1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2010-2011 Neil Brown
4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/slab.h>
10 #include <linux/module.h>
11
12 #include "md.h"
13 #include "raid1.h"
14 #include "raid5.h"
15 #include "raid10.h"
16 #include "md-bitmap.h"
17
18 #include <linux/device-mapper.h>
19
20 #define DM_MSG_PREFIX "raid"
21 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
22
23 /*
24 * Minimum sectors of free reshape space per raid device
25 */
26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
27
28 /*
29 * Minimum journal space 4 MiB in sectors.
30 */
31 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
32
33 static bool devices_handle_discard_safely;
34
35 /*
36 * The following flags are used by dm-raid to set up the array state.
37 * They must be cleared before md_run is called.
38 */
39 #define FirstUse 10 /* rdev flag */
40
41 struct raid_dev {
42 /*
43 * Two DM devices, one to hold metadata and one to hold the
44 * actual data/parity. The reason for this is to not confuse
45 * ti->len and give more flexibility in altering size and
46 * characteristics.
47 *
48 * While it is possible for this device to be associated
49 * with a different physical device than the data_dev, it
50 * is intended for it to be the same.
51 * |--------- Physical Device ---------|
52 * |- meta_dev -|------ data_dev ------|
53 */
54 struct dm_dev *meta_dev;
55 struct dm_dev *data_dev;
56 struct md_rdev rdev;
57 };
58
59 /*
60 * Bits for establishing rs->ctr_flags
61 *
62 * 1 = no flag value
63 * 2 = flag with value
64 */
65 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
67 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
71 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
73 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
74 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
75 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
76 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
77 /* New for v1.9.0 */
78 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
79 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
81
82 /* New for v1.10.0 */
83 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
84
85 /* New for v1.11.1 */
86 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
87
88 /*
89 * Flags for rs->ctr_flags field.
90 */
91 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
92 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
93 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
94 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
95 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
97 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
98 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
99 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
100 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
101 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
102 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
103 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
104 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
105 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
106 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
107 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
108
109 /*
110 * Definitions of various constructor flags to
111 * be used in checks of valid / invalid flags
112 * per raid level.
113 */
114 /* Define all any sync flags */
115 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
116
117 /* Define flags for options without argument (e.g. 'nosync') */
118 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
119 CTR_FLAG_RAID10_USE_NEAR_SETS)
120
121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
123 CTR_FLAG_WRITE_MOSTLY | \
124 CTR_FLAG_DAEMON_SLEEP | \
125 CTR_FLAG_MIN_RECOVERY_RATE | \
126 CTR_FLAG_MAX_RECOVERY_RATE | \
127 CTR_FLAG_MAX_WRITE_BEHIND | \
128 CTR_FLAG_STRIPE_CACHE | \
129 CTR_FLAG_REGION_SIZE | \
130 CTR_FLAG_RAID10_COPIES | \
131 CTR_FLAG_RAID10_FORMAT | \
132 CTR_FLAG_DELTA_DISKS | \
133 CTR_FLAG_DATA_OFFSET | \
134 CTR_FLAG_JOURNAL_DEV | \
135 CTR_FLAG_JOURNAL_MODE)
136
137 /* Valid options definitions per raid level... */
138
139 /* "raid0" does only accept data offset */
140 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
141
142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
144 CTR_FLAG_REBUILD | \
145 CTR_FLAG_WRITE_MOSTLY | \
146 CTR_FLAG_DAEMON_SLEEP | \
147 CTR_FLAG_MIN_RECOVERY_RATE | \
148 CTR_FLAG_MAX_RECOVERY_RATE | \
149 CTR_FLAG_MAX_WRITE_BEHIND | \
150 CTR_FLAG_REGION_SIZE | \
151 CTR_FLAG_DELTA_DISKS | \
152 CTR_FLAG_DATA_OFFSET)
153
154 /* "raid10" does not accept any raid1 or stripe cache options */
155 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
156 CTR_FLAG_REBUILD | \
157 CTR_FLAG_DAEMON_SLEEP | \
158 CTR_FLAG_MIN_RECOVERY_RATE | \
159 CTR_FLAG_MAX_RECOVERY_RATE | \
160 CTR_FLAG_REGION_SIZE | \
161 CTR_FLAG_RAID10_COPIES | \
162 CTR_FLAG_RAID10_FORMAT | \
163 CTR_FLAG_DELTA_DISKS | \
164 CTR_FLAG_DATA_OFFSET | \
165 CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167 /*
168 * "raid4/5/6" do not accept any raid1 or raid10 specific options
169 *
170 * "raid6" does not accept "nosync", because it is not guaranteed
171 * that both parity and q-syndrome are being written properly with
172 * any writes
173 */
174 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
175 CTR_FLAG_REBUILD | \
176 CTR_FLAG_DAEMON_SLEEP | \
177 CTR_FLAG_MIN_RECOVERY_RATE | \
178 CTR_FLAG_MAX_RECOVERY_RATE | \
179 CTR_FLAG_STRIPE_CACHE | \
180 CTR_FLAG_REGION_SIZE | \
181 CTR_FLAG_DELTA_DISKS | \
182 CTR_FLAG_DATA_OFFSET | \
183 CTR_FLAG_JOURNAL_DEV | \
184 CTR_FLAG_JOURNAL_MODE)
185
186 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
187 CTR_FLAG_REBUILD | \
188 CTR_FLAG_DAEMON_SLEEP | \
189 CTR_FLAG_MIN_RECOVERY_RATE | \
190 CTR_FLAG_MAX_RECOVERY_RATE | \
191 CTR_FLAG_STRIPE_CACHE | \
192 CTR_FLAG_REGION_SIZE | \
193 CTR_FLAG_DELTA_DISKS | \
194 CTR_FLAG_DATA_OFFSET | \
195 CTR_FLAG_JOURNAL_DEV | \
196 CTR_FLAG_JOURNAL_MODE)
197 /* ...valid options definitions per raid level */
198
199 /*
200 * Flags for rs->runtime_flags field
201 * (RT_FLAG prefix meaning "runtime flag")
202 *
203 * These are all internal and used to define runtime state,
204 * e.g. to prevent another resume from preresume processing
205 * the raid set all over again.
206 */
207 #define RT_FLAG_RS_PRERESUMED 0
208 #define RT_FLAG_RS_RESUMED 1
209 #define RT_FLAG_RS_BITMAP_LOADED 2
210 #define RT_FLAG_UPDATE_SBS 3
211 #define RT_FLAG_RESHAPE_RS 4
212 #define RT_FLAG_RS_SUSPENDED 5
213 #define RT_FLAG_RS_IN_SYNC 6
214 #define RT_FLAG_RS_RESYNCING 7
215 #define RT_FLAG_RS_GROW 8
216
217 /* Array elements of 64 bit needed for rebuild/failed disk bits */
218 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
219
220 /*
221 * raid set level, layout and chunk sectors backup/restore
222 */
223 struct rs_layout {
224 int new_level;
225 int new_layout;
226 int new_chunk_sectors;
227 };
228
229 struct raid_set {
230 struct dm_target *ti;
231
232 uint32_t stripe_cache_entries;
233 unsigned long ctr_flags;
234 unsigned long runtime_flags;
235
236 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
237
238 int raid_disks;
239 int delta_disks;
240 int data_offset;
241 int raid10_copies;
242 int requested_bitmap_chunk_sectors;
243
244 struct mddev md;
245 struct raid_type *raid_type;
246
247 sector_t array_sectors;
248 sector_t dev_sectors;
249
250 /* Optional raid4/5/6 journal device */
251 struct journal_dev {
252 struct dm_dev *dev;
253 struct md_rdev rdev;
254 int mode;
255 } journal_dev;
256
257 struct raid_dev dev[];
258 };
259
rs_config_backup(struct raid_set * rs,struct rs_layout * l)260 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
261 {
262 struct mddev *mddev = &rs->md;
263
264 l->new_level = mddev->new_level;
265 l->new_layout = mddev->new_layout;
266 l->new_chunk_sectors = mddev->new_chunk_sectors;
267 }
268
rs_config_restore(struct raid_set * rs,struct rs_layout * l)269 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
270 {
271 struct mddev *mddev = &rs->md;
272
273 mddev->new_level = l->new_level;
274 mddev->new_layout = l->new_layout;
275 mddev->new_chunk_sectors = l->new_chunk_sectors;
276 }
277
278 /* raid10 algorithms (i.e. formats) */
279 #define ALGORITHM_RAID10_DEFAULT 0
280 #define ALGORITHM_RAID10_NEAR 1
281 #define ALGORITHM_RAID10_OFFSET 2
282 #define ALGORITHM_RAID10_FAR 3
283
284 /* Supported raid types and properties. */
285 static struct raid_type {
286 const char *name; /* RAID algorithm. */
287 const char *descr; /* Descriptor text for logging. */
288 const unsigned int parity_devs; /* # of parity devices. */
289 const unsigned int minimal_devs;/* minimal # of devices in set. */
290 const unsigned int level; /* RAID level. */
291 const unsigned int algorithm; /* RAID algorithm. */
292 } raid_types[] = {
293 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
294 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
295 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
296 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
297 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
298 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
299 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
300 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
301 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
302 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
303 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
304 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
305 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
306 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
307 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
308 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
309 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
310 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
311 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
312 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
313 };
314
315 /* True, if @v is in inclusive range [@min, @max] */
__within_range(long v,long min,long max)316 static bool __within_range(long v, long min, long max)
317 {
318 return v >= min && v <= max;
319 }
320
321 /* All table line arguments are defined here */
322 static struct arg_name_flag {
323 const unsigned long flag;
324 const char *name;
325 } __arg_name_flags[] = {
326 { CTR_FLAG_SYNC, "sync"},
327 { CTR_FLAG_NOSYNC, "nosync"},
328 { CTR_FLAG_REBUILD, "rebuild"},
329 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
330 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
331 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
332 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
333 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
334 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
335 { CTR_FLAG_REGION_SIZE, "region_size"},
336 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
337 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
338 { CTR_FLAG_DATA_OFFSET, "data_offset"},
339 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
340 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
341 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
342 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
343 };
344
345 /* Return argument name string for given @flag */
dm_raid_arg_name_by_flag(const uint32_t flag)346 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
347 {
348 if (hweight32(flag) == 1) {
349 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
350
351 while (anf-- > __arg_name_flags)
352 if (flag & anf->flag)
353 return anf->name;
354
355 } else
356 DMERR("%s called with more than one flag!", __func__);
357
358 return NULL;
359 }
360
361 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
362 static struct {
363 const int mode;
364 const char *param;
365 } _raid456_journal_mode[] = {
366 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
367 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" }
368 };
369
370 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
dm_raid_journal_mode_to_md(const char * mode)371 static int dm_raid_journal_mode_to_md(const char *mode)
372 {
373 int m = ARRAY_SIZE(_raid456_journal_mode);
374
375 while (m--)
376 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
377 return _raid456_journal_mode[m].mode;
378
379 return -EINVAL;
380 }
381
382 /* Return dm-raid raid4/5/6 journal mode string for @mode */
md_journal_mode_to_dm_raid(const int mode)383 static const char *md_journal_mode_to_dm_raid(const int mode)
384 {
385 int m = ARRAY_SIZE(_raid456_journal_mode);
386
387 while (m--)
388 if (mode == _raid456_journal_mode[m].mode)
389 return _raid456_journal_mode[m].param;
390
391 return "unknown";
392 }
393
394 /*
395 * Bool helpers to test for various raid levels of a raid set.
396 * It's level as reported by the superblock rather than
397 * the requested raid_type passed to the constructor.
398 */
399 /* Return true, if raid set in @rs is raid0 */
rs_is_raid0(struct raid_set * rs)400 static bool rs_is_raid0(struct raid_set *rs)
401 {
402 return !rs->md.level;
403 }
404
405 /* Return true, if raid set in @rs is raid1 */
rs_is_raid1(struct raid_set * rs)406 static bool rs_is_raid1(struct raid_set *rs)
407 {
408 return rs->md.level == 1;
409 }
410
411 /* Return true, if raid set in @rs is raid10 */
rs_is_raid10(struct raid_set * rs)412 static bool rs_is_raid10(struct raid_set *rs)
413 {
414 return rs->md.level == 10;
415 }
416
417 /* Return true, if raid set in @rs is level 6 */
rs_is_raid6(struct raid_set * rs)418 static bool rs_is_raid6(struct raid_set *rs)
419 {
420 return rs->md.level == 6;
421 }
422
423 /* Return true, if raid set in @rs is level 4, 5 or 6 */
rs_is_raid456(struct raid_set * rs)424 static bool rs_is_raid456(struct raid_set *rs)
425 {
426 return __within_range(rs->md.level, 4, 6);
427 }
428
429 /* Return true, if raid set in @rs is reshapable */
430 static bool __is_raid10_far(int layout);
rs_is_reshapable(struct raid_set * rs)431 static bool rs_is_reshapable(struct raid_set *rs)
432 {
433 return rs_is_raid456(rs) ||
434 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
435 }
436
437 /* Return true, if raid set in @rs is recovering */
rs_is_recovering(struct raid_set * rs)438 static bool rs_is_recovering(struct raid_set *rs)
439 {
440 return rs->md.recovery_cp < rs->md.dev_sectors;
441 }
442
443 /* Return true, if raid set in @rs is reshaping */
rs_is_reshaping(struct raid_set * rs)444 static bool rs_is_reshaping(struct raid_set *rs)
445 {
446 return rs->md.reshape_position != MaxSector;
447 }
448
449 /*
450 * bool helpers to test for various raid levels of a raid type @rt
451 */
452
453 /* Return true, if raid type in @rt is raid0 */
rt_is_raid0(struct raid_type * rt)454 static bool rt_is_raid0(struct raid_type *rt)
455 {
456 return !rt->level;
457 }
458
459 /* Return true, if raid type in @rt is raid1 */
rt_is_raid1(struct raid_type * rt)460 static bool rt_is_raid1(struct raid_type *rt)
461 {
462 return rt->level == 1;
463 }
464
465 /* Return true, if raid type in @rt is raid10 */
rt_is_raid10(struct raid_type * rt)466 static bool rt_is_raid10(struct raid_type *rt)
467 {
468 return rt->level == 10;
469 }
470
471 /* Return true, if raid type in @rt is raid4/5 */
rt_is_raid45(struct raid_type * rt)472 static bool rt_is_raid45(struct raid_type *rt)
473 {
474 return __within_range(rt->level, 4, 5);
475 }
476
477 /* Return true, if raid type in @rt is raid6 */
rt_is_raid6(struct raid_type * rt)478 static bool rt_is_raid6(struct raid_type *rt)
479 {
480 return rt->level == 6;
481 }
482
483 /* Return true, if raid type in @rt is raid4/5/6 */
rt_is_raid456(struct raid_type * rt)484 static bool rt_is_raid456(struct raid_type *rt)
485 {
486 return __within_range(rt->level, 4, 6);
487 }
488 /* END: raid level bools */
489
490 /* Return valid ctr flags for the raid level of @rs */
__valid_flags(struct raid_set * rs)491 static unsigned long __valid_flags(struct raid_set *rs)
492 {
493 if (rt_is_raid0(rs->raid_type))
494 return RAID0_VALID_FLAGS;
495 else if (rt_is_raid1(rs->raid_type))
496 return RAID1_VALID_FLAGS;
497 else if (rt_is_raid10(rs->raid_type))
498 return RAID10_VALID_FLAGS;
499 else if (rt_is_raid45(rs->raid_type))
500 return RAID45_VALID_FLAGS;
501 else if (rt_is_raid6(rs->raid_type))
502 return RAID6_VALID_FLAGS;
503
504 return 0;
505 }
506
507 /*
508 * Check for valid flags set on @rs
509 *
510 * Has to be called after parsing of the ctr flags!
511 */
rs_check_for_valid_flags(struct raid_set * rs)512 static int rs_check_for_valid_flags(struct raid_set *rs)
513 {
514 if (rs->ctr_flags & ~__valid_flags(rs)) {
515 rs->ti->error = "Invalid flags combination";
516 return -EINVAL;
517 }
518
519 return 0;
520 }
521
522 /* MD raid10 bit definitions and helpers */
523 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
524 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
525 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
526 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
527
528 /* Return md raid10 near copies for @layout */
__raid10_near_copies(int layout)529 static unsigned int __raid10_near_copies(int layout)
530 {
531 return layout & 0xFF;
532 }
533
534 /* Return md raid10 far copies for @layout */
__raid10_far_copies(int layout)535 static unsigned int __raid10_far_copies(int layout)
536 {
537 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
538 }
539
540 /* Return true if md raid10 offset for @layout */
__is_raid10_offset(int layout)541 static bool __is_raid10_offset(int layout)
542 {
543 return !!(layout & RAID10_OFFSET);
544 }
545
546 /* Return true if md raid10 near for @layout */
__is_raid10_near(int layout)547 static bool __is_raid10_near(int layout)
548 {
549 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
550 }
551
552 /* Return true if md raid10 far for @layout */
__is_raid10_far(int layout)553 static bool __is_raid10_far(int layout)
554 {
555 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
556 }
557
558 /* Return md raid10 layout string for @layout */
raid10_md_layout_to_format(int layout)559 static const char *raid10_md_layout_to_format(int layout)
560 {
561 /*
562 * Bit 16 stands for "offset"
563 * (i.e. adjacent stripes hold copies)
564 *
565 * Refer to MD's raid10.c for details
566 */
567 if (__is_raid10_offset(layout))
568 return "offset";
569
570 if (__raid10_near_copies(layout) > 1)
571 return "near";
572
573 if (__raid10_far_copies(layout) > 1)
574 return "far";
575
576 return "unknown";
577 }
578
579 /* Return md raid10 algorithm for @name */
raid10_name_to_format(const char * name)580 static int raid10_name_to_format(const char *name)
581 {
582 if (!strcasecmp(name, "near"))
583 return ALGORITHM_RAID10_NEAR;
584 else if (!strcasecmp(name, "offset"))
585 return ALGORITHM_RAID10_OFFSET;
586 else if (!strcasecmp(name, "far"))
587 return ALGORITHM_RAID10_FAR;
588
589 return -EINVAL;
590 }
591
592 /* Return md raid10 copies for @layout */
raid10_md_layout_to_copies(int layout)593 static unsigned int raid10_md_layout_to_copies(int layout)
594 {
595 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
596 }
597
598 /* Return md raid10 format id for @format string */
raid10_format_to_md_layout(struct raid_set * rs,unsigned int algorithm,unsigned int copies)599 static int raid10_format_to_md_layout(struct raid_set *rs,
600 unsigned int algorithm,
601 unsigned int copies)
602 {
603 unsigned int n = 1, f = 1, r = 0;
604
605 /*
606 * MD resilienece flaw:
607 *
608 * enabling use_far_sets for far/offset formats causes copies
609 * to be colocated on the same devs together with their origins!
610 *
611 * -> disable it for now in the definition above
612 */
613 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
614 algorithm == ALGORITHM_RAID10_NEAR)
615 n = copies;
616
617 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
618 f = copies;
619 r = RAID10_OFFSET;
620 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621 r |= RAID10_USE_FAR_SETS;
622
623 } else if (algorithm == ALGORITHM_RAID10_FAR) {
624 f = copies;
625 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
626 r |= RAID10_USE_FAR_SETS;
627
628 } else
629 return -EINVAL;
630
631 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
632 }
633 /* END: MD raid10 bit definitions and helpers */
634
635 /* Check for any of the raid10 algorithms */
__got_raid10(struct raid_type * rtp,const int layout)636 static bool __got_raid10(struct raid_type *rtp, const int layout)
637 {
638 if (rtp->level == 10) {
639 switch (rtp->algorithm) {
640 case ALGORITHM_RAID10_DEFAULT:
641 case ALGORITHM_RAID10_NEAR:
642 return __is_raid10_near(layout);
643 case ALGORITHM_RAID10_OFFSET:
644 return __is_raid10_offset(layout);
645 case ALGORITHM_RAID10_FAR:
646 return __is_raid10_far(layout);
647 default:
648 break;
649 }
650 }
651
652 return false;
653 }
654
655 /* Return raid_type for @name */
get_raid_type(const char * name)656 static struct raid_type *get_raid_type(const char *name)
657 {
658 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
659
660 while (rtp-- > raid_types)
661 if (!strcasecmp(rtp->name, name))
662 return rtp;
663
664 return NULL;
665 }
666
667 /* Return raid_type for @name based derived from @level and @layout */
get_raid_type_by_ll(const int level,const int layout)668 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
669 {
670 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671
672 while (rtp-- > raid_types) {
673 /* RAID10 special checks based on @layout flags/properties */
674 if (rtp->level == level &&
675 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
676 return rtp;
677 }
678
679 return NULL;
680 }
681
682 /* Adjust rdev sectors */
rs_set_rdev_sectors(struct raid_set * rs)683 static void rs_set_rdev_sectors(struct raid_set *rs)
684 {
685 struct mddev *mddev = &rs->md;
686 struct md_rdev *rdev;
687
688 /*
689 * raid10 sets rdev->sector to the device size, which
690 * is unintended in case of out-of-place reshaping
691 */
692 rdev_for_each(rdev, mddev)
693 if (!test_bit(Journal, &rdev->flags))
694 rdev->sectors = mddev->dev_sectors;
695 }
696
697 /*
698 * Change bdev capacity of @rs in case of a disk add/remove reshape
699 */
rs_set_capacity(struct raid_set * rs)700 static void rs_set_capacity(struct raid_set *rs)
701 {
702 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
703
704 set_capacity_and_notify(gendisk, rs->md.array_sectors);
705 }
706
707 /*
708 * Set the mddev properties in @rs to the current
709 * ones retrieved from the freshest superblock
710 */
rs_set_cur(struct raid_set * rs)711 static void rs_set_cur(struct raid_set *rs)
712 {
713 struct mddev *mddev = &rs->md;
714
715 mddev->new_level = mddev->level;
716 mddev->new_layout = mddev->layout;
717 mddev->new_chunk_sectors = mddev->chunk_sectors;
718 }
719
720 /*
721 * Set the mddev properties in @rs to the new
722 * ones requested by the ctr
723 */
rs_set_new(struct raid_set * rs)724 static void rs_set_new(struct raid_set *rs)
725 {
726 struct mddev *mddev = &rs->md;
727
728 mddev->level = mddev->new_level;
729 mddev->layout = mddev->new_layout;
730 mddev->chunk_sectors = mddev->new_chunk_sectors;
731 mddev->raid_disks = rs->raid_disks;
732 mddev->delta_disks = 0;
733 }
734
raid_set_alloc(struct dm_target * ti,struct raid_type * raid_type,unsigned int raid_devs)735 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736 unsigned int raid_devs)
737 {
738 unsigned int i;
739 struct raid_set *rs;
740
741 if (raid_devs <= raid_type->parity_devs) {
742 ti->error = "Insufficient number of devices";
743 return ERR_PTR(-EINVAL);
744 }
745
746 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747 if (!rs) {
748 ti->error = "Cannot allocate raid context";
749 return ERR_PTR(-ENOMEM);
750 }
751
752 mddev_init(&rs->md);
753
754 rs->raid_disks = raid_devs;
755 rs->delta_disks = 0;
756
757 rs->ti = ti;
758 rs->raid_type = raid_type;
759 rs->stripe_cache_entries = 256;
760 rs->md.raid_disks = raid_devs;
761 rs->md.level = raid_type->level;
762 rs->md.new_level = rs->md.level;
763 rs->md.layout = raid_type->algorithm;
764 rs->md.new_layout = rs->md.layout;
765 rs->md.delta_disks = 0;
766 rs->md.recovery_cp = MaxSector;
767
768 for (i = 0; i < raid_devs; i++)
769 md_rdev_init(&rs->dev[i].rdev);
770
771 /*
772 * Remaining items to be initialized by further RAID params:
773 * rs->md.persistent
774 * rs->md.external
775 * rs->md.chunk_sectors
776 * rs->md.new_chunk_sectors
777 * rs->md.dev_sectors
778 */
779
780 return rs;
781 }
782
783 /* Free all @rs allocations */
raid_set_free(struct raid_set * rs)784 static void raid_set_free(struct raid_set *rs)
785 {
786 int i;
787
788 if (rs->journal_dev.dev) {
789 md_rdev_clear(&rs->journal_dev.rdev);
790 dm_put_device(rs->ti, rs->journal_dev.dev);
791 }
792
793 for (i = 0; i < rs->raid_disks; i++) {
794 if (rs->dev[i].meta_dev)
795 dm_put_device(rs->ti, rs->dev[i].meta_dev);
796 md_rdev_clear(&rs->dev[i].rdev);
797 if (rs->dev[i].data_dev)
798 dm_put_device(rs->ti, rs->dev[i].data_dev);
799 }
800
801 kfree(rs);
802 }
803
804 /*
805 * For every device we have two words
806 * <meta_dev>: meta device name or '-' if missing
807 * <data_dev>: data device name or '-' if missing
808 *
809 * The following are permitted:
810 * - -
811 * - <data_dev>
812 * <meta_dev> <data_dev>
813 *
814 * The following is not allowed:
815 * <meta_dev> -
816 *
817 * This code parses those words. If there is a failure,
818 * the caller must use raid_set_free() to unwind the operations.
819 */
parse_dev_params(struct raid_set * rs,struct dm_arg_set * as)820 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
821 {
822 int i;
823 int rebuild = 0;
824 int metadata_available = 0;
825 int r = 0;
826 const char *arg;
827
828 /* Put off the number of raid devices argument to get to dev pairs */
829 arg = dm_shift_arg(as);
830 if (!arg)
831 return -EINVAL;
832
833 for (i = 0; i < rs->raid_disks; i++) {
834 rs->dev[i].rdev.raid_disk = i;
835
836 rs->dev[i].meta_dev = NULL;
837 rs->dev[i].data_dev = NULL;
838
839 /*
840 * There are no offsets initially.
841 * Out of place reshape will set them accordingly.
842 */
843 rs->dev[i].rdev.data_offset = 0;
844 rs->dev[i].rdev.new_data_offset = 0;
845 rs->dev[i].rdev.mddev = &rs->md;
846
847 arg = dm_shift_arg(as);
848 if (!arg)
849 return -EINVAL;
850
851 if (strcmp(arg, "-")) {
852 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
853 &rs->dev[i].meta_dev);
854 if (r) {
855 rs->ti->error = "RAID metadata device lookup failure";
856 return r;
857 }
858
859 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
860 if (!rs->dev[i].rdev.sb_page) {
861 rs->ti->error = "Failed to allocate superblock page";
862 return -ENOMEM;
863 }
864 }
865
866 arg = dm_shift_arg(as);
867 if (!arg)
868 return -EINVAL;
869
870 if (!strcmp(arg, "-")) {
871 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
872 (!rs->dev[i].rdev.recovery_offset)) {
873 rs->ti->error = "Drive designated for rebuild not specified";
874 return -EINVAL;
875 }
876
877 if (rs->dev[i].meta_dev) {
878 rs->ti->error = "No data device supplied with metadata device";
879 return -EINVAL;
880 }
881
882 continue;
883 }
884
885 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
886 &rs->dev[i].data_dev);
887 if (r) {
888 rs->ti->error = "RAID device lookup failure";
889 return r;
890 }
891
892 if (rs->dev[i].meta_dev) {
893 metadata_available = 1;
894 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
895 }
896 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
897 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
898 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
899 rebuild++;
900 }
901
902 if (rs->journal_dev.dev)
903 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
904
905 if (metadata_available) {
906 rs->md.external = 0;
907 rs->md.persistent = 1;
908 rs->md.major_version = 2;
909 } else if (rebuild && !rs->md.recovery_cp) {
910 /*
911 * Without metadata, we will not be able to tell if the array
912 * is in-sync or not - we must assume it is not. Therefore,
913 * it is impossible to rebuild a drive.
914 *
915 * Even if there is metadata, the on-disk information may
916 * indicate that the array is not in-sync and it will then
917 * fail at that time.
918 *
919 * User could specify 'nosync' option if desperate.
920 */
921 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
922 return -EINVAL;
923 }
924
925 return 0;
926 }
927
928 /*
929 * validate_region_size
930 * @rs
931 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
932 *
933 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
934 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
935 *
936 * Returns: 0 on success, -EINVAL on failure.
937 */
validate_region_size(struct raid_set * rs,unsigned long region_size)938 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
939 {
940 unsigned long min_region_size = rs->ti->len / (1 << 21);
941
942 if (rs_is_raid0(rs))
943 return 0;
944
945 if (!region_size) {
946 /*
947 * Choose a reasonable default. All figures in sectors.
948 */
949 if (min_region_size > (1 << 13)) {
950 /* If not a power of 2, make it the next power of 2 */
951 region_size = roundup_pow_of_two(min_region_size);
952 DMINFO("Choosing default region size of %lu sectors",
953 region_size);
954 } else {
955 DMINFO("Choosing default region size of 4MiB");
956 region_size = 1 << 13; /* sectors */
957 }
958 } else {
959 /*
960 * Validate user-supplied value.
961 */
962 if (region_size > rs->ti->len) {
963 rs->ti->error = "Supplied region size is too large";
964 return -EINVAL;
965 }
966
967 if (region_size < min_region_size) {
968 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
969 region_size, min_region_size);
970 rs->ti->error = "Supplied region size is too small";
971 return -EINVAL;
972 }
973
974 if (!is_power_of_2(region_size)) {
975 rs->ti->error = "Region size is not a power of 2";
976 return -EINVAL;
977 }
978
979 if (region_size < rs->md.chunk_sectors) {
980 rs->ti->error = "Region size is smaller than the chunk size";
981 return -EINVAL;
982 }
983 }
984
985 /*
986 * Convert sectors to bytes.
987 */
988 rs->md.bitmap_info.chunksize = to_bytes(region_size);
989
990 return 0;
991 }
992
993 /*
994 * validate_raid_redundancy
995 * @rs
996 *
997 * Determine if there are enough devices in the array that haven't
998 * failed (or are being rebuilt) to form a usable array.
999 *
1000 * Returns: 0 on success, -EINVAL on failure.
1001 */
validate_raid_redundancy(struct raid_set * rs)1002 static int validate_raid_redundancy(struct raid_set *rs)
1003 {
1004 unsigned int i, rebuild_cnt = 0;
1005 unsigned int rebuilds_per_group = 0, copies, raid_disks;
1006 unsigned int group_size, last_group_start;
1007
1008 for (i = 0; i < rs->raid_disks; i++)
1009 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1010 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1011 !rs->dev[i].rdev.sb_page)))
1012 rebuild_cnt++;
1013
1014 switch (rs->md.level) {
1015 case 0:
1016 break;
1017 case 1:
1018 if (rebuild_cnt >= rs->md.raid_disks)
1019 goto too_many;
1020 break;
1021 case 4:
1022 case 5:
1023 case 6:
1024 if (rebuild_cnt > rs->raid_type->parity_devs)
1025 goto too_many;
1026 break;
1027 case 10:
1028 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1029 if (copies < 2) {
1030 DMERR("Bogus raid10 data copies < 2!");
1031 return -EINVAL;
1032 }
1033
1034 if (rebuild_cnt < copies)
1035 break;
1036
1037 /*
1038 * It is possible to have a higher rebuild count for RAID10,
1039 * as long as the failed devices occur in different mirror
1040 * groups (i.e. different stripes).
1041 *
1042 * When checking "near" format, make sure no adjacent devices
1043 * have failed beyond what can be handled. In addition to the
1044 * simple case where the number of devices is a multiple of the
1045 * number of copies, we must also handle cases where the number
1046 * of devices is not a multiple of the number of copies.
1047 * E.g. dev1 dev2 dev3 dev4 dev5
1048 * A A B B C
1049 * C D D E E
1050 */
1051 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1052 if (__is_raid10_near(rs->md.new_layout)) {
1053 for (i = 0; i < raid_disks; i++) {
1054 if (!(i % copies))
1055 rebuilds_per_group = 0;
1056 if ((!rs->dev[i].rdev.sb_page ||
1057 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1058 (++rebuilds_per_group >= copies))
1059 goto too_many;
1060 }
1061 break;
1062 }
1063
1064 /*
1065 * When checking "far" and "offset" formats, we need to ensure
1066 * that the device that holds its copy is not also dead or
1067 * being rebuilt. (Note that "far" and "offset" formats only
1068 * support two copies right now. These formats also only ever
1069 * use the 'use_far_sets' variant.)
1070 *
1071 * This check is somewhat complicated by the need to account
1072 * for arrays that are not a multiple of (far) copies. This
1073 * results in the need to treat the last (potentially larger)
1074 * set differently.
1075 */
1076 group_size = (raid_disks / copies);
1077 last_group_start = (raid_disks / group_size) - 1;
1078 last_group_start *= group_size;
1079 for (i = 0; i < raid_disks; i++) {
1080 if (!(i % copies) && !(i > last_group_start))
1081 rebuilds_per_group = 0;
1082 if ((!rs->dev[i].rdev.sb_page ||
1083 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1084 (++rebuilds_per_group >= copies))
1085 goto too_many;
1086 }
1087 break;
1088 default:
1089 if (rebuild_cnt)
1090 return -EINVAL;
1091 }
1092
1093 return 0;
1094
1095 too_many:
1096 return -EINVAL;
1097 }
1098
1099 /*
1100 * Possible arguments are...
1101 * <chunk_size> [optional_args]
1102 *
1103 * Argument definitions
1104 * <chunk_size> The number of sectors per disk that
1105 * will form the "stripe"
1106 * [[no]sync] Force or prevent recovery of the
1107 * entire array
1108 * [rebuild <idx>] Rebuild the drive indicated by the index
1109 * [daemon_sleep <ms>] Time between bitmap daemon work to
1110 * clear bits
1111 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1112 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1113 * [write_mostly <idx>] Indicate a write mostly drive via index
1114 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1115 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1116 * [region_size <sectors>] Defines granularity of bitmap
1117 * [journal_dev <dev>] raid4/5/6 journaling deviice
1118 * (i.e. write hole closing log)
1119 *
1120 * RAID10-only options:
1121 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1122 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1123 */
parse_raid_params(struct raid_set * rs,struct dm_arg_set * as,unsigned int num_raid_params)1124 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1125 unsigned int num_raid_params)
1126 {
1127 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1128 unsigned int raid10_copies = 2;
1129 unsigned int i, write_mostly = 0;
1130 unsigned int region_size = 0;
1131 sector_t max_io_len;
1132 const char *arg, *key;
1133 struct raid_dev *rd;
1134 struct raid_type *rt = rs->raid_type;
1135
1136 arg = dm_shift_arg(as);
1137 num_raid_params--; /* Account for chunk_size argument */
1138
1139 if (kstrtoint(arg, 10, &value) < 0) {
1140 rs->ti->error = "Bad numerical argument given for chunk_size";
1141 return -EINVAL;
1142 }
1143
1144 /*
1145 * First, parse the in-order required arguments
1146 * "chunk_size" is the only argument of this type.
1147 */
1148 if (rt_is_raid1(rt)) {
1149 if (value)
1150 DMERR("Ignoring chunk size parameter for RAID 1");
1151 value = 0;
1152 } else if (!is_power_of_2(value)) {
1153 rs->ti->error = "Chunk size must be a power of 2";
1154 return -EINVAL;
1155 } else if (value < 8) {
1156 rs->ti->error = "Chunk size value is too small";
1157 return -EINVAL;
1158 }
1159
1160 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1161
1162 /*
1163 * We set each individual device as In_sync with a completed
1164 * 'recovery_offset'. If there has been a device failure or
1165 * replacement then one of the following cases applies:
1166 *
1167 * 1) User specifies 'rebuild'.
1168 * - Device is reset when param is read.
1169 * 2) A new device is supplied.
1170 * - No matching superblock found, resets device.
1171 * 3) Device failure was transient and returns on reload.
1172 * - Failure noticed, resets device for bitmap replay.
1173 * 4) Device hadn't completed recovery after previous failure.
1174 * - Superblock is read and overrides recovery_offset.
1175 *
1176 * What is found in the superblocks of the devices is always
1177 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1178 */
1179 for (i = 0; i < rs->raid_disks; i++) {
1180 set_bit(In_sync, &rs->dev[i].rdev.flags);
1181 rs->dev[i].rdev.recovery_offset = MaxSector;
1182 }
1183
1184 /*
1185 * Second, parse the unordered optional arguments
1186 */
1187 for (i = 0; i < num_raid_params; i++) {
1188 key = dm_shift_arg(as);
1189 if (!key) {
1190 rs->ti->error = "Not enough raid parameters given";
1191 return -EINVAL;
1192 }
1193
1194 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1195 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1196 rs->ti->error = "Only one 'nosync' argument allowed";
1197 return -EINVAL;
1198 }
1199 continue;
1200 }
1201 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1202 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1203 rs->ti->error = "Only one 'sync' argument allowed";
1204 return -EINVAL;
1205 }
1206 continue;
1207 }
1208 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1209 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1210 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1211 return -EINVAL;
1212 }
1213 continue;
1214 }
1215
1216 arg = dm_shift_arg(as);
1217 i++; /* Account for the argument pairs */
1218 if (!arg) {
1219 rs->ti->error = "Wrong number of raid parameters given";
1220 return -EINVAL;
1221 }
1222
1223 /*
1224 * Parameters that take a string value are checked here.
1225 */
1226 /* "raid10_format {near|offset|far} */
1227 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1228 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1229 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1230 return -EINVAL;
1231 }
1232 if (!rt_is_raid10(rt)) {
1233 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1234 return -EINVAL;
1235 }
1236 raid10_format = raid10_name_to_format(arg);
1237 if (raid10_format < 0) {
1238 rs->ti->error = "Invalid 'raid10_format' value given";
1239 return raid10_format;
1240 }
1241 continue;
1242 }
1243
1244 /* "journal_dev <dev>" */
1245 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1246 int r;
1247 struct md_rdev *jdev;
1248
1249 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1250 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1251 return -EINVAL;
1252 }
1253 if (!rt_is_raid456(rt)) {
1254 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1255 return -EINVAL;
1256 }
1257 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1258 &rs->journal_dev.dev);
1259 if (r) {
1260 rs->ti->error = "raid4/5/6 journal device lookup failure";
1261 return r;
1262 }
1263 jdev = &rs->journal_dev.rdev;
1264 md_rdev_init(jdev);
1265 jdev->mddev = &rs->md;
1266 jdev->bdev = rs->journal_dev.dev->bdev;
1267 jdev->sectors = bdev_nr_sectors(jdev->bdev);
1268 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1269 rs->ti->error = "No space for raid4/5/6 journal";
1270 return -ENOSPC;
1271 }
1272 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1273 set_bit(Journal, &jdev->flags);
1274 continue;
1275 }
1276
1277 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1278 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1279 int r;
1280
1281 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1282 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1283 return -EINVAL;
1284 }
1285 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1286 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1287 return -EINVAL;
1288 }
1289 r = dm_raid_journal_mode_to_md(arg);
1290 if (r < 0) {
1291 rs->ti->error = "Invalid 'journal_mode' argument";
1292 return r;
1293 }
1294 rs->journal_dev.mode = r;
1295 continue;
1296 }
1297
1298 /*
1299 * Parameters with number values from here on.
1300 */
1301 if (kstrtoint(arg, 10, &value) < 0) {
1302 rs->ti->error = "Bad numerical argument given in raid params";
1303 return -EINVAL;
1304 }
1305
1306 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1307 /*
1308 * "rebuild" is being passed in by userspace to provide
1309 * indexes of replaced devices and to set up additional
1310 * devices on raid level takeover.
1311 */
1312 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1313 rs->ti->error = "Invalid rebuild index given";
1314 return -EINVAL;
1315 }
1316
1317 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1318 rs->ti->error = "rebuild for this index already given";
1319 return -EINVAL;
1320 }
1321
1322 rd = rs->dev + value;
1323 clear_bit(In_sync, &rd->rdev.flags);
1324 clear_bit(Faulty, &rd->rdev.flags);
1325 rd->rdev.recovery_offset = 0;
1326 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1327 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1328 if (!rt_is_raid1(rt)) {
1329 rs->ti->error = "write_mostly option is only valid for RAID1";
1330 return -EINVAL;
1331 }
1332
1333 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1334 rs->ti->error = "Invalid write_mostly index given";
1335 return -EINVAL;
1336 }
1337
1338 write_mostly++;
1339 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1340 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1341 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1342 if (!rt_is_raid1(rt)) {
1343 rs->ti->error = "max_write_behind option is only valid for RAID1";
1344 return -EINVAL;
1345 }
1346
1347 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1348 rs->ti->error = "Only one max_write_behind argument pair allowed";
1349 return -EINVAL;
1350 }
1351
1352 /*
1353 * In device-mapper, we specify things in sectors, but
1354 * MD records this value in kB
1355 */
1356 if (value < 0 || value / 2 > COUNTER_MAX) {
1357 rs->ti->error = "Max write-behind limit out of range";
1358 return -EINVAL;
1359 }
1360
1361 rs->md.bitmap_info.max_write_behind = value / 2;
1362 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1363 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1364 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1365 return -EINVAL;
1366 }
1367 if (value < 0) {
1368 rs->ti->error = "daemon sleep period out of range";
1369 return -EINVAL;
1370 }
1371 rs->md.bitmap_info.daemon_sleep = value;
1372 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1373 /* Userspace passes new data_offset after having extended the data image LV */
1374 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1375 rs->ti->error = "Only one data_offset argument pair allowed";
1376 return -EINVAL;
1377 }
1378 /* Ensure sensible data offset */
1379 if (value < 0 ||
1380 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1381 rs->ti->error = "Bogus data_offset value";
1382 return -EINVAL;
1383 }
1384 rs->data_offset = value;
1385 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1386 /* Define the +/-# of disks to add to/remove from the given raid set */
1387 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1388 rs->ti->error = "Only one delta_disks argument pair allowed";
1389 return -EINVAL;
1390 }
1391 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1392 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1393 rs->ti->error = "Too many delta_disk requested";
1394 return -EINVAL;
1395 }
1396
1397 rs->delta_disks = value;
1398 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1399 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1400 rs->ti->error = "Only one stripe_cache argument pair allowed";
1401 return -EINVAL;
1402 }
1403
1404 if (!rt_is_raid456(rt)) {
1405 rs->ti->error = "Inappropriate argument: stripe_cache";
1406 return -EINVAL;
1407 }
1408
1409 if (value < 0) {
1410 rs->ti->error = "Bogus stripe cache entries value";
1411 return -EINVAL;
1412 }
1413 rs->stripe_cache_entries = value;
1414 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1415 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1416 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1417 return -EINVAL;
1418 }
1419
1420 if (value < 0) {
1421 rs->ti->error = "min_recovery_rate out of range";
1422 return -EINVAL;
1423 }
1424 rs->md.sync_speed_min = value;
1425 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1426 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1427 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1428 return -EINVAL;
1429 }
1430
1431 if (value < 0) {
1432 rs->ti->error = "max_recovery_rate out of range";
1433 return -EINVAL;
1434 }
1435 rs->md.sync_speed_max = value;
1436 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1437 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1438 rs->ti->error = "Only one region_size argument pair allowed";
1439 return -EINVAL;
1440 }
1441
1442 region_size = value;
1443 rs->requested_bitmap_chunk_sectors = value;
1444 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1445 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1446 rs->ti->error = "Only one raid10_copies argument pair allowed";
1447 return -EINVAL;
1448 }
1449
1450 if (!__within_range(value, 2, rs->md.raid_disks)) {
1451 rs->ti->error = "Bad value for 'raid10_copies'";
1452 return -EINVAL;
1453 }
1454
1455 raid10_copies = value;
1456 } else {
1457 DMERR("Unable to parse RAID parameter: %s", key);
1458 rs->ti->error = "Unable to parse RAID parameter";
1459 return -EINVAL;
1460 }
1461 }
1462
1463 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1464 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1465 rs->ti->error = "sync and nosync are mutually exclusive";
1466 return -EINVAL;
1467 }
1468
1469 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1470 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1471 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1472 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1473 return -EINVAL;
1474 }
1475
1476 if (write_mostly >= rs->md.raid_disks) {
1477 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1478 return -EINVAL;
1479 }
1480
1481 if (rs->md.sync_speed_max &&
1482 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1483 rs->ti->error = "Bogus recovery rates";
1484 return -EINVAL;
1485 }
1486
1487 if (validate_region_size(rs, region_size))
1488 return -EINVAL;
1489
1490 if (rs->md.chunk_sectors)
1491 max_io_len = rs->md.chunk_sectors;
1492 else
1493 max_io_len = region_size;
1494
1495 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1496 return -EINVAL;
1497
1498 if (rt_is_raid10(rt)) {
1499 if (raid10_copies > rs->md.raid_disks) {
1500 rs->ti->error = "Not enough devices to satisfy specification";
1501 return -EINVAL;
1502 }
1503
1504 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1505 if (rs->md.new_layout < 0) {
1506 rs->ti->error = "Error getting raid10 format";
1507 return rs->md.new_layout;
1508 }
1509
1510 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1511 if (!rt) {
1512 rs->ti->error = "Failed to recognize new raid10 layout";
1513 return -EINVAL;
1514 }
1515
1516 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1517 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1518 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1519 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1520 return -EINVAL;
1521 }
1522 }
1523
1524 rs->raid10_copies = raid10_copies;
1525
1526 /* Assume there are no metadata devices until the drives are parsed */
1527 rs->md.persistent = 0;
1528 rs->md.external = 1;
1529
1530 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1531 return rs_check_for_valid_flags(rs);
1532 }
1533
1534 /* Set raid4/5/6 cache size */
rs_set_raid456_stripe_cache(struct raid_set * rs)1535 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1536 {
1537 int r;
1538 struct r5conf *conf;
1539 struct mddev *mddev = &rs->md;
1540 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1541 uint32_t nr_stripes = rs->stripe_cache_entries;
1542
1543 if (!rt_is_raid456(rs->raid_type)) {
1544 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1545 return -EINVAL;
1546 }
1547
1548 if (nr_stripes < min_stripes) {
1549 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1550 nr_stripes, min_stripes);
1551 nr_stripes = min_stripes;
1552 }
1553
1554 conf = mddev->private;
1555 if (!conf) {
1556 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1557 return -EINVAL;
1558 }
1559
1560 /* Try setting number of stripes in raid456 stripe cache */
1561 if (conf->min_nr_stripes != nr_stripes) {
1562 r = raid5_set_cache_size(mddev, nr_stripes);
1563 if (r) {
1564 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1565 return r;
1566 }
1567
1568 DMINFO("%u stripe cache entries", nr_stripes);
1569 }
1570
1571 return 0;
1572 }
1573
1574 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
mddev_data_stripes(struct raid_set * rs)1575 static unsigned int mddev_data_stripes(struct raid_set *rs)
1576 {
1577 return rs->md.raid_disks - rs->raid_type->parity_devs;
1578 }
1579
1580 /* Return # of data stripes of @rs (i.e. as of ctr) */
rs_data_stripes(struct raid_set * rs)1581 static unsigned int rs_data_stripes(struct raid_set *rs)
1582 {
1583 return rs->raid_disks - rs->raid_type->parity_devs;
1584 }
1585
1586 /*
1587 * Retrieve rdev->sectors from any valid raid device of @rs
1588 * to allow userpace to pass in arbitray "- -" device tupples.
1589 */
__rdev_sectors(struct raid_set * rs)1590 static sector_t __rdev_sectors(struct raid_set *rs)
1591 {
1592 int i;
1593
1594 for (i = 0; i < rs->raid_disks; i++) {
1595 struct md_rdev *rdev = &rs->dev[i].rdev;
1596
1597 if (!test_bit(Journal, &rdev->flags) &&
1598 rdev->bdev && rdev->sectors)
1599 return rdev->sectors;
1600 }
1601
1602 return 0;
1603 }
1604
1605 /* Check that calculated dev_sectors fits all component devices. */
_check_data_dev_sectors(struct raid_set * rs)1606 static int _check_data_dev_sectors(struct raid_set *rs)
1607 {
1608 sector_t ds = ~0;
1609 struct md_rdev *rdev;
1610
1611 rdev_for_each(rdev, &rs->md)
1612 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1613 ds = min(ds, bdev_nr_sectors(rdev->bdev));
1614 if (ds < rs->md.dev_sectors) {
1615 rs->ti->error = "Component device(s) too small";
1616 return -EINVAL;
1617 }
1618 }
1619
1620 return 0;
1621 }
1622
1623 /* Calculate the sectors per device and per array used for @rs */
rs_set_dev_and_array_sectors(struct raid_set * rs,sector_t sectors,bool use_mddev)1624 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1625 {
1626 int delta_disks;
1627 unsigned int data_stripes;
1628 sector_t array_sectors = sectors, dev_sectors = sectors;
1629 struct mddev *mddev = &rs->md;
1630
1631 if (use_mddev) {
1632 delta_disks = mddev->delta_disks;
1633 data_stripes = mddev_data_stripes(rs);
1634 } else {
1635 delta_disks = rs->delta_disks;
1636 data_stripes = rs_data_stripes(rs);
1637 }
1638
1639 /* Special raid1 case w/o delta_disks support (yet) */
1640 if (rt_is_raid1(rs->raid_type))
1641 ;
1642 else if (rt_is_raid10(rs->raid_type)) {
1643 if (rs->raid10_copies < 2 ||
1644 delta_disks < 0) {
1645 rs->ti->error = "Bogus raid10 data copies or delta disks";
1646 return -EINVAL;
1647 }
1648
1649 dev_sectors *= rs->raid10_copies;
1650 if (sector_div(dev_sectors, data_stripes))
1651 goto bad;
1652
1653 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1654 if (sector_div(array_sectors, rs->raid10_copies))
1655 goto bad;
1656
1657 } else if (sector_div(dev_sectors, data_stripes))
1658 goto bad;
1659
1660 else
1661 /* Striped layouts */
1662 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1663
1664 mddev->array_sectors = array_sectors;
1665 mddev->dev_sectors = dev_sectors;
1666 rs_set_rdev_sectors(rs);
1667
1668 return _check_data_dev_sectors(rs);
1669 bad:
1670 rs->ti->error = "Target length not divisible by number of data devices";
1671 return -EINVAL;
1672 }
1673
1674 /* Setup recovery on @rs */
rs_setup_recovery(struct raid_set * rs,sector_t dev_sectors)1675 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1676 {
1677 /* raid0 does not recover */
1678 if (rs_is_raid0(rs))
1679 rs->md.recovery_cp = MaxSector;
1680 /*
1681 * A raid6 set has to be recovered either
1682 * completely or for the grown part to
1683 * ensure proper parity and Q-Syndrome
1684 */
1685 else if (rs_is_raid6(rs))
1686 rs->md.recovery_cp = dev_sectors;
1687 /*
1688 * Other raid set types may skip recovery
1689 * depending on the 'nosync' flag.
1690 */
1691 else
1692 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1693 ? MaxSector : dev_sectors;
1694 }
1695
do_table_event(struct work_struct * ws)1696 static void do_table_event(struct work_struct *ws)
1697 {
1698 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1699
1700 smp_rmb(); /* Make sure we access most actual mddev properties */
1701 if (!rs_is_reshaping(rs)) {
1702 if (rs_is_raid10(rs))
1703 rs_set_rdev_sectors(rs);
1704 rs_set_capacity(rs);
1705 }
1706 dm_table_event(rs->ti->table);
1707 }
1708
1709 /*
1710 * Make sure a valid takover (level switch) is being requested on @rs
1711 *
1712 * Conversions of raid sets from one MD personality to another
1713 * have to conform to restrictions which are enforced here.
1714 */
rs_check_takeover(struct raid_set * rs)1715 static int rs_check_takeover(struct raid_set *rs)
1716 {
1717 struct mddev *mddev = &rs->md;
1718 unsigned int near_copies;
1719
1720 if (rs->md.degraded) {
1721 rs->ti->error = "Can't takeover degraded raid set";
1722 return -EPERM;
1723 }
1724
1725 if (rs_is_reshaping(rs)) {
1726 rs->ti->error = "Can't takeover reshaping raid set";
1727 return -EPERM;
1728 }
1729
1730 switch (mddev->level) {
1731 case 0:
1732 /* raid0 -> raid1/5 with one disk */
1733 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1734 mddev->raid_disks == 1)
1735 return 0;
1736
1737 /* raid0 -> raid10 */
1738 if (mddev->new_level == 10 &&
1739 !(rs->raid_disks % mddev->raid_disks))
1740 return 0;
1741
1742 /* raid0 with multiple disks -> raid4/5/6 */
1743 if (__within_range(mddev->new_level, 4, 6) &&
1744 mddev->new_layout == ALGORITHM_PARITY_N &&
1745 mddev->raid_disks > 1)
1746 return 0;
1747
1748 break;
1749
1750 case 10:
1751 /* Can't takeover raid10_offset! */
1752 if (__is_raid10_offset(mddev->layout))
1753 break;
1754
1755 near_copies = __raid10_near_copies(mddev->layout);
1756
1757 /* raid10* -> raid0 */
1758 if (mddev->new_level == 0) {
1759 /* Can takeover raid10_near with raid disks divisable by data copies! */
1760 if (near_copies > 1 &&
1761 !(mddev->raid_disks % near_copies)) {
1762 mddev->raid_disks /= near_copies;
1763 mddev->delta_disks = mddev->raid_disks;
1764 return 0;
1765 }
1766
1767 /* Can takeover raid10_far */
1768 if (near_copies == 1 &&
1769 __raid10_far_copies(mddev->layout) > 1)
1770 return 0;
1771
1772 break;
1773 }
1774
1775 /* raid10_{near,far} -> raid1 */
1776 if (mddev->new_level == 1 &&
1777 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1778 return 0;
1779
1780 /* raid10_{near,far} with 2 disks -> raid4/5 */
1781 if (__within_range(mddev->new_level, 4, 5) &&
1782 mddev->raid_disks == 2)
1783 return 0;
1784 break;
1785
1786 case 1:
1787 /* raid1 with 2 disks -> raid4/5 */
1788 if (__within_range(mddev->new_level, 4, 5) &&
1789 mddev->raid_disks == 2) {
1790 mddev->degraded = 1;
1791 return 0;
1792 }
1793
1794 /* raid1 -> raid0 */
1795 if (mddev->new_level == 0 &&
1796 mddev->raid_disks == 1)
1797 return 0;
1798
1799 /* raid1 -> raid10 */
1800 if (mddev->new_level == 10)
1801 return 0;
1802 break;
1803
1804 case 4:
1805 /* raid4 -> raid0 */
1806 if (mddev->new_level == 0)
1807 return 0;
1808
1809 /* raid4 -> raid1/5 with 2 disks */
1810 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1811 mddev->raid_disks == 2)
1812 return 0;
1813
1814 /* raid4 -> raid5/6 with parity N */
1815 if (__within_range(mddev->new_level, 5, 6) &&
1816 mddev->layout == ALGORITHM_PARITY_N)
1817 return 0;
1818 break;
1819
1820 case 5:
1821 /* raid5 with parity N -> raid0 */
1822 if (mddev->new_level == 0 &&
1823 mddev->layout == ALGORITHM_PARITY_N)
1824 return 0;
1825
1826 /* raid5 with parity N -> raid4 */
1827 if (mddev->new_level == 4 &&
1828 mddev->layout == ALGORITHM_PARITY_N)
1829 return 0;
1830
1831 /* raid5 with 2 disks -> raid1/4/10 */
1832 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1833 mddev->raid_disks == 2)
1834 return 0;
1835
1836 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1837 if (mddev->new_level == 6 &&
1838 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1839 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1840 return 0;
1841 break;
1842
1843 case 6:
1844 /* raid6 with parity N -> raid0 */
1845 if (mddev->new_level == 0 &&
1846 mddev->layout == ALGORITHM_PARITY_N)
1847 return 0;
1848
1849 /* raid6 with parity N -> raid4 */
1850 if (mddev->new_level == 4 &&
1851 mddev->layout == ALGORITHM_PARITY_N)
1852 return 0;
1853
1854 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1855 if (mddev->new_level == 5 &&
1856 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1857 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1858 return 0;
1859 break;
1860
1861 default:
1862 break;
1863 }
1864
1865 rs->ti->error = "takeover not possible";
1866 return -EINVAL;
1867 }
1868
1869 /* True if @rs requested to be taken over */
rs_takeover_requested(struct raid_set * rs)1870 static bool rs_takeover_requested(struct raid_set *rs)
1871 {
1872 return rs->md.new_level != rs->md.level;
1873 }
1874
1875 /* True if layout is set to reshape. */
rs_is_layout_change(struct raid_set * rs,bool use_mddev)1876 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1877 {
1878 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1879 rs->md.new_layout != rs->md.layout ||
1880 rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1881 }
1882
1883 /* True if @rs is requested to reshape by ctr */
rs_reshape_requested(struct raid_set * rs)1884 static bool rs_reshape_requested(struct raid_set *rs)
1885 {
1886 bool change;
1887 struct mddev *mddev = &rs->md;
1888
1889 if (rs_takeover_requested(rs))
1890 return false;
1891
1892 if (rs_is_raid0(rs))
1893 return false;
1894
1895 change = rs_is_layout_change(rs, false);
1896
1897 /* Historical case to support raid1 reshape without delta disks */
1898 if (rs_is_raid1(rs)) {
1899 if (rs->delta_disks)
1900 return !!rs->delta_disks;
1901
1902 return !change &&
1903 mddev->raid_disks != rs->raid_disks;
1904 }
1905
1906 if (rs_is_raid10(rs))
1907 return change &&
1908 !__is_raid10_far(mddev->new_layout) &&
1909 rs->delta_disks >= 0;
1910
1911 return change;
1912 }
1913
1914 /* Features */
1915 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1916
1917 /* State flags for sb->flags */
1918 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1919 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1920
1921 /*
1922 * This structure is never routinely used by userspace, unlike md superblocks.
1923 * Devices with this superblock should only ever be accessed via device-mapper.
1924 */
1925 #define DM_RAID_MAGIC 0x64526D44
1926 struct dm_raid_superblock {
1927 __le32 magic; /* "DmRd" */
1928 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1929
1930 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1931 __le32 array_position; /* The position of this drive in the raid set */
1932
1933 __le64 events; /* Incremented by md when superblock updated */
1934 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1935 /* indicate failures (see extension below) */
1936
1937 /*
1938 * This offset tracks the progress of the repair or replacement of
1939 * an individual drive.
1940 */
1941 __le64 disk_recovery_offset;
1942
1943 /*
1944 * This offset tracks the progress of the initial raid set
1945 * synchronisation/parity calculation.
1946 */
1947 __le64 array_resync_offset;
1948
1949 /*
1950 * raid characteristics
1951 */
1952 __le32 level;
1953 __le32 layout;
1954 __le32 stripe_sectors;
1955
1956 /********************************************************************
1957 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1958 *
1959 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1960 */
1961
1962 __le32 flags; /* Flags defining array states for reshaping */
1963
1964 /*
1965 * This offset tracks the progress of a raid
1966 * set reshape in order to be able to restart it
1967 */
1968 __le64 reshape_position;
1969
1970 /*
1971 * These define the properties of the array in case of an interrupted reshape
1972 */
1973 __le32 new_level;
1974 __le32 new_layout;
1975 __le32 new_stripe_sectors;
1976 __le32 delta_disks;
1977
1978 __le64 array_sectors; /* Array size in sectors */
1979
1980 /*
1981 * Sector offsets to data on devices (reshaping).
1982 * Needed to support out of place reshaping, thus
1983 * not writing over any stripes whilst converting
1984 * them from old to new layout
1985 */
1986 __le64 data_offset;
1987 __le64 new_data_offset;
1988
1989 __le64 sectors; /* Used device size in sectors */
1990
1991 /*
1992 * Additional Bit field of devices indicating failures to support
1993 * up to 256 devices with the 1.9.0 on-disk metadata format
1994 */
1995 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1996
1997 __le32 incompat_features; /* Used to indicate any incompatible features */
1998
1999 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2000 } __packed;
2001
2002 /*
2003 * Check for reshape constraints on raid set @rs:
2004 *
2005 * - reshape function non-existent
2006 * - degraded set
2007 * - ongoing recovery
2008 * - ongoing reshape
2009 *
2010 * Returns 0 if none or -EPERM if given constraint
2011 * and error message reference in @errmsg
2012 */
rs_check_reshape(struct raid_set * rs)2013 static int rs_check_reshape(struct raid_set *rs)
2014 {
2015 struct mddev *mddev = &rs->md;
2016
2017 if (!mddev->pers || !mddev->pers->check_reshape)
2018 rs->ti->error = "Reshape not supported";
2019 else if (mddev->degraded)
2020 rs->ti->error = "Can't reshape degraded raid set";
2021 else if (rs_is_recovering(rs))
2022 rs->ti->error = "Convert request on recovering raid set prohibited";
2023 else if (rs_is_reshaping(rs))
2024 rs->ti->error = "raid set already reshaping!";
2025 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2026 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2027 else
2028 return 0;
2029
2030 return -EPERM;
2031 }
2032
read_disk_sb(struct md_rdev * rdev,int size,bool force_reload)2033 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2034 {
2035 BUG_ON(!rdev->sb_page);
2036
2037 if (rdev->sb_loaded && !force_reload)
2038 return 0;
2039
2040 rdev->sb_loaded = 0;
2041
2042 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2043 DMERR("Failed to read superblock of device at position %d",
2044 rdev->raid_disk);
2045 md_error(rdev->mddev, rdev);
2046 set_bit(Faulty, &rdev->flags);
2047 return -EIO;
2048 }
2049
2050 rdev->sb_loaded = 1;
2051
2052 return 0;
2053 }
2054
sb_retrieve_failed_devices(struct dm_raid_superblock * sb,uint64_t * failed_devices)2055 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2056 {
2057 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2058 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2059
2060 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2061 int i = ARRAY_SIZE(sb->extended_failed_devices);
2062
2063 while (i--)
2064 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2065 }
2066 }
2067
sb_update_failed_devices(struct dm_raid_superblock * sb,uint64_t * failed_devices)2068 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2069 {
2070 int i = ARRAY_SIZE(sb->extended_failed_devices);
2071
2072 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2073 while (i--)
2074 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2075 }
2076
2077 /*
2078 * Synchronize the superblock members with the raid set properties
2079 *
2080 * All superblock data is little endian.
2081 */
super_sync(struct mddev * mddev,struct md_rdev * rdev)2082 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2083 {
2084 bool update_failed_devices = false;
2085 unsigned int i;
2086 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2087 struct dm_raid_superblock *sb;
2088 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2089
2090 /* No metadata device, no superblock */
2091 if (!rdev->meta_bdev)
2092 return;
2093
2094 BUG_ON(!rdev->sb_page);
2095
2096 sb = page_address(rdev->sb_page);
2097
2098 sb_retrieve_failed_devices(sb, failed_devices);
2099
2100 for (i = 0; i < rs->raid_disks; i++)
2101 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2102 update_failed_devices = true;
2103 set_bit(i, (void *) failed_devices);
2104 }
2105
2106 if (update_failed_devices)
2107 sb_update_failed_devices(sb, failed_devices);
2108
2109 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2110 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2111
2112 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2113 sb->array_position = cpu_to_le32(rdev->raid_disk);
2114
2115 sb->events = cpu_to_le64(mddev->events);
2116
2117 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2118 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2119
2120 sb->level = cpu_to_le32(mddev->level);
2121 sb->layout = cpu_to_le32(mddev->layout);
2122 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2123
2124 /********************************************************************
2125 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2126 *
2127 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2128 */
2129 sb->new_level = cpu_to_le32(mddev->new_level);
2130 sb->new_layout = cpu_to_le32(mddev->new_layout);
2131 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2132
2133 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2134
2135 smp_rmb(); /* Make sure we access most recent reshape position */
2136 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2137 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2138 /* Flag ongoing reshape */
2139 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2140
2141 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2142 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2143 } else {
2144 /* Clear reshape flags */
2145 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2146 }
2147
2148 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2149 sb->data_offset = cpu_to_le64(rdev->data_offset);
2150 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2151 sb->sectors = cpu_to_le64(rdev->sectors);
2152 sb->incompat_features = cpu_to_le32(0);
2153
2154 /* Zero out the rest of the payload after the size of the superblock */
2155 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2156 }
2157
2158 /*
2159 * super_load
2160 *
2161 * This function creates a superblock if one is not found on the device
2162 * and will decide which superblock to use if there's a choice.
2163 *
2164 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2165 */
super_load(struct md_rdev * rdev,struct md_rdev * refdev)2166 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2167 {
2168 int r;
2169 struct dm_raid_superblock *sb;
2170 struct dm_raid_superblock *refsb;
2171 uint64_t events_sb, events_refsb;
2172
2173 r = read_disk_sb(rdev, rdev->sb_size, false);
2174 if (r)
2175 return r;
2176
2177 sb = page_address(rdev->sb_page);
2178
2179 /*
2180 * Two cases that we want to write new superblocks and rebuild:
2181 * 1) New device (no matching magic number)
2182 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2183 */
2184 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2185 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2186 super_sync(rdev->mddev, rdev);
2187
2188 set_bit(FirstUse, &rdev->flags);
2189 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2190
2191 /* Force writing of superblocks to disk */
2192 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2193
2194 /* Any superblock is better than none, choose that if given */
2195 return refdev ? 0 : 1;
2196 }
2197
2198 if (!refdev)
2199 return 1;
2200
2201 events_sb = le64_to_cpu(sb->events);
2202
2203 refsb = page_address(refdev->sb_page);
2204 events_refsb = le64_to_cpu(refsb->events);
2205
2206 return (events_sb > events_refsb) ? 1 : 0;
2207 }
2208
super_init_validation(struct raid_set * rs,struct md_rdev * rdev)2209 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2210 {
2211 int role;
2212 struct mddev *mddev = &rs->md;
2213 uint64_t events_sb;
2214 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2215 struct dm_raid_superblock *sb;
2216 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2217 struct md_rdev *r;
2218 struct dm_raid_superblock *sb2;
2219
2220 sb = page_address(rdev->sb_page);
2221 events_sb = le64_to_cpu(sb->events);
2222
2223 /*
2224 * Initialise to 1 if this is a new superblock.
2225 */
2226 mddev->events = events_sb ? : 1;
2227
2228 mddev->reshape_position = MaxSector;
2229
2230 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2231 mddev->level = le32_to_cpu(sb->level);
2232 mddev->layout = le32_to_cpu(sb->layout);
2233 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2234
2235 /*
2236 * Reshaping is supported, e.g. reshape_position is valid
2237 * in superblock and superblock content is authoritative.
2238 */
2239 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2240 /* Superblock is authoritative wrt given raid set layout! */
2241 mddev->new_level = le32_to_cpu(sb->new_level);
2242 mddev->new_layout = le32_to_cpu(sb->new_layout);
2243 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2244 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2245 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2246
2247 /* raid was reshaping and got interrupted */
2248 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2249 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2250 DMERR("Reshape requested but raid set is still reshaping");
2251 return -EINVAL;
2252 }
2253
2254 if (mddev->delta_disks < 0 ||
2255 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2256 mddev->reshape_backwards = 1;
2257 else
2258 mddev->reshape_backwards = 0;
2259
2260 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2261 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2262 }
2263
2264 } else {
2265 /*
2266 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2267 */
2268 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2269 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2270
2271 if (rs_takeover_requested(rs)) {
2272 if (rt_cur && rt_new)
2273 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2274 rt_cur->name, rt_new->name);
2275 else
2276 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2277 return -EINVAL;
2278 } else if (rs_reshape_requested(rs)) {
2279 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2280 if (mddev->layout != mddev->new_layout) {
2281 if (rt_cur && rt_new)
2282 DMERR(" current layout %s vs new layout %s",
2283 rt_cur->name, rt_new->name);
2284 else
2285 DMERR(" current layout 0x%X vs new layout 0x%X",
2286 le32_to_cpu(sb->layout), mddev->new_layout);
2287 }
2288 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2289 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2290 mddev->chunk_sectors, mddev->new_chunk_sectors);
2291 if (rs->delta_disks)
2292 DMERR(" current %u disks vs new %u disks",
2293 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2294 if (rs_is_raid10(rs)) {
2295 DMERR(" Old layout: %s w/ %u copies",
2296 raid10_md_layout_to_format(mddev->layout),
2297 raid10_md_layout_to_copies(mddev->layout));
2298 DMERR(" New layout: %s w/ %u copies",
2299 raid10_md_layout_to_format(mddev->new_layout),
2300 raid10_md_layout_to_copies(mddev->new_layout));
2301 }
2302 return -EINVAL;
2303 }
2304
2305 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2306 }
2307
2308 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2309 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2310
2311 /*
2312 * During load, we set FirstUse if a new superblock was written.
2313 * There are two reasons we might not have a superblock:
2314 * 1) The raid set is brand new - in which case, all of the
2315 * devices must have their In_sync bit set. Also,
2316 * recovery_cp must be 0, unless forced.
2317 * 2) This is a new device being added to an old raid set
2318 * and the new device needs to be rebuilt - in which
2319 * case the In_sync bit will /not/ be set and
2320 * recovery_cp must be MaxSector.
2321 * 3) This is/are a new device(s) being added to an old
2322 * raid set during takeover to a higher raid level
2323 * to provide capacity for redundancy or during reshape
2324 * to add capacity to grow the raid set.
2325 */
2326 rdev_for_each(r, mddev) {
2327 if (test_bit(Journal, &rdev->flags))
2328 continue;
2329
2330 if (test_bit(FirstUse, &r->flags))
2331 new_devs++;
2332
2333 if (!test_bit(In_sync, &r->flags)) {
2334 DMINFO("Device %d specified for rebuild; clearing superblock",
2335 r->raid_disk);
2336 rebuilds++;
2337
2338 if (test_bit(FirstUse, &r->flags))
2339 rebuild_and_new++;
2340 }
2341 }
2342
2343 if (new_devs == rs->raid_disks || !rebuilds) {
2344 /* Replace a broken device */
2345 if (new_devs == rs->raid_disks) {
2346 DMINFO("Superblocks created for new raid set");
2347 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2348 } else if (new_devs != rebuilds &&
2349 new_devs != rs->delta_disks) {
2350 DMERR("New device injected into existing raid set without "
2351 "'delta_disks' or 'rebuild' parameter specified");
2352 return -EINVAL;
2353 }
2354 } else if (new_devs && new_devs != rebuilds) {
2355 DMERR("%u 'rebuild' devices cannot be injected into"
2356 " a raid set with %u other first-time devices",
2357 rebuilds, new_devs);
2358 return -EINVAL;
2359 } else if (rebuilds) {
2360 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2361 DMERR("new device%s provided without 'rebuild'",
2362 new_devs > 1 ? "s" : "");
2363 return -EINVAL;
2364 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2365 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2366 (unsigned long long) mddev->recovery_cp);
2367 return -EINVAL;
2368 } else if (rs_is_reshaping(rs)) {
2369 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2370 (unsigned long long) mddev->reshape_position);
2371 return -EINVAL;
2372 }
2373 }
2374
2375 /*
2376 * Now we set the Faulty bit for those devices that are
2377 * recorded in the superblock as failed.
2378 */
2379 sb_retrieve_failed_devices(sb, failed_devices);
2380 rdev_for_each(r, mddev) {
2381 if (test_bit(Journal, &rdev->flags) ||
2382 !r->sb_page)
2383 continue;
2384 sb2 = page_address(r->sb_page);
2385 sb2->failed_devices = 0;
2386 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2387
2388 /*
2389 * Check for any device re-ordering.
2390 */
2391 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2392 role = le32_to_cpu(sb2->array_position);
2393 if (role < 0)
2394 continue;
2395
2396 if (role != r->raid_disk) {
2397 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2398 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2399 rs->raid_disks % rs->raid10_copies) {
2400 rs->ti->error =
2401 "Cannot change raid10 near set to odd # of devices!";
2402 return -EINVAL;
2403 }
2404
2405 sb2->array_position = cpu_to_le32(r->raid_disk);
2406
2407 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2408 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2409 !rt_is_raid1(rs->raid_type)) {
2410 rs->ti->error = "Cannot change device positions in raid set";
2411 return -EINVAL;
2412 }
2413
2414 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2415 }
2416
2417 /*
2418 * Partial recovery is performed on
2419 * returning failed devices.
2420 */
2421 if (test_bit(role, (void *) failed_devices))
2422 set_bit(Faulty, &r->flags);
2423 }
2424 }
2425
2426 return 0;
2427 }
2428
super_validate(struct raid_set * rs,struct md_rdev * rdev)2429 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2430 {
2431 struct mddev *mddev = &rs->md;
2432 struct dm_raid_superblock *sb;
2433
2434 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2435 return 0;
2436
2437 sb = page_address(rdev->sb_page);
2438
2439 /*
2440 * If mddev->events is not set, we know we have not yet initialized
2441 * the array.
2442 */
2443 if (!mddev->events && super_init_validation(rs, rdev))
2444 return -EINVAL;
2445
2446 if (le32_to_cpu(sb->compat_features) &&
2447 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2448 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2449 return -EINVAL;
2450 }
2451
2452 if (sb->incompat_features) {
2453 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2454 return -EINVAL;
2455 }
2456
2457 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2458 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2459 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2460
2461 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2462 /*
2463 * Retrieve rdev size stored in superblock to be prepared for shrink.
2464 * Check extended superblock members are present otherwise the size
2465 * will not be set!
2466 */
2467 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2468 rdev->sectors = le64_to_cpu(sb->sectors);
2469
2470 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2471 if (rdev->recovery_offset == MaxSector)
2472 set_bit(In_sync, &rdev->flags);
2473 /*
2474 * If no reshape in progress -> we're recovering single
2475 * disk(s) and have to set the device(s) to out-of-sync
2476 */
2477 else if (!rs_is_reshaping(rs))
2478 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2479 }
2480
2481 /*
2482 * If a device comes back, set it as not In_sync and no longer faulty.
2483 */
2484 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2485 rdev->recovery_offset = 0;
2486 clear_bit(In_sync, &rdev->flags);
2487 rdev->saved_raid_disk = rdev->raid_disk;
2488 }
2489
2490 /* Reshape support -> restore repective data offsets */
2491 rdev->data_offset = le64_to_cpu(sb->data_offset);
2492 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2493
2494 return 0;
2495 }
2496
2497 /*
2498 * Analyse superblocks and select the freshest.
2499 */
analyse_superblocks(struct dm_target * ti,struct raid_set * rs)2500 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2501 {
2502 int r;
2503 struct md_rdev *rdev, *freshest;
2504 struct mddev *mddev = &rs->md;
2505
2506 freshest = NULL;
2507 rdev_for_each(rdev, mddev) {
2508 if (test_bit(Journal, &rdev->flags))
2509 continue;
2510
2511 if (!rdev->meta_bdev)
2512 continue;
2513
2514 /* Set superblock offset/size for metadata device. */
2515 rdev->sb_start = 0;
2516 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2517 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2518 DMERR("superblock size of a logical block is no longer valid");
2519 return -EINVAL;
2520 }
2521
2522 /*
2523 * Skipping super_load due to CTR_FLAG_SYNC will cause
2524 * the array to undergo initialization again as
2525 * though it were new. This is the intended effect
2526 * of the "sync" directive.
2527 *
2528 * With reshaping capability added, we must ensure that
2529 * the "sync" directive is disallowed during the reshape.
2530 */
2531 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2532 continue;
2533
2534 r = super_load(rdev, freshest);
2535
2536 switch (r) {
2537 case 1:
2538 freshest = rdev;
2539 break;
2540 case 0:
2541 break;
2542 default:
2543 /* This is a failure to read the superblock from the metadata device. */
2544 /*
2545 * We have to keep any raid0 data/metadata device pairs or
2546 * the MD raid0 personality will fail to start the array.
2547 */
2548 if (rs_is_raid0(rs))
2549 continue;
2550
2551 /*
2552 * We keep the dm_devs to be able to emit the device tuple
2553 * properly on the table line in raid_status() (rather than
2554 * mistakenly acting as if '- -' got passed into the constructor).
2555 *
2556 * The rdev has to stay on the same_set list to allow for
2557 * the attempt to restore faulty devices on second resume.
2558 */
2559 rdev->raid_disk = rdev->saved_raid_disk = -1;
2560 break;
2561 }
2562 }
2563
2564 if (!freshest)
2565 return 0;
2566
2567 /*
2568 * Validation of the freshest device provides the source of
2569 * validation for the remaining devices.
2570 */
2571 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2572 if (super_validate(rs, freshest))
2573 return -EINVAL;
2574
2575 if (validate_raid_redundancy(rs)) {
2576 rs->ti->error = "Insufficient redundancy to activate array";
2577 return -EINVAL;
2578 }
2579
2580 rdev_for_each(rdev, mddev)
2581 if (!test_bit(Journal, &rdev->flags) &&
2582 rdev != freshest &&
2583 super_validate(rs, rdev))
2584 return -EINVAL;
2585 return 0;
2586 }
2587
2588 /*
2589 * Adjust data_offset and new_data_offset on all disk members of @rs
2590 * for out of place reshaping if requested by constructor
2591 *
2592 * We need free space at the beginning of each raid disk for forward
2593 * and at the end for backward reshapes which userspace has to provide
2594 * via remapping/reordering of space.
2595 */
rs_adjust_data_offsets(struct raid_set * rs)2596 static int rs_adjust_data_offsets(struct raid_set *rs)
2597 {
2598 sector_t data_offset = 0, new_data_offset = 0;
2599 struct md_rdev *rdev;
2600
2601 /* Constructor did not request data offset change */
2602 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2603 if (!rs_is_reshapable(rs))
2604 goto out;
2605
2606 return 0;
2607 }
2608
2609 /* HM FIXME: get In_Sync raid_dev? */
2610 rdev = &rs->dev[0].rdev;
2611
2612 if (rs->delta_disks < 0) {
2613 /*
2614 * Removing disks (reshaping backwards):
2615 *
2616 * - before reshape: data is at offset 0 and free space
2617 * is at end of each component LV
2618 *
2619 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2620 */
2621 data_offset = 0;
2622 new_data_offset = rs->data_offset;
2623
2624 } else if (rs->delta_disks > 0) {
2625 /*
2626 * Adding disks (reshaping forwards):
2627 *
2628 * - before reshape: data is at offset rs->data_offset != 0 and
2629 * free space is at begin of each component LV
2630 *
2631 * - after reshape: data is at offset 0 on each component LV
2632 */
2633 data_offset = rs->data_offset;
2634 new_data_offset = 0;
2635
2636 } else {
2637 /*
2638 * User space passes in 0 for data offset after having removed reshape space
2639 *
2640 * - or - (data offset != 0)
2641 *
2642 * Changing RAID layout or chunk size -> toggle offsets
2643 *
2644 * - before reshape: data is at offset rs->data_offset 0 and
2645 * free space is at end of each component LV
2646 * -or-
2647 * data is at offset rs->data_offset != 0 and
2648 * free space is at begin of each component LV
2649 *
2650 * - after reshape: data is at offset 0 if it was at offset != 0
2651 * or at offset != 0 if it was at offset 0
2652 * on each component LV
2653 *
2654 */
2655 data_offset = rs->data_offset ? rdev->data_offset : 0;
2656 new_data_offset = data_offset ? 0 : rs->data_offset;
2657 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2658 }
2659
2660 /*
2661 * Make sure we got a minimum amount of free sectors per device
2662 */
2663 if (rs->data_offset &&
2664 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2665 rs->ti->error = data_offset ? "No space for forward reshape" :
2666 "No space for backward reshape";
2667 return -ENOSPC;
2668 }
2669 out:
2670 /*
2671 * Raise recovery_cp in case data_offset != 0 to
2672 * avoid false recovery positives in the constructor.
2673 */
2674 if (rs->md.recovery_cp < rs->md.dev_sectors)
2675 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2676
2677 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2678 rdev_for_each(rdev, &rs->md) {
2679 if (!test_bit(Journal, &rdev->flags)) {
2680 rdev->data_offset = data_offset;
2681 rdev->new_data_offset = new_data_offset;
2682 }
2683 }
2684
2685 return 0;
2686 }
2687
2688 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
__reorder_raid_disk_indexes(struct raid_set * rs)2689 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2690 {
2691 int i = 0;
2692 struct md_rdev *rdev;
2693
2694 rdev_for_each(rdev, &rs->md) {
2695 if (!test_bit(Journal, &rdev->flags)) {
2696 rdev->raid_disk = i++;
2697 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2698 }
2699 }
2700 }
2701
2702 /*
2703 * Setup @rs for takeover by a different raid level
2704 */
rs_setup_takeover(struct raid_set * rs)2705 static int rs_setup_takeover(struct raid_set *rs)
2706 {
2707 struct mddev *mddev = &rs->md;
2708 struct md_rdev *rdev;
2709 unsigned int d = mddev->raid_disks = rs->raid_disks;
2710 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2711
2712 if (rt_is_raid10(rs->raid_type)) {
2713 if (rs_is_raid0(rs)) {
2714 /* Userpace reordered disks -> adjust raid_disk indexes */
2715 __reorder_raid_disk_indexes(rs);
2716
2717 /* raid0 -> raid10_far layout */
2718 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2719 rs->raid10_copies);
2720 } else if (rs_is_raid1(rs))
2721 /* raid1 -> raid10_near layout */
2722 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2723 rs->raid_disks);
2724 else
2725 return -EINVAL;
2726
2727 }
2728
2729 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2730 mddev->recovery_cp = MaxSector;
2731
2732 while (d--) {
2733 rdev = &rs->dev[d].rdev;
2734
2735 if (test_bit(d, (void *) rs->rebuild_disks)) {
2736 clear_bit(In_sync, &rdev->flags);
2737 clear_bit(Faulty, &rdev->flags);
2738 mddev->recovery_cp = rdev->recovery_offset = 0;
2739 /* Bitmap has to be created when we do an "up" takeover */
2740 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2741 }
2742
2743 rdev->new_data_offset = new_data_offset;
2744 }
2745
2746 return 0;
2747 }
2748
2749 /* Prepare @rs for reshape */
rs_prepare_reshape(struct raid_set * rs)2750 static int rs_prepare_reshape(struct raid_set *rs)
2751 {
2752 bool reshape;
2753 struct mddev *mddev = &rs->md;
2754
2755 if (rs_is_raid10(rs)) {
2756 if (rs->raid_disks != mddev->raid_disks &&
2757 __is_raid10_near(mddev->layout) &&
2758 rs->raid10_copies &&
2759 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2760 /*
2761 * raid disk have to be multiple of data copies to allow this conversion,
2762 *
2763 * This is actually not a reshape it is a
2764 * rebuild of any additional mirrors per group
2765 */
2766 if (rs->raid_disks % rs->raid10_copies) {
2767 rs->ti->error = "Can't reshape raid10 mirror groups";
2768 return -EINVAL;
2769 }
2770
2771 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2772 __reorder_raid_disk_indexes(rs);
2773 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2774 rs->raid10_copies);
2775 mddev->new_layout = mddev->layout;
2776 reshape = false;
2777 } else
2778 reshape = true;
2779
2780 } else if (rs_is_raid456(rs))
2781 reshape = true;
2782
2783 else if (rs_is_raid1(rs)) {
2784 if (rs->delta_disks) {
2785 /* Process raid1 via delta_disks */
2786 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2787 reshape = true;
2788 } else {
2789 /* Process raid1 without delta_disks */
2790 mddev->raid_disks = rs->raid_disks;
2791 reshape = false;
2792 }
2793 } else {
2794 rs->ti->error = "Called with bogus raid type";
2795 return -EINVAL;
2796 }
2797
2798 if (reshape) {
2799 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2800 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2801 } else if (mddev->raid_disks < rs->raid_disks)
2802 /* Create new superblocks and bitmaps, if any new disks */
2803 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2804
2805 return 0;
2806 }
2807
2808 /* Get reshape sectors from data_offsets or raid set */
_get_reshape_sectors(struct raid_set * rs)2809 static sector_t _get_reshape_sectors(struct raid_set *rs)
2810 {
2811 struct md_rdev *rdev;
2812 sector_t reshape_sectors = 0;
2813
2814 rdev_for_each(rdev, &rs->md)
2815 if (!test_bit(Journal, &rdev->flags)) {
2816 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2817 rdev->data_offset - rdev->new_data_offset :
2818 rdev->new_data_offset - rdev->data_offset;
2819 break;
2820 }
2821
2822 return max(reshape_sectors, (sector_t) rs->data_offset);
2823 }
2824
2825 /*
2826 * Reshape:
2827 * - change raid layout
2828 * - change chunk size
2829 * - add disks
2830 * - remove disks
2831 */
rs_setup_reshape(struct raid_set * rs)2832 static int rs_setup_reshape(struct raid_set *rs)
2833 {
2834 int r = 0;
2835 unsigned int cur_raid_devs, d;
2836 sector_t reshape_sectors = _get_reshape_sectors(rs);
2837 struct mddev *mddev = &rs->md;
2838 struct md_rdev *rdev;
2839
2840 mddev->delta_disks = rs->delta_disks;
2841 cur_raid_devs = mddev->raid_disks;
2842
2843 /* Ignore impossible layout change whilst adding/removing disks */
2844 if (mddev->delta_disks &&
2845 mddev->layout != mddev->new_layout) {
2846 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2847 mddev->new_layout = mddev->layout;
2848 }
2849
2850 /*
2851 * Adjust array size:
2852 *
2853 * - in case of adding disk(s), array size has
2854 * to grow after the disk adding reshape,
2855 * which'll happen in the event handler;
2856 * reshape will happen forward, so space has to
2857 * be available at the beginning of each disk
2858 *
2859 * - in case of removing disk(s), array size
2860 * has to shrink before starting the reshape,
2861 * which'll happen here;
2862 * reshape will happen backward, so space has to
2863 * be available at the end of each disk
2864 *
2865 * - data_offset and new_data_offset are
2866 * adjusted for aforementioned out of place
2867 * reshaping based on userspace passing in
2868 * the "data_offset <sectors>" key/value
2869 * pair via the constructor
2870 */
2871
2872 /* Add disk(s) */
2873 if (rs->delta_disks > 0) {
2874 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2875 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2876 rdev = &rs->dev[d].rdev;
2877 clear_bit(In_sync, &rdev->flags);
2878
2879 /*
2880 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2881 * by md, which'll store that erroneously in the superblock on reshape
2882 */
2883 rdev->saved_raid_disk = -1;
2884 rdev->raid_disk = d;
2885
2886 rdev->sectors = mddev->dev_sectors;
2887 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2888 }
2889
2890 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2891
2892 /* Remove disk(s) */
2893 } else if (rs->delta_disks < 0) {
2894 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2895 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2896
2897 /* Change layout and/or chunk size */
2898 } else {
2899 /*
2900 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2901 *
2902 * keeping number of disks and do layout change ->
2903 *
2904 * toggle reshape_backward depending on data_offset:
2905 *
2906 * - free space upfront -> reshape forward
2907 *
2908 * - free space at the end -> reshape backward
2909 *
2910 *
2911 * This utilizes free reshape space avoiding the need
2912 * for userspace to move (parts of) LV segments in
2913 * case of layout/chunksize change (for disk
2914 * adding/removing reshape space has to be at
2915 * the proper address (see above with delta_disks):
2916 *
2917 * add disk(s) -> begin
2918 * remove disk(s)-> end
2919 */
2920 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2921 }
2922
2923 /*
2924 * Adjust device size for forward reshape
2925 * because md_finish_reshape() reduces it.
2926 */
2927 if (!mddev->reshape_backwards)
2928 rdev_for_each(rdev, &rs->md)
2929 if (!test_bit(Journal, &rdev->flags))
2930 rdev->sectors += reshape_sectors;
2931
2932 return r;
2933 }
2934
2935 /*
2936 * If the md resync thread has updated superblock with max reshape position
2937 * at the end of a reshape but not (yet) reset the layout configuration
2938 * changes -> reset the latter.
2939 */
rs_reset_inconclusive_reshape(struct raid_set * rs)2940 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2941 {
2942 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2943 rs_set_cur(rs);
2944 rs->md.delta_disks = 0;
2945 rs->md.reshape_backwards = 0;
2946 }
2947 }
2948
2949 /*
2950 * Enable/disable discard support on RAID set depending on
2951 * RAID level and discard properties of underlying RAID members.
2952 */
configure_discard_support(struct raid_set * rs)2953 static void configure_discard_support(struct raid_set *rs)
2954 {
2955 int i;
2956 bool raid456;
2957 struct dm_target *ti = rs->ti;
2958
2959 /*
2960 * XXX: RAID level 4,5,6 require zeroing for safety.
2961 */
2962 raid456 = rs_is_raid456(rs);
2963
2964 for (i = 0; i < rs->raid_disks; i++) {
2965 if (!rs->dev[i].rdev.bdev ||
2966 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2967 return;
2968
2969 if (raid456) {
2970 if (!devices_handle_discard_safely) {
2971 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2972 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2973 return;
2974 }
2975 }
2976 }
2977
2978 ti->num_discard_bios = 1;
2979 }
2980
2981 /*
2982 * Construct a RAID0/1/10/4/5/6 mapping:
2983 * Args:
2984 * <raid_type> <#raid_params> <raid_params>{0,} \
2985 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2986 *
2987 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2988 * details on possible <raid_params>.
2989 *
2990 * Userspace is free to initialize the metadata devices, hence the superblocks to
2991 * enforce recreation based on the passed in table parameters.
2992 *
2993 */
raid_ctr(struct dm_target * ti,unsigned int argc,char ** argv)2994 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2995 {
2996 int r;
2997 bool resize = false;
2998 struct raid_type *rt;
2999 unsigned int num_raid_params, num_raid_devs;
3000 sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3001 struct raid_set *rs = NULL;
3002 const char *arg;
3003 struct rs_layout rs_layout;
3004 struct dm_arg_set as = { argc, argv }, as_nrd;
3005 struct dm_arg _args[] = {
3006 { 0, as.argc, "Cannot understand number of raid parameters" },
3007 { 1, 254, "Cannot understand number of raid devices parameters" }
3008 };
3009
3010 arg = dm_shift_arg(&as);
3011 if (!arg) {
3012 ti->error = "No arguments";
3013 return -EINVAL;
3014 }
3015
3016 rt = get_raid_type(arg);
3017 if (!rt) {
3018 ti->error = "Unrecognised raid_type";
3019 return -EINVAL;
3020 }
3021
3022 /* Must have <#raid_params> */
3023 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3024 return -EINVAL;
3025
3026 /* number of raid device tupples <meta_dev data_dev> */
3027 as_nrd = as;
3028 dm_consume_args(&as_nrd, num_raid_params);
3029 _args[1].max = (as_nrd.argc - 1) / 2;
3030 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3031 return -EINVAL;
3032
3033 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3034 ti->error = "Invalid number of supplied raid devices";
3035 return -EINVAL;
3036 }
3037
3038 rs = raid_set_alloc(ti, rt, num_raid_devs);
3039 if (IS_ERR(rs))
3040 return PTR_ERR(rs);
3041
3042 r = parse_raid_params(rs, &as, num_raid_params);
3043 if (r)
3044 goto bad;
3045
3046 r = parse_dev_params(rs, &as);
3047 if (r)
3048 goto bad;
3049
3050 rs->md.sync_super = super_sync;
3051
3052 /*
3053 * Calculate ctr requested array and device sizes to allow
3054 * for superblock analysis needing device sizes defined.
3055 *
3056 * Any existing superblock will overwrite the array and device sizes
3057 */
3058 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3059 if (r)
3060 goto bad;
3061
3062 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3063 rs->array_sectors = rs->md.array_sectors;
3064 rs->dev_sectors = rs->md.dev_sectors;
3065
3066 /*
3067 * Backup any new raid set level, layout, ...
3068 * requested to be able to compare to superblock
3069 * members for conversion decisions.
3070 */
3071 rs_config_backup(rs, &rs_layout);
3072
3073 r = analyse_superblocks(ti, rs);
3074 if (r)
3075 goto bad;
3076
3077 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3078 sb_array_sectors = rs->md.array_sectors;
3079 rdev_sectors = __rdev_sectors(rs);
3080 if (!rdev_sectors) {
3081 ti->error = "Invalid rdev size";
3082 r = -EINVAL;
3083 goto bad;
3084 }
3085
3086
3087 reshape_sectors = _get_reshape_sectors(rs);
3088 if (rs->dev_sectors != rdev_sectors) {
3089 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3090 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3091 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3092 }
3093
3094 INIT_WORK(&rs->md.event_work, do_table_event);
3095 ti->private = rs;
3096 ti->num_flush_bios = 1;
3097 ti->needs_bio_set_dev = true;
3098
3099 /* Restore any requested new layout for conversion decision */
3100 rs_config_restore(rs, &rs_layout);
3101
3102 /*
3103 * Now that we have any superblock metadata available,
3104 * check for new, recovering, reshaping, to be taken over,
3105 * to be reshaped or an existing, unchanged raid set to
3106 * run in sequence.
3107 */
3108 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3109 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3110 if (rs_is_raid6(rs) &&
3111 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3112 ti->error = "'nosync' not allowed for new raid6 set";
3113 r = -EINVAL;
3114 goto bad;
3115 }
3116 rs_setup_recovery(rs, 0);
3117 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3118 rs_set_new(rs);
3119 } else if (rs_is_recovering(rs)) {
3120 /* A recovering raid set may be resized */
3121 goto size_check;
3122 } else if (rs_is_reshaping(rs)) {
3123 /* Have to reject size change request during reshape */
3124 if (resize) {
3125 ti->error = "Can't resize a reshaping raid set";
3126 r = -EPERM;
3127 goto bad;
3128 }
3129 /* skip setup rs */
3130 } else if (rs_takeover_requested(rs)) {
3131 if (rs_is_reshaping(rs)) {
3132 ti->error = "Can't takeover a reshaping raid set";
3133 r = -EPERM;
3134 goto bad;
3135 }
3136
3137 /* We can't takeover a journaled raid4/5/6 */
3138 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3139 ti->error = "Can't takeover a journaled raid4/5/6 set";
3140 r = -EPERM;
3141 goto bad;
3142 }
3143
3144 /*
3145 * If a takeover is needed, userspace sets any additional
3146 * devices to rebuild and we can check for a valid request here.
3147 *
3148 * If acceptable, set the level to the new requested
3149 * one, prohibit requesting recovery, allow the raid
3150 * set to run and store superblocks during resume.
3151 */
3152 r = rs_check_takeover(rs);
3153 if (r)
3154 goto bad;
3155
3156 r = rs_setup_takeover(rs);
3157 if (r)
3158 goto bad;
3159
3160 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3161 /* Takeover ain't recovery, so disable recovery */
3162 rs_setup_recovery(rs, MaxSector);
3163 rs_set_new(rs);
3164 } else if (rs_reshape_requested(rs)) {
3165 /* Only request grow on raid set size extensions, not on reshapes. */
3166 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3167
3168 /*
3169 * No need to check for 'ongoing' takeover here, because takeover
3170 * is an instant operation as oposed to an ongoing reshape.
3171 */
3172
3173 /* We can't reshape a journaled raid4/5/6 */
3174 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3175 ti->error = "Can't reshape a journaled raid4/5/6 set";
3176 r = -EPERM;
3177 goto bad;
3178 }
3179
3180 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3181 if (reshape_sectors || rs_is_raid1(rs)) {
3182 /*
3183 * We can only prepare for a reshape here, because the
3184 * raid set needs to run to provide the repective reshape
3185 * check functions via its MD personality instance.
3186 *
3187 * So do the reshape check after md_run() succeeded.
3188 */
3189 r = rs_prepare_reshape(rs);
3190 if (r)
3191 goto bad;
3192
3193 /* Reshaping ain't recovery, so disable recovery */
3194 rs_setup_recovery(rs, MaxSector);
3195 }
3196 rs_set_cur(rs);
3197 } else {
3198 size_check:
3199 /* May not set recovery when a device rebuild is requested */
3200 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3201 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3202 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3203 rs_setup_recovery(rs, MaxSector);
3204 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3205 /*
3206 * Set raid set to current size, i.e. size as of
3207 * superblocks to grow to larger size in preresume.
3208 */
3209 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3210 if (r)
3211 goto bad;
3212
3213 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3214 } else {
3215 /* This is no size change or it is shrinking, update size and record in superblocks */
3216 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3217 if (r)
3218 goto bad;
3219
3220 if (sb_array_sectors > rs->array_sectors)
3221 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3222 }
3223 rs_set_cur(rs);
3224 }
3225
3226 /* If constructor requested it, change data and new_data offsets */
3227 r = rs_adjust_data_offsets(rs);
3228 if (r)
3229 goto bad;
3230
3231 /* Catch any inconclusive reshape superblock content. */
3232 rs_reset_inconclusive_reshape(rs);
3233
3234 /* Start raid set read-only and assumed clean to change in raid_resume() */
3235 rs->md.ro = 1;
3236 rs->md.in_sync = 1;
3237
3238 /* Keep array frozen until resume. */
3239 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3240
3241 /* Has to be held on running the array */
3242 mddev_lock_nointr(&rs->md);
3243 r = md_run(&rs->md);
3244 rs->md.in_sync = 0; /* Assume already marked dirty */
3245 if (r) {
3246 ti->error = "Failed to run raid array";
3247 mddev_unlock(&rs->md);
3248 goto bad;
3249 }
3250
3251 r = md_start(&rs->md);
3252 if (r) {
3253 ti->error = "Failed to start raid array";
3254 goto bad_unlock;
3255 }
3256
3257 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3258 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3259 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3260 if (r) {
3261 ti->error = "Failed to set raid4/5/6 journal mode";
3262 goto bad_unlock;
3263 }
3264 }
3265
3266 mddev_suspend(&rs->md);
3267 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3268
3269 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3270 if (rs_is_raid456(rs)) {
3271 r = rs_set_raid456_stripe_cache(rs);
3272 if (r)
3273 goto bad_unlock;
3274 }
3275
3276 /* Now do an early reshape check */
3277 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3278 r = rs_check_reshape(rs);
3279 if (r)
3280 goto bad_unlock;
3281
3282 /* Restore new, ctr requested layout to perform check */
3283 rs_config_restore(rs, &rs_layout);
3284
3285 if (rs->md.pers->start_reshape) {
3286 r = rs->md.pers->check_reshape(&rs->md);
3287 if (r) {
3288 ti->error = "Reshape check failed";
3289 goto bad_unlock;
3290 }
3291 }
3292 }
3293
3294 /* Disable/enable discard support on raid set. */
3295 configure_discard_support(rs);
3296
3297 mddev_unlock(&rs->md);
3298 return 0;
3299
3300 bad_unlock:
3301 md_stop(&rs->md);
3302 mddev_unlock(&rs->md);
3303 bad:
3304 raid_set_free(rs);
3305
3306 return r;
3307 }
3308
raid_dtr(struct dm_target * ti)3309 static void raid_dtr(struct dm_target *ti)
3310 {
3311 struct raid_set *rs = ti->private;
3312
3313 mddev_lock_nointr(&rs->md);
3314 md_stop(&rs->md);
3315 mddev_unlock(&rs->md);
3316 raid_set_free(rs);
3317 }
3318
raid_map(struct dm_target * ti,struct bio * bio)3319 static int raid_map(struct dm_target *ti, struct bio *bio)
3320 {
3321 struct raid_set *rs = ti->private;
3322 struct mddev *mddev = &rs->md;
3323
3324 /*
3325 * If we're reshaping to add disk(s)), ti->len and
3326 * mddev->array_sectors will differ during the process
3327 * (ti->len > mddev->array_sectors), so we have to requeue
3328 * bios with addresses > mddev->array_sectors here or
3329 * there will occur accesses past EOD of the component
3330 * data images thus erroring the raid set.
3331 */
3332 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3333 return DM_MAPIO_REQUEUE;
3334
3335 md_handle_request(mddev, bio);
3336
3337 return DM_MAPIO_SUBMITTED;
3338 }
3339
3340 /* Return sync state string for @state */
3341 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
sync_str(enum sync_state state)3342 static const char *sync_str(enum sync_state state)
3343 {
3344 /* Has to be in above sync_state order! */
3345 static const char *sync_strs[] = {
3346 "frozen",
3347 "reshape",
3348 "resync",
3349 "check",
3350 "repair",
3351 "recover",
3352 "idle"
3353 };
3354
3355 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3356 };
3357
3358 /* Return enum sync_state for @mddev derived from @recovery flags */
decipher_sync_action(struct mddev * mddev,unsigned long recovery)3359 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3360 {
3361 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3362 return st_frozen;
3363
3364 /* The MD sync thread can be done with io or be interrupted but still be running */
3365 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3366 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3367 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3368 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3369 return st_reshape;
3370
3371 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3372 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3373 return st_resync;
3374 if (test_bit(MD_RECOVERY_CHECK, &recovery))
3375 return st_check;
3376 return st_repair;
3377 }
3378
3379 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3380 return st_recover;
3381
3382 if (mddev->reshape_position != MaxSector)
3383 return st_reshape;
3384 }
3385
3386 return st_idle;
3387 }
3388
3389 /*
3390 * Return status string for @rdev
3391 *
3392 * Status characters:
3393 *
3394 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3395 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3396 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3397 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3398 */
__raid_dev_status(struct raid_set * rs,struct md_rdev * rdev)3399 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3400 {
3401 if (!rdev->bdev)
3402 return "-";
3403 else if (test_bit(Faulty, &rdev->flags))
3404 return "D";
3405 else if (test_bit(Journal, &rdev->flags))
3406 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3407 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3408 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3409 !test_bit(In_sync, &rdev->flags)))
3410 return "a";
3411 else
3412 return "A";
3413 }
3414
3415 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
rs_get_progress(struct raid_set * rs,unsigned long recovery,enum sync_state state,sector_t resync_max_sectors)3416 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3417 enum sync_state state, sector_t resync_max_sectors)
3418 {
3419 sector_t r;
3420 struct mddev *mddev = &rs->md;
3421
3422 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3423 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3424
3425 if (rs_is_raid0(rs)) {
3426 r = resync_max_sectors;
3427 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3428
3429 } else {
3430 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3431 r = mddev->recovery_cp;
3432 else
3433 r = mddev->curr_resync_completed;
3434
3435 if (state == st_idle && r >= resync_max_sectors) {
3436 /*
3437 * Sync complete.
3438 */
3439 /* In case we have finished recovering, the array is in sync. */
3440 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3441 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3442
3443 } else if (state == st_recover)
3444 /*
3445 * In case we are recovering, the array is not in sync
3446 * and health chars should show the recovering legs.
3447 *
3448 * Already retrieved recovery offset from curr_resync_completed above.
3449 */
3450 ;
3451
3452 else if (state == st_resync || state == st_reshape)
3453 /*
3454 * If "resync/reshape" is occurring, the raid set
3455 * is or may be out of sync hence the health
3456 * characters shall be 'a'.
3457 */
3458 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3459
3460 else if (state == st_check || state == st_repair)
3461 /*
3462 * If "check" or "repair" is occurring, the raid set has
3463 * undergone an initial sync and the health characters
3464 * should not be 'a' anymore.
3465 */
3466 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3467
3468 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3469 /*
3470 * We are idle and recovery is needed, prevent 'A' chars race
3471 * caused by components still set to in-sync by constructor.
3472 */
3473 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3474
3475 else {
3476 /*
3477 * We are idle and the raid set may be doing an initial
3478 * sync, or it may be rebuilding individual components.
3479 * If all the devices are In_sync, then it is the raid set
3480 * that is being initialized.
3481 */
3482 struct md_rdev *rdev;
3483
3484 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3485 rdev_for_each(rdev, mddev)
3486 if (!test_bit(Journal, &rdev->flags) &&
3487 !test_bit(In_sync, &rdev->flags)) {
3488 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3489 break;
3490 }
3491 }
3492 }
3493
3494 return min(r, resync_max_sectors);
3495 }
3496
3497 /* Helper to return @dev name or "-" if !@dev */
__get_dev_name(struct dm_dev * dev)3498 static const char *__get_dev_name(struct dm_dev *dev)
3499 {
3500 return dev ? dev->name : "-";
3501 }
3502
raid_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3503 static void raid_status(struct dm_target *ti, status_type_t type,
3504 unsigned int status_flags, char *result, unsigned int maxlen)
3505 {
3506 struct raid_set *rs = ti->private;
3507 struct mddev *mddev = &rs->md;
3508 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3509 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3510 unsigned long recovery;
3511 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3512 unsigned int sz = 0;
3513 unsigned int rebuild_writemostly_count = 0;
3514 sector_t progress, resync_max_sectors, resync_mismatches;
3515 enum sync_state state;
3516 struct raid_type *rt;
3517
3518 switch (type) {
3519 case STATUSTYPE_INFO:
3520 /* *Should* always succeed */
3521 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3522 if (!rt)
3523 return;
3524
3525 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3526
3527 /* Access most recent mddev properties for status output */
3528 smp_rmb();
3529 /* Get sensible max sectors even if raid set not yet started */
3530 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3531 mddev->resync_max_sectors : mddev->dev_sectors;
3532 recovery = rs->md.recovery;
3533 state = decipher_sync_action(mddev, recovery);
3534 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3535 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3536 atomic64_read(&mddev->resync_mismatches) : 0;
3537
3538 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3539 for (i = 0; i < rs->raid_disks; i++)
3540 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3541
3542 /*
3543 * In-sync/Reshape ratio:
3544 * The in-sync ratio shows the progress of:
3545 * - Initializing the raid set
3546 * - Rebuilding a subset of devices of the raid set
3547 * The user can distinguish between the two by referring
3548 * to the status characters.
3549 *
3550 * The reshape ratio shows the progress of
3551 * changing the raid layout or the number of
3552 * disks of a raid set
3553 */
3554 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3555 (unsigned long long) resync_max_sectors);
3556
3557 /*
3558 * v1.5.0+:
3559 *
3560 * Sync action:
3561 * See Documentation/admin-guide/device-mapper/dm-raid.rst for
3562 * information on each of these states.
3563 */
3564 DMEMIT(" %s", sync_str(state));
3565
3566 /*
3567 * v1.5.0+:
3568 *
3569 * resync_mismatches/mismatch_cnt
3570 * This field shows the number of discrepancies found when
3571 * performing a "check" of the raid set.
3572 */
3573 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3574
3575 /*
3576 * v1.9.0+:
3577 *
3578 * data_offset (needed for out of space reshaping)
3579 * This field shows the data offset into the data
3580 * image LV where the first stripes data starts.
3581 *
3582 * We keep data_offset equal on all raid disks of the set,
3583 * so retrieving it from the first raid disk is sufficient.
3584 */
3585 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3586
3587 /*
3588 * v1.10.0+:
3589 */
3590 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3591 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3592 break;
3593
3594 case STATUSTYPE_TABLE:
3595 /* Report the table line string you would use to construct this raid set */
3596
3597 /*
3598 * Count any rebuild or writemostly argument pairs and subtract the
3599 * hweight count being added below of any rebuild and writemostly ctr flags.
3600 */
3601 for (i = 0; i < rs->raid_disks; i++) {
3602 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3603 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3604 }
3605 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3606 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3607 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3608 raid_param_cnt += rebuild_writemostly_count +
3609 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3610 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3611 /* Emit table line */
3612 /* This has to be in the documented order for userspace! */
3613 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3614 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3615 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3616 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3617 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3618 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3619 for (i = 0; i < rs->raid_disks; i++)
3620 if (test_bit(i, (void *) rs->rebuild_disks))
3621 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3622 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3623 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3624 mddev->bitmap_info.daemon_sleep);
3625 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3626 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3627 mddev->sync_speed_min);
3628 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3629 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3630 mddev->sync_speed_max);
3631 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3632 for (i = 0; i < rs->raid_disks; i++)
3633 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3634 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3635 rs->dev[i].rdev.raid_disk);
3636 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3637 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3638 mddev->bitmap_info.max_write_behind);
3639 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3640 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3641 max_nr_stripes);
3642 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3643 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3644 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3645 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3646 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3647 raid10_md_layout_to_copies(mddev->layout));
3648 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3649 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3650 raid10_md_layout_to_format(mddev->layout));
3651 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3652 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3653 max(rs->delta_disks, mddev->delta_disks));
3654 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3655 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3656 (unsigned long long) rs->data_offset);
3657 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3658 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3659 __get_dev_name(rs->journal_dev.dev));
3660 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3661 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3662 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3663 DMEMIT(" %d", rs->raid_disks);
3664 for (i = 0; i < rs->raid_disks; i++)
3665 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3666 __get_dev_name(rs->dev[i].data_dev));
3667 break;
3668
3669 case STATUSTYPE_IMA:
3670 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3671 if (!rt)
3672 return;
3673
3674 DMEMIT_TARGET_NAME_VERSION(ti->type);
3675 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3676
3677 /* Access most recent mddev properties for status output */
3678 smp_rmb();
3679 recovery = rs->md.recovery;
3680 state = decipher_sync_action(mddev, recovery);
3681 DMEMIT(",raid_state=%s", sync_str(state));
3682
3683 for (i = 0; i < rs->raid_disks; i++) {
3684 DMEMIT(",raid_device_%d_status=", i);
3685 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3686 }
3687
3688 if (rt_is_raid456(rt)) {
3689 DMEMIT(",journal_dev_mode=");
3690 switch (rs->journal_dev.mode) {
3691 case R5C_JOURNAL_MODE_WRITE_THROUGH:
3692 DMEMIT("%s",
3693 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3694 break;
3695 case R5C_JOURNAL_MODE_WRITE_BACK:
3696 DMEMIT("%s",
3697 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3698 break;
3699 default:
3700 DMEMIT("invalid");
3701 break;
3702 }
3703 }
3704 DMEMIT(";");
3705 break;
3706 }
3707 }
3708
raid_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3709 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3710 char *result, unsigned int maxlen)
3711 {
3712 struct raid_set *rs = ti->private;
3713 struct mddev *mddev = &rs->md;
3714
3715 if (!mddev->pers || !mddev->pers->sync_request)
3716 return -EINVAL;
3717
3718 if (!strcasecmp(argv[0], "frozen"))
3719 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3720 else
3721 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3722
3723 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3724 if (mddev->sync_thread) {
3725 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3726 md_reap_sync_thread(mddev);
3727 }
3728 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3729 return -EBUSY;
3730 else if (!strcasecmp(argv[0], "resync"))
3731 ; /* MD_RECOVERY_NEEDED set below */
3732 else if (!strcasecmp(argv[0], "recover"))
3733 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3734 else {
3735 if (!strcasecmp(argv[0], "check")) {
3736 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3737 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3738 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3739 } else if (!strcasecmp(argv[0], "repair")) {
3740 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3741 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3742 } else
3743 return -EINVAL;
3744 }
3745 if (mddev->ro == 2) {
3746 /* A write to sync_action is enough to justify
3747 * canceling read-auto mode
3748 */
3749 mddev->ro = 0;
3750 if (!mddev->suspended)
3751 md_wakeup_thread(mddev->sync_thread);
3752 }
3753 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3754 if (!mddev->suspended)
3755 md_wakeup_thread(mddev->thread);
3756
3757 return 0;
3758 }
3759
raid_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3760 static int raid_iterate_devices(struct dm_target *ti,
3761 iterate_devices_callout_fn fn, void *data)
3762 {
3763 struct raid_set *rs = ti->private;
3764 unsigned int i;
3765 int r = 0;
3766
3767 for (i = 0; !r && i < rs->raid_disks; i++) {
3768 if (rs->dev[i].data_dev) {
3769 r = fn(ti, rs->dev[i].data_dev,
3770 0, /* No offset on data devs */
3771 rs->md.dev_sectors, data);
3772 }
3773 }
3774
3775 return r;
3776 }
3777
raid_io_hints(struct dm_target * ti,struct queue_limits * limits)3778 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3779 {
3780 struct raid_set *rs = ti->private;
3781 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3782
3783 blk_limits_io_min(limits, chunk_size_bytes);
3784 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3785 }
3786
raid_postsuspend(struct dm_target * ti)3787 static void raid_postsuspend(struct dm_target *ti)
3788 {
3789 struct raid_set *rs = ti->private;
3790
3791 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3792 /* Writes have to be stopped before suspending to avoid deadlocks. */
3793 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3794 md_stop_writes(&rs->md);
3795
3796 mddev_lock_nointr(&rs->md);
3797 mddev_suspend(&rs->md);
3798 mddev_unlock(&rs->md);
3799 }
3800 }
3801
attempt_restore_of_faulty_devices(struct raid_set * rs)3802 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3803 {
3804 int i;
3805 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3806 unsigned long flags;
3807 bool cleared = false;
3808 struct dm_raid_superblock *sb;
3809 struct mddev *mddev = &rs->md;
3810 struct md_rdev *r;
3811
3812 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3813 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3814 return;
3815
3816 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3817
3818 for (i = 0; i < rs->raid_disks; i++) {
3819 r = &rs->dev[i].rdev;
3820 /* HM FIXME: enhance journal device recovery processing */
3821 if (test_bit(Journal, &r->flags))
3822 continue;
3823
3824 if (test_bit(Faulty, &r->flags) &&
3825 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3826 DMINFO("Faulty %s device #%d has readable super block."
3827 " Attempting to revive it.",
3828 rs->raid_type->name, i);
3829
3830 /*
3831 * Faulty bit may be set, but sometimes the array can
3832 * be suspended before the personalities can respond
3833 * by removing the device from the array (i.e. calling
3834 * 'hot_remove_disk'). If they haven't yet removed
3835 * the failed device, its 'raid_disk' number will be
3836 * '>= 0' - meaning we must call this function
3837 * ourselves.
3838 */
3839 flags = r->flags;
3840 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3841 if (r->raid_disk >= 0) {
3842 if (mddev->pers->hot_remove_disk(mddev, r)) {
3843 /* Failed to revive this device, try next */
3844 r->flags = flags;
3845 continue;
3846 }
3847 } else
3848 r->raid_disk = r->saved_raid_disk = i;
3849
3850 clear_bit(Faulty, &r->flags);
3851 clear_bit(WriteErrorSeen, &r->flags);
3852
3853 if (mddev->pers->hot_add_disk(mddev, r)) {
3854 /* Failed to revive this device, try next */
3855 r->raid_disk = r->saved_raid_disk = -1;
3856 r->flags = flags;
3857 } else {
3858 clear_bit(In_sync, &r->flags);
3859 r->recovery_offset = 0;
3860 set_bit(i, (void *) cleared_failed_devices);
3861 cleared = true;
3862 }
3863 }
3864 }
3865
3866 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3867 if (cleared) {
3868 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3869
3870 rdev_for_each(r, &rs->md) {
3871 if (test_bit(Journal, &r->flags))
3872 continue;
3873
3874 sb = page_address(r->sb_page);
3875 sb_retrieve_failed_devices(sb, failed_devices);
3876
3877 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3878 failed_devices[i] &= ~cleared_failed_devices[i];
3879
3880 sb_update_failed_devices(sb, failed_devices);
3881 }
3882 }
3883 }
3884
__load_dirty_region_bitmap(struct raid_set * rs)3885 static int __load_dirty_region_bitmap(struct raid_set *rs)
3886 {
3887 int r = 0;
3888
3889 /* Try loading the bitmap unless "raid0", which does not have one */
3890 if (!rs_is_raid0(rs) &&
3891 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3892 r = md_bitmap_load(&rs->md);
3893 if (r)
3894 DMERR("Failed to load bitmap");
3895 }
3896
3897 return r;
3898 }
3899
3900 /* Enforce updating all superblocks */
rs_update_sbs(struct raid_set * rs)3901 static void rs_update_sbs(struct raid_set *rs)
3902 {
3903 struct mddev *mddev = &rs->md;
3904 int ro = mddev->ro;
3905
3906 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3907 mddev->ro = 0;
3908 md_update_sb(mddev, 1);
3909 mddev->ro = ro;
3910 }
3911
3912 /*
3913 * Reshape changes raid algorithm of @rs to new one within personality
3914 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3915 * disks from a raid set thus growing/shrinking it or resizes the set
3916 *
3917 * Call mddev_lock_nointr() before!
3918 */
rs_start_reshape(struct raid_set * rs)3919 static int rs_start_reshape(struct raid_set *rs)
3920 {
3921 int r;
3922 struct mddev *mddev = &rs->md;
3923 struct md_personality *pers = mddev->pers;
3924
3925 /* Don't allow the sync thread to work until the table gets reloaded. */
3926 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3927
3928 r = rs_setup_reshape(rs);
3929 if (r)
3930 return r;
3931
3932 /*
3933 * Check any reshape constraints enforced by the personalility
3934 *
3935 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3936 */
3937 r = pers->check_reshape(mddev);
3938 if (r) {
3939 rs->ti->error = "pers->check_reshape() failed";
3940 return r;
3941 }
3942
3943 /*
3944 * Personality may not provide start reshape method in which
3945 * case check_reshape above has already covered everything
3946 */
3947 if (pers->start_reshape) {
3948 r = pers->start_reshape(mddev);
3949 if (r) {
3950 rs->ti->error = "pers->start_reshape() failed";
3951 return r;
3952 }
3953 }
3954
3955 /*
3956 * Now reshape got set up, update superblocks to
3957 * reflect the fact so that a table reload will
3958 * access proper superblock content in the ctr.
3959 */
3960 rs_update_sbs(rs);
3961
3962 return 0;
3963 }
3964
raid_preresume(struct dm_target * ti)3965 static int raid_preresume(struct dm_target *ti)
3966 {
3967 int r;
3968 struct raid_set *rs = ti->private;
3969 struct mddev *mddev = &rs->md;
3970
3971 /* This is a resume after a suspend of the set -> it's already started. */
3972 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3973 return 0;
3974
3975 /*
3976 * The superblocks need to be updated on disk if the
3977 * array is new or new devices got added (thus zeroed
3978 * out by userspace) or __load_dirty_region_bitmap
3979 * will overwrite them in core with old data or fail.
3980 */
3981 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3982 rs_update_sbs(rs);
3983
3984 /* Load the bitmap from disk unless raid0 */
3985 r = __load_dirty_region_bitmap(rs);
3986 if (r)
3987 return r;
3988
3989 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3990 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3991 mddev->array_sectors = rs->array_sectors;
3992 mddev->dev_sectors = rs->dev_sectors;
3993 rs_set_rdev_sectors(rs);
3994 rs_set_capacity(rs);
3995 }
3996
3997 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3998 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3999 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4000 (rs->requested_bitmap_chunk_sectors &&
4001 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4002 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4003
4004 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4005 if (r)
4006 DMERR("Failed to resize bitmap");
4007 }
4008
4009 /* Check for any resize/reshape on @rs and adjust/initiate */
4010 /* Be prepared for mddev_resume() in raid_resume() */
4011 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4012 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4013 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4014 mddev->resync_min = mddev->recovery_cp;
4015 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4016 mddev->resync_max_sectors = mddev->dev_sectors;
4017 }
4018
4019 /* Check for any reshape request unless new raid set */
4020 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4021 /* Initiate a reshape. */
4022 rs_set_rdev_sectors(rs);
4023 mddev_lock_nointr(mddev);
4024 r = rs_start_reshape(rs);
4025 mddev_unlock(mddev);
4026 if (r)
4027 DMWARN("Failed to check/start reshape, continuing without change");
4028 r = 0;
4029 }
4030
4031 return r;
4032 }
4033
raid_resume(struct dm_target * ti)4034 static void raid_resume(struct dm_target *ti)
4035 {
4036 struct raid_set *rs = ti->private;
4037 struct mddev *mddev = &rs->md;
4038
4039 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4040 /*
4041 * A secondary resume while the device is active.
4042 * Take this opportunity to check whether any failed
4043 * devices are reachable again.
4044 */
4045 attempt_restore_of_faulty_devices(rs);
4046 }
4047
4048 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4049 /* Only reduce raid set size before running a disk removing reshape. */
4050 if (mddev->delta_disks < 0)
4051 rs_set_capacity(rs);
4052
4053 mddev_lock_nointr(mddev);
4054 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4055 mddev->ro = 0;
4056 mddev->in_sync = 0;
4057 mddev_resume(mddev);
4058 mddev_unlock(mddev);
4059 }
4060 }
4061
4062 static struct target_type raid_target = {
4063 .name = "raid",
4064 .version = {1, 15, 1},
4065 .module = THIS_MODULE,
4066 .ctr = raid_ctr,
4067 .dtr = raid_dtr,
4068 .map = raid_map,
4069 .status = raid_status,
4070 .message = raid_message,
4071 .iterate_devices = raid_iterate_devices,
4072 .io_hints = raid_io_hints,
4073 .postsuspend = raid_postsuspend,
4074 .preresume = raid_preresume,
4075 .resume = raid_resume,
4076 };
4077 module_dm(raid);
4078
4079 module_param(devices_handle_discard_safely, bool, 0644);
4080 MODULE_PARM_DESC(devices_handle_discard_safely,
4081 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4082
4083 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4084 MODULE_ALIAS("dm-raid0");
4085 MODULE_ALIAS("dm-raid1");
4086 MODULE_ALIAS("dm-raid10");
4087 MODULE_ALIAS("dm-raid4");
4088 MODULE_ALIAS("dm-raid5");
4089 MODULE_ALIAS("dm-raid6");
4090 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4091 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4092 MODULE_LICENSE("GPL");
4093