 << shift);
485 temp |= val << shift;
486 rc = phy_write(phydev, reg, temp);
487 out:
488 if (rc < 0)
489 phydev_err(phydev, "failed to set led mode\n");
490
491 return rc;
492 }
493
494 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
495 * unique (non-broadcast) address on a shared bus.
496 */
kszphy_broadcast_disable(struct phy_device * phydev)497 static int kszphy_broadcast_disable(struct phy_device *phydev)
498 {
499 int ret;
500
501 ret = phy_read(phydev, MII_KSZPHY_OMSO);
502 if (ret < 0)
503 goto out;
504
505 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
506 out:
507 if (ret)
508 phydev_err(phydev, "failed to disable broadcast address\n");
509
510 return ret;
511 }
512
kszphy_nand_tree_disable(struct phy_device * phydev)513 static int kszphy_nand_tree_disable(struct phy_device *phydev)
514 {
515 int ret;
516
517 ret = phy_read(phydev, MII_KSZPHY_OMSO);
518 if (ret < 0)
519 goto out;
520
521 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
522 return 0;
523
524 ret = phy_write(phydev, MII_KSZPHY_OMSO,
525 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
526 out:
527 if (ret)
528 phydev_err(phydev, "failed to disable NAND tree mode\n");
529
530 return ret;
531 }
532
533 /* Some config bits need to be set again on resume, handle them here. */
kszphy_config_reset(struct phy_device * phydev)534 static int kszphy_config_reset(struct phy_device *phydev)
535 {
536 struct kszphy_priv *priv = phydev->priv;
537 int ret;
538
539 if (priv->rmii_ref_clk_sel) {
540 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
541 if (ret) {
542 phydev_err(phydev,
543 "failed to set rmii reference clock\n");
544 return ret;
545 }
546 }
547
548 if (priv->type && priv->led_mode >= 0)
549 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
550
551 return 0;
552 }
553
kszphy_config_init(struct phy_device * phydev)554 static int kszphy_config_init(struct phy_device *phydev)
555 {
556 struct kszphy_priv *priv = phydev->priv;
557 const struct kszphy_type *type;
558
559 if (!priv)
560 return 0;
561
562 type = priv->type;
563
564 if (type && type->has_broadcast_disable)
565 kszphy_broadcast_disable(phydev);
566
567 if (type && type->has_nand_tree_disable)
568 kszphy_nand_tree_disable(phydev);
569
570 return kszphy_config_reset(phydev);
571 }
572
ksz8041_fiber_mode(struct phy_device * phydev)573 static int ksz8041_fiber_mode(struct phy_device *phydev)
574 {
575 struct device_node *of_node = phydev->mdio.dev.of_node;
576
577 return of_property_read_bool(of_node, "micrel,fiber-mode");
578 }
579
ksz8041_config_init(struct phy_device * phydev)580 static int ksz8041_config_init(struct phy_device *phydev)
581 {
582 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
583
584 /* Limit supported and advertised modes in fiber mode */
585 if (ksz8041_fiber_mode(phydev)) {
586 phydev->dev_flags |= MICREL_PHY_FXEN;
587 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
588 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
589
590 linkmode_and(phydev->supported, phydev->supported, mask);
591 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
592 phydev->supported);
593 linkmode_and(phydev->advertising, phydev->advertising, mask);
594 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
595 phydev->advertising);
596 phydev->autoneg = AUTONEG_DISABLE;
597 }
598
599 return kszphy_config_init(phydev);
600 }
601
ksz8041_config_aneg(struct phy_device * phydev)602 static int ksz8041_config_aneg(struct phy_device *phydev)
603 {
604 /* Skip auto-negotiation in fiber mode */
605 if (phydev->dev_flags & MICREL_PHY_FXEN) {
606 phydev->speed = SPEED_100;
607 return 0;
608 }
609
610 return genphy_config_aneg(phydev);
611 }
612
ksz8051_ksz8795_match_phy_device(struct phy_device * phydev,const bool ksz_8051)613 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
614 const bool ksz_8051)
615 {
616 int ret;
617
618 if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
619 return 0;
620
621 ret = phy_read(phydev, MII_BMSR);
622 if (ret < 0)
623 return ret;
624
625 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
626 * exact PHY ID. However, they can be told apart by the extended
627 * capability registers presence. The KSZ8051 PHY has them while
628 * the switch does not.
629 */
630 ret &= BMSR_ERCAP;
631 if (ksz_8051)
632 return ret;
633 else
634 return !ret;
635 }
636
ksz8051_match_phy_device(struct phy_device * phydev)637 static int ksz8051_match_phy_device(struct phy_device *phydev)
638 {
639 return ksz8051_ksz8795_match_phy_device(phydev, true);
640 }
641
ksz8081_config_init(struct phy_device * phydev)642 static int ksz8081_config_init(struct phy_device *phydev)
643 {
644 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
645 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
646 * pull-down is missing, the factory test mode should be cleared by
647 * manually writing a 0.
648 */
649 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
650
651 return kszphy_config_init(phydev);
652 }
653
ksz8081_config_mdix(struct phy_device * phydev,u8 ctrl)654 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
655 {
656 u16 val;
657
658 switch (ctrl) {
659 case ETH_TP_MDI:
660 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
661 break;
662 case ETH_TP_MDI_X:
663 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
664 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
665 break;
666 case ETH_TP_MDI_AUTO:
667 val = 0;
668 break;
669 default:
670 return 0;
671 }
672
673 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
674 KSZ8081_CTRL2_HP_MDIX |
675 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
676 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
677 KSZ8081_CTRL2_HP_MDIX | val);
678 }
679
ksz8081_config_aneg(struct phy_device * phydev)680 static int ksz8081_config_aneg(struct phy_device *phydev)
681 {
682 int ret;
683
684 ret = genphy_config_aneg(phydev);
685 if (ret)
686 return ret;
687
688 /* The MDI-X configuration is automatically changed by the PHY after
689 * switching from autoneg off to on. So, take MDI-X configuration under
690 * own control and set it after autoneg configuration was done.
691 */
692 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
693 }
694
ksz8081_mdix_update(struct phy_device * phydev)695 static int ksz8081_mdix_update(struct phy_device *phydev)
696 {
697 int ret;
698
699 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
700 if (ret < 0)
701 return ret;
702
703 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
704 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
705 phydev->mdix_ctrl = ETH_TP_MDI_X;
706 else
707 phydev->mdix_ctrl = ETH_TP_MDI;
708 } else {
709 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
710 }
711
712 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
713 if (ret < 0)
714 return ret;
715
716 if (ret & KSZ8081_CTRL1_MDIX_STAT)
717 phydev->mdix = ETH_TP_MDI;
718 else
719 phydev->mdix = ETH_TP_MDI_X;
720
721 return 0;
722 }
723
ksz8081_read_status(struct phy_device * phydev)724 static int ksz8081_read_status(struct phy_device *phydev)
725 {
726 int ret;
727
728 ret = ksz8081_mdix_update(phydev);
729 if (ret < 0)
730 return ret;
731
732 return genphy_read_status(phydev);
733 }
734
ksz8061_config_init(struct phy_device * phydev)735 static int ksz8061_config_init(struct phy_device *phydev)
736 {
737 int ret;
738
739 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
740 if (ret)
741 return ret;
742
743 return kszphy_config_init(phydev);
744 }
745
ksz8795_match_phy_device(struct phy_device * phydev)746 static int ksz8795_match_phy_device(struct phy_device *phydev)
747 {
748 return ksz8051_ksz8795_match_phy_device(phydev, false);
749 }
750
ksz9021_load_values_from_of(struct phy_device * phydev,const struct device_node * of_node,u16 reg,const char * field1,const char * field2,const char * field3,const char * field4)751 static int ksz9021_load_values_from_of(struct phy_device *phydev,
752 const struct device_node *of_node,
753 u16 reg,
754 const char *field1, const char *field2,
755 const char *field3, const char *field4)
756 {
757 int val1 = -1;
758 int val2 = -2;
759 int val3 = -3;
760 int val4 = -4;
761 int newval;
762 int matches = 0;
763
764 if (!of_property_read_u32(of_node, field1, &val1))
765 matches++;
766
767 if (!of_property_read_u32(of_node, field2, &val2))
768 matches++;
769
770 if (!of_property_read_u32(of_node, field3, &val3))
771 matches++;
772
773 if (!of_property_read_u32(of_node, field4, &val4))
774 matches++;
775
776 if (!matches)
777 return 0;
778
779 if (matches < 4)
780 newval = kszphy_extended_read(phydev, reg);
781 else
782 newval = 0;
783
784 if (val1 != -1)
785 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
786
787 if (val2 != -2)
788 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
789
790 if (val3 != -3)
791 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
792
793 if (val4 != -4)
794 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
795
796 return kszphy_extended_write(phydev, reg, newval);
797 }
798
ksz9021_config_init(struct phy_device * phydev)799 static int ksz9021_config_init(struct phy_device *phydev)
800 {
801 const struct device_node *of_node;
802 const struct device *dev_walker;
803
804 /* The Micrel driver has a deprecated option to place phy OF
805 * properties in the MAC node. Walk up the tree of devices to
806 * find a device with an OF node.
807 */
808 dev_walker = &phydev->mdio.dev;
809 do {
810 of_node = dev_walker->of_node;
811 dev_walker = dev_walker->parent;
812
813 } while (!of_node && dev_walker);
814
815 if (of_node) {
816 ksz9021_load_values_from_of(phydev, of_node,
817 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
818 "txen-skew-ps", "txc-skew-ps",
819 "rxdv-skew-ps", "rxc-skew-ps");
820 ksz9021_load_values_from_of(phydev, of_node,
821 MII_KSZPHY_RX_DATA_PAD_SKEW,
822 "rxd0-skew-ps", "rxd1-skew-ps",
823 "rxd2-skew-ps", "rxd3-skew-ps");
824 ksz9021_load_values_from_of(phydev, of_node,
825 MII_KSZPHY_TX_DATA_PAD_SKEW,
826 "txd0-skew-ps", "txd1-skew-ps",
827 "txd2-skew-ps", "txd3-skew-ps");
828 }
829 return 0;
830 }
831
832 #define KSZ9031_PS_TO_REG 60
833
834 /* Extended registers */
835 /* MMD Address 0x0 */
836 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
837 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
838
839 /* MMD Address 0x2 */
840 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
841 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
842 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
843
844 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
845 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
846 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
847 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
848 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
849
850 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
851 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
852 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
853 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
854 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
855
856 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
857 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
858 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
859
860 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
861 * provide different RGMII options we need to configure delay offset
862 * for each pad relative to build in delay.
863 */
864 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
865 * 1.80ns
866 */
867 #define RX_ID 0x7
868 #define RX_CLK_ID 0x19
869
870 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
871 * internal 1.2ns delay.
872 */
873 #define RX_ND 0xc
874 #define RX_CLK_ND 0x0
875
876 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
877 #define TX_ID 0x0
878 #define TX_CLK_ID 0x1f
879
880 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
881 * dealy
882 */
883 #define TX_ND 0x7
884 #define TX_CLK_ND 0xf
885
886 /* MMD Address 0x1C */
887 #define MII_KSZ9031RN_EDPD 0x23
888 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
889
ksz9031_of_load_skew_values(struct phy_device * phydev,const struct device_node * of_node,u16 reg,size_t field_sz,const char * field[],u8 numfields,bool * update)890 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
891 const struct device_node *of_node,
892 u16 reg, size_t field_sz,
893 const char *field[], u8 numfields,
894 bool *update)
895 {
896 int val[4] = {-1, -2, -3, -4};
897 int matches = 0;
898 u16 mask;
899 u16 maxval;
900 u16 newval;
901 int i;
902
903 for (i = 0; i < numfields; i++)
904 if (!of_property_read_u32(of_node, field[i], val + i))
905 matches++;
906
907 if (!matches)
908 return 0;
909
910 *update |= true;
911
912 if (matches < numfields)
913 newval = phy_read_mmd(phydev, 2, reg);
914 else
915 newval = 0;
916
917 maxval = (field_sz == 4) ? 0xf : 0x1f;
918 for (i = 0; i < numfields; i++)
919 if (val[i] != -(i + 1)) {
920 mask = 0xffff;
921 mask ^= maxval << (field_sz * i);
922 newval = (newval & mask) |
923 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
924 << (field_sz * i));
925 }
926
927 return phy_write_mmd(phydev, 2, reg, newval);
928 }
929
930 /* Center KSZ9031RNX FLP timing at 16ms. */
ksz9031_center_flp_timing(struct phy_device * phydev)931 static int ksz9031_center_flp_timing(struct phy_device *phydev)
932 {
933 int result;
934
935 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
936 0x0006);
937 if (result)
938 return result;
939
940 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
941 0x1A80);
942 if (result)
943 return result;
944
945 return genphy_restart_aneg(phydev);
946 }
947
948 /* Enable energy-detect power-down mode */
ksz9031_enable_edpd(struct phy_device * phydev)949 static int ksz9031_enable_edpd(struct phy_device *phydev)
950 {
951 int reg;
952
953 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
954 if (reg < 0)
955 return reg;
956 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
957 reg | MII_KSZ9031RN_EDPD_ENABLE);
958 }
959
ksz9031_config_rgmii_delay(struct phy_device * phydev)960 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
961 {
962 u16 rx, tx, rx_clk, tx_clk;
963 int ret;
964
965 switch (phydev->interface) {
966 case PHY_INTERFACE_MODE_RGMII:
967 tx = TX_ND;
968 tx_clk = TX_CLK_ND;
969 rx = RX_ND;
970 rx_clk = RX_CLK_ND;
971 break;
972 case PHY_INTERFACE_MODE_RGMII_ID:
973 tx = TX_ID;
974 tx_clk = TX_CLK_ID;
975 rx = RX_ID;
976 rx_clk = RX_CLK_ID;
977 break;
978 case PHY_INTERFACE_MODE_RGMII_RXID:
979 tx = TX_ND;
980 tx_clk = TX_CLK_ND;
981 rx = RX_ID;
982 rx_clk = RX_CLK_ID;
983 break;
984 case PHY_INTERFACE_MODE_RGMII_TXID:
985 tx = TX_ID;
986 tx_clk = TX_CLK_ID;
987 rx = RX_ND;
988 rx_clk = RX_CLK_ND;
989 break;
990 default:
991 return 0;
992 }
993
994 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
995 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
996 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
997 if (ret < 0)
998 return ret;
999
1000 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1001 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1002 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1003 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1004 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1005 if (ret < 0)
1006 return ret;
1007
1008 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1009 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1010 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1011 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1012 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1013 if (ret < 0)
1014 return ret;
1015
1016 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1017 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1018 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1019 }
1020
ksz9031_config_init(struct phy_device * phydev)1021 static int ksz9031_config_init(struct phy_device *phydev)
1022 {
1023 const struct device_node *of_node;
1024 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1025 static const char *rx_data_skews[4] = {
1026 "rxd0-skew-ps", "rxd1-skew-ps",
1027 "rxd2-skew-ps", "rxd3-skew-ps"
1028 };
1029 static const char *tx_data_skews[4] = {
1030 "txd0-skew-ps", "txd1-skew-ps",
1031 "txd2-skew-ps", "txd3-skew-ps"
1032 };
1033 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1034 const struct device *dev_walker;
1035 int result;
1036
1037 result = ksz9031_enable_edpd(phydev);
1038 if (result < 0)
1039 return result;
1040
1041 /* The Micrel driver has a deprecated option to place phy OF
1042 * properties in the MAC node. Walk up the tree of devices to
1043 * find a device with an OF node.
1044 */
1045 dev_walker = &phydev->mdio.dev;
1046 do {
1047 of_node = dev_walker->of_node;
1048 dev_walker = dev_walker->parent;
1049 } while (!of_node && dev_walker);
1050
1051 if (of_node) {
1052 bool update = false;
1053
1054 if (phy_interface_is_rgmii(phydev)) {
1055 result = ksz9031_config_rgmii_delay(phydev);
1056 if (result < 0)
1057 return result;
1058 }
1059
1060 ksz9031_of_load_skew_values(phydev, of_node,
1061 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1062 clk_skews, 2, &update);
1063
1064 ksz9031_of_load_skew_values(phydev, of_node,
1065 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1066 control_skews, 2, &update);
1067
1068 ksz9031_of_load_skew_values(phydev, of_node,
1069 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1070 rx_data_skews, 4, &update);
1071
1072 ksz9031_of_load_skew_values(phydev, of_node,
1073 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1074 tx_data_skews, 4, &update);
1075
1076 if (update && !phy_interface_is_rgmii(phydev))
1077 phydev_warn(phydev,
1078 "*-skew-ps values should be used only with RGMII PHY modes\n");
1079
1080 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1081 * When the device links in the 1000BASE-T slave mode only,
1082 * the optional 125MHz reference output clock (CLK125_NDO)
1083 * has wide duty cycle variation.
1084 *
1085 * The optional CLK125_NDO clock does not meet the RGMII
1086 * 45/55 percent (min/max) duty cycle requirement and therefore
1087 * cannot be used directly by the MAC side for clocking
1088 * applications that have setup/hold time requirements on
1089 * rising and falling clock edges.
1090 *
1091 * Workaround:
1092 * Force the phy to be the master to receive a stable clock
1093 * which meets the duty cycle requirement.
1094 */
1095 if (of_property_read_bool(of_node, "micrel,force-master")) {
1096 result = phy_read(phydev, MII_CTRL1000);
1097 if (result < 0)
1098 goto err_force_master;
1099
1100 /* enable master mode, config & prefer master */
1101 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1102 result = phy_write(phydev, MII_CTRL1000, result);
1103 if (result < 0)
1104 goto err_force_master;
1105 }
1106 }
1107
1108 return ksz9031_center_flp_timing(phydev);
1109
1110 err_force_master:
1111 phydev_err(phydev, "failed to force the phy to master mode\n");
1112 return result;
1113 }
1114
1115 #define KSZ9131_SKEW_5BIT_MAX 2400
1116 #define KSZ9131_SKEW_4BIT_MAX 800
1117 #define KSZ9131_OFFSET 700
1118 #define KSZ9131_STEP 100
1119
ksz9131_of_load_skew_values(struct phy_device * phydev,struct device_node * of_node,u16 reg,size_t field_sz,char * field[],u8 numfields)1120 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1121 struct device_node *of_node,
1122 u16 reg, size_t field_sz,
1123 char *field[], u8 numfields)
1124 {
1125 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1126 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1127 int skewval, skewmax = 0;
1128 int matches = 0;
1129 u16 maxval;
1130 u16 newval;
1131 u16 mask;
1132 int i;
1133
1134 /* psec properties in dts should mean x pico seconds */
1135 if (field_sz == 5)
1136 skewmax = KSZ9131_SKEW_5BIT_MAX;
1137 else
1138 skewmax = KSZ9131_SKEW_4BIT_MAX;
1139
1140 for (i = 0; i < numfields; i++)
1141 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1142 if (skewval < -KSZ9131_OFFSET)
1143 skewval = -KSZ9131_OFFSET;
1144 else if (skewval > skewmax)
1145 skewval = skewmax;
1146
1147 val[i] = skewval + KSZ9131_OFFSET;
1148 matches++;
1149 }
1150
1151 if (!matches)
1152 return 0;
1153
1154 if (matches < numfields)
1155 newval = phy_read_mmd(phydev, 2, reg);
1156 else
1157 newval = 0;
1158
1159 maxval = (field_sz == 4) ? 0xf : 0x1f;
1160 for (i = 0; i < numfields; i++)
1161 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1162 mask = 0xffff;
1163 mask ^= maxval << (field_sz * i);
1164 newval = (newval & mask) |
1165 (((val[i] / KSZ9131_STEP) & maxval)
1166 << (field_sz * i));
1167 }
1168
1169 return phy_write_mmd(phydev, 2, reg, newval);
1170 }
1171
1172 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1173 #define KSZ9131RN_RXC_DLL_CTRL 76
1174 #define KSZ9131RN_TXC_DLL_CTRL 77
1175 #define KSZ9131RN_DLL_CTRL_BYPASS BIT_MASK(12)
1176 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1177 #define KSZ9131RN_DLL_DISABLE_DELAY BIT(12)
1178
ksz9131_config_rgmii_delay(struct phy_device * phydev)1179 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1180 {
1181 u16 rxcdll_val, txcdll_val;
1182 int ret;
1183
1184 switch (phydev->interface) {
1185 case PHY_INTERFACE_MODE_RGMII:
1186 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1187 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1188 break;
1189 case PHY_INTERFACE_MODE_RGMII_ID:
1190 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1191 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1192 break;
1193 case PHY_INTERFACE_MODE_RGMII_RXID:
1194 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1195 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1196 break;
1197 case PHY_INTERFACE_MODE_RGMII_TXID:
1198 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1199 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1200 break;
1201 default:
1202 return 0;
1203 }
1204
1205 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1206 KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1207 rxcdll_val);
1208 if (ret < 0)
1209 return ret;
1210
1211 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1212 KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1213 txcdll_val);
1214 }
1215
1216 /* Silicon Errata DS80000693B
1217 *
1218 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1219 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1220 * according to the datasheet (off if there is no link).
1221 */
ksz9131_led_errata(struct phy_device * phydev)1222 static int ksz9131_led_errata(struct phy_device *phydev)
1223 {
1224 int reg;
1225
1226 reg = phy_read_mmd(phydev, 2, 0);
1227 if (reg < 0)
1228 return reg;
1229
1230 if (!(reg & BIT(4)))
1231 return 0;
1232
1233 return phy_set_bits(phydev, 0x1e, BIT(9));
1234 }
1235
ksz9131_config_init(struct phy_device * phydev)1236 static int ksz9131_config_init(struct phy_device *phydev)
1237 {
1238 struct device_node *of_node;
1239 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1240 char *rx_data_skews[4] = {
1241 "rxd0-skew-psec", "rxd1-skew-psec",
1242 "rxd2-skew-psec", "rxd3-skew-psec"
1243 };
1244 char *tx_data_skews[4] = {
1245 "txd0-skew-psec", "txd1-skew-psec",
1246 "txd2-skew-psec", "txd3-skew-psec"
1247 };
1248 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1249 const struct device *dev_walker;
1250 int ret;
1251
1252 dev_walker = &phydev->mdio.dev;
1253 do {
1254 of_node = dev_walker->of_node;
1255 dev_walker = dev_walker->parent;
1256 } while (!of_node && dev_walker);
1257
1258 if (!of_node)
1259 return 0;
1260
1261 if (phy_interface_is_rgmii(phydev)) {
1262 ret = ksz9131_config_rgmii_delay(phydev);
1263 if (ret < 0)
1264 return ret;
1265 }
1266
1267 ret = ksz9131_of_load_skew_values(phydev, of_node,
1268 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1269 clk_skews, 2);
1270 if (ret < 0)
1271 return ret;
1272
1273 ret = ksz9131_of_load_skew_values(phydev, of_node,
1274 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1275 control_skews, 2);
1276 if (ret < 0)
1277 return ret;
1278
1279 ret = ksz9131_of_load_skew_values(phydev, of_node,
1280 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1281 rx_data_skews, 4);
1282 if (ret < 0)
1283 return ret;
1284
1285 ret = ksz9131_of_load_skew_values(phydev, of_node,
1286 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1287 tx_data_skews, 4);
1288 if (ret < 0)
1289 return ret;
1290
1291 ret = ksz9131_led_errata(phydev);
1292 if (ret < 0)
1293 return ret;
1294
1295 return 0;
1296 }
1297
1298 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1299 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1300 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
ksz8873mll_read_status(struct phy_device * phydev)1301 static int ksz8873mll_read_status(struct phy_device *phydev)
1302 {
1303 int regval;
1304
1305 /* dummy read */
1306 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1307
1308 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1309
1310 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1311 phydev->duplex = DUPLEX_HALF;
1312 else
1313 phydev->duplex = DUPLEX_FULL;
1314
1315 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1316 phydev->speed = SPEED_10;
1317 else
1318 phydev->speed = SPEED_100;
1319
1320 phydev->link = 1;
1321 phydev->pause = phydev->asym_pause = 0;
1322
1323 return 0;
1324 }
1325
ksz9031_get_features(struct phy_device * phydev)1326 static int ksz9031_get_features(struct phy_device *phydev)
1327 {
1328 int ret;
1329
1330 ret = genphy_read_abilities(phydev);
1331 if (ret < 0)
1332 return ret;
1333
1334 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1335 * Whenever the device's Asymmetric Pause capability is set to 1,
1336 * link-up may fail after a link-up to link-down transition.
1337 *
1338 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1339 *
1340 * Workaround:
1341 * Do not enable the Asymmetric Pause capability bit.
1342 */
1343 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1344
1345 /* We force setting the Pause capability as the core will force the
1346 * Asymmetric Pause capability to 1 otherwise.
1347 */
1348 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1349
1350 return 0;
1351 }
1352
ksz9031_read_status(struct phy_device * phydev)1353 static int ksz9031_read_status(struct phy_device *phydev)
1354 {
1355 int err;
1356 int regval;
1357
1358 err = genphy_read_status(phydev);
1359 if (err)
1360 return err;
1361
1362 /* Make sure the PHY is not broken. Read idle error count,
1363 * and reset the PHY if it is maxed out.
1364 */
1365 regval = phy_read(phydev, MII_STAT1000);
1366 if ((regval & 0xFF) == 0xFF) {
1367 phy_init_hw(phydev);
1368 phydev->link = 0;
1369 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1370 phydev->drv->config_intr(phydev);
1371 return genphy_config_aneg(phydev);
1372 }
1373
1374 return 0;
1375 }
1376
ksz9x31_cable_test_start(struct phy_device * phydev)1377 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1378 {
1379 struct kszphy_priv *priv = phydev->priv;
1380 int ret;
1381
1382 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1383 * Prior to running the cable diagnostics, Auto-negotiation should
1384 * be disabled, full duplex set and the link speed set to 1000Mbps
1385 * via the Basic Control Register.
1386 */
1387 ret = phy_modify(phydev, MII_BMCR,
1388 BMCR_SPEED1000 | BMCR_FULLDPLX |
1389 BMCR_ANENABLE | BMCR_SPEED100,
1390 BMCR_SPEED1000 | BMCR_FULLDPLX);
1391 if (ret)
1392 return ret;
1393
1394 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1395 * The Master-Slave configuration should be set to Slave by writing
1396 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1397 * Register.
1398 */
1399 ret = phy_read(phydev, MII_CTRL1000);
1400 if (ret < 0)
1401 return ret;
1402
1403 /* Cache these bits, they need to be restored once LinkMD finishes. */
1404 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1405 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1406 ret |= CTL1000_ENABLE_MASTER;
1407
1408 return phy_write(phydev, MII_CTRL1000, ret);
1409 }
1410
ksz9x31_cable_test_result_trans(u16 status)1411 static int ksz9x31_cable_test_result_trans(u16 status)
1412 {
1413 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1414 case KSZ9x31_LMD_VCT_ST_NORMAL:
1415 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1416 case KSZ9x31_LMD_VCT_ST_OPEN:
1417 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1418 case KSZ9x31_LMD_VCT_ST_SHORT:
1419 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1420 case KSZ9x31_LMD_VCT_ST_FAIL:
1421 fallthrough;
1422 default:
1423 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1424 }
1425 }
1426
ksz9x31_cable_test_failed(u16 status)1427 static bool ksz9x31_cable_test_failed(u16 status)
1428 {
1429 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1430
1431 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1432 }
1433
ksz9x31_cable_test_fault_length_valid(u16 status)1434 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1435 {
1436 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1437 case KSZ9x31_LMD_VCT_ST_OPEN:
1438 fallthrough;
1439 case KSZ9x31_LMD_VCT_ST_SHORT:
1440 return true;
1441 }
1442 return false;
1443 }
1444
ksz9x31_cable_test_fault_length(struct phy_device * phydev,u16 stat)1445 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1446 {
1447 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1448
1449 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1450 *
1451 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1452 */
1453 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
1454 dt = clamp(dt - 22, 0, 255);
1455
1456 return (dt * 400) / 10;
1457 }
1458
ksz9x31_cable_test_wait_for_completion(struct phy_device * phydev)1459 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1460 {
1461 int val, ret;
1462
1463 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1464 !(val & KSZ9x31_LMD_VCT_EN),
1465 30000, 100000, true);
1466
1467 return ret < 0 ? ret : 0;
1468 }
1469
ksz9x31_cable_test_get_pair(int pair)1470 static int ksz9x31_cable_test_get_pair(int pair)
1471 {
1472 static const int ethtool_pair[] = {
1473 ETHTOOL_A_CABLE_PAIR_A,
1474 ETHTOOL_A_CABLE_PAIR_B,
1475 ETHTOOL_A_CABLE_PAIR_C,
1476 ETHTOOL_A_CABLE_PAIR_D,
1477 };
1478
1479 return ethtool_pair[pair];
1480 }
1481
ksz9x31_cable_test_one_pair(struct phy_device * phydev,int pair)1482 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1483 {
1484 int ret, val;
1485
1486 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1487 * To test each individual cable pair, set the cable pair in the Cable
1488 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1489 * Diagnostic Register, along with setting the Cable Diagnostics Test
1490 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1491 * will self clear when the test is concluded.
1492 */
1493 ret = phy_write(phydev, KSZ9x31_LMD,
1494 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1495 if (ret)
1496 return ret;
1497
1498 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1499 if (ret)
1500 return ret;
1501
1502 val = phy_read(phydev, KSZ9x31_LMD);
1503 if (val < 0)
1504 return val;
1505
1506 if (ksz9x31_cable_test_failed(val))
1507 return -EAGAIN;
1508
1509 ret = ethnl_cable_test_result(phydev,
1510 ksz9x31_cable_test_get_pair(pair),
1511 ksz9x31_cable_test_result_trans(val));
1512 if (ret)
1513 return ret;
1514
1515 if (!ksz9x31_cable_test_fault_length_valid(val))
1516 return 0;
1517
1518 return ethnl_cable_test_fault_length(phydev,
1519 ksz9x31_cable_test_get_pair(pair),
1520 ksz9x31_cable_test_fault_length(phydev, val));
1521 }
1522
ksz9x31_cable_test_get_status(struct phy_device * phydev,bool * finished)1523 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1524 bool *finished)
1525 {
1526 struct kszphy_priv *priv = phydev->priv;
1527 unsigned long pair_mask = 0xf;
1528 int retries = 20;
1529 int pair, ret, rv;
1530
1531 *finished = false;
1532
1533 /* Try harder if link partner is active */
1534 while (pair_mask && retries--) {
1535 for_each_set_bit(pair, &pair_mask, 4) {
1536 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1537 if (ret == -EAGAIN)
1538 continue;
1539 if (ret < 0)
1540 return ret;
1541 clear_bit(pair, &pair_mask);
1542 }
1543 /* If link partner is in autonegotiation mode it will send 2ms
1544 * of FLPs with at least 6ms of silence.
1545 * Add 2ms sleep to have better chances to hit this silence.
1546 */
1547 if (pair_mask)
1548 usleep_range(2000, 3000);
1549 }
1550
1551 /* Report remaining unfinished pair result as unknown. */
1552 for_each_set_bit(pair, &pair_mask, 4) {
1553 ret = ethnl_cable_test_result(phydev,
1554 ksz9x31_cable_test_get_pair(pair),
1555 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1556 }
1557
1558 *finished = true;
1559
1560 /* Restore cached bits from before LinkMD got started. */
1561 rv = phy_modify(phydev, MII_CTRL1000,
1562 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1563 priv->vct_ctrl1000);
1564 if (rv)
1565 return rv;
1566
1567 return ret;
1568 }
1569
ksz8873mll_config_aneg(struct phy_device * phydev)1570 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1571 {
1572 return 0;
1573 }
1574
ksz886x_config_mdix(struct phy_device * phydev,u8 ctrl)1575 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1576 {
1577 u16 val;
1578
1579 switch (ctrl) {
1580 case ETH_TP_MDI:
1581 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1582 break;
1583 case ETH_TP_MDI_X:
1584 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1585 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1586 * sheet seems to be missing:
1587 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1588 * 0 = Normal operation (transmit on TX+/TX- pins)
1589 */
1590 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1591 break;
1592 case ETH_TP_MDI_AUTO:
1593 val = 0;
1594 break;
1595 default:
1596 return 0;
1597 }
1598
1599 return phy_modify(phydev, MII_BMCR,
1600 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1601 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1602 KSZ886X_BMCR_HP_MDIX | val);
1603 }
1604
ksz886x_config_aneg(struct phy_device * phydev)1605 static int ksz886x_config_aneg(struct phy_device *phydev)
1606 {
1607 int ret;
1608
1609 ret = genphy_config_aneg(phydev);
1610 if (ret)
1611 return ret;
1612
1613 /* The MDI-X configuration is automatically changed by the PHY after
1614 * switching from autoneg off to on. So, take MDI-X configuration under
1615 * own control and set it after autoneg configuration was done.
1616 */
1617 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1618 }
1619
ksz886x_mdix_update(struct phy_device * phydev)1620 static int ksz886x_mdix_update(struct phy_device *phydev)
1621 {
1622 int ret;
1623
1624 ret = phy_read(phydev, MII_BMCR);
1625 if (ret < 0)
1626 return ret;
1627
1628 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1629 if (ret & KSZ886X_BMCR_FORCE_MDI)
1630 phydev->mdix_ctrl = ETH_TP_MDI_X;
1631 else
1632 phydev->mdix_ctrl = ETH_TP_MDI;
1633 } else {
1634 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1635 }
1636
1637 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1638 if (ret < 0)
1639 return ret;
1640
1641 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1642 if (ret & KSZ886X_CTRL_MDIX_STAT)
1643 phydev->mdix = ETH_TP_MDI_X;
1644 else
1645 phydev->mdix = ETH_TP_MDI;
1646
1647 return 0;
1648 }
1649
ksz886x_read_status(struct phy_device * phydev)1650 static int ksz886x_read_status(struct phy_device *phydev)
1651 {
1652 int ret;
1653
1654 ret = ksz886x_mdix_update(phydev);
1655 if (ret < 0)
1656 return ret;
1657
1658 return genphy_read_status(phydev);
1659 }
1660
kszphy_get_sset_count(struct phy_device * phydev)1661 static int kszphy_get_sset_count(struct phy_device *phydev)
1662 {
1663 return ARRAY_SIZE(kszphy_hw_stats);
1664 }
1665
kszphy_get_strings(struct phy_device * phydev,u8 * data)1666 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1667 {
1668 int i;
1669
1670 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1671 strscpy(data + i * ETH_GSTRING_LEN,
1672 kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1673 }
1674 }
1675
kszphy_get_stat(struct phy_device * phydev,int i)1676 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1677 {
1678 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1679 struct kszphy_priv *priv = phydev->priv;
1680 int val;
1681 u64 ret;
1682
1683 val = phy_read(phydev, stat.reg);
1684 if (val < 0) {
1685 ret = U64_MAX;
1686 } else {
1687 val = val & ((1 << stat.bits) - 1);
1688 priv->stats[i] += val;
1689 ret = priv->stats[i];
1690 }
1691
1692 return ret;
1693 }
1694
kszphy_get_stats(struct phy_device * phydev,struct ethtool_stats * stats,u64 * data)1695 static void kszphy_get_stats(struct phy_device *phydev,
1696 struct ethtool_stats *stats, u64 *data)
1697 {
1698 int i;
1699
1700 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1701 data[i] = kszphy_get_stat(phydev, i);
1702 }
1703
kszphy_suspend(struct phy_device * phydev)1704 static int kszphy_suspend(struct phy_device *phydev)
1705 {
1706 /* Disable PHY Interrupts */
1707 if (phy_interrupt_is_valid(phydev)) {
1708 phydev->interrupts = PHY_INTERRUPT_DISABLED;
1709 if (phydev->drv->config_intr)
1710 phydev->drv->config_intr(phydev);
1711 }
1712
1713 return genphy_suspend(phydev);
1714 }
1715
kszphy_parse_led_mode(struct phy_device * phydev)1716 static void kszphy_parse_led_mode(struct phy_device *phydev)
1717 {
1718 const struct kszphy_type *type = phydev->drv->driver_data;
1719 const struct device_node *np = phydev->mdio.dev.of_node;
1720 struct kszphy_priv *priv = phydev->priv;
1721 int ret;
1722
1723 if (type && type->led_mode_reg) {
1724 ret = of_property_read_u32(np, "micrel,led-mode",
1725 &priv->led_mode);
1726
1727 if (ret)
1728 priv->led_mode = -1;
1729
1730 if (priv->led_mode > 3) {
1731 phydev_err(phydev, "invalid led mode: 0x%02x\n",
1732 priv->led_mode);
1733 priv->led_mode = -1;
1734 }
1735 } else {
1736 priv->led_mode = -1;
1737 }
1738 }
1739
kszphy_resume(struct phy_device * phydev)1740 static int kszphy_resume(struct phy_device *phydev)
1741 {
1742 int ret;
1743
1744 genphy_resume(phydev);
1745
1746 /* After switching from power-down to normal mode, an internal global
1747 * reset is automatically generated. Wait a minimum of 1 ms before
1748 * read/write access to the PHY registers.
1749 */
1750 usleep_range(1000, 2000);
1751
1752 ret = kszphy_config_reset(phydev);
1753 if (ret)
1754 return ret;
1755
1756 /* Enable PHY Interrupts */
1757 if (phy_interrupt_is_valid(phydev)) {
1758 phydev->interrupts = PHY_INTERRUPT_ENABLED;
1759 if (phydev->drv->config_intr)
1760 phydev->drv->config_intr(phydev);
1761 }
1762
1763 return 0;
1764 }
1765
kszphy_probe(struct phy_device * phydev)1766 static int kszphy_probe(struct phy_device *phydev)
1767 {
1768 const struct kszphy_type *type = phydev->drv->driver_data;
1769 const struct device_node *np = phydev->mdio.dev.of_node;
1770 struct kszphy_priv *priv;
1771 struct clk *clk;
1772
1773 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1774 if (!priv)
1775 return -ENOMEM;
1776
1777 phydev->priv = priv;
1778
1779 priv->type = type;
1780
1781 kszphy_parse_led_mode(phydev);
1782
1783 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1784 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1785 if (!IS_ERR_OR_NULL(clk)) {
1786 unsigned long rate = clk_get_rate(clk);
1787 bool rmii_ref_clk_sel_25_mhz;
1788
1789 if (type)
1790 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1791 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1792 "micrel,rmii-reference-clock-select-25-mhz");
1793
1794 if (rate > 24500000 && rate < 25500000) {
1795 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1796 } else if (rate > 49500000 && rate < 50500000) {
1797 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1798 } else {
1799 phydev_err(phydev, "Clock rate out of range: %ld\n",
1800 rate);
1801 return -EINVAL;
1802 }
1803 }
1804
1805 if (ksz8041_fiber_mode(phydev))
1806 phydev->port = PORT_FIBRE;
1807
1808 /* Support legacy board-file configuration */
1809 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
1810 priv->rmii_ref_clk_sel = true;
1811 priv->rmii_ref_clk_sel_val = true;
1812 }
1813
1814 return 0;
1815 }
1816
lan8814_cable_test_start(struct phy_device * phydev)1817 static int lan8814_cable_test_start(struct phy_device *phydev)
1818 {
1819 /* If autoneg is enabled, we won't be able to test cross pair
1820 * short. In this case, the PHY will "detect" a link and
1821 * confuse the internal state machine - disable auto neg here.
1822 * Set the speed to 1000mbit and full duplex.
1823 */
1824 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
1825 BMCR_SPEED1000 | BMCR_FULLDPLX);
1826 }
1827
ksz886x_cable_test_start(struct phy_device * phydev)1828 static int ksz886x_cable_test_start(struct phy_device *phydev)
1829 {
1830 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
1831 return -EOPNOTSUPP;
1832
1833 /* If autoneg is enabled, we won't be able to test cross pair
1834 * short. In this case, the PHY will "detect" a link and
1835 * confuse the internal state machine - disable auto neg here.
1836 * If autoneg is disabled, we should set the speed to 10mbit.
1837 */
1838 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
1839 }
1840
ksz886x_cable_test_result_trans(u16 status,u16 mask)1841 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
1842 {
1843 switch (FIELD_GET(mask, status)) {
1844 case KSZ8081_LMD_STAT_NORMAL:
1845 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1846 case KSZ8081_LMD_STAT_SHORT:
1847 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1848 case KSZ8081_LMD_STAT_OPEN:
1849 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1850 case KSZ8081_LMD_STAT_FAIL:
1851 fallthrough;
1852 default:
1853 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1854 }
1855 }
1856
ksz886x_cable_test_failed(u16 status,u16 mask)1857 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
1858 {
1859 return FIELD_GET(mask, status) ==
1860 KSZ8081_LMD_STAT_FAIL;
1861 }
1862
ksz886x_cable_test_fault_length_valid(u16 status,u16 mask)1863 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
1864 {
1865 switch (FIELD_GET(mask, status)) {
1866 case KSZ8081_LMD_STAT_OPEN:
1867 fallthrough;
1868 case KSZ8081_LMD_STAT_SHORT:
1869 return true;
1870 }
1871 return false;
1872 }
1873
ksz886x_cable_test_fault_length(struct phy_device * phydev,u16 status,u16 data_mask)1874 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
1875 u16 status, u16 data_mask)
1876 {
1877 int dt;
1878
1879 /* According to the data sheet the distance to the fault is
1880 * DELTA_TIME * 0.4 meters for ksz phys.
1881 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
1882 */
1883 dt = FIELD_GET(data_mask, status);
1884
1885 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814)
1886 return ((dt - 22) * 800) / 10;
1887 else
1888 return (dt * 400) / 10;
1889 }
1890
ksz886x_cable_test_wait_for_completion(struct phy_device * phydev)1891 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
1892 {
1893 const struct kszphy_type *type = phydev->drv->driver_data;
1894 int val, ret;
1895
1896 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
1897 !(val & KSZ8081_LMD_ENABLE_TEST),
1898 30000, 100000, true);
1899
1900 return ret < 0 ? ret : 0;
1901 }
1902
lan8814_cable_test_one_pair(struct phy_device * phydev,int pair)1903 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
1904 {
1905 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
1906 ETHTOOL_A_CABLE_PAIR_B,
1907 ETHTOOL_A_CABLE_PAIR_C,
1908 ETHTOOL_A_CABLE_PAIR_D,
1909 };
1910 u32 fault_length;
1911 int ret;
1912 int val;
1913
1914 val = KSZ8081_LMD_ENABLE_TEST;
1915 val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
1916
1917 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
1918 if (ret < 0)
1919 return ret;
1920
1921 ret = ksz886x_cable_test_wait_for_completion(phydev);
1922 if (ret)
1923 return ret;
1924
1925 val = phy_read(phydev, LAN8814_CABLE_DIAG);
1926 if (val < 0)
1927 return val;
1928
1929 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
1930 return -EAGAIN;
1931
1932 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
1933 ksz886x_cable_test_result_trans(val,
1934 LAN8814_CABLE_DIAG_STAT_MASK
1935 ));
1936 if (ret)
1937 return ret;
1938
1939 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
1940 return 0;
1941
1942 fault_length = ksz886x_cable_test_fault_length(phydev, val,
1943 LAN8814_CABLE_DIAG_VCT_DATA_MASK);
1944
1945 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
1946 }
1947
ksz886x_cable_test_one_pair(struct phy_device * phydev,int pair)1948 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
1949 {
1950 static const int ethtool_pair[] = {
1951 ETHTOOL_A_CABLE_PAIR_A,
1952 ETHTOOL_A_CABLE_PAIR_B,
1953 };
1954 int ret, val, mdix;
1955 u32 fault_length;
1956
1957 /* There is no way to choice the pair, like we do one ksz9031.
1958 * We can workaround this limitation by using the MDI-X functionality.
1959 */
1960 if (pair == 0)
1961 mdix = ETH_TP_MDI;
1962 else
1963 mdix = ETH_TP_MDI_X;
1964
1965 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
1966 case PHY_ID_KSZ8081:
1967 ret = ksz8081_config_mdix(phydev, mdix);
1968 break;
1969 case PHY_ID_KSZ886X:
1970 ret = ksz886x_config_mdix(phydev, mdix);
1971 break;
1972 default:
1973 ret = -ENODEV;
1974 }
1975
1976 if (ret)
1977 return ret;
1978
1979 /* Now we are ready to fire. This command will send a 100ns pulse
1980 * to the pair.
1981 */
1982 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
1983 if (ret)
1984 return ret;
1985
1986 ret = ksz886x_cable_test_wait_for_completion(phydev);
1987 if (ret)
1988 return ret;
1989
1990 val = phy_read(phydev, KSZ8081_LMD);
1991 if (val < 0)
1992 return val;
1993
1994 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
1995 return -EAGAIN;
1996
1997 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
1998 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
1999 if (ret)
2000 return ret;
2001
2002 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2003 return 0;
2004
2005 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2006
2007 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2008 }
2009
ksz886x_cable_test_get_status(struct phy_device * phydev,bool * finished)2010 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2011 bool *finished)
2012 {
2013 const struct kszphy_type *type = phydev->drv->driver_data;
2014 unsigned long pair_mask = type->pair_mask;
2015 int retries = 20;
2016 int pair, ret;
2017
2018 *finished = false;
2019
2020 /* Try harder if link partner is active */
2021 while (pair_mask && retries--) {
2022 for_each_set_bit(pair, &pair_mask, 4) {
2023 if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2024 ret = lan8814_cable_test_one_pair(phydev, pair);
2025 else
2026 ret = ksz886x_cable_test_one_pair(phydev, pair);
2027 if (ret == -EAGAIN)
2028 continue;
2029 if (ret < 0)
2030 return ret;
2031 clear_bit(pair, &pair_mask);
2032 }
2033 /* If link partner is in autonegotiation mode it will send 2ms
2034 * of FLPs with at least 6ms of silence.
2035 * Add 2ms sleep to have better chances to hit this silence.
2036 */
2037 if (pair_mask)
2038 msleep(2);
2039 }
2040
2041 *finished = true;
2042
2043 return ret;
2044 }
2045
2046 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
2047 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
2048 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
2049
2050 #define LAN8814_QSGMII_SOFT_RESET 0x43
2051 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
2052 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
2053 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
2054 #define LAN8814_ALIGN_SWAP 0x4a
2055 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
2056 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2057
2058 #define LAN8804_ALIGN_SWAP 0x4a
2059 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
2060 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2061 #define LAN8814_CLOCK_MANAGEMENT 0xd
2062 #define LAN8814_LINK_QUALITY 0x8e
2063
lanphy_read_page_reg(struct phy_device * phydev,int page,u32 addr)2064 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2065 {
2066 int data;
2067
2068 phy_lock_mdio_bus(phydev);
2069 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2070 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2071 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2072 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2073 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2074 phy_unlock_mdio_bus(phydev);
2075
2076 return data;
2077 }
2078
lanphy_write_page_reg(struct phy_device * phydev,int page,u16 addr,u16 val)2079 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2080 u16 val)
2081 {
2082 phy_lock_mdio_bus(phydev);
2083 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2084 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2085 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2086 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2087
2088 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2089 if (val != 0)
2090 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2091 val);
2092 phy_unlock_mdio_bus(phydev);
2093 return val;
2094 }
2095
lan8814_config_ts_intr(struct phy_device * phydev,bool enable)2096 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2097 {
2098 u16 val = 0;
2099
2100 if (enable)
2101 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2102 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2103 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2104 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2105
2106 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2107 }
2108
lan8814_ptp_rx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2109 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2110 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2111 {
2112 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2113 *seconds = (*seconds << 16) |
2114 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2115
2116 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2117 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2118 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2119
2120 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2121 }
2122
lan8814_ptp_tx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2123 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2124 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2125 {
2126 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2127 *seconds = *seconds << 16 |
2128 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2129
2130 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2131 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2132 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2133
2134 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2135 }
2136
lan8814_ts_info(struct mii_timestamper * mii_ts,struct ethtool_ts_info * info)2137 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2138 {
2139 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2140 struct phy_device *phydev = ptp_priv->phydev;
2141 struct lan8814_shared_priv *shared = phydev->shared->priv;
2142
2143 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2144 SOF_TIMESTAMPING_RX_HARDWARE |
2145 SOF_TIMESTAMPING_RAW_HARDWARE;
2146
2147 info->phc_index = ptp_clock_index(shared->ptp_clock);
2148
2149 info->tx_types =
2150 (1 << HWTSTAMP_TX_OFF) |
2151 (1 << HWTSTAMP_TX_ON) |
2152 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2153
2154 info->rx_filters =
2155 (1 << HWTSTAMP_FILTER_NONE) |
2156 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2157 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2158 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2159 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2160
2161 return 0;
2162 }
2163
lan8814_flush_fifo(struct phy_device * phydev,bool egress)2164 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2165 {
2166 int i;
2167
2168 for (i = 0; i < FIFO_SIZE; ++i)
2169 lanphy_read_page_reg(phydev, 5,
2170 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2171
2172 /* Read to clear overflow status bit */
2173 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2174 }
2175
lan8814_hwtstamp(struct mii_timestamper * mii_ts,struct ifreq * ifr)2176 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2177 {
2178 struct kszphy_ptp_priv *ptp_priv =
2179 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2180 struct phy_device *phydev = ptp_priv->phydev;
2181 struct lan8814_shared_priv *shared = phydev->shared->priv;
2182 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2183 struct hwtstamp_config config;
2184 int txcfg = 0, rxcfg = 0;
2185 int pkt_ts_enable;
2186
2187 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2188 return -EFAULT;
2189
2190 ptp_priv->hwts_tx_type = config.tx_type;
2191 ptp_priv->rx_filter = config.rx_filter;
2192
2193 switch (config.rx_filter) {
2194 case HWTSTAMP_FILTER_NONE:
2195 ptp_priv->layer = 0;
2196 ptp_priv->version = 0;
2197 break;
2198 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2199 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2200 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2201 ptp_priv->layer = PTP_CLASS_L4;
2202 ptp_priv->version = PTP_CLASS_V2;
2203 break;
2204 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2205 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2206 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2207 ptp_priv->layer = PTP_CLASS_L2;
2208 ptp_priv->version = PTP_CLASS_V2;
2209 break;
2210 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2211 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2212 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2213 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2214 ptp_priv->version = PTP_CLASS_V2;
2215 break;
2216 default:
2217 return -ERANGE;
2218 }
2219
2220 if (ptp_priv->layer & PTP_CLASS_L2) {
2221 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2222 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2223 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2224 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2225 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2226 }
2227 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2228 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2229
2230 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2231 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2232 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2233 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2234
2235 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2236 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2237 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2238
2239 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2240 lan8814_config_ts_intr(ptp_priv->phydev, true);
2241 else
2242 lan8814_config_ts_intr(ptp_priv->phydev, false);
2243
2244 mutex_lock(&shared->shared_lock);
2245 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2246 shared->ref++;
2247 else
2248 shared->ref--;
2249
2250 if (shared->ref)
2251 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2252 PTP_CMD_CTL_PTP_ENABLE_);
2253 else
2254 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2255 PTP_CMD_CTL_PTP_DISABLE_);
2256 mutex_unlock(&shared->shared_lock);
2257
2258 /* In case of multiple starts and stops, these needs to be cleared */
2259 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2260 list_del(&rx_ts->list);
2261 kfree(rx_ts);
2262 }
2263 skb_queue_purge(&ptp_priv->rx_queue);
2264 skb_queue_purge(&ptp_priv->tx_queue);
2265
2266 lan8814_flush_fifo(ptp_priv->phydev, false);
2267 lan8814_flush_fifo(ptp_priv->phydev, true);
2268
2269 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2270 }
2271
lan8814_txtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2272 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2273 struct sk_buff *skb, int type)
2274 {
2275 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2276
2277 switch (ptp_priv->hwts_tx_type) {
2278 case HWTSTAMP_TX_ONESTEP_SYNC:
2279 if (ptp_msg_is_sync(skb, type)) {
2280 kfree_skb(skb);
2281 return;
2282 }
2283 fallthrough;
2284 case HWTSTAMP_TX_ON:
2285 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2286 skb_queue_tail(&ptp_priv->tx_queue, skb);
2287 break;
2288 case HWTSTAMP_TX_OFF:
2289 default:
2290 kfree_skb(skb);
2291 break;
2292 }
2293 }
2294
lan8814_get_sig_rx(struct sk_buff * skb,u16 * sig)2295 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2296 {
2297 struct ptp_header *ptp_header;
2298 u32 type;
2299
2300 skb_push(skb, ETH_HLEN);
2301 type = ptp_classify_raw(skb);
2302 ptp_header = ptp_parse_header(skb, type);
2303 skb_pull_inline(skb, ETH_HLEN);
2304
2305 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2306 }
2307
lan8814_match_rx_ts(struct kszphy_ptp_priv * ptp_priv,struct sk_buff * skb)2308 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2309 struct sk_buff *skb)
2310 {
2311 struct skb_shared_hwtstamps *shhwtstamps;
2312 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2313 unsigned long flags;
2314 bool ret = false;
2315 u16 skb_sig;
2316
2317 lan8814_get_sig_rx(skb, &skb_sig);
2318
2319 /* Iterate over all RX timestamps and match it with the received skbs */
2320 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2321 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2322 /* Check if we found the signature we were looking for. */
2323 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2324 continue;
2325
2326 shhwtstamps = skb_hwtstamps(skb);
2327 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2328 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2329 rx_ts->nsec);
2330 list_del(&rx_ts->list);
2331 kfree(rx_ts);
2332
2333 ret = true;
2334 break;
2335 }
2336 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2337
2338 if (ret)
2339 netif_rx(skb);
2340 return ret;
2341 }
2342
lan8814_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2343 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2344 {
2345 struct kszphy_ptp_priv *ptp_priv =
2346 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2347
2348 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2349 type == PTP_CLASS_NONE)
2350 return false;
2351
2352 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2353 return false;
2354
2355 /* If we failed to match then add it to the queue for when the timestamp
2356 * will come
2357 */
2358 if (!lan8814_match_rx_ts(ptp_priv, skb))
2359 skb_queue_tail(&ptp_priv->rx_queue, skb);
2360
2361 return true;
2362 }
2363
lan8814_ptp_clock_set(struct phy_device * phydev,u32 seconds,u32 nano_seconds)2364 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2365 u32 seconds, u32 nano_seconds)
2366 {
2367 u32 sec_low, sec_high, nsec_low, nsec_high;
2368
2369 sec_low = seconds & 0xffff;
2370 sec_high = (seconds >> 16) & 0xffff;
2371 nsec_low = nano_seconds & 0xffff;
2372 nsec_high = (nano_seconds >> 16) & 0x3fff;
2373
2374 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2375 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2376 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2377 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2378
2379 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2380 }
2381
lan8814_ptp_clock_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds)2382 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2383 u32 *seconds, u32 *nano_seconds)
2384 {
2385 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2386
2387 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2388 *seconds = (*seconds << 16) |
2389 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2390
2391 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2392 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2393 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2394 }
2395
lan8814_ptpci_gettime64(struct ptp_clock_info * ptpci,struct timespec64 * ts)2396 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2397 struct timespec64 *ts)
2398 {
2399 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2400 ptp_clock_info);
2401 struct phy_device *phydev = shared->phydev;
2402 u32 nano_seconds;
2403 u32 seconds;
2404
2405 mutex_lock(&shared->shared_lock);
2406 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2407 mutex_unlock(&shared->shared_lock);
2408 ts->tv_sec = seconds;
2409 ts->tv_nsec = nano_seconds;
2410
2411 return 0;
2412 }
2413
lan8814_ptpci_settime64(struct ptp_clock_info * ptpci,const struct timespec64 * ts)2414 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2415 const struct timespec64 *ts)
2416 {
2417 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2418 ptp_clock_info);
2419 struct phy_device *phydev = shared->phydev;
2420
2421 mutex_lock(&shared->shared_lock);
2422 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2423 mutex_unlock(&shared->shared_lock);
2424
2425 return 0;
2426 }
2427
lan8814_ptp_clock_step(struct phy_device * phydev,s64 time_step_ns)2428 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2429 s64 time_step_ns)
2430 {
2431 u32 nano_seconds_step;
2432 u64 abs_time_step_ns;
2433 u32 unsigned_seconds;
2434 u32 nano_seconds;
2435 u32 remainder;
2436 s32 seconds;
2437
2438 if (time_step_ns > 15000000000LL) {
2439 /* convert to clock set */
2440 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2441 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2442 &remainder);
2443 nano_seconds += remainder;
2444 if (nano_seconds >= 1000000000) {
2445 unsigned_seconds++;
2446 nano_seconds -= 1000000000;
2447 }
2448 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2449 return;
2450 } else if (time_step_ns < -15000000000LL) {
2451 /* convert to clock set */
2452 time_step_ns = -time_step_ns;
2453
2454 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2455 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2456 &remainder);
2457 nano_seconds_step = remainder;
2458 if (nano_seconds < nano_seconds_step) {
2459 unsigned_seconds--;
2460 nano_seconds += 1000000000;
2461 }
2462 nano_seconds -= nano_seconds_step;
2463 lan8814_ptp_clock_set(phydev, unsigned_seconds,
2464 nano_seconds);
2465 return;
2466 }
2467
2468 /* do clock step */
2469 if (time_step_ns >= 0) {
2470 abs_time_step_ns = (u64)time_step_ns;
2471 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2472 &remainder);
2473 nano_seconds = remainder;
2474 } else {
2475 abs_time_step_ns = (u64)(-time_step_ns);
2476 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2477 &remainder));
2478 nano_seconds = remainder;
2479 if (nano_seconds > 0) {
2480 /* subtracting nano seconds is not allowed
2481 * convert to subtracting from seconds,
2482 * and adding to nanoseconds
2483 */
2484 seconds--;
2485 nano_seconds = (1000000000 - nano_seconds);
2486 }
2487 }
2488
2489 if (nano_seconds > 0) {
2490 /* add 8 ns to cover the likely normal increment */
2491 nano_seconds += 8;
2492 }
2493
2494 if (nano_seconds >= 1000000000) {
2495 /* carry into seconds */
2496 seconds++;
2497 nano_seconds -= 1000000000;
2498 }
2499
2500 while (seconds) {
2501 if (seconds > 0) {
2502 u32 adjustment_value = (u32)seconds;
2503 u16 adjustment_value_lo, adjustment_value_hi;
2504
2505 if (adjustment_value > 0xF)
2506 adjustment_value = 0xF;
2507
2508 adjustment_value_lo = adjustment_value & 0xffff;
2509 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2510
2511 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2512 adjustment_value_lo);
2513 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2514 PTP_LTC_STEP_ADJ_DIR_ |
2515 adjustment_value_hi);
2516 seconds -= ((s32)adjustment_value);
2517 } else {
2518 u32 adjustment_value = (u32)(-seconds);
2519 u16 adjustment_value_lo, adjustment_value_hi;
2520
2521 if (adjustment_value > 0xF)
2522 adjustment_value = 0xF;
2523
2524 adjustment_value_lo = adjustment_value & 0xffff;
2525 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2526
2527 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2528 adjustment_value_lo);
2529 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2530 adjustment_value_hi);
2531 seconds += ((s32)adjustment_value);
2532 }
2533 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2534 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2535 }
2536 if (nano_seconds) {
2537 u16 nano_seconds_lo;
2538 u16 nano_seconds_hi;
2539
2540 nano_seconds_lo = nano_seconds & 0xffff;
2541 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2542
2543 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2544 nano_seconds_lo);
2545 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2546 PTP_LTC_STEP_ADJ_DIR_ |
2547 nano_seconds_hi);
2548 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2549 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2550 }
2551 }
2552
lan8814_ptpci_adjtime(struct ptp_clock_info * ptpci,s64 delta)2553 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2554 {
2555 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2556 ptp_clock_info);
2557 struct phy_device *phydev = shared->phydev;
2558
2559 mutex_lock(&shared->shared_lock);
2560 lan8814_ptp_clock_step(phydev, delta);
2561 mutex_unlock(&shared->shared_lock);
2562
2563 return 0;
2564 }
2565
lan8814_ptpci_adjfine(struct ptp_clock_info * ptpci,long scaled_ppm)2566 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2567 {
2568 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2569 ptp_clock_info);
2570 struct phy_device *phydev = shared->phydev;
2571 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2572 bool positive = true;
2573 u32 kszphy_rate_adj;
2574
2575 if (scaled_ppm < 0) {
2576 scaled_ppm = -scaled_ppm;
2577 positive = false;
2578 }
2579
2580 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2581 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2582
2583 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2584 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2585
2586 if (positive)
2587 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2588
2589 mutex_lock(&shared->shared_lock);
2590 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2591 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2592 mutex_unlock(&shared->shared_lock);
2593
2594 return 0;
2595 }
2596
lan8814_get_sig_tx(struct sk_buff * skb,u16 * sig)2597 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2598 {
2599 struct ptp_header *ptp_header;
2600 u32 type;
2601
2602 type = ptp_classify_raw(skb);
2603 ptp_header = ptp_parse_header(skb, type);
2604
2605 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2606 }
2607
lan8814_dequeue_tx_skb(struct kszphy_ptp_priv * ptp_priv)2608 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2609 {
2610 struct phy_device *phydev = ptp_priv->phydev;
2611 struct skb_shared_hwtstamps shhwtstamps;
2612 struct sk_buff *skb, *skb_tmp;
2613 unsigned long flags;
2614 u32 seconds, nsec;
2615 bool ret = false;
2616 u16 skb_sig;
2617 u16 seq_id;
2618
2619 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2620
2621 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2622 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2623 lan8814_get_sig_tx(skb, &skb_sig);
2624
2625 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2626 continue;
2627
2628 __skb_unlink(skb, &ptp_priv->tx_queue);
2629 ret = true;
2630 break;
2631 }
2632 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2633
2634 if (ret) {
2635 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2636 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2637 skb_complete_tx_timestamp(skb, &shhwtstamps);
2638 }
2639 }
2640
lan8814_get_tx_ts(struct kszphy_ptp_priv * ptp_priv)2641 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2642 {
2643 struct phy_device *phydev = ptp_priv->phydev;
2644 u32 reg;
2645
2646 do {
2647 lan8814_dequeue_tx_skb(ptp_priv);
2648
2649 /* If other timestamps are available in the FIFO,
2650 * process them.
2651 */
2652 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2653 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2654 }
2655
lan8814_match_skb(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)2656 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2657 struct lan8814_ptp_rx_ts *rx_ts)
2658 {
2659 struct skb_shared_hwtstamps *shhwtstamps;
2660 struct sk_buff *skb, *skb_tmp;
2661 unsigned long flags;
2662 bool ret = false;
2663 u16 skb_sig;
2664
2665 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2666 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2667 lan8814_get_sig_rx(skb, &skb_sig);
2668
2669 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2670 continue;
2671
2672 __skb_unlink(skb, &ptp_priv->rx_queue);
2673
2674 ret = true;
2675 break;
2676 }
2677 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2678
2679 if (ret) {
2680 shhwtstamps = skb_hwtstamps(skb);
2681 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2682 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2683 netif_rx(skb);
2684 }
2685
2686 return ret;
2687 }
2688
lan8814_get_rx_ts(struct kszphy_ptp_priv * ptp_priv)2689 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2690 {
2691 struct phy_device *phydev = ptp_priv->phydev;
2692 struct lan8814_ptp_rx_ts *rx_ts;
2693 unsigned long flags;
2694 u32 reg;
2695
2696 do {
2697 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2698 if (!rx_ts)
2699 return;
2700
2701 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2702 &rx_ts->seq_id);
2703
2704 /* If we failed to match the skb add it to the queue for when
2705 * the frame will come
2706 */
2707 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2708 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2709 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2710 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2711 } else {
2712 kfree(rx_ts);
2713 }
2714
2715 /* If other timestamps are available in the FIFO,
2716 * process them.
2717 */
2718 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2719 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2720 }
2721
lan8814_handle_ptp_interrupt(struct phy_device * phydev)2722 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev)
2723 {
2724 struct kszphy_priv *priv = phydev->priv;
2725 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2726 u16 status;
2727
2728 status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2729 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2730 lan8814_get_tx_ts(ptp_priv);
2731
2732 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2733 lan8814_get_rx_ts(ptp_priv);
2734
2735 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2736 lan8814_flush_fifo(phydev, true);
2737 skb_queue_purge(&ptp_priv->tx_queue);
2738 }
2739
2740 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2741 lan8814_flush_fifo(phydev, false);
2742 skb_queue_purge(&ptp_priv->rx_queue);
2743 }
2744 }
2745
lan8804_config_init(struct phy_device * phydev)2746 static int lan8804_config_init(struct phy_device *phydev)
2747 {
2748 int val;
2749
2750 /* MDI-X setting for swap A,B transmit */
2751 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2752 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2753 val |= LAN8804_ALIGN_TX_A_B_SWAP;
2754 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2755
2756 /* Make sure that the PHY will not stop generating the clock when the
2757 * link partner goes down
2758 */
2759 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2760 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2761
2762 return 0;
2763 }
2764
lan8804_handle_interrupt(struct phy_device * phydev)2765 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
2766 {
2767 int status;
2768
2769 status = phy_read(phydev, LAN8814_INTS);
2770 if (status < 0) {
2771 phy_error(phydev);
2772 return IRQ_NONE;
2773 }
2774
2775 if (status > 0)
2776 phy_trigger_machine(phydev);
2777
2778 return IRQ_HANDLED;
2779 }
2780
2781 #define LAN8804_OUTPUT_CONTROL 25
2782 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
2783 #define LAN8804_CONTROL 31
2784 #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
2785
lan8804_config_intr(struct phy_device * phydev)2786 static int lan8804_config_intr(struct phy_device *phydev)
2787 {
2788 int err;
2789
2790 /* This is an internal PHY of lan966x and is not possible to change the
2791 * polarity on the GIC found in lan966x, therefore change the polarity
2792 * of the interrupt in the PHY from being active low instead of active
2793 * high.
2794 */
2795 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
2796
2797 /* By default interrupt buffer is open-drain in which case the interrupt
2798 * can be active only low. Therefore change the interrupt buffer to be
2799 * push-pull to be able to change interrupt polarity
2800 */
2801 phy_write(phydev, LAN8804_OUTPUT_CONTROL,
2802 LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
2803
2804 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2805 err = phy_read(phydev, LAN8814_INTS);
2806 if (err < 0)
2807 return err;
2808
2809 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2810 if (err)
2811 return err;
2812 } else {
2813 err = phy_write(phydev, LAN8814_INTC, 0);
2814 if (err)
2815 return err;
2816
2817 err = phy_read(phydev, LAN8814_INTS);
2818 if (err < 0)
2819 return err;
2820 }
2821
2822 return 0;
2823 }
2824
lan8814_handle_interrupt(struct phy_device * phydev)2825 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
2826 {
2827 int irq_status, tsu_irq_status;
2828 int ret = IRQ_NONE;
2829
2830 irq_status = phy_read(phydev, LAN8814_INTS);
2831 if (irq_status < 0) {
2832 phy_error(phydev);
2833 return IRQ_NONE;
2834 }
2835
2836 if (irq_status & LAN8814_INT_LINK) {
2837 phy_trigger_machine(phydev);
2838 ret = IRQ_HANDLED;
2839 }
2840
2841 while (1) {
2842 tsu_irq_status = lanphy_read_page_reg(phydev, 4,
2843 LAN8814_INTR_STS_REG);
2844
2845 if (tsu_irq_status > 0 &&
2846 (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ |
2847 LAN8814_INTR_STS_REG_1588_TSU1_ |
2848 LAN8814_INTR_STS_REG_1588_TSU2_ |
2849 LAN8814_INTR_STS_REG_1588_TSU3_))) {
2850 lan8814_handle_ptp_interrupt(phydev);
2851 ret = IRQ_HANDLED;
2852 } else {
2853 break;
2854 }
2855 }
2856
2857 return ret;
2858 }
2859
lan8814_ack_interrupt(struct phy_device * phydev)2860 static int lan8814_ack_interrupt(struct phy_device *phydev)
2861 {
2862 /* bit[12..0] int status, which is a read and clear register. */
2863 int rc;
2864
2865 rc = phy_read(phydev, LAN8814_INTS);
2866
2867 return (rc < 0) ? rc : 0;
2868 }
2869
lan8814_config_intr(struct phy_device * phydev)2870 static int lan8814_config_intr(struct phy_device *phydev)
2871 {
2872 int err;
2873
2874 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
2875 LAN8814_INTR_CTRL_REG_POLARITY |
2876 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
2877
2878 /* enable / disable interrupts */
2879 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2880 err = lan8814_ack_interrupt(phydev);
2881 if (err)
2882 return err;
2883
2884 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2885 } else {
2886 err = phy_write(phydev, LAN8814_INTC, 0);
2887 if (err)
2888 return err;
2889
2890 err = lan8814_ack_interrupt(phydev);
2891 }
2892
2893 return err;
2894 }
2895
lan8814_ptp_init(struct phy_device * phydev)2896 static void lan8814_ptp_init(struct phy_device *phydev)
2897 {
2898 struct kszphy_priv *priv = phydev->priv;
2899 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2900 u32 temp;
2901
2902 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2903 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2904 return;
2905
2906 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
2907
2908 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
2909 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2910 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
2911
2912 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
2913 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2914 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
2915
2916 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
2917 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
2918
2919 /* Removing default registers configs related to L2 and IP */
2920 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
2921 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
2922 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
2923 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
2924
2925 skb_queue_head_init(&ptp_priv->tx_queue);
2926 skb_queue_head_init(&ptp_priv->rx_queue);
2927 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
2928 spin_lock_init(&ptp_priv->rx_ts_lock);
2929
2930 ptp_priv->phydev = phydev;
2931
2932 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
2933 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
2934 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
2935 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
2936
2937 phydev->mii_ts = &ptp_priv->mii_ts;
2938 }
2939
lan8814_ptp_probe_once(struct phy_device * phydev)2940 static int lan8814_ptp_probe_once(struct phy_device *phydev)
2941 {
2942 struct lan8814_shared_priv *shared = phydev->shared->priv;
2943
2944 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2945 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2946 return 0;
2947
2948 /* Initialise shared lock for clock*/
2949 mutex_init(&shared->shared_lock);
2950
2951 shared->ptp_clock_info.owner = THIS_MODULE;
2952 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
2953 shared->ptp_clock_info.max_adj = 31249999;
2954 shared->ptp_clock_info.n_alarm = 0;
2955 shared->ptp_clock_info.n_ext_ts = 0;
2956 shared->ptp_clock_info.n_pins = 0;
2957 shared->ptp_clock_info.pps = 0;
2958 shared->ptp_clock_info.pin_config = NULL;
2959 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
2960 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
2961 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
2962 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
2963 shared->ptp_clock_info.getcrosststamp = NULL;
2964
2965 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
2966 &phydev->mdio.dev);
2967 if (IS_ERR_OR_NULL(shared->ptp_clock)) {
2968 phydev_err(phydev, "ptp_clock_register failed %lu\n",
2969 PTR_ERR(shared->ptp_clock));
2970 return -EINVAL;
2971 }
2972
2973 phydev_dbg(phydev, "successfully registered ptp clock\n");
2974
2975 shared->phydev = phydev;
2976
2977 /* The EP.4 is shared between all the PHYs in the package and also it
2978 * can be accessed by any of the PHYs
2979 */
2980 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
2981 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
2982 PTP_OPERATING_MODE_STANDALONE_);
2983
2984 return 0;
2985 }
2986
lan8814_setup_led(struct phy_device * phydev,int val)2987 static void lan8814_setup_led(struct phy_device *phydev, int val)
2988 {
2989 int temp;
2990
2991 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
2992
2993 if (val)
2994 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
2995 else
2996 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
2997
2998 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
2999 }
3000
lan8814_config_init(struct phy_device * phydev)3001 static int lan8814_config_init(struct phy_device *phydev)
3002 {
3003 struct kszphy_priv *lan8814 = phydev->priv;
3004 int val;
3005
3006 /* Reset the PHY */
3007 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3008 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3009 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3010
3011 /* Disable ANEG with QSGMII PCS Host side */
3012 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3013 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3014 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3015
3016 /* MDI-X setting for swap A,B transmit */
3017 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3018 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3019 val |= LAN8814_ALIGN_TX_A_B_SWAP;
3020 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3021
3022 if (lan8814->led_mode >= 0)
3023 lan8814_setup_led(phydev, lan8814->led_mode);
3024
3025 return 0;
3026 }
3027
3028 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3029 * function called in suspend. Because the GPIO line can be shared, so if one of
3030 * the phys goes back in coma mode, then all the other PHYs will go, which is
3031 * wrong.
3032 */
lan8814_release_coma_mode(struct phy_device * phydev)3033 static int lan8814_release_coma_mode(struct phy_device *phydev)
3034 {
3035 struct gpio_desc *gpiod;
3036
3037 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3038 GPIOD_OUT_HIGH_OPEN_DRAIN |
3039 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3040 if (IS_ERR(gpiod))
3041 return PTR_ERR(gpiod);
3042
3043 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3044 gpiod_set_value_cansleep(gpiod, 0);
3045
3046 return 0;
3047 }
3048
lan8814_probe(struct phy_device * phydev)3049 static int lan8814_probe(struct phy_device *phydev)
3050 {
3051 const struct kszphy_type *type = phydev->drv->driver_data;
3052 struct kszphy_priv *priv;
3053 u16 addr;
3054 int err;
3055
3056 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3057 if (!priv)
3058 return -ENOMEM;
3059
3060 phydev->priv = priv;
3061
3062 priv->type = type;
3063
3064 kszphy_parse_led_mode(phydev);
3065
3066 /* Strap-in value for PHY address, below register read gives starting
3067 * phy address value
3068 */
3069 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3070 devm_phy_package_join(&phydev->mdio.dev, phydev,
3071 addr, sizeof(struct lan8814_shared_priv));
3072
3073 if (phy_package_init_once(phydev)) {
3074 err = lan8814_release_coma_mode(phydev);
3075 if (err)
3076 return err;
3077
3078 err = lan8814_ptp_probe_once(phydev);
3079 if (err)
3080 return err;
3081 }
3082
3083 lan8814_ptp_init(phydev);
3084
3085 return 0;
3086 }
3087
3088 static struct phy_driver ksphy_driver[] = {
3089 {
3090 .phy_id = PHY_ID_KS8737,
3091 .phy_id_mask = MICREL_PHY_ID_MASK,
3092 .name = "Micrel KS8737",
3093 /* PHY_BASIC_FEATURES */
3094 .driver_data = &ks8737_type,
3095 .probe = kszphy_probe,
3096 .config_init = kszphy_config_init,
3097 .config_intr = kszphy_config_intr,
3098 .handle_interrupt = kszphy_handle_interrupt,
3099 .suspend = kszphy_suspend,
3100 .resume = kszphy_resume,
3101 }, {
3102 .phy_id = PHY_ID_KSZ8021,
3103 .phy_id_mask = 0x00ffffff,
3104 .name = "Micrel KSZ8021 or KSZ8031",
3105 /* PHY_BASIC_FEATURES */
3106 .driver_data = &ksz8021_type,
3107 .probe = kszphy_probe,
3108 .config_init = kszphy_config_init,
3109 .config_intr = kszphy_config_intr,
3110 .handle_interrupt = kszphy_handle_interrupt,
3111 .get_sset_count = kszphy_get_sset_count,
3112 .get_strings = kszphy_get_strings,
3113 .get_stats = kszphy_get_stats,
3114 .suspend = kszphy_suspend,
3115 .resume = kszphy_resume,
3116 }, {
3117 .phy_id = PHY_ID_KSZ8031,
3118 .phy_id_mask = 0x00ffffff,
3119 .name = "Micrel KSZ8031",
3120 /* PHY_BASIC_FEATURES */
3121 .driver_data = &ksz8021_type,
3122 .probe = kszphy_probe,
3123 .config_init = kszphy_config_init,
3124 .config_intr = kszphy_config_intr,
3125 .handle_interrupt = kszphy_handle_interrupt,
3126 .get_sset_count = kszphy_get_sset_count,
3127 .get_strings = kszphy_get_strings,
3128 .get_stats = kszphy_get_stats,
3129 .suspend = kszphy_suspend,
3130 .resume = kszphy_resume,
3131 }, {
3132 .phy_id = PHY_ID_KSZ8041,
3133 .phy_id_mask = MICREL_PHY_ID_MASK,
3134 .name = "Micrel KSZ8041",
3135 /* PHY_BASIC_FEATURES */
3136 .driver_data = &ksz8041_type,
3137 .probe = kszphy_probe,
3138 .config_init = ksz8041_config_init,
3139 .config_aneg = ksz8041_config_aneg,
3140 .config_intr = kszphy_config_intr,
3141 .handle_interrupt = kszphy_handle_interrupt,
3142 .get_sset_count = kszphy_get_sset_count,
3143 .get_strings = kszphy_get_strings,
3144 .get_stats = kszphy_get_stats,
3145 /* No suspend/resume callbacks because of errata DS80000700A,
3146 * receiver error following software power down.
3147 */
3148 }, {
3149 .phy_id = PHY_ID_KSZ8041RNLI,
3150 .phy_id_mask = MICREL_PHY_ID_MASK,
3151 .name = "Micrel KSZ8041RNLI",
3152 /* PHY_BASIC_FEATURES */
3153 .driver_data = &ksz8041_type,
3154 .probe = kszphy_probe,
3155 .config_init = kszphy_config_init,
3156 .config_intr = kszphy_config_intr,
3157 .handle_interrupt = kszphy_handle_interrupt,
3158 .get_sset_count = kszphy_get_sset_count,
3159 .get_strings = kszphy_get_strings,
3160 .get_stats = kszphy_get_stats,
3161 .suspend = kszphy_suspend,
3162 .resume = kszphy_resume,
3163 }, {
3164 .name = "Micrel KSZ8051",
3165 /* PHY_BASIC_FEATURES */
3166 .driver_data = &ksz8051_type,
3167 .probe = kszphy_probe,
3168 .config_init = kszphy_config_init,
3169 .config_intr = kszphy_config_intr,
3170 .handle_interrupt = kszphy_handle_interrupt,
3171 .get_sset_count = kszphy_get_sset_count,
3172 .get_strings = kszphy_get_strings,
3173 .get_stats = kszphy_get_stats,
3174 .match_phy_device = ksz8051_match_phy_device,
3175 .suspend = kszphy_suspend,
3176 .resume = kszphy_resume,
3177 }, {
3178 .phy_id = PHY_ID_KSZ8001,
3179 .name = "Micrel KSZ8001 or KS8721",
3180 .phy_id_mask = 0x00fffffc,
3181 /* PHY_BASIC_FEATURES */
3182 .driver_data = &ksz8041_type,
3183 .probe = kszphy_probe,
3184 .config_init = kszphy_config_init,
3185 .config_intr = kszphy_config_intr,
3186 .handle_interrupt = kszphy_handle_interrupt,
3187 .get_sset_count = kszphy_get_sset_count,
3188 .get_strings = kszphy_get_strings,
3189 .get_stats = kszphy_get_stats,
3190 .suspend = kszphy_suspend,
3191 .resume = kszphy_resume,
3192 }, {
3193 .phy_id = PHY_ID_KSZ8081,
3194 .name = "Micrel KSZ8081 or KSZ8091",
3195 .phy_id_mask = MICREL_PHY_ID_MASK,
3196 .flags = PHY_POLL_CABLE_TEST,
3197 /* PHY_BASIC_FEATURES */
3198 .driver_data = &ksz8081_type,
3199 .probe = kszphy_probe,
3200 .config_init = ksz8081_config_init,
3201 .soft_reset = genphy_soft_reset,
3202 .config_aneg = ksz8081_config_aneg,
3203 .read_status = ksz8081_read_status,
3204 .config_intr = kszphy_config_intr,
3205 .handle_interrupt = kszphy_handle_interrupt,
3206 .get_sset_count = kszphy_get_sset_count,
3207 .get_strings = kszphy_get_strings,
3208 .get_stats = kszphy_get_stats,
3209 .suspend = kszphy_suspend,
3210 .resume = kszphy_resume,
3211 .cable_test_start = ksz886x_cable_test_start,
3212 .cable_test_get_status = ksz886x_cable_test_get_status,
3213 }, {
3214 .phy_id = PHY_ID_KSZ8061,
3215 .name = "Micrel KSZ8061",
3216 .phy_id_mask = MICREL_PHY_ID_MASK,
3217 /* PHY_BASIC_FEATURES */
3218 .probe = kszphy_probe,
3219 .config_init = ksz8061_config_init,
3220 .config_intr = kszphy_config_intr,
3221 .handle_interrupt = kszphy_handle_interrupt,
3222 .suspend = kszphy_suspend,
3223 .resume = kszphy_resume,
3224 }, {
3225 .phy_id = PHY_ID_KSZ9021,
3226 .phy_id_mask = 0x000ffffe,
3227 .name = "Micrel KSZ9021 Gigabit PHY",
3228 /* PHY_GBIT_FEATURES */
3229 .driver_data = &ksz9021_type,
3230 .probe = kszphy_probe,
3231 .get_features = ksz9031_get_features,
3232 .config_init = ksz9021_config_init,
3233 .config_intr = kszphy_config_intr,
3234 .handle_interrupt = kszphy_handle_interrupt,
3235 .get_sset_count = kszphy_get_sset_count,
3236 .get_strings = kszphy_get_strings,
3237 .get_stats = kszphy_get_stats,
3238 .suspend = kszphy_suspend,
3239 .resume = kszphy_resume,
3240 .read_mmd = genphy_read_mmd_unsupported,
3241 .write_mmd = genphy_write_mmd_unsupported,
3242 }, {
3243 .phy_id = PHY_ID_KSZ9031,
3244 .phy_id_mask = MICREL_PHY_ID_MASK,
3245 .name = "Micrel KSZ9031 Gigabit PHY",
3246 .flags = PHY_POLL_CABLE_TEST,
3247 .driver_data = &ksz9021_type,
3248 .probe = kszphy_probe,
3249 .get_features = ksz9031_get_features,
3250 .config_init = ksz9031_config_init,
3251 .soft_reset = genphy_soft_reset,
3252 .read_status = ksz9031_read_status,
3253 .config_intr = kszphy_config_intr,
3254 .handle_interrupt = kszphy_handle_interrupt,
3255 .get_sset_count = kszphy_get_sset_count,
3256 .get_strings = kszphy_get_strings,
3257 .get_stats = kszphy_get_stats,
3258 .suspend = kszphy_suspend,
3259 .resume = kszphy_resume,
3260 .cable_test_start = ksz9x31_cable_test_start,
3261 .cable_test_get_status = ksz9x31_cable_test_get_status,
3262 }, {
3263 .phy_id = PHY_ID_LAN8814,
3264 .phy_id_mask = MICREL_PHY_ID_MASK,
3265 .name = "Microchip INDY Gigabit Quad PHY",
3266 .flags = PHY_POLL_CABLE_TEST,
3267 .config_init = lan8814_config_init,
3268 .driver_data = &lan8814_type,
3269 .probe = lan8814_probe,
3270 .soft_reset = genphy_soft_reset,
3271 .read_status = ksz9031_read_status,
3272 .get_sset_count = kszphy_get_sset_count,
3273 .get_strings = kszphy_get_strings,
3274 .get_stats = kszphy_get_stats,
3275 .suspend = genphy_suspend,
3276 .resume = kszphy_resume,
3277 .config_intr = lan8814_config_intr,
3278 .handle_interrupt = lan8814_handle_interrupt,
3279 .cable_test_start = lan8814_cable_test_start,
3280 .cable_test_get_status = ksz886x_cable_test_get_status,
3281 }, {
3282 .phy_id = PHY_ID_LAN8804,
3283 .phy_id_mask = MICREL_PHY_ID_MASK,
3284 .name = "Microchip LAN966X Gigabit PHY",
3285 .config_init = lan8804_config_init,
3286 .driver_data = &ksz9021_type,
3287 .probe = kszphy_probe,
3288 .soft_reset = genphy_soft_reset,
3289 .read_status = ksz9031_read_status,
3290 .get_sset_count = kszphy_get_sset_count,
3291 .get_strings = kszphy_get_strings,
3292 .get_stats = kszphy_get_stats,
3293 .suspend = genphy_suspend,
3294 .resume = kszphy_resume,
3295 .config_intr = lan8804_config_intr,
3296 .handle_interrupt = lan8804_handle_interrupt,
3297 }, {
3298 .phy_id = PHY_ID_KSZ9131,
3299 .phy_id_mask = MICREL_PHY_ID_MASK,
3300 .name = "Microchip KSZ9131 Gigabit PHY",
3301 /* PHY_GBIT_FEATURES */
3302 .flags = PHY_POLL_CABLE_TEST,
3303 .driver_data = &ksz9021_type,
3304 .probe = kszphy_probe,
3305 .config_init = ksz9131_config_init,
3306 .config_intr = kszphy_config_intr,
3307 .handle_interrupt = kszphy_handle_interrupt,
3308 .get_sset_count = kszphy_get_sset_count,
3309 .get_strings = kszphy_get_strings,
3310 .get_stats = kszphy_get_stats,
3311 .suspend = kszphy_suspend,
3312 .resume = kszphy_resume,
3313 .cable_test_start = ksz9x31_cable_test_start,
3314 .cable_test_get_status = ksz9x31_cable_test_get_status,
3315 }, {
3316 .phy_id = PHY_ID_KSZ8873MLL,
3317 .phy_id_mask = MICREL_PHY_ID_MASK,
3318 .name = "Micrel KSZ8873MLL Switch",
3319 /* PHY_BASIC_FEATURES */
3320 .config_init = kszphy_config_init,
3321 .config_aneg = ksz8873mll_config_aneg,
3322 .read_status = ksz8873mll_read_status,
3323 .suspend = genphy_suspend,
3324 .resume = genphy_resume,
3325 }, {
3326 .phy_id = PHY_ID_KSZ886X,
3327 .phy_id_mask = MICREL_PHY_ID_MASK,
3328 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
3329 .driver_data = &ksz886x_type,
3330 /* PHY_BASIC_FEATURES */
3331 .flags = PHY_POLL_CABLE_TEST,
3332 .config_init = kszphy_config_init,
3333 .config_aneg = ksz886x_config_aneg,
3334 .read_status = ksz886x_read_status,
3335 .suspend = genphy_suspend,
3336 .resume = genphy_resume,
3337 .cable_test_start = ksz886x_cable_test_start,
3338 .cable_test_get_status = ksz886x_cable_test_get_status,
3339 }, {
3340 .name = "Micrel KSZ87XX Switch",
3341 /* PHY_BASIC_FEATURES */
3342 .config_init = kszphy_config_init,
3343 .match_phy_device = ksz8795_match_phy_device,
3344 .suspend = genphy_suspend,
3345 .resume = genphy_resume,
3346 }, {
3347 .phy_id = PHY_ID_KSZ9477,
3348 .phy_id_mask = MICREL_PHY_ID_MASK,
3349 .name = "Microchip KSZ9477",
3350 /* PHY_GBIT_FEATURES */
3351 .config_init = kszphy_config_init,
3352 .config_intr = kszphy_config_intr,
3353 .handle_interrupt = kszphy_handle_interrupt,
3354 .suspend = genphy_suspend,
3355 .resume = genphy_resume,
3356 } };
3357
3358 module_phy_driver(ksphy_driver);
3359
3360 MODULE_DESCRIPTION("Micrel PHY driver");
3361 MODULE_AUTHOR("David J. Choi");
3362 MODULE_LICENSE("GPL");
3363
3364 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
3365 { PHY_ID_KSZ9021, 0x000ffffe },
3366 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
3367 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
3368 { PHY_ID_KSZ8001, 0x00fffffc },
3369 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
3370 { PHY_ID_KSZ8021, 0x00ffffff },
3371 { PHY_ID_KSZ8031, 0x00ffffff },
3372 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
3373 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
3374 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
3375 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
3376 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
3377 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
3378 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
3379 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
3380 { }
3381 };
3382
3383 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
3384