1 // SPDX-License-Identifier: GPL-2.0-only
2 /* drivers/net/ethernet/micrel/ks8851.c
3  *
4  * Copyright 2009 Simtec Electronics
5  *	http://www.simtec.co.uk/
6  *	Ben Dooks <ben@simtec.co.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #define DEBUG
12 
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/cache.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
22 #include <linux/eeprom_93cx6.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include <linux/spi/spi.h>
26 #include <linux/gpio.h>
27 #include <linux/of_gpio.h>
28 #include <linux/of_net.h>
29 
30 #include "ks8851.h"
31 
32 /**
33  * struct ks8851_rxctrl - KS8851 driver rx control
34  * @mchash: Multicast hash-table data.
35  * @rxcr1: KS_RXCR1 register setting
36  * @rxcr2: KS_RXCR2 register setting
37  *
38  * Representation of the settings needs to control the receive filtering
39  * such as the multicast hash-filter and the receive register settings. This
40  * is used to make the job of working out if the receive settings change and
41  * then issuing the new settings to the worker that will send the necessary
42  * commands.
43  */
44 struct ks8851_rxctrl {
45 	u16	mchash[4];
46 	u16	rxcr1;
47 	u16	rxcr2;
48 };
49 
50 /**
51  * union ks8851_tx_hdr - tx header data
52  * @txb: The header as bytes
53  * @txw: The header as 16bit, little-endian words
54  *
55  * A dual representation of the tx header data to allow
56  * access to individual bytes, and to allow 16bit accesses
57  * with 16bit alignment.
58  */
59 union ks8851_tx_hdr {
60 	u8	txb[6];
61 	__le16	txw[3];
62 };
63 
64 /**
65  * struct ks8851_net - KS8851 driver private data
66  * @netdev: The network device we're bound to
67  * @spidev: The spi device we're bound to.
68  * @lock: Lock to ensure that the device is not accessed when busy.
69  * @statelock: Lock on this structure for tx list.
70  * @mii: The MII state information for the mii calls.
71  * @rxctrl: RX settings for @rxctrl_work.
72  * @tx_work: Work queue for tx packets
73  * @rxctrl_work: Work queue for updating RX mode and multicast lists
74  * @txq: Queue of packets for transmission.
75  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
76  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
77  * @txh: Space for generating packet TX header in DMA-able data
78  * @rxd: Space for receiving SPI data, in DMA-able space.
79  * @txd: Space for transmitting SPI data, in DMA-able space.
80  * @msg_enable: The message flags controlling driver output (see ethtool).
81  * @fid: Incrementing frame id tag.
82  * @rc_ier: Cached copy of KS_IER.
83  * @rc_ccr: Cached copy of KS_CCR.
84  * @rc_rxqcr: Cached copy of KS_RXQCR.
85  * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
86  * @vdd_reg:	Optional regulator supplying the chip
87  * @vdd_io: Optional digital power supply for IO
88  * @gpio: Optional reset_n gpio
89  *
90  * The @lock ensures that the chip is protected when certain operations are
91  * in progress. When the read or write packet transfer is in progress, most
92  * of the chip registers are not ccessible until the transfer is finished and
93  * the DMA has been de-asserted.
94  *
95  * The @statelock is used to protect information in the structure which may
96  * need to be accessed via several sources, such as the network driver layer
97  * or one of the work queues.
98  *
99  * We align the buffers we may use for rx/tx to ensure that if the SPI driver
100  * wants to DMA map them, it will not have any problems with data the driver
101  * modifies.
102  */
103 struct ks8851_net {
104 	struct net_device	*netdev;
105 	struct spi_device	*spidev;
106 	struct mutex		lock;
107 	spinlock_t		statelock;
108 
109 	union ks8851_tx_hdr	txh ____cacheline_aligned;
110 	u8			rxd[8];
111 	u8			txd[8];
112 
113 	u32			msg_enable ____cacheline_aligned;
114 	u16			tx_space;
115 	u8			fid;
116 
117 	u16			rc_ier;
118 	u16			rc_rxqcr;
119 	u16			rc_ccr;
120 
121 	struct mii_if_info	mii;
122 	struct ks8851_rxctrl	rxctrl;
123 
124 	struct work_struct	tx_work;
125 	struct work_struct	rxctrl_work;
126 
127 	struct sk_buff_head	txq;
128 
129 	struct spi_message	spi_msg1;
130 	struct spi_message	spi_msg2;
131 	struct spi_transfer	spi_xfer1;
132 	struct spi_transfer	spi_xfer2[2];
133 
134 	struct eeprom_93cx6	eeprom;
135 	struct regulator	*vdd_reg;
136 	struct regulator	*vdd_io;
137 	int			gpio;
138 };
139 
140 static int msg_enable;
141 
142 /* SPI frame opcodes */
143 #define KS_SPIOP_RD	(0x00)
144 #define KS_SPIOP_WR	(0x40)
145 #define KS_SPIOP_RXFIFO	(0x80)
146 #define KS_SPIOP_TXFIFO	(0xC0)
147 
148 /* shift for byte-enable data */
149 #define BYTE_EN(_x)	((_x) << 2)
150 
151 /* turn register number and byte-enable mask into data for start of packet */
152 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
153 
154 /* SPI register read/write calls.
155  *
156  * All these calls issue SPI transactions to access the chip's registers. They
157  * all require that the necessary lock is held to prevent accesses when the
158  * chip is busy transferring packet data (RX/TX FIFO accesses).
159  */
160 
161 /**
162  * ks8851_wrreg16 - write 16bit register value to chip
163  * @ks: The chip state
164  * @reg: The register address
165  * @val: The value to write
166  *
167  * Issue a write to put the value @val into the register specified in @reg.
168  */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)169 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
170 {
171 	struct spi_transfer *xfer = &ks->spi_xfer1;
172 	struct spi_message *msg = &ks->spi_msg1;
173 	__le16 txb[2];
174 	int ret;
175 
176 	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
177 	txb[1] = cpu_to_le16(val);
178 
179 	xfer->tx_buf = txb;
180 	xfer->rx_buf = NULL;
181 	xfer->len = 4;
182 
183 	ret = spi_sync(ks->spidev, msg);
184 	if (ret < 0)
185 		netdev_err(ks->netdev, "spi_sync() failed\n");
186 }
187 
188 /**
189  * ks8851_wrreg8 - write 8bit register value to chip
190  * @ks: The chip state
191  * @reg: The register address
192  * @val: The value to write
193  *
194  * Issue a write to put the value @val into the register specified in @reg.
195  */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)196 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
197 {
198 	struct spi_transfer *xfer = &ks->spi_xfer1;
199 	struct spi_message *msg = &ks->spi_msg1;
200 	__le16 txb[2];
201 	int ret;
202 	int bit;
203 
204 	bit = 1 << (reg & 3);
205 
206 	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
207 	txb[1] = val;
208 
209 	xfer->tx_buf = txb;
210 	xfer->rx_buf = NULL;
211 	xfer->len = 3;
212 
213 	ret = spi_sync(ks->spidev, msg);
214 	if (ret < 0)
215 		netdev_err(ks->netdev, "spi_sync() failed\n");
216 }
217 
218 /**
219  * ks8851_rdreg - issue read register command and return the data
220  * @ks: The device state
221  * @op: The register address and byte enables in message format.
222  * @rxb: The RX buffer to return the result into
223  * @rxl: The length of data expected.
224  *
225  * This is the low level read call that issues the necessary spi message(s)
226  * to read data from the register specified in @op.
227  */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)228 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
229 			 u8 *rxb, unsigned rxl)
230 {
231 	struct spi_transfer *xfer;
232 	struct spi_message *msg;
233 	__le16 *txb = (__le16 *)ks->txd;
234 	u8 *trx = ks->rxd;
235 	int ret;
236 
237 	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
238 
239 	if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
240 		msg = &ks->spi_msg2;
241 		xfer = ks->spi_xfer2;
242 
243 		xfer->tx_buf = txb;
244 		xfer->rx_buf = NULL;
245 		xfer->len = 2;
246 
247 		xfer++;
248 		xfer->tx_buf = NULL;
249 		xfer->rx_buf = trx;
250 		xfer->len = rxl;
251 	} else {
252 		msg = &ks->spi_msg1;
253 		xfer = &ks->spi_xfer1;
254 
255 		xfer->tx_buf = txb;
256 		xfer->rx_buf = trx;
257 		xfer->len = rxl + 2;
258 	}
259 
260 	ret = spi_sync(ks->spidev, msg);
261 	if (ret < 0)
262 		netdev_err(ks->netdev, "read: spi_sync() failed\n");
263 	else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
264 		memcpy(rxb, trx, rxl);
265 	else
266 		memcpy(rxb, trx + 2, rxl);
267 }
268 
269 /**
270  * ks8851_rdreg8 - read 8 bit register from device
271  * @ks: The chip information
272  * @reg: The register address
273  *
274  * Read a 8bit register from the chip, returning the result
275 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)276 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
277 {
278 	u8 rxb[1];
279 
280 	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
281 	return rxb[0];
282 }
283 
284 /**
285  * ks8851_rdreg16 - read 16 bit register from device
286  * @ks: The chip information
287  * @reg: The register address
288  *
289  * Read a 16bit register from the chip, returning the result
290 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)291 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
292 {
293 	__le16 rx = 0;
294 
295 	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
296 	return le16_to_cpu(rx);
297 }
298 
299 /**
300  * ks8851_rdreg32 - read 32 bit register from device
301  * @ks: The chip information
302  * @reg: The register address
303  *
304  * Read a 32bit register from the chip.
305  *
306  * Note, this read requires the address be aligned to 4 bytes.
307 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)308 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
309 {
310 	__le32 rx = 0;
311 
312 	WARN_ON(reg & 3);
313 
314 	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
315 	return le32_to_cpu(rx);
316 }
317 
318 /**
319  * ks8851_soft_reset - issue one of the soft reset to the device
320  * @ks: The device state.
321  * @op: The bit(s) to set in the GRR
322  *
323  * Issue the relevant soft-reset command to the device's GRR register
324  * specified by @op.
325  *
326  * Note, the delays are in there as a caution to ensure that the reset
327  * has time to take effect and then complete. Since the datasheet does
328  * not currently specify the exact sequence, we have chosen something
329  * that seems to work with our device.
330  */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)331 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
332 {
333 	ks8851_wrreg16(ks, KS_GRR, op);
334 	mdelay(1);	/* wait a short time to effect reset */
335 	ks8851_wrreg16(ks, KS_GRR, 0);
336 	mdelay(1);	/* wait for condition to clear */
337 }
338 
339 /**
340  * ks8851_set_powermode - set power mode of the device
341  * @ks: The device state
342  * @pwrmode: The power mode value to write to KS_PMECR.
343  *
344  * Change the power mode of the chip.
345  */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)346 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
347 {
348 	unsigned pmecr;
349 
350 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
351 
352 	pmecr = ks8851_rdreg16(ks, KS_PMECR);
353 	pmecr &= ~PMECR_PM_MASK;
354 	pmecr |= pwrmode;
355 
356 	ks8851_wrreg16(ks, KS_PMECR, pmecr);
357 }
358 
359 /**
360  * ks8851_write_mac_addr - write mac address to device registers
361  * @dev: The network device
362  *
363  * Update the KS8851 MAC address registers from the address in @dev.
364  *
365  * This call assumes that the chip is not running, so there is no need to
366  * shutdown the RXQ process whilst setting this.
367 */
ks8851_write_mac_addr(struct net_device * dev)368 static int ks8851_write_mac_addr(struct net_device *dev)
369 {
370 	struct ks8851_net *ks = netdev_priv(dev);
371 	int i;
372 
373 	mutex_lock(&ks->lock);
374 
375 	/*
376 	 * Wake up chip in case it was powered off when stopped; otherwise,
377 	 * the first write to the MAC address does not take effect.
378 	 */
379 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
380 	for (i = 0; i < ETH_ALEN; i++)
381 		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
382 	if (!netif_running(dev))
383 		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
384 
385 	mutex_unlock(&ks->lock);
386 
387 	return 0;
388 }
389 
390 /**
391  * ks8851_read_mac_addr - read mac address from device registers
392  * @dev: The network device
393  *
394  * Update our copy of the KS8851 MAC address from the registers of @dev.
395 */
ks8851_read_mac_addr(struct net_device * dev)396 static void ks8851_read_mac_addr(struct net_device *dev)
397 {
398 	struct ks8851_net *ks = netdev_priv(dev);
399 	int i;
400 
401 	mutex_lock(&ks->lock);
402 
403 	for (i = 0; i < ETH_ALEN; i++)
404 		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
405 
406 	mutex_unlock(&ks->lock);
407 }
408 
409 /**
410  * ks8851_init_mac - initialise the mac address
411  * @ks: The device structure
412  *
413  * Get or create the initial mac address for the device and then set that
414  * into the station address register. A mac address supplied in the device
415  * tree takes precedence. Otherwise, if there is an EEPROM present, then
416  * we try that. If no valid mac address is found we use eth_random_addr()
417  * to create a new one.
418  */
ks8851_init_mac(struct ks8851_net * ks)419 static void ks8851_init_mac(struct ks8851_net *ks)
420 {
421 	struct net_device *dev = ks->netdev;
422 	const u8 *mac_addr;
423 
424 	mac_addr = of_get_mac_address(ks->spidev->dev.of_node);
425 	if (!IS_ERR(mac_addr)) {
426 		ether_addr_copy(dev->dev_addr, mac_addr);
427 		ks8851_write_mac_addr(dev);
428 		return;
429 	}
430 
431 	if (ks->rc_ccr & CCR_EEPROM) {
432 		ks8851_read_mac_addr(dev);
433 		if (is_valid_ether_addr(dev->dev_addr))
434 			return;
435 
436 		netdev_err(ks->netdev, "invalid mac address read %pM\n",
437 				dev->dev_addr);
438 	}
439 
440 	eth_hw_addr_random(dev);
441 	ks8851_write_mac_addr(dev);
442 }
443 
444 /**
445  * ks8851_rdfifo - read data from the receive fifo
446  * @ks: The device state.
447  * @buff: The buffer address
448  * @len: The length of the data to read
449  *
450  * Issue an RXQ FIFO read command and read the @len amount of data from
451  * the FIFO into the buffer specified by @buff.
452  */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)453 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
454 {
455 	struct spi_transfer *xfer = ks->spi_xfer2;
456 	struct spi_message *msg = &ks->spi_msg2;
457 	u8 txb[1];
458 	int ret;
459 
460 	netif_dbg(ks, rx_status, ks->netdev,
461 		  "%s: %d@%p\n", __func__, len, buff);
462 
463 	/* set the operation we're issuing */
464 	txb[0] = KS_SPIOP_RXFIFO;
465 
466 	xfer->tx_buf = txb;
467 	xfer->rx_buf = NULL;
468 	xfer->len = 1;
469 
470 	xfer++;
471 	xfer->rx_buf = buff;
472 	xfer->tx_buf = NULL;
473 	xfer->len = len;
474 
475 	ret = spi_sync(ks->spidev, msg);
476 	if (ret < 0)
477 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
478 }
479 
480 /**
481  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
482  * @ks: The device state
483  * @rxpkt: The data for the received packet
484  *
485  * Dump the initial data from the packet to dev_dbg().
486 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)487 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
488 {
489 	netdev_dbg(ks->netdev,
490 		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
491 		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
492 		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
493 		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
494 }
495 
496 /**
497  * ks8851_rx_pkts - receive packets from the host
498  * @ks: The device information.
499  *
500  * This is called from the IRQ work queue when the system detects that there
501  * are packets in the receive queue. Find out how many packets there are and
502  * read them from the FIFO.
503  */
ks8851_rx_pkts(struct ks8851_net * ks)504 static void ks8851_rx_pkts(struct ks8851_net *ks)
505 {
506 	struct sk_buff *skb;
507 	unsigned rxfc;
508 	unsigned rxlen;
509 	unsigned rxstat;
510 	u32 rxh;
511 	u8 *rxpkt;
512 
513 	rxfc = ks8851_rdreg8(ks, KS_RXFC);
514 
515 	netif_dbg(ks, rx_status, ks->netdev,
516 		  "%s: %d packets\n", __func__, rxfc);
517 
518 	/* Currently we're issuing a read per packet, but we could possibly
519 	 * improve the code by issuing a single read, getting the receive
520 	 * header, allocating the packet and then reading the packet data
521 	 * out in one go.
522 	 *
523 	 * This form of operation would require us to hold the SPI bus'
524 	 * chipselect low during the entie transaction to avoid any
525 	 * reset to the data stream coming from the chip.
526 	 */
527 
528 	for (; rxfc != 0; rxfc--) {
529 		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
530 		rxstat = rxh & 0xffff;
531 		rxlen = (rxh >> 16) & 0xfff;
532 
533 		netif_dbg(ks, rx_status, ks->netdev,
534 			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
535 
536 		/* the length of the packet includes the 32bit CRC */
537 
538 		/* set dma read address */
539 		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
540 
541 		/* start DMA access */
542 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
543 
544 		if (rxlen > 4) {
545 			unsigned int rxalign;
546 
547 			rxlen -= 4;
548 			rxalign = ALIGN(rxlen, 4);
549 			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
550 			if (skb) {
551 
552 				/* 4 bytes of status header + 4 bytes of
553 				 * garbage: we put them before ethernet
554 				 * header, so that they are copied,
555 				 * but ignored.
556 				 */
557 
558 				rxpkt = skb_put(skb, rxlen) - 8;
559 
560 				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
561 
562 				if (netif_msg_pktdata(ks))
563 					ks8851_dbg_dumpkkt(ks, rxpkt);
564 
565 				skb->protocol = eth_type_trans(skb, ks->netdev);
566 				netif_rx_ni(skb);
567 
568 				ks->netdev->stats.rx_packets++;
569 				ks->netdev->stats.rx_bytes += rxlen;
570 			}
571 		}
572 
573 		/* end DMA access and dequeue packet */
574 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
575 	}
576 }
577 
578 /**
579  * ks8851_irq - IRQ handler for dealing with interrupt requests
580  * @irq: IRQ number
581  * @_ks: cookie
582  *
583  * This handler is invoked when the IRQ line asserts to find out what happened.
584  * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
585  * in thread context.
586  *
587  * Read the interrupt status, work out what needs to be done and then clear
588  * any of the interrupts that are not needed.
589  */
ks8851_irq(int irq,void * _ks)590 static irqreturn_t ks8851_irq(int irq, void *_ks)
591 {
592 	struct ks8851_net *ks = _ks;
593 	unsigned status;
594 	unsigned handled = 0;
595 
596 	mutex_lock(&ks->lock);
597 
598 	status = ks8851_rdreg16(ks, KS_ISR);
599 
600 	netif_dbg(ks, intr, ks->netdev,
601 		  "%s: status 0x%04x\n", __func__, status);
602 
603 	if (status & IRQ_LCI)
604 		handled |= IRQ_LCI;
605 
606 	if (status & IRQ_LDI) {
607 		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
608 		pmecr &= ~PMECR_WKEVT_MASK;
609 		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
610 
611 		handled |= IRQ_LDI;
612 	}
613 
614 	if (status & IRQ_RXPSI)
615 		handled |= IRQ_RXPSI;
616 
617 	if (status & IRQ_TXI) {
618 		handled |= IRQ_TXI;
619 
620 		/* no lock here, tx queue should have been stopped */
621 
622 		/* update our idea of how much tx space is available to the
623 		 * system */
624 		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
625 
626 		netif_dbg(ks, intr, ks->netdev,
627 			  "%s: txspace %d\n", __func__, ks->tx_space);
628 	}
629 
630 	if (status & IRQ_RXI)
631 		handled |= IRQ_RXI;
632 
633 	if (status & IRQ_SPIBEI) {
634 		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
635 		handled |= IRQ_SPIBEI;
636 	}
637 
638 	ks8851_wrreg16(ks, KS_ISR, handled);
639 
640 	if (status & IRQ_RXI) {
641 		/* the datasheet says to disable the rx interrupt during
642 		 * packet read-out, however we're masking the interrupt
643 		 * from the device so do not bother masking just the RX
644 		 * from the device. */
645 
646 		ks8851_rx_pkts(ks);
647 	}
648 
649 	/* if something stopped the rx process, probably due to wanting
650 	 * to change the rx settings, then do something about restarting
651 	 * it. */
652 	if (status & IRQ_RXPSI) {
653 		struct ks8851_rxctrl *rxc = &ks->rxctrl;
654 
655 		/* update the multicast hash table */
656 		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
657 		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
658 		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
659 		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
660 
661 		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
662 		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
663 	}
664 
665 	mutex_unlock(&ks->lock);
666 
667 	if (status & IRQ_LCI)
668 		mii_check_link(&ks->mii);
669 
670 	if (status & IRQ_TXI)
671 		netif_wake_queue(ks->netdev);
672 
673 	return IRQ_HANDLED;
674 }
675 
676 /**
677  * calc_txlen - calculate size of message to send packet
678  * @len: Length of data
679  *
680  * Returns the size of the TXFIFO message needed to send
681  * this packet.
682  */
calc_txlen(unsigned len)683 static inline unsigned calc_txlen(unsigned len)
684 {
685 	return ALIGN(len + 4, 4);
686 }
687 
688 /**
689  * ks8851_wrpkt - write packet to TX FIFO
690  * @ks: The device state.
691  * @txp: The sk_buff to transmit.
692  * @irq: IRQ on completion of the packet.
693  *
694  * Send the @txp to the chip. This means creating the relevant packet header
695  * specifying the length of the packet and the other information the chip
696  * needs, such as IRQ on completion. Send the header and the packet data to
697  * the device.
698  */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)699 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
700 {
701 	struct spi_transfer *xfer = ks->spi_xfer2;
702 	struct spi_message *msg = &ks->spi_msg2;
703 	unsigned fid = 0;
704 	int ret;
705 
706 	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
707 		  __func__, txp, txp->len, txp->data, irq);
708 
709 	fid = ks->fid++;
710 	fid &= TXFR_TXFID_MASK;
711 
712 	if (irq)
713 		fid |= TXFR_TXIC;	/* irq on completion */
714 
715 	/* start header at txb[1] to align txw entries */
716 	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
717 	ks->txh.txw[1] = cpu_to_le16(fid);
718 	ks->txh.txw[2] = cpu_to_le16(txp->len);
719 
720 	xfer->tx_buf = &ks->txh.txb[1];
721 	xfer->rx_buf = NULL;
722 	xfer->len = 5;
723 
724 	xfer++;
725 	xfer->tx_buf = txp->data;
726 	xfer->rx_buf = NULL;
727 	xfer->len = ALIGN(txp->len, 4);
728 
729 	ret = spi_sync(ks->spidev, msg);
730 	if (ret < 0)
731 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
732 }
733 
734 /**
735  * ks8851_done_tx - update and then free skbuff after transmitting
736  * @ks: The device state
737  * @txb: The buffer transmitted
738  */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)739 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
740 {
741 	struct net_device *dev = ks->netdev;
742 
743 	dev->stats.tx_bytes += txb->len;
744 	dev->stats.tx_packets++;
745 
746 	dev_kfree_skb(txb);
747 }
748 
749 /**
750  * ks8851_tx_work - process tx packet(s)
751  * @work: The work strucutre what was scheduled.
752  *
753  * This is called when a number of packets have been scheduled for
754  * transmission and need to be sent to the device.
755  */
ks8851_tx_work(struct work_struct * work)756 static void ks8851_tx_work(struct work_struct *work)
757 {
758 	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
759 	struct sk_buff *txb;
760 	bool last = skb_queue_empty(&ks->txq);
761 
762 	mutex_lock(&ks->lock);
763 
764 	while (!last) {
765 		txb = skb_dequeue(&ks->txq);
766 		last = skb_queue_empty(&ks->txq);
767 
768 		if (txb != NULL) {
769 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
770 			ks8851_wrpkt(ks, txb, last);
771 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
772 			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
773 
774 			ks8851_done_tx(ks, txb);
775 		}
776 	}
777 
778 	mutex_unlock(&ks->lock);
779 }
780 
781 /**
782  * ks8851_net_open - open network device
783  * @dev: The network device being opened.
784  *
785  * Called when the network device is marked active, such as a user executing
786  * 'ifconfig up' on the device.
787  */
ks8851_net_open(struct net_device * dev)788 static int ks8851_net_open(struct net_device *dev)
789 {
790 	struct ks8851_net *ks = netdev_priv(dev);
791 	int ret;
792 
793 	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
794 				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
795 				   dev->name, ks);
796 	if (ret < 0) {
797 		netdev_err(dev, "failed to get irq\n");
798 		return ret;
799 	}
800 
801 	/* lock the card, even if we may not actually be doing anything
802 	 * else at the moment */
803 	mutex_lock(&ks->lock);
804 
805 	netif_dbg(ks, ifup, ks->netdev, "opening\n");
806 
807 	/* bring chip out of any power saving mode it was in */
808 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
809 
810 	/* issue a soft reset to the RX/TX QMU to put it into a known
811 	 * state. */
812 	ks8851_soft_reset(ks, GRR_QMU);
813 
814 	/* setup transmission parameters */
815 
816 	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
817 				     TXCR_TXPE | /* pad to min length */
818 				     TXCR_TXCRC | /* add CRC */
819 				     TXCR_TXFCE)); /* enable flow control */
820 
821 	/* auto-increment tx data, reset tx pointer */
822 	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
823 
824 	/* setup receiver control */
825 
826 	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
827 				      RXCR1_RXFCE | /* enable flow control */
828 				      RXCR1_RXBE | /* broadcast enable */
829 				      RXCR1_RXUE | /* unicast enable */
830 				      RXCR1_RXE)); /* enable rx block */
831 
832 	/* transfer entire frames out in one go */
833 	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
834 
835 	/* set receive counter timeouts */
836 	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
837 	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
838 	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
839 
840 	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
841 			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
842 			RXQCR_RXDTTE);  /* IRQ on time exceeded */
843 
844 	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
845 
846 	/* clear then enable interrupts */
847 
848 #define STD_IRQ (IRQ_LCI |	/* Link Change */	\
849 		 IRQ_TXI |	/* TX done */		\
850 		 IRQ_RXI |	/* RX done */		\
851 		 IRQ_SPIBEI |	/* SPI bus error */	\
852 		 IRQ_TXPSI |	/* TX process stop */	\
853 		 IRQ_RXPSI)	/* RX process stop */
854 
855 	ks->rc_ier = STD_IRQ;
856 	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
857 	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
858 
859 	netif_start_queue(ks->netdev);
860 
861 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
862 
863 	mutex_unlock(&ks->lock);
864 	mii_check_link(&ks->mii);
865 	return 0;
866 }
867 
868 /**
869  * ks8851_net_stop - close network device
870  * @dev: The device being closed.
871  *
872  * Called to close down a network device which has been active. Cancell any
873  * work, shutdown the RX and TX process and then place the chip into a low
874  * power state whilst it is not being used.
875  */
ks8851_net_stop(struct net_device * dev)876 static int ks8851_net_stop(struct net_device *dev)
877 {
878 	struct ks8851_net *ks = netdev_priv(dev);
879 
880 	netif_info(ks, ifdown, dev, "shutting down\n");
881 
882 	netif_stop_queue(dev);
883 
884 	mutex_lock(&ks->lock);
885 	/* turn off the IRQs and ack any outstanding */
886 	ks8851_wrreg16(ks, KS_IER, 0x0000);
887 	ks8851_wrreg16(ks, KS_ISR, 0xffff);
888 	mutex_unlock(&ks->lock);
889 
890 	/* stop any outstanding work */
891 	flush_work(&ks->tx_work);
892 	flush_work(&ks->rxctrl_work);
893 
894 	mutex_lock(&ks->lock);
895 	/* shutdown RX process */
896 	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
897 
898 	/* shutdown TX process */
899 	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
900 
901 	/* set powermode to soft power down to save power */
902 	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
903 	mutex_unlock(&ks->lock);
904 
905 	/* ensure any queued tx buffers are dumped */
906 	while (!skb_queue_empty(&ks->txq)) {
907 		struct sk_buff *txb = skb_dequeue(&ks->txq);
908 
909 		netif_dbg(ks, ifdown, ks->netdev,
910 			  "%s: freeing txb %p\n", __func__, txb);
911 
912 		dev_kfree_skb(txb);
913 	}
914 
915 	free_irq(dev->irq, ks);
916 
917 	return 0;
918 }
919 
920 /**
921  * ks8851_start_xmit - transmit packet
922  * @skb: The buffer to transmit
923  * @dev: The device used to transmit the packet.
924  *
925  * Called by the network layer to transmit the @skb. Queue the packet for
926  * the device and schedule the necessary work to transmit the packet when
927  * it is free.
928  *
929  * We do this to firstly avoid sleeping with the network device locked,
930  * and secondly so we can round up more than one packet to transmit which
931  * means we can try and avoid generating too many transmit done interrupts.
932  */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)933 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
934 				     struct net_device *dev)
935 {
936 	struct ks8851_net *ks = netdev_priv(dev);
937 	unsigned needed = calc_txlen(skb->len);
938 	netdev_tx_t ret = NETDEV_TX_OK;
939 
940 	netif_dbg(ks, tx_queued, ks->netdev,
941 		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
942 
943 	spin_lock(&ks->statelock);
944 
945 	if (needed > ks->tx_space) {
946 		netif_stop_queue(dev);
947 		ret = NETDEV_TX_BUSY;
948 	} else {
949 		ks->tx_space -= needed;
950 		skb_queue_tail(&ks->txq, skb);
951 	}
952 
953 	spin_unlock(&ks->statelock);
954 	schedule_work(&ks->tx_work);
955 
956 	return ret;
957 }
958 
959 /**
960  * ks8851_rxctrl_work - work handler to change rx mode
961  * @work: The work structure this belongs to.
962  *
963  * Lock the device and issue the necessary changes to the receive mode from
964  * the network device layer. This is done so that we can do this without
965  * having to sleep whilst holding the network device lock.
966  *
967  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
968  * receive parameters are programmed, we issue a write to disable the RXQ and
969  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
970  * complete. The interrupt handler then writes the new values into the chip.
971  */
ks8851_rxctrl_work(struct work_struct * work)972 static void ks8851_rxctrl_work(struct work_struct *work)
973 {
974 	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
975 
976 	mutex_lock(&ks->lock);
977 
978 	/* need to shutdown RXQ before modifying filter parameters */
979 	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
980 
981 	mutex_unlock(&ks->lock);
982 }
983 
ks8851_set_rx_mode(struct net_device * dev)984 static void ks8851_set_rx_mode(struct net_device *dev)
985 {
986 	struct ks8851_net *ks = netdev_priv(dev);
987 	struct ks8851_rxctrl rxctrl;
988 
989 	memset(&rxctrl, 0, sizeof(rxctrl));
990 
991 	if (dev->flags & IFF_PROMISC) {
992 		/* interface to receive everything */
993 
994 		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
995 	} else if (dev->flags & IFF_ALLMULTI) {
996 		/* accept all multicast packets */
997 
998 		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
999 				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
1000 	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
1001 		struct netdev_hw_addr *ha;
1002 		u32 crc;
1003 
1004 		/* accept some multicast */
1005 
1006 		netdev_for_each_mc_addr(ha, dev) {
1007 			crc = ether_crc(ETH_ALEN, ha->addr);
1008 			crc >>= (32 - 6);  /* get top six bits */
1009 
1010 			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1011 		}
1012 
1013 		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1014 	} else {
1015 		/* just accept broadcast / unicast */
1016 		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1017 	}
1018 
1019 	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1020 			 RXCR1_RXBE | /* broadcast enable */
1021 			 RXCR1_RXE | /* RX process enable */
1022 			 RXCR1_RXFCE); /* enable flow control */
1023 
1024 	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1025 
1026 	/* schedule work to do the actual set of the data if needed */
1027 
1028 	spin_lock(&ks->statelock);
1029 
1030 	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1031 		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1032 		schedule_work(&ks->rxctrl_work);
1033 	}
1034 
1035 	spin_unlock(&ks->statelock);
1036 }
1037 
ks8851_set_mac_address(struct net_device * dev,void * addr)1038 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1039 {
1040 	struct sockaddr *sa = addr;
1041 
1042 	if (netif_running(dev))
1043 		return -EBUSY;
1044 
1045 	if (!is_valid_ether_addr(sa->sa_data))
1046 		return -EADDRNOTAVAIL;
1047 
1048 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1049 	return ks8851_write_mac_addr(dev);
1050 }
1051 
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1052 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1053 {
1054 	struct ks8851_net *ks = netdev_priv(dev);
1055 
1056 	if (!netif_running(dev))
1057 		return -EINVAL;
1058 
1059 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1060 }
1061 
1062 static const struct net_device_ops ks8851_netdev_ops = {
1063 	.ndo_open		= ks8851_net_open,
1064 	.ndo_stop		= ks8851_net_stop,
1065 	.ndo_do_ioctl		= ks8851_net_ioctl,
1066 	.ndo_start_xmit		= ks8851_start_xmit,
1067 	.ndo_set_mac_address	= ks8851_set_mac_address,
1068 	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1069 	.ndo_validate_addr	= eth_validate_addr,
1070 };
1071 
1072 /* ethtool support */
1073 
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1074 static void ks8851_get_drvinfo(struct net_device *dev,
1075 			       struct ethtool_drvinfo *di)
1076 {
1077 	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1078 	strlcpy(di->version, "1.00", sizeof(di->version));
1079 	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1080 }
1081 
ks8851_get_msglevel(struct net_device * dev)1082 static u32 ks8851_get_msglevel(struct net_device *dev)
1083 {
1084 	struct ks8851_net *ks = netdev_priv(dev);
1085 	return ks->msg_enable;
1086 }
1087 
ks8851_set_msglevel(struct net_device * dev,u32 to)1088 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1089 {
1090 	struct ks8851_net *ks = netdev_priv(dev);
1091 	ks->msg_enable = to;
1092 }
1093 
ks8851_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1094 static int ks8851_get_link_ksettings(struct net_device *dev,
1095 				     struct ethtool_link_ksettings *cmd)
1096 {
1097 	struct ks8851_net *ks = netdev_priv(dev);
1098 
1099 	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1100 
1101 	return 0;
1102 }
1103 
ks8851_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1104 static int ks8851_set_link_ksettings(struct net_device *dev,
1105 				     const struct ethtool_link_ksettings *cmd)
1106 {
1107 	struct ks8851_net *ks = netdev_priv(dev);
1108 	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1109 }
1110 
ks8851_get_link(struct net_device * dev)1111 static u32 ks8851_get_link(struct net_device *dev)
1112 {
1113 	struct ks8851_net *ks = netdev_priv(dev);
1114 	return mii_link_ok(&ks->mii);
1115 }
1116 
ks8851_nway_reset(struct net_device * dev)1117 static int ks8851_nway_reset(struct net_device *dev)
1118 {
1119 	struct ks8851_net *ks = netdev_priv(dev);
1120 	return mii_nway_restart(&ks->mii);
1121 }
1122 
1123 /* EEPROM support */
1124 
ks8851_eeprom_regread(struct eeprom_93cx6 * ee)1125 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1126 {
1127 	struct ks8851_net *ks = ee->data;
1128 	unsigned val;
1129 
1130 	val = ks8851_rdreg16(ks, KS_EEPCR);
1131 
1132 	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1133 	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1134 	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1135 }
1136 
ks8851_eeprom_regwrite(struct eeprom_93cx6 * ee)1137 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1138 {
1139 	struct ks8851_net *ks = ee->data;
1140 	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1141 
1142 	if (ee->drive_data)
1143 		val |= EEPCR_EESRWA;
1144 	if (ee->reg_data_in)
1145 		val |= EEPCR_EEDO;
1146 	if (ee->reg_data_clock)
1147 		val |= EEPCR_EESCK;
1148 	if (ee->reg_chip_select)
1149 		val |= EEPCR_EECS;
1150 
1151 	ks8851_wrreg16(ks, KS_EEPCR, val);
1152 }
1153 
1154 /**
1155  * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1156  * @ks: The network device state.
1157  *
1158  * Check for the presence of an EEPROM, and then activate software access
1159  * to the device.
1160  */
ks8851_eeprom_claim(struct ks8851_net * ks)1161 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1162 {
1163 	if (!(ks->rc_ccr & CCR_EEPROM))
1164 		return -ENOENT;
1165 
1166 	mutex_lock(&ks->lock);
1167 
1168 	/* start with clock low, cs high */
1169 	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1170 	return 0;
1171 }
1172 
1173 /**
1174  * ks8851_eeprom_release - release the EEPROM interface
1175  * @ks: The device state
1176  *
1177  * Release the software access to the device EEPROM
1178  */
ks8851_eeprom_release(struct ks8851_net * ks)1179 static void ks8851_eeprom_release(struct ks8851_net *ks)
1180 {
1181 	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1182 
1183 	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1184 	mutex_unlock(&ks->lock);
1185 }
1186 
1187 #define KS_EEPROM_MAGIC (0x00008851)
1188 
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1189 static int ks8851_set_eeprom(struct net_device *dev,
1190 			     struct ethtool_eeprom *ee, u8 *data)
1191 {
1192 	struct ks8851_net *ks = netdev_priv(dev);
1193 	int offset = ee->offset;
1194 	int len = ee->len;
1195 	u16 tmp;
1196 
1197 	/* currently only support byte writing */
1198 	if (len != 1)
1199 		return -EINVAL;
1200 
1201 	if (ee->magic != KS_EEPROM_MAGIC)
1202 		return -EINVAL;
1203 
1204 	if (ks8851_eeprom_claim(ks))
1205 		return -ENOENT;
1206 
1207 	eeprom_93cx6_wren(&ks->eeprom, true);
1208 
1209 	/* ethtool currently only supports writing bytes, which means
1210 	 * we have to read/modify/write our 16bit EEPROMs */
1211 
1212 	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1213 
1214 	if (offset & 1) {
1215 		tmp &= 0xff;
1216 		tmp |= *data << 8;
1217 	} else {
1218 		tmp &= 0xff00;
1219 		tmp |= *data;
1220 	}
1221 
1222 	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1223 	eeprom_93cx6_wren(&ks->eeprom, false);
1224 
1225 	ks8851_eeprom_release(ks);
1226 
1227 	return 0;
1228 }
1229 
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1230 static int ks8851_get_eeprom(struct net_device *dev,
1231 			     struct ethtool_eeprom *ee, u8 *data)
1232 {
1233 	struct ks8851_net *ks = netdev_priv(dev);
1234 	int offset = ee->offset;
1235 	int len = ee->len;
1236 
1237 	/* must be 2 byte aligned */
1238 	if (len & 1 || offset & 1)
1239 		return -EINVAL;
1240 
1241 	if (ks8851_eeprom_claim(ks))
1242 		return -ENOENT;
1243 
1244 	ee->magic = KS_EEPROM_MAGIC;
1245 
1246 	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1247 	ks8851_eeprom_release(ks);
1248 
1249 	return 0;
1250 }
1251 
ks8851_get_eeprom_len(struct net_device * dev)1252 static int ks8851_get_eeprom_len(struct net_device *dev)
1253 {
1254 	struct ks8851_net *ks = netdev_priv(dev);
1255 
1256 	/* currently, we assume it is an 93C46 attached, so return 128 */
1257 	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1258 }
1259 
1260 static const struct ethtool_ops ks8851_ethtool_ops = {
1261 	.get_drvinfo	= ks8851_get_drvinfo,
1262 	.get_msglevel	= ks8851_get_msglevel,
1263 	.set_msglevel	= ks8851_set_msglevel,
1264 	.get_link	= ks8851_get_link,
1265 	.nway_reset	= ks8851_nway_reset,
1266 	.get_eeprom_len	= ks8851_get_eeprom_len,
1267 	.get_eeprom	= ks8851_get_eeprom,
1268 	.set_eeprom	= ks8851_set_eeprom,
1269 	.get_link_ksettings = ks8851_get_link_ksettings,
1270 	.set_link_ksettings = ks8851_set_link_ksettings,
1271 };
1272 
1273 /* MII interface controls */
1274 
1275 /**
1276  * ks8851_phy_reg - convert MII register into a KS8851 register
1277  * @reg: MII register number.
1278  *
1279  * Return the KS8851 register number for the corresponding MII PHY register
1280  * if possible. Return zero if the MII register has no direct mapping to the
1281  * KS8851 register set.
1282  */
ks8851_phy_reg(int reg)1283 static int ks8851_phy_reg(int reg)
1284 {
1285 	switch (reg) {
1286 	case MII_BMCR:
1287 		return KS_P1MBCR;
1288 	case MII_BMSR:
1289 		return KS_P1MBSR;
1290 	case MII_PHYSID1:
1291 		return KS_PHY1ILR;
1292 	case MII_PHYSID2:
1293 		return KS_PHY1IHR;
1294 	case MII_ADVERTISE:
1295 		return KS_P1ANAR;
1296 	case MII_LPA:
1297 		return KS_P1ANLPR;
1298 	}
1299 
1300 	return 0x0;
1301 }
1302 
1303 /**
1304  * ks8851_phy_read - MII interface PHY register read.
1305  * @dev: The network device the PHY is on.
1306  * @phy_addr: Address of PHY (ignored as we only have one)
1307  * @reg: The register to read.
1308  *
1309  * This call reads data from the PHY register specified in @reg. Since the
1310  * device does not support all the MII registers, the non-existent values
1311  * are always returned as zero.
1312  *
1313  * We return zero for unsupported registers as the MII code does not check
1314  * the value returned for any error status, and simply returns it to the
1315  * caller. The mii-tool that the driver was tested with takes any -ve error
1316  * as real PHY capabilities, thus displaying incorrect data to the user.
1317  */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1318 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1319 {
1320 	struct ks8851_net *ks = netdev_priv(dev);
1321 	int ksreg;
1322 	int result;
1323 
1324 	ksreg = ks8851_phy_reg(reg);
1325 	if (!ksreg)
1326 		return 0x0;	/* no error return allowed, so use zero */
1327 
1328 	mutex_lock(&ks->lock);
1329 	result = ks8851_rdreg16(ks, ksreg);
1330 	mutex_unlock(&ks->lock);
1331 
1332 	return result;
1333 }
1334 
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1335 static void ks8851_phy_write(struct net_device *dev,
1336 			     int phy, int reg, int value)
1337 {
1338 	struct ks8851_net *ks = netdev_priv(dev);
1339 	int ksreg;
1340 
1341 	ksreg = ks8851_phy_reg(reg);
1342 	if (ksreg) {
1343 		mutex_lock(&ks->lock);
1344 		ks8851_wrreg16(ks, ksreg, value);
1345 		mutex_unlock(&ks->lock);
1346 	}
1347 }
1348 
1349 /**
1350  * ks8851_read_selftest - read the selftest memory info.
1351  * @ks: The device state
1352  *
1353  * Read and check the TX/RX memory selftest information.
1354  */
ks8851_read_selftest(struct ks8851_net * ks)1355 static int ks8851_read_selftest(struct ks8851_net *ks)
1356 {
1357 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1358 	int ret = 0;
1359 	unsigned rd;
1360 
1361 	rd = ks8851_rdreg16(ks, KS_MBIR);
1362 
1363 	if ((rd & both_done) != both_done) {
1364 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1365 		return 0;
1366 	}
1367 
1368 	if (rd & MBIR_TXMBFA) {
1369 		netdev_err(ks->netdev, "TX memory selftest fail\n");
1370 		ret |= 1;
1371 	}
1372 
1373 	if (rd & MBIR_RXMBFA) {
1374 		netdev_err(ks->netdev, "RX memory selftest fail\n");
1375 		ret |= 2;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 /* driver bus management functions */
1382 
1383 #ifdef CONFIG_PM_SLEEP
1384 
ks8851_suspend(struct device * dev)1385 static int ks8851_suspend(struct device *dev)
1386 {
1387 	struct ks8851_net *ks = dev_get_drvdata(dev);
1388 	struct net_device *netdev = ks->netdev;
1389 
1390 	if (netif_running(netdev)) {
1391 		netif_device_detach(netdev);
1392 		ks8851_net_stop(netdev);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
ks8851_resume(struct device * dev)1398 static int ks8851_resume(struct device *dev)
1399 {
1400 	struct ks8851_net *ks = dev_get_drvdata(dev);
1401 	struct net_device *netdev = ks->netdev;
1402 
1403 	if (netif_running(netdev)) {
1404 		ks8851_net_open(netdev);
1405 		netif_device_attach(netdev);
1406 	}
1407 
1408 	return 0;
1409 }
1410 #endif
1411 
1412 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1413 
ks8851_probe(struct spi_device * spi)1414 static int ks8851_probe(struct spi_device *spi)
1415 {
1416 	struct net_device *ndev;
1417 	struct ks8851_net *ks;
1418 	int ret;
1419 	unsigned cider;
1420 	int gpio;
1421 
1422 	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1423 	if (!ndev)
1424 		return -ENOMEM;
1425 
1426 	spi->bits_per_word = 8;
1427 
1428 	ks = netdev_priv(ndev);
1429 
1430 	ks->netdev = ndev;
1431 	ks->spidev = spi;
1432 	ks->tx_space = 6144;
1433 
1434 	gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1435 				       0, NULL);
1436 	if (gpio == -EPROBE_DEFER) {
1437 		ret = gpio;
1438 		goto err_gpio;
1439 	}
1440 
1441 	ks->gpio = gpio;
1442 	if (gpio_is_valid(gpio)) {
1443 		ret = devm_gpio_request_one(&spi->dev, gpio,
1444 					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1445 		if (ret) {
1446 			dev_err(&spi->dev, "reset gpio request failed\n");
1447 			goto err_gpio;
1448 		}
1449 	}
1450 
1451 	ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1452 	if (IS_ERR(ks->vdd_io)) {
1453 		ret = PTR_ERR(ks->vdd_io);
1454 		goto err_reg_io;
1455 	}
1456 
1457 	ret = regulator_enable(ks->vdd_io);
1458 	if (ret) {
1459 		dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1460 			ret);
1461 		goto err_reg_io;
1462 	}
1463 
1464 	ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1465 	if (IS_ERR(ks->vdd_reg)) {
1466 		ret = PTR_ERR(ks->vdd_reg);
1467 		goto err_reg;
1468 	}
1469 
1470 	ret = regulator_enable(ks->vdd_reg);
1471 	if (ret) {
1472 		dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1473 			ret);
1474 		goto err_reg;
1475 	}
1476 
1477 	if (gpio_is_valid(gpio)) {
1478 		usleep_range(10000, 11000);
1479 		gpio_set_value(gpio, 1);
1480 	}
1481 
1482 	mutex_init(&ks->lock);
1483 	spin_lock_init(&ks->statelock);
1484 
1485 	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1486 	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1487 
1488 	/* initialise pre-made spi transfer messages */
1489 
1490 	spi_message_init(&ks->spi_msg1);
1491 	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1492 
1493 	spi_message_init(&ks->spi_msg2);
1494 	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1495 	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1496 
1497 	/* setup EEPROM state */
1498 
1499 	ks->eeprom.data = ks;
1500 	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1501 	ks->eeprom.register_read = ks8851_eeprom_regread;
1502 	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1503 
1504 	/* setup mii state */
1505 	ks->mii.dev		= ndev;
1506 	ks->mii.phy_id		= 1,
1507 	ks->mii.phy_id_mask	= 1;
1508 	ks->mii.reg_num_mask	= 0xf;
1509 	ks->mii.mdio_read	= ks8851_phy_read;
1510 	ks->mii.mdio_write	= ks8851_phy_write;
1511 
1512 	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1513 
1514 	/* set the default message enable */
1515 	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1516 						     NETIF_MSG_PROBE |
1517 						     NETIF_MSG_LINK));
1518 
1519 	skb_queue_head_init(&ks->txq);
1520 
1521 	ndev->ethtool_ops = &ks8851_ethtool_ops;
1522 	SET_NETDEV_DEV(ndev, &spi->dev);
1523 
1524 	spi_set_drvdata(spi, ks);
1525 
1526 	netif_carrier_off(ks->netdev);
1527 	ndev->if_port = IF_PORT_100BASET;
1528 	ndev->netdev_ops = &ks8851_netdev_ops;
1529 	ndev->irq = spi->irq;
1530 
1531 	/* issue a global soft reset to reset the device. */
1532 	ks8851_soft_reset(ks, GRR_GSR);
1533 
1534 	/* simple check for a valid chip being connected to the bus */
1535 	cider = ks8851_rdreg16(ks, KS_CIDER);
1536 	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1537 		dev_err(&spi->dev, "failed to read device ID\n");
1538 		ret = -ENODEV;
1539 		goto err_id;
1540 	}
1541 
1542 	/* cache the contents of the CCR register for EEPROM, etc. */
1543 	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1544 
1545 	ks8851_read_selftest(ks);
1546 	ks8851_init_mac(ks);
1547 
1548 	ret = register_netdev(ndev);
1549 	if (ret) {
1550 		dev_err(&spi->dev, "failed to register network device\n");
1551 		goto err_netdev;
1552 	}
1553 
1554 	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1555 		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1556 		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1557 
1558 	return 0;
1559 
1560 err_netdev:
1561 err_id:
1562 	if (gpio_is_valid(gpio))
1563 		gpio_set_value(gpio, 0);
1564 	regulator_disable(ks->vdd_reg);
1565 err_reg:
1566 	regulator_disable(ks->vdd_io);
1567 err_reg_io:
1568 err_gpio:
1569 	free_netdev(ndev);
1570 	return ret;
1571 }
1572 
ks8851_remove(struct spi_device * spi)1573 static int ks8851_remove(struct spi_device *spi)
1574 {
1575 	struct ks8851_net *priv = spi_get_drvdata(spi);
1576 
1577 	if (netif_msg_drv(priv))
1578 		dev_info(&spi->dev, "remove\n");
1579 
1580 	unregister_netdev(priv->netdev);
1581 	if (gpio_is_valid(priv->gpio))
1582 		gpio_set_value(priv->gpio, 0);
1583 	regulator_disable(priv->vdd_reg);
1584 	regulator_disable(priv->vdd_io);
1585 	free_netdev(priv->netdev);
1586 
1587 	return 0;
1588 }
1589 
1590 static const struct of_device_id ks8851_match_table[] = {
1591 	{ .compatible = "micrel,ks8851" },
1592 	{ }
1593 };
1594 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1595 
1596 static struct spi_driver ks8851_driver = {
1597 	.driver = {
1598 		.name = "ks8851",
1599 		.of_match_table = ks8851_match_table,
1600 		.pm = &ks8851_pm_ops,
1601 	},
1602 	.probe = ks8851_probe,
1603 	.remove = ks8851_remove,
1604 };
1605 module_spi_driver(ks8851_driver);
1606 
1607 MODULE_DESCRIPTION("KS8851 Network driver");
1608 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1609 MODULE_LICENSE("GPL");
1610 
1611 module_param_named(message, msg_enable, int, 0);
1612 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1613 MODULE_ALIAS("spi:ks8851");
1614