1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2007-2008 Pierre Ossman
4 */
5
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11
12 #include <linux/scatterlist.h>
13 #include <linux/list.h>
14
15 #include <linux/debugfs.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/module.h>
19
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25
26 #define RESULT_OK 0
27 #define RESULT_FAIL 1
28 #define RESULT_UNSUP_HOST 2
29 #define RESULT_UNSUP_CARD 3
30
31 #define BUFFER_ORDER 2
32 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
33
34 #define TEST_ALIGN_END 8
35
36 /*
37 * Limit the test area size to the maximum MMC HC erase group size. Note that
38 * the maximum SD allocation unit size is just 4MiB.
39 */
40 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41
42 /**
43 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
44 * @page: first page in the allocation
45 * @order: order of the number of pages allocated
46 */
47 struct mmc_test_pages {
48 struct page *page;
49 unsigned int order;
50 };
51
52 /**
53 * struct mmc_test_mem - allocated memory.
54 * @arr: array of allocations
55 * @cnt: number of allocations
56 */
57 struct mmc_test_mem {
58 struct mmc_test_pages *arr;
59 unsigned int cnt;
60 };
61
62 /**
63 * struct mmc_test_area - information for performance tests.
64 * @max_sz: test area size (in bytes)
65 * @dev_addr: address on card at which to do performance tests
66 * @max_tfr: maximum transfer size allowed by driver (in bytes)
67 * @max_segs: maximum segments allowed by driver in scatterlist @sg
68 * @max_seg_sz: maximum segment size allowed by driver
69 * @blocks: number of (512 byte) blocks currently mapped by @sg
70 * @sg_len: length of currently mapped scatterlist @sg
71 * @mem: allocated memory
72 * @sg: scatterlist
73 * @sg_areq: scatterlist for non-blocking request
74 */
75 struct mmc_test_area {
76 unsigned long max_sz;
77 unsigned int dev_addr;
78 unsigned int max_tfr;
79 unsigned int max_segs;
80 unsigned int max_seg_sz;
81 unsigned int blocks;
82 unsigned int sg_len;
83 struct mmc_test_mem *mem;
84 struct scatterlist *sg;
85 struct scatterlist *sg_areq;
86 };
87
88 /**
89 * struct mmc_test_transfer_result - transfer results for performance tests.
90 * @link: double-linked list
91 * @count: amount of group of sectors to check
92 * @sectors: amount of sectors to check in one group
93 * @ts: time values of transfer
94 * @rate: calculated transfer rate
95 * @iops: I/O operations per second (times 100)
96 */
97 struct mmc_test_transfer_result {
98 struct list_head link;
99 unsigned int count;
100 unsigned int sectors;
101 struct timespec64 ts;
102 unsigned int rate;
103 unsigned int iops;
104 };
105
106 /**
107 * struct mmc_test_general_result - results for tests.
108 * @link: double-linked list
109 * @card: card under test
110 * @testcase: number of test case
111 * @result: result of test run
112 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
113 */
114 struct mmc_test_general_result {
115 struct list_head link;
116 struct mmc_card *card;
117 int testcase;
118 int result;
119 struct list_head tr_lst;
120 };
121
122 /**
123 * struct mmc_test_dbgfs_file - debugfs related file.
124 * @link: double-linked list
125 * @card: card under test
126 * @file: file created under debugfs
127 */
128 struct mmc_test_dbgfs_file {
129 struct list_head link;
130 struct mmc_card *card;
131 struct dentry *file;
132 };
133
134 /**
135 * struct mmc_test_card - test information.
136 * @card: card under test
137 * @scratch: transfer buffer
138 * @buffer: transfer buffer
139 * @highmem: buffer for highmem tests
140 * @area: information for performance tests
141 * @gr: pointer to results of current testcase
142 */
143 struct mmc_test_card {
144 struct mmc_card *card;
145
146 u8 scratch[BUFFER_SIZE];
147 u8 *buffer;
148 #ifdef CONFIG_HIGHMEM
149 struct page *highmem;
150 #endif
151 struct mmc_test_area area;
152 struct mmc_test_general_result *gr;
153 };
154
155 enum mmc_test_prep_media {
156 MMC_TEST_PREP_NONE = 0,
157 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
158 MMC_TEST_PREP_ERASE = 1 << 1,
159 };
160
161 struct mmc_test_multiple_rw {
162 unsigned int *sg_len;
163 unsigned int *bs;
164 unsigned int len;
165 unsigned int size;
166 bool do_write;
167 bool do_nonblock_req;
168 enum mmc_test_prep_media prepare;
169 };
170
171 /*******************************************************************/
172 /* General helper functions */
173 /*******************************************************************/
174
175 /*
176 * Configure correct block size in card
177 */
mmc_test_set_blksize(struct mmc_test_card * test,unsigned size)178 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
179 {
180 return mmc_set_blocklen(test->card, size);
181 }
182
mmc_test_card_cmd23(struct mmc_card * card)183 static bool mmc_test_card_cmd23(struct mmc_card *card)
184 {
185 return mmc_card_mmc(card) ||
186 (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
187 }
188
mmc_test_prepare_sbc(struct mmc_test_card * test,struct mmc_request * mrq,unsigned int blocks)189 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
190 struct mmc_request *mrq, unsigned int blocks)
191 {
192 struct mmc_card *card = test->card;
193
194 if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
195 !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
196 (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
197 mrq->sbc = NULL;
198 return;
199 }
200
201 mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
202 mrq->sbc->arg = blocks;
203 mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
204 }
205
206 /*
207 * Fill in the mmc_request structure given a set of transfer parameters.
208 */
mmc_test_prepare_mrq(struct mmc_test_card * test,struct mmc_request * mrq,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)209 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
210 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
211 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
212 {
213 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
214 return;
215
216 if (blocks > 1) {
217 mrq->cmd->opcode = write ?
218 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
219 } else {
220 mrq->cmd->opcode = write ?
221 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
222 }
223
224 mrq->cmd->arg = dev_addr;
225 if (!mmc_card_blockaddr(test->card))
226 mrq->cmd->arg <<= 9;
227
228 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
229
230 if (blocks == 1)
231 mrq->stop = NULL;
232 else {
233 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
234 mrq->stop->arg = 0;
235 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
236 }
237
238 mrq->data->blksz = blksz;
239 mrq->data->blocks = blocks;
240 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
241 mrq->data->sg = sg;
242 mrq->data->sg_len = sg_len;
243
244 mmc_test_prepare_sbc(test, mrq, blocks);
245
246 mmc_set_data_timeout(mrq->data, test->card);
247 }
248
mmc_test_busy(struct mmc_command * cmd)249 static int mmc_test_busy(struct mmc_command *cmd)
250 {
251 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
252 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
253 }
254
255 /*
256 * Wait for the card to finish the busy state
257 */
mmc_test_wait_busy(struct mmc_test_card * test)258 static int mmc_test_wait_busy(struct mmc_test_card *test)
259 {
260 int ret, busy;
261 struct mmc_command cmd = {};
262
263 busy = 0;
264 do {
265 memset(&cmd, 0, sizeof(struct mmc_command));
266
267 cmd.opcode = MMC_SEND_STATUS;
268 cmd.arg = test->card->rca << 16;
269 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
270
271 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
272 if (ret)
273 break;
274
275 if (!busy && mmc_test_busy(&cmd)) {
276 busy = 1;
277 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
278 pr_info("%s: Warning: Host did not wait for busy state to end.\n",
279 mmc_hostname(test->card->host));
280 }
281 } while (mmc_test_busy(&cmd));
282
283 return ret;
284 }
285
286 /*
287 * Transfer a single sector of kernel addressable data
288 */
mmc_test_buffer_transfer(struct mmc_test_card * test,u8 * buffer,unsigned addr,unsigned blksz,int write)289 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
290 u8 *buffer, unsigned addr, unsigned blksz, int write)
291 {
292 struct mmc_request mrq = {};
293 struct mmc_command cmd = {};
294 struct mmc_command stop = {};
295 struct mmc_data data = {};
296
297 struct scatterlist sg;
298
299 mrq.cmd = &cmd;
300 mrq.data = &data;
301 mrq.stop = &stop;
302
303 sg_init_one(&sg, buffer, blksz);
304
305 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
306
307 mmc_wait_for_req(test->card->host, &mrq);
308
309 if (cmd.error)
310 return cmd.error;
311 if (data.error)
312 return data.error;
313
314 return mmc_test_wait_busy(test);
315 }
316
mmc_test_free_mem(struct mmc_test_mem * mem)317 static void mmc_test_free_mem(struct mmc_test_mem *mem)
318 {
319 if (!mem)
320 return;
321 while (mem->cnt--)
322 __free_pages(mem->arr[mem->cnt].page,
323 mem->arr[mem->cnt].order);
324 kfree(mem->arr);
325 kfree(mem);
326 }
327
328 /*
329 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
330 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
331 * not exceed a maximum number of segments and try not to make segments much
332 * bigger than maximum segment size.
333 */
mmc_test_alloc_mem(unsigned long min_sz,unsigned long max_sz,unsigned int max_segs,unsigned int max_seg_sz)334 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
335 unsigned long max_sz,
336 unsigned int max_segs,
337 unsigned int max_seg_sz)
338 {
339 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
340 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
341 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
342 unsigned long page_cnt = 0;
343 unsigned long limit = nr_free_buffer_pages() >> 4;
344 struct mmc_test_mem *mem;
345
346 if (max_page_cnt > limit)
347 max_page_cnt = limit;
348 if (min_page_cnt > max_page_cnt)
349 min_page_cnt = max_page_cnt;
350
351 if (max_seg_page_cnt > max_page_cnt)
352 max_seg_page_cnt = max_page_cnt;
353
354 if (max_segs > max_page_cnt)
355 max_segs = max_page_cnt;
356
357 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
358 if (!mem)
359 return NULL;
360
361 mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
362 if (!mem->arr)
363 goto out_free;
364
365 while (max_page_cnt) {
366 struct page *page;
367 unsigned int order;
368 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
369 __GFP_NORETRY;
370
371 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
372 while (1) {
373 page = alloc_pages(flags, order);
374 if (page || !order)
375 break;
376 order -= 1;
377 }
378 if (!page) {
379 if (page_cnt < min_page_cnt)
380 goto out_free;
381 break;
382 }
383 mem->arr[mem->cnt].page = page;
384 mem->arr[mem->cnt].order = order;
385 mem->cnt += 1;
386 if (max_page_cnt <= (1UL << order))
387 break;
388 max_page_cnt -= 1UL << order;
389 page_cnt += 1UL << order;
390 if (mem->cnt >= max_segs) {
391 if (page_cnt < min_page_cnt)
392 goto out_free;
393 break;
394 }
395 }
396
397 return mem;
398
399 out_free:
400 mmc_test_free_mem(mem);
401 return NULL;
402 }
403
404 /*
405 * Map memory into a scatterlist. Optionally allow the same memory to be
406 * mapped more than once.
407 */
mmc_test_map_sg(struct mmc_test_mem * mem,unsigned long size,struct scatterlist * sglist,int repeat,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len,int min_sg_len)408 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
409 struct scatterlist *sglist, int repeat,
410 unsigned int max_segs, unsigned int max_seg_sz,
411 unsigned int *sg_len, int min_sg_len)
412 {
413 struct scatterlist *sg = NULL;
414 unsigned int i;
415 unsigned long sz = size;
416
417 sg_init_table(sglist, max_segs);
418 if (min_sg_len > max_segs)
419 min_sg_len = max_segs;
420
421 *sg_len = 0;
422 do {
423 for (i = 0; i < mem->cnt; i++) {
424 unsigned long len = PAGE_SIZE << mem->arr[i].order;
425
426 if (min_sg_len && (size / min_sg_len < len))
427 len = ALIGN(size / min_sg_len, 512);
428 if (len > sz)
429 len = sz;
430 if (len > max_seg_sz)
431 len = max_seg_sz;
432 if (sg)
433 sg = sg_next(sg);
434 else
435 sg = sglist;
436 if (!sg)
437 return -EINVAL;
438 sg_set_page(sg, mem->arr[i].page, len, 0);
439 sz -= len;
440 *sg_len += 1;
441 if (!sz)
442 break;
443 }
444 } while (sz && repeat);
445
446 if (sz)
447 return -EINVAL;
448
449 if (sg)
450 sg_mark_end(sg);
451
452 return 0;
453 }
454
455 /*
456 * Map memory into a scatterlist so that no pages are contiguous. Allow the
457 * same memory to be mapped more than once.
458 */
mmc_test_map_sg_max_scatter(struct mmc_test_mem * mem,unsigned long sz,struct scatterlist * sglist,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len)459 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
460 unsigned long sz,
461 struct scatterlist *sglist,
462 unsigned int max_segs,
463 unsigned int max_seg_sz,
464 unsigned int *sg_len)
465 {
466 struct scatterlist *sg = NULL;
467 unsigned int i = mem->cnt, cnt;
468 unsigned long len;
469 void *base, *addr, *last_addr = NULL;
470
471 sg_init_table(sglist, max_segs);
472
473 *sg_len = 0;
474 while (sz) {
475 base = page_address(mem->arr[--i].page);
476 cnt = 1 << mem->arr[i].order;
477 while (sz && cnt) {
478 addr = base + PAGE_SIZE * --cnt;
479 if (last_addr && last_addr + PAGE_SIZE == addr)
480 continue;
481 last_addr = addr;
482 len = PAGE_SIZE;
483 if (len > max_seg_sz)
484 len = max_seg_sz;
485 if (len > sz)
486 len = sz;
487 if (sg)
488 sg = sg_next(sg);
489 else
490 sg = sglist;
491 if (!sg)
492 return -EINVAL;
493 sg_set_page(sg, virt_to_page(addr), len, 0);
494 sz -= len;
495 *sg_len += 1;
496 }
497 if (i == 0)
498 i = mem->cnt;
499 }
500
501 if (sg)
502 sg_mark_end(sg);
503
504 return 0;
505 }
506
507 /*
508 * Calculate transfer rate in bytes per second.
509 */
mmc_test_rate(uint64_t bytes,struct timespec64 * ts)510 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
511 {
512 uint64_t ns;
513
514 ns = timespec64_to_ns(ts);
515 bytes *= 1000000000;
516
517 while (ns > UINT_MAX) {
518 bytes >>= 1;
519 ns >>= 1;
520 }
521
522 if (!ns)
523 return 0;
524
525 do_div(bytes, (uint32_t)ns);
526
527 return bytes;
528 }
529
530 /*
531 * Save transfer results for future usage
532 */
mmc_test_save_transfer_result(struct mmc_test_card * test,unsigned int count,unsigned int sectors,struct timespec64 ts,unsigned int rate,unsigned int iops)533 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
534 unsigned int count, unsigned int sectors, struct timespec64 ts,
535 unsigned int rate, unsigned int iops)
536 {
537 struct mmc_test_transfer_result *tr;
538
539 if (!test->gr)
540 return;
541
542 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
543 if (!tr)
544 return;
545
546 tr->count = count;
547 tr->sectors = sectors;
548 tr->ts = ts;
549 tr->rate = rate;
550 tr->iops = iops;
551
552 list_add_tail(&tr->link, &test->gr->tr_lst);
553 }
554
555 /*
556 * Print the transfer rate.
557 */
mmc_test_print_rate(struct mmc_test_card * test,uint64_t bytes,struct timespec64 * ts1,struct timespec64 * ts2)558 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
559 struct timespec64 *ts1, struct timespec64 *ts2)
560 {
561 unsigned int rate, iops, sectors = bytes >> 9;
562 struct timespec64 ts;
563
564 ts = timespec64_sub(*ts2, *ts1);
565
566 rate = mmc_test_rate(bytes, &ts);
567 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
568
569 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
570 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
571 mmc_hostname(test->card->host), sectors, sectors >> 1,
572 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
573 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
574 iops / 100, iops % 100);
575
576 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
577 }
578
579 /*
580 * Print the average transfer rate.
581 */
mmc_test_print_avg_rate(struct mmc_test_card * test,uint64_t bytes,unsigned int count,struct timespec64 * ts1,struct timespec64 * ts2)582 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
583 unsigned int count, struct timespec64 *ts1,
584 struct timespec64 *ts2)
585 {
586 unsigned int rate, iops, sectors = bytes >> 9;
587 uint64_t tot = bytes * count;
588 struct timespec64 ts;
589
590 ts = timespec64_sub(*ts2, *ts1);
591
592 rate = mmc_test_rate(tot, &ts);
593 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
594
595 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
596 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
597 "%u.%02u IOPS, sg_len %d)\n",
598 mmc_hostname(test->card->host), count, sectors, count,
599 sectors >> 1, (sectors & 1 ? ".5" : ""),
600 (u64)ts.tv_sec, (u32)ts.tv_nsec,
601 rate / 1000, rate / 1024, iops / 100, iops % 100,
602 test->area.sg_len);
603
604 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
605 }
606
607 /*
608 * Return the card size in sectors.
609 */
mmc_test_capacity(struct mmc_card * card)610 static unsigned int mmc_test_capacity(struct mmc_card *card)
611 {
612 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
613 return card->ext_csd.sectors;
614 else
615 return card->csd.capacity << (card->csd.read_blkbits - 9);
616 }
617
618 /*******************************************************************/
619 /* Test preparation and cleanup */
620 /*******************************************************************/
621
622 /*
623 * Fill the first couple of sectors of the card with known data
624 * so that bad reads/writes can be detected
625 */
__mmc_test_prepare(struct mmc_test_card * test,int write,int val)626 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
627 {
628 int ret, i;
629
630 ret = mmc_test_set_blksize(test, 512);
631 if (ret)
632 return ret;
633
634 if (write)
635 memset(test->buffer, val, 512);
636 else {
637 for (i = 0; i < 512; i++)
638 test->buffer[i] = i;
639 }
640
641 for (i = 0; i < BUFFER_SIZE / 512; i++) {
642 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
643 if (ret)
644 return ret;
645 }
646
647 return 0;
648 }
649
mmc_test_prepare_write(struct mmc_test_card * test)650 static int mmc_test_prepare_write(struct mmc_test_card *test)
651 {
652 return __mmc_test_prepare(test, 1, 0xDF);
653 }
654
mmc_test_prepare_read(struct mmc_test_card * test)655 static int mmc_test_prepare_read(struct mmc_test_card *test)
656 {
657 return __mmc_test_prepare(test, 0, 0);
658 }
659
mmc_test_cleanup(struct mmc_test_card * test)660 static int mmc_test_cleanup(struct mmc_test_card *test)
661 {
662 return __mmc_test_prepare(test, 1, 0);
663 }
664
665 /*******************************************************************/
666 /* Test execution helpers */
667 /*******************************************************************/
668
669 /*
670 * Modifies the mmc_request to perform the "short transfer" tests
671 */
mmc_test_prepare_broken_mrq(struct mmc_test_card * test,struct mmc_request * mrq,int write)672 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
673 struct mmc_request *mrq, int write)
674 {
675 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
676 return;
677
678 if (mrq->data->blocks > 1) {
679 mrq->cmd->opcode = write ?
680 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681 mrq->stop = NULL;
682 } else {
683 mrq->cmd->opcode = MMC_SEND_STATUS;
684 mrq->cmd->arg = test->card->rca << 16;
685 }
686 }
687
688 /*
689 * Checks that a normal transfer didn't have any errors
690 */
mmc_test_check_result(struct mmc_test_card * test,struct mmc_request * mrq)691 static int mmc_test_check_result(struct mmc_test_card *test,
692 struct mmc_request *mrq)
693 {
694 int ret;
695
696 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
697 return -EINVAL;
698
699 ret = 0;
700
701 if (mrq->sbc && mrq->sbc->error)
702 ret = mrq->sbc->error;
703 if (!ret && mrq->cmd->error)
704 ret = mrq->cmd->error;
705 if (!ret && mrq->data->error)
706 ret = mrq->data->error;
707 if (!ret && mrq->stop && mrq->stop->error)
708 ret = mrq->stop->error;
709 if (!ret && mrq->data->bytes_xfered !=
710 mrq->data->blocks * mrq->data->blksz)
711 ret = RESULT_FAIL;
712
713 if (ret == -EINVAL)
714 ret = RESULT_UNSUP_HOST;
715
716 return ret;
717 }
718
719 /*
720 * Checks that a "short transfer" behaved as expected
721 */
mmc_test_check_broken_result(struct mmc_test_card * test,struct mmc_request * mrq)722 static int mmc_test_check_broken_result(struct mmc_test_card *test,
723 struct mmc_request *mrq)
724 {
725 int ret;
726
727 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
728 return -EINVAL;
729
730 ret = 0;
731
732 if (!ret && mrq->cmd->error)
733 ret = mrq->cmd->error;
734 if (!ret && mrq->data->error == 0)
735 ret = RESULT_FAIL;
736 if (!ret && mrq->data->error != -ETIMEDOUT)
737 ret = mrq->data->error;
738 if (!ret && mrq->stop && mrq->stop->error)
739 ret = mrq->stop->error;
740 if (mrq->data->blocks > 1) {
741 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
742 ret = RESULT_FAIL;
743 } else {
744 if (!ret && mrq->data->bytes_xfered > 0)
745 ret = RESULT_FAIL;
746 }
747
748 if (ret == -EINVAL)
749 ret = RESULT_UNSUP_HOST;
750
751 return ret;
752 }
753
754 struct mmc_test_req {
755 struct mmc_request mrq;
756 struct mmc_command sbc;
757 struct mmc_command cmd;
758 struct mmc_command stop;
759 struct mmc_command status;
760 struct mmc_data data;
761 };
762
763 /*
764 * Tests nonblock transfer with certain parameters
765 */
mmc_test_req_reset(struct mmc_test_req * rq)766 static void mmc_test_req_reset(struct mmc_test_req *rq)
767 {
768 memset(rq, 0, sizeof(struct mmc_test_req));
769
770 rq->mrq.cmd = &rq->cmd;
771 rq->mrq.data = &rq->data;
772 rq->mrq.stop = &rq->stop;
773 }
774
mmc_test_req_alloc(void)775 static struct mmc_test_req *mmc_test_req_alloc(void)
776 {
777 struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
778
779 if (rq)
780 mmc_test_req_reset(rq);
781
782 return rq;
783 }
784
mmc_test_wait_done(struct mmc_request * mrq)785 static void mmc_test_wait_done(struct mmc_request *mrq)
786 {
787 complete(&mrq->completion);
788 }
789
mmc_test_start_areq(struct mmc_test_card * test,struct mmc_request * mrq,struct mmc_request * prev_mrq)790 static int mmc_test_start_areq(struct mmc_test_card *test,
791 struct mmc_request *mrq,
792 struct mmc_request *prev_mrq)
793 {
794 struct mmc_host *host = test->card->host;
795 int err = 0;
796
797 if (mrq) {
798 init_completion(&mrq->completion);
799 mrq->done = mmc_test_wait_done;
800 mmc_pre_req(host, mrq);
801 }
802
803 if (prev_mrq) {
804 wait_for_completion(&prev_mrq->completion);
805 err = mmc_test_wait_busy(test);
806 if (!err)
807 err = mmc_test_check_result(test, prev_mrq);
808 }
809
810 if (!err && mrq) {
811 err = mmc_start_request(host, mrq);
812 if (err)
813 mmc_retune_release(host);
814 }
815
816 if (prev_mrq)
817 mmc_post_req(host, prev_mrq, 0);
818
819 if (err && mrq)
820 mmc_post_req(host, mrq, err);
821
822 return err;
823 }
824
mmc_test_nonblock_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write,int count)825 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
826 unsigned int dev_addr, int write,
827 int count)
828 {
829 struct mmc_test_req *rq1, *rq2;
830 struct mmc_request *mrq, *prev_mrq;
831 int i;
832 int ret = RESULT_OK;
833 struct mmc_test_area *t = &test->area;
834 struct scatterlist *sg = t->sg;
835 struct scatterlist *sg_areq = t->sg_areq;
836
837 rq1 = mmc_test_req_alloc();
838 rq2 = mmc_test_req_alloc();
839 if (!rq1 || !rq2) {
840 ret = RESULT_FAIL;
841 goto err;
842 }
843
844 mrq = &rq1->mrq;
845 prev_mrq = NULL;
846
847 for (i = 0; i < count; i++) {
848 mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
849 mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
850 t->blocks, 512, write);
851 ret = mmc_test_start_areq(test, mrq, prev_mrq);
852 if (ret)
853 goto err;
854
855 if (!prev_mrq)
856 prev_mrq = &rq2->mrq;
857
858 swap(mrq, prev_mrq);
859 swap(sg, sg_areq);
860 dev_addr += t->blocks;
861 }
862
863 ret = mmc_test_start_areq(test, NULL, prev_mrq);
864 err:
865 kfree(rq1);
866 kfree(rq2);
867 return ret;
868 }
869
870 /*
871 * Tests a basic transfer with certain parameters
872 */
mmc_test_simple_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)873 static int mmc_test_simple_transfer(struct mmc_test_card *test,
874 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
875 unsigned blocks, unsigned blksz, int write)
876 {
877 struct mmc_request mrq = {};
878 struct mmc_command cmd = {};
879 struct mmc_command stop = {};
880 struct mmc_data data = {};
881
882 mrq.cmd = &cmd;
883 mrq.data = &data;
884 mrq.stop = &stop;
885
886 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
887 blocks, blksz, write);
888
889 mmc_wait_for_req(test->card->host, &mrq);
890
891 mmc_test_wait_busy(test);
892
893 return mmc_test_check_result(test, &mrq);
894 }
895
896 /*
897 * Tests a transfer where the card will fail completely or partly
898 */
mmc_test_broken_transfer(struct mmc_test_card * test,unsigned blocks,unsigned blksz,int write)899 static int mmc_test_broken_transfer(struct mmc_test_card *test,
900 unsigned blocks, unsigned blksz, int write)
901 {
902 struct mmc_request mrq = {};
903 struct mmc_command cmd = {};
904 struct mmc_command stop = {};
905 struct mmc_data data = {};
906
907 struct scatterlist sg;
908
909 mrq.cmd = &cmd;
910 mrq.data = &data;
911 mrq.stop = &stop;
912
913 sg_init_one(&sg, test->buffer, blocks * blksz);
914
915 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
916 mmc_test_prepare_broken_mrq(test, &mrq, write);
917
918 mmc_wait_for_req(test->card->host, &mrq);
919
920 mmc_test_wait_busy(test);
921
922 return mmc_test_check_broken_result(test, &mrq);
923 }
924
925 /*
926 * Does a complete transfer test where data is also validated
927 *
928 * Note: mmc_test_prepare() must have been done before this call
929 */
mmc_test_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)930 static int mmc_test_transfer(struct mmc_test_card *test,
931 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
932 unsigned blocks, unsigned blksz, int write)
933 {
934 int ret, i;
935
936 if (write) {
937 for (i = 0; i < blocks * blksz; i++)
938 test->scratch[i] = i;
939 } else {
940 memset(test->scratch, 0, BUFFER_SIZE);
941 }
942 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
943
944 ret = mmc_test_set_blksize(test, blksz);
945 if (ret)
946 return ret;
947
948 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
949 blocks, blksz, write);
950 if (ret)
951 return ret;
952
953 if (write) {
954 int sectors;
955
956 ret = mmc_test_set_blksize(test, 512);
957 if (ret)
958 return ret;
959
960 sectors = (blocks * blksz + 511) / 512;
961 if ((sectors * 512) == (blocks * blksz))
962 sectors++;
963
964 if ((sectors * 512) > BUFFER_SIZE)
965 return -EINVAL;
966
967 memset(test->buffer, 0, sectors * 512);
968
969 for (i = 0; i < sectors; i++) {
970 ret = mmc_test_buffer_transfer(test,
971 test->buffer + i * 512,
972 dev_addr + i, 512, 0);
973 if (ret)
974 return ret;
975 }
976
977 for (i = 0; i < blocks * blksz; i++) {
978 if (test->buffer[i] != (u8)i)
979 return RESULT_FAIL;
980 }
981
982 for (; i < sectors * 512; i++) {
983 if (test->buffer[i] != 0xDF)
984 return RESULT_FAIL;
985 }
986 } else {
987 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
988 for (i = 0; i < blocks * blksz; i++) {
989 if (test->scratch[i] != (u8)i)
990 return RESULT_FAIL;
991 }
992 }
993
994 return 0;
995 }
996
997 /*******************************************************************/
998 /* Tests */
999 /*******************************************************************/
1000
1001 struct mmc_test_case {
1002 const char *name;
1003
1004 int (*prepare)(struct mmc_test_card *);
1005 int (*run)(struct mmc_test_card *);
1006 int (*cleanup)(struct mmc_test_card *);
1007 };
1008
mmc_test_basic_write(struct mmc_test_card * test)1009 static int mmc_test_basic_write(struct mmc_test_card *test)
1010 {
1011 int ret;
1012 struct scatterlist sg;
1013
1014 ret = mmc_test_set_blksize(test, 512);
1015 if (ret)
1016 return ret;
1017
1018 sg_init_one(&sg, test->buffer, 512);
1019
1020 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1021 }
1022
mmc_test_basic_read(struct mmc_test_card * test)1023 static int mmc_test_basic_read(struct mmc_test_card *test)
1024 {
1025 int ret;
1026 struct scatterlist sg;
1027
1028 ret = mmc_test_set_blksize(test, 512);
1029 if (ret)
1030 return ret;
1031
1032 sg_init_one(&sg, test->buffer, 512);
1033
1034 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1035 }
1036
mmc_test_verify_write(struct mmc_test_card * test)1037 static int mmc_test_verify_write(struct mmc_test_card *test)
1038 {
1039 struct scatterlist sg;
1040
1041 sg_init_one(&sg, test->buffer, 512);
1042
1043 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1044 }
1045
mmc_test_verify_read(struct mmc_test_card * test)1046 static int mmc_test_verify_read(struct mmc_test_card *test)
1047 {
1048 struct scatterlist sg;
1049
1050 sg_init_one(&sg, test->buffer, 512);
1051
1052 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1053 }
1054
mmc_test_multi_write(struct mmc_test_card * test)1055 static int mmc_test_multi_write(struct mmc_test_card *test)
1056 {
1057 unsigned int size;
1058 struct scatterlist sg;
1059
1060 if (test->card->host->max_blk_count == 1)
1061 return RESULT_UNSUP_HOST;
1062
1063 size = PAGE_SIZE * 2;
1064 size = min(size, test->card->host->max_req_size);
1065 size = min(size, test->card->host->max_seg_size);
1066 size = min(size, test->card->host->max_blk_count * 512);
1067
1068 if (size < 1024)
1069 return RESULT_UNSUP_HOST;
1070
1071 sg_init_one(&sg, test->buffer, size);
1072
1073 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1074 }
1075
mmc_test_multi_read(struct mmc_test_card * test)1076 static int mmc_test_multi_read(struct mmc_test_card *test)
1077 {
1078 unsigned int size;
1079 struct scatterlist sg;
1080
1081 if (test->card->host->max_blk_count == 1)
1082 return RESULT_UNSUP_HOST;
1083
1084 size = PAGE_SIZE * 2;
1085 size = min(size, test->card->host->max_req_size);
1086 size = min(size, test->card->host->max_seg_size);
1087 size = min(size, test->card->host->max_blk_count * 512);
1088
1089 if (size < 1024)
1090 return RESULT_UNSUP_HOST;
1091
1092 sg_init_one(&sg, test->buffer, size);
1093
1094 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1095 }
1096
mmc_test_pow2_write(struct mmc_test_card * test)1097 static int mmc_test_pow2_write(struct mmc_test_card *test)
1098 {
1099 int ret, i;
1100 struct scatterlist sg;
1101
1102 if (!test->card->csd.write_partial)
1103 return RESULT_UNSUP_CARD;
1104
1105 for (i = 1; i < 512; i <<= 1) {
1106 sg_init_one(&sg, test->buffer, i);
1107 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1108 if (ret)
1109 return ret;
1110 }
1111
1112 return 0;
1113 }
1114
mmc_test_pow2_read(struct mmc_test_card * test)1115 static int mmc_test_pow2_read(struct mmc_test_card *test)
1116 {
1117 int ret, i;
1118 struct scatterlist sg;
1119
1120 if (!test->card->csd.read_partial)
1121 return RESULT_UNSUP_CARD;
1122
1123 for (i = 1; i < 512; i <<= 1) {
1124 sg_init_one(&sg, test->buffer, i);
1125 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1126 if (ret)
1127 return ret;
1128 }
1129
1130 return 0;
1131 }
1132
mmc_test_weird_write(struct mmc_test_card * test)1133 static int mmc_test_weird_write(struct mmc_test_card *test)
1134 {
1135 int ret, i;
1136 struct scatterlist sg;
1137
1138 if (!test->card->csd.write_partial)
1139 return RESULT_UNSUP_CARD;
1140
1141 for (i = 3; i < 512; i += 7) {
1142 sg_init_one(&sg, test->buffer, i);
1143 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 return 0;
1149 }
1150
mmc_test_weird_read(struct mmc_test_card * test)1151 static int mmc_test_weird_read(struct mmc_test_card *test)
1152 {
1153 int ret, i;
1154 struct scatterlist sg;
1155
1156 if (!test->card->csd.read_partial)
1157 return RESULT_UNSUP_CARD;
1158
1159 for (i = 3; i < 512; i += 7) {
1160 sg_init_one(&sg, test->buffer, i);
1161 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1162 if (ret)
1163 return ret;
1164 }
1165
1166 return 0;
1167 }
1168
mmc_test_align_write(struct mmc_test_card * test)1169 static int mmc_test_align_write(struct mmc_test_card *test)
1170 {
1171 int ret, i;
1172 struct scatterlist sg;
1173
1174 for (i = 1; i < TEST_ALIGN_END; i++) {
1175 sg_init_one(&sg, test->buffer + i, 512);
1176 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1177 if (ret)
1178 return ret;
1179 }
1180
1181 return 0;
1182 }
1183
mmc_test_align_read(struct mmc_test_card * test)1184 static int mmc_test_align_read(struct mmc_test_card *test)
1185 {
1186 int ret, i;
1187 struct scatterlist sg;
1188
1189 for (i = 1; i < TEST_ALIGN_END; i++) {
1190 sg_init_one(&sg, test->buffer + i, 512);
1191 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1192 if (ret)
1193 return ret;
1194 }
1195
1196 return 0;
1197 }
1198
mmc_test_align_multi_write(struct mmc_test_card * test)1199 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1200 {
1201 int ret, i;
1202 unsigned int size;
1203 struct scatterlist sg;
1204
1205 if (test->card->host->max_blk_count == 1)
1206 return RESULT_UNSUP_HOST;
1207
1208 size = PAGE_SIZE * 2;
1209 size = min(size, test->card->host->max_req_size);
1210 size = min(size, test->card->host->max_seg_size);
1211 size = min(size, test->card->host->max_blk_count * 512);
1212
1213 if (size < 1024)
1214 return RESULT_UNSUP_HOST;
1215
1216 for (i = 1; i < TEST_ALIGN_END; i++) {
1217 sg_init_one(&sg, test->buffer + i, size);
1218 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1219 if (ret)
1220 return ret;
1221 }
1222
1223 return 0;
1224 }
1225
mmc_test_align_multi_read(struct mmc_test_card * test)1226 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1227 {
1228 int ret, i;
1229 unsigned int size;
1230 struct scatterlist sg;
1231
1232 if (test->card->host->max_blk_count == 1)
1233 return RESULT_UNSUP_HOST;
1234
1235 size = PAGE_SIZE * 2;
1236 size = min(size, test->card->host->max_req_size);
1237 size = min(size, test->card->host->max_seg_size);
1238 size = min(size, test->card->host->max_blk_count * 512);
1239
1240 if (size < 1024)
1241 return RESULT_UNSUP_HOST;
1242
1243 for (i = 1; i < TEST_ALIGN_END; i++) {
1244 sg_init_one(&sg, test->buffer + i, size);
1245 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1246 if (ret)
1247 return ret;
1248 }
1249
1250 return 0;
1251 }
1252
mmc_test_xfersize_write(struct mmc_test_card * test)1253 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1254 {
1255 int ret;
1256
1257 ret = mmc_test_set_blksize(test, 512);
1258 if (ret)
1259 return ret;
1260
1261 return mmc_test_broken_transfer(test, 1, 512, 1);
1262 }
1263
mmc_test_xfersize_read(struct mmc_test_card * test)1264 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1265 {
1266 int ret;
1267
1268 ret = mmc_test_set_blksize(test, 512);
1269 if (ret)
1270 return ret;
1271
1272 return mmc_test_broken_transfer(test, 1, 512, 0);
1273 }
1274
mmc_test_multi_xfersize_write(struct mmc_test_card * test)1275 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1276 {
1277 int ret;
1278
1279 if (test->card->host->max_blk_count == 1)
1280 return RESULT_UNSUP_HOST;
1281
1282 ret = mmc_test_set_blksize(test, 512);
1283 if (ret)
1284 return ret;
1285
1286 return mmc_test_broken_transfer(test, 2, 512, 1);
1287 }
1288
mmc_test_multi_xfersize_read(struct mmc_test_card * test)1289 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1290 {
1291 int ret;
1292
1293 if (test->card->host->max_blk_count == 1)
1294 return RESULT_UNSUP_HOST;
1295
1296 ret = mmc_test_set_blksize(test, 512);
1297 if (ret)
1298 return ret;
1299
1300 return mmc_test_broken_transfer(test, 2, 512, 0);
1301 }
1302
1303 #ifdef CONFIG_HIGHMEM
1304
mmc_test_write_high(struct mmc_test_card * test)1305 static int mmc_test_write_high(struct mmc_test_card *test)
1306 {
1307 struct scatterlist sg;
1308
1309 sg_init_table(&sg, 1);
1310 sg_set_page(&sg, test->highmem, 512, 0);
1311
1312 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1313 }
1314
mmc_test_read_high(struct mmc_test_card * test)1315 static int mmc_test_read_high(struct mmc_test_card *test)
1316 {
1317 struct scatterlist sg;
1318
1319 sg_init_table(&sg, 1);
1320 sg_set_page(&sg, test->highmem, 512, 0);
1321
1322 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1323 }
1324
mmc_test_multi_write_high(struct mmc_test_card * test)1325 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1326 {
1327 unsigned int size;
1328 struct scatterlist sg;
1329
1330 if (test->card->host->max_blk_count == 1)
1331 return RESULT_UNSUP_HOST;
1332
1333 size = PAGE_SIZE * 2;
1334 size = min(size, test->card->host->max_req_size);
1335 size = min(size, test->card->host->max_seg_size);
1336 size = min(size, test->card->host->max_blk_count * 512);
1337
1338 if (size < 1024)
1339 return RESULT_UNSUP_HOST;
1340
1341 sg_init_table(&sg, 1);
1342 sg_set_page(&sg, test->highmem, size, 0);
1343
1344 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1345 }
1346
mmc_test_multi_read_high(struct mmc_test_card * test)1347 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1348 {
1349 unsigned int size;
1350 struct scatterlist sg;
1351
1352 if (test->card->host->max_blk_count == 1)
1353 return RESULT_UNSUP_HOST;
1354
1355 size = PAGE_SIZE * 2;
1356 size = min(size, test->card->host->max_req_size);
1357 size = min(size, test->card->host->max_seg_size);
1358 size = min(size, test->card->host->max_blk_count * 512);
1359
1360 if (size < 1024)
1361 return RESULT_UNSUP_HOST;
1362
1363 sg_init_table(&sg, 1);
1364 sg_set_page(&sg, test->highmem, size, 0);
1365
1366 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1367 }
1368
1369 #else
1370
mmc_test_no_highmem(struct mmc_test_card * test)1371 static int mmc_test_no_highmem(struct mmc_test_card *test)
1372 {
1373 pr_info("%s: Highmem not configured - test skipped\n",
1374 mmc_hostname(test->card->host));
1375 return 0;
1376 }
1377
1378 #endif /* CONFIG_HIGHMEM */
1379
1380 /*
1381 * Map sz bytes so that it can be transferred.
1382 */
mmc_test_area_map(struct mmc_test_card * test,unsigned long sz,int max_scatter,int min_sg_len,bool nonblock)1383 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1384 int max_scatter, int min_sg_len, bool nonblock)
1385 {
1386 struct mmc_test_area *t = &test->area;
1387 int err;
1388 unsigned int sg_len = 0;
1389
1390 t->blocks = sz >> 9;
1391
1392 if (max_scatter) {
1393 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1394 t->max_segs, t->max_seg_sz,
1395 &t->sg_len);
1396 } else {
1397 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1398 t->max_seg_sz, &t->sg_len, min_sg_len);
1399 }
1400
1401 if (err || !nonblock)
1402 goto err;
1403
1404 if (max_scatter) {
1405 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1406 t->max_segs, t->max_seg_sz,
1407 &sg_len);
1408 } else {
1409 err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1410 t->max_seg_sz, &sg_len, min_sg_len);
1411 }
1412 if (!err && sg_len != t->sg_len)
1413 err = -EINVAL;
1414
1415 err:
1416 if (err)
1417 pr_info("%s: Failed to map sg list\n",
1418 mmc_hostname(test->card->host));
1419 return err;
1420 }
1421
1422 /*
1423 * Transfer bytes mapped by mmc_test_area_map().
1424 */
mmc_test_area_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write)1425 static int mmc_test_area_transfer(struct mmc_test_card *test,
1426 unsigned int dev_addr, int write)
1427 {
1428 struct mmc_test_area *t = &test->area;
1429
1430 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1431 t->blocks, 512, write);
1432 }
1433
1434 /*
1435 * Map and transfer bytes for multiple transfers.
1436 */
mmc_test_area_io_seq(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed,int count,bool nonblock,int min_sg_len)1437 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1438 unsigned int dev_addr, int write,
1439 int max_scatter, int timed, int count,
1440 bool nonblock, int min_sg_len)
1441 {
1442 struct timespec64 ts1, ts2;
1443 int ret = 0;
1444 int i;
1445
1446 /*
1447 * In the case of a maximally scattered transfer, the maximum transfer
1448 * size is further limited by using PAGE_SIZE segments.
1449 */
1450 if (max_scatter) {
1451 struct mmc_test_area *t = &test->area;
1452 unsigned long max_tfr;
1453
1454 if (t->max_seg_sz >= PAGE_SIZE)
1455 max_tfr = t->max_segs * PAGE_SIZE;
1456 else
1457 max_tfr = t->max_segs * t->max_seg_sz;
1458 if (sz > max_tfr)
1459 sz = max_tfr;
1460 }
1461
1462 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1463 if (ret)
1464 return ret;
1465
1466 if (timed)
1467 ktime_get_ts64(&ts1);
1468 if (nonblock)
1469 ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1470 else
1471 for (i = 0; i < count && ret == 0; i++) {
1472 ret = mmc_test_area_transfer(test, dev_addr, write);
1473 dev_addr += sz >> 9;
1474 }
1475
1476 if (ret)
1477 return ret;
1478
1479 if (timed)
1480 ktime_get_ts64(&ts2);
1481
1482 if (timed)
1483 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1484
1485 return 0;
1486 }
1487
mmc_test_area_io(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed)1488 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1489 unsigned int dev_addr, int write, int max_scatter,
1490 int timed)
1491 {
1492 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1493 timed, 1, false, 0);
1494 }
1495
1496 /*
1497 * Write the test area entirely.
1498 */
mmc_test_area_fill(struct mmc_test_card * test)1499 static int mmc_test_area_fill(struct mmc_test_card *test)
1500 {
1501 struct mmc_test_area *t = &test->area;
1502
1503 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1504 }
1505
1506 /*
1507 * Erase the test area entirely.
1508 */
mmc_test_area_erase(struct mmc_test_card * test)1509 static int mmc_test_area_erase(struct mmc_test_card *test)
1510 {
1511 struct mmc_test_area *t = &test->area;
1512
1513 if (!mmc_can_erase(test->card))
1514 return 0;
1515
1516 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1517 MMC_ERASE_ARG);
1518 }
1519
1520 /*
1521 * Cleanup struct mmc_test_area.
1522 */
mmc_test_area_cleanup(struct mmc_test_card * test)1523 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1524 {
1525 struct mmc_test_area *t = &test->area;
1526
1527 kfree(t->sg);
1528 kfree(t->sg_areq);
1529 mmc_test_free_mem(t->mem);
1530
1531 return 0;
1532 }
1533
1534 /*
1535 * Initialize an area for testing large transfers. The test area is set to the
1536 * middle of the card because cards may have different characteristics at the
1537 * front (for FAT file system optimization). Optionally, the area is erased
1538 * (if the card supports it) which may improve write performance. Optionally,
1539 * the area is filled with data for subsequent read tests.
1540 */
mmc_test_area_init(struct mmc_test_card * test,int erase,int fill)1541 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1542 {
1543 struct mmc_test_area *t = &test->area;
1544 unsigned long min_sz = 64 * 1024, sz;
1545 int ret;
1546
1547 ret = mmc_test_set_blksize(test, 512);
1548 if (ret)
1549 return ret;
1550
1551 /* Make the test area size about 4MiB */
1552 sz = (unsigned long)test->card->pref_erase << 9;
1553 t->max_sz = sz;
1554 while (t->max_sz < 4 * 1024 * 1024)
1555 t->max_sz += sz;
1556 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1557 t->max_sz -= sz;
1558
1559 t->max_segs = test->card->host->max_segs;
1560 t->max_seg_sz = test->card->host->max_seg_size;
1561 t->max_seg_sz -= t->max_seg_sz % 512;
1562
1563 t->max_tfr = t->max_sz;
1564 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1565 t->max_tfr = test->card->host->max_blk_count << 9;
1566 if (t->max_tfr > test->card->host->max_req_size)
1567 t->max_tfr = test->card->host->max_req_size;
1568 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1569 t->max_tfr = t->max_segs * t->max_seg_sz;
1570
1571 /*
1572 * Try to allocate enough memory for a max. sized transfer. Less is OK
1573 * because the same memory can be mapped into the scatterlist more than
1574 * once. Also, take into account the limits imposed on scatterlist
1575 * segments by the host driver.
1576 */
1577 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1578 t->max_seg_sz);
1579 if (!t->mem)
1580 return -ENOMEM;
1581
1582 t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1583 if (!t->sg) {
1584 ret = -ENOMEM;
1585 goto out_free;
1586 }
1587
1588 t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1589 GFP_KERNEL);
1590 if (!t->sg_areq) {
1591 ret = -ENOMEM;
1592 goto out_free;
1593 }
1594
1595 t->dev_addr = mmc_test_capacity(test->card) / 2;
1596 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1597
1598 if (erase) {
1599 ret = mmc_test_area_erase(test);
1600 if (ret)
1601 goto out_free;
1602 }
1603
1604 if (fill) {
1605 ret = mmc_test_area_fill(test);
1606 if (ret)
1607 goto out_free;
1608 }
1609
1610 return 0;
1611
1612 out_free:
1613 mmc_test_area_cleanup(test);
1614 return ret;
1615 }
1616
1617 /*
1618 * Prepare for large transfers. Do not erase the test area.
1619 */
mmc_test_area_prepare(struct mmc_test_card * test)1620 static int mmc_test_area_prepare(struct mmc_test_card *test)
1621 {
1622 return mmc_test_area_init(test, 0, 0);
1623 }
1624
1625 /*
1626 * Prepare for large transfers. Do erase the test area.
1627 */
mmc_test_area_prepare_erase(struct mmc_test_card * test)1628 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1629 {
1630 return mmc_test_area_init(test, 1, 0);
1631 }
1632
1633 /*
1634 * Prepare for large transfers. Erase and fill the test area.
1635 */
mmc_test_area_prepare_fill(struct mmc_test_card * test)1636 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1637 {
1638 return mmc_test_area_init(test, 1, 1);
1639 }
1640
1641 /*
1642 * Test best-case performance. Best-case performance is expected from
1643 * a single large transfer.
1644 *
1645 * An additional option (max_scatter) allows the measurement of the same
1646 * transfer but with no contiguous pages in the scatter list. This tests
1647 * the efficiency of DMA to handle scattered pages.
1648 */
mmc_test_best_performance(struct mmc_test_card * test,int write,int max_scatter)1649 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1650 int max_scatter)
1651 {
1652 struct mmc_test_area *t = &test->area;
1653
1654 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1655 max_scatter, 1);
1656 }
1657
1658 /*
1659 * Best-case read performance.
1660 */
mmc_test_best_read_performance(struct mmc_test_card * test)1661 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1662 {
1663 return mmc_test_best_performance(test, 0, 0);
1664 }
1665
1666 /*
1667 * Best-case write performance.
1668 */
mmc_test_best_write_performance(struct mmc_test_card * test)1669 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1670 {
1671 return mmc_test_best_performance(test, 1, 0);
1672 }
1673
1674 /*
1675 * Best-case read performance into scattered pages.
1676 */
mmc_test_best_read_perf_max_scatter(struct mmc_test_card * test)1677 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1678 {
1679 return mmc_test_best_performance(test, 0, 1);
1680 }
1681
1682 /*
1683 * Best-case write performance from scattered pages.
1684 */
mmc_test_best_write_perf_max_scatter(struct mmc_test_card * test)1685 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1686 {
1687 return mmc_test_best_performance(test, 1, 1);
1688 }
1689
1690 /*
1691 * Single read performance by transfer size.
1692 */
mmc_test_profile_read_perf(struct mmc_test_card * test)1693 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1694 {
1695 struct mmc_test_area *t = &test->area;
1696 unsigned long sz;
1697 unsigned int dev_addr;
1698 int ret;
1699
1700 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1701 dev_addr = t->dev_addr + (sz >> 9);
1702 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1703 if (ret)
1704 return ret;
1705 }
1706 sz = t->max_tfr;
1707 dev_addr = t->dev_addr;
1708 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1709 }
1710
1711 /*
1712 * Single write performance by transfer size.
1713 */
mmc_test_profile_write_perf(struct mmc_test_card * test)1714 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1715 {
1716 struct mmc_test_area *t = &test->area;
1717 unsigned long sz;
1718 unsigned int dev_addr;
1719 int ret;
1720
1721 ret = mmc_test_area_erase(test);
1722 if (ret)
1723 return ret;
1724 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1725 dev_addr = t->dev_addr + (sz >> 9);
1726 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1727 if (ret)
1728 return ret;
1729 }
1730 ret = mmc_test_area_erase(test);
1731 if (ret)
1732 return ret;
1733 sz = t->max_tfr;
1734 dev_addr = t->dev_addr;
1735 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1736 }
1737
1738 /*
1739 * Single trim performance by transfer size.
1740 */
mmc_test_profile_trim_perf(struct mmc_test_card * test)1741 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1742 {
1743 struct mmc_test_area *t = &test->area;
1744 unsigned long sz;
1745 unsigned int dev_addr;
1746 struct timespec64 ts1, ts2;
1747 int ret;
1748
1749 if (!mmc_can_trim(test->card))
1750 return RESULT_UNSUP_CARD;
1751
1752 if (!mmc_can_erase(test->card))
1753 return RESULT_UNSUP_HOST;
1754
1755 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1756 dev_addr = t->dev_addr + (sz >> 9);
1757 ktime_get_ts64(&ts1);
1758 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1759 if (ret)
1760 return ret;
1761 ktime_get_ts64(&ts2);
1762 mmc_test_print_rate(test, sz, &ts1, &ts2);
1763 }
1764 dev_addr = t->dev_addr;
1765 ktime_get_ts64(&ts1);
1766 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1767 if (ret)
1768 return ret;
1769 ktime_get_ts64(&ts2);
1770 mmc_test_print_rate(test, sz, &ts1, &ts2);
1771 return 0;
1772 }
1773
mmc_test_seq_read_perf(struct mmc_test_card * test,unsigned long sz)1774 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1775 {
1776 struct mmc_test_area *t = &test->area;
1777 unsigned int dev_addr, i, cnt;
1778 struct timespec64 ts1, ts2;
1779 int ret;
1780
1781 cnt = t->max_sz / sz;
1782 dev_addr = t->dev_addr;
1783 ktime_get_ts64(&ts1);
1784 for (i = 0; i < cnt; i++) {
1785 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1786 if (ret)
1787 return ret;
1788 dev_addr += (sz >> 9);
1789 }
1790 ktime_get_ts64(&ts2);
1791 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1792 return 0;
1793 }
1794
1795 /*
1796 * Consecutive read performance by transfer size.
1797 */
mmc_test_profile_seq_read_perf(struct mmc_test_card * test)1798 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1799 {
1800 struct mmc_test_area *t = &test->area;
1801 unsigned long sz;
1802 int ret;
1803
1804 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1805 ret = mmc_test_seq_read_perf(test, sz);
1806 if (ret)
1807 return ret;
1808 }
1809 sz = t->max_tfr;
1810 return mmc_test_seq_read_perf(test, sz);
1811 }
1812
mmc_test_seq_write_perf(struct mmc_test_card * test,unsigned long sz)1813 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1814 {
1815 struct mmc_test_area *t = &test->area;
1816 unsigned int dev_addr, i, cnt;
1817 struct timespec64 ts1, ts2;
1818 int ret;
1819
1820 ret = mmc_test_area_erase(test);
1821 if (ret)
1822 return ret;
1823 cnt = t->max_sz / sz;
1824 dev_addr = t->dev_addr;
1825 ktime_get_ts64(&ts1);
1826 for (i = 0; i < cnt; i++) {
1827 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1828 if (ret)
1829 return ret;
1830 dev_addr += (sz >> 9);
1831 }
1832 ktime_get_ts64(&ts2);
1833 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1834 return 0;
1835 }
1836
1837 /*
1838 * Consecutive write performance by transfer size.
1839 */
mmc_test_profile_seq_write_perf(struct mmc_test_card * test)1840 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1841 {
1842 struct mmc_test_area *t = &test->area;
1843 unsigned long sz;
1844 int ret;
1845
1846 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1847 ret = mmc_test_seq_write_perf(test, sz);
1848 if (ret)
1849 return ret;
1850 }
1851 sz = t->max_tfr;
1852 return mmc_test_seq_write_perf(test, sz);
1853 }
1854
1855 /*
1856 * Consecutive trim performance by transfer size.
1857 */
mmc_test_profile_seq_trim_perf(struct mmc_test_card * test)1858 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1859 {
1860 struct mmc_test_area *t = &test->area;
1861 unsigned long sz;
1862 unsigned int dev_addr, i, cnt;
1863 struct timespec64 ts1, ts2;
1864 int ret;
1865
1866 if (!mmc_can_trim(test->card))
1867 return RESULT_UNSUP_CARD;
1868
1869 if (!mmc_can_erase(test->card))
1870 return RESULT_UNSUP_HOST;
1871
1872 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1873 ret = mmc_test_area_erase(test);
1874 if (ret)
1875 return ret;
1876 ret = mmc_test_area_fill(test);
1877 if (ret)
1878 return ret;
1879 cnt = t->max_sz / sz;
1880 dev_addr = t->dev_addr;
1881 ktime_get_ts64(&ts1);
1882 for (i = 0; i < cnt; i++) {
1883 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1884 MMC_TRIM_ARG);
1885 if (ret)
1886 return ret;
1887 dev_addr += (sz >> 9);
1888 }
1889 ktime_get_ts64(&ts2);
1890 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1891 }
1892 return 0;
1893 }
1894
1895 static unsigned int rnd_next = 1;
1896
mmc_test_rnd_num(unsigned int rnd_cnt)1897 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1898 {
1899 uint64_t r;
1900
1901 rnd_next = rnd_next * 1103515245 + 12345;
1902 r = (rnd_next >> 16) & 0x7fff;
1903 return (r * rnd_cnt) >> 15;
1904 }
1905
mmc_test_rnd_perf(struct mmc_test_card * test,int write,int print,unsigned long sz)1906 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1907 unsigned long sz)
1908 {
1909 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1910 unsigned int ssz;
1911 struct timespec64 ts1, ts2, ts;
1912 int ret;
1913
1914 ssz = sz >> 9;
1915
1916 rnd_addr = mmc_test_capacity(test->card) / 4;
1917 range1 = rnd_addr / test->card->pref_erase;
1918 range2 = range1 / ssz;
1919
1920 ktime_get_ts64(&ts1);
1921 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1922 ktime_get_ts64(&ts2);
1923 ts = timespec64_sub(ts2, ts1);
1924 if (ts.tv_sec >= 10)
1925 break;
1926 ea = mmc_test_rnd_num(range1);
1927 if (ea == last_ea)
1928 ea -= 1;
1929 last_ea = ea;
1930 dev_addr = rnd_addr + test->card->pref_erase * ea +
1931 ssz * mmc_test_rnd_num(range2);
1932 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1933 if (ret)
1934 return ret;
1935 }
1936 if (print)
1937 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1938 return 0;
1939 }
1940
mmc_test_random_perf(struct mmc_test_card * test,int write)1941 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1942 {
1943 struct mmc_test_area *t = &test->area;
1944 unsigned int next;
1945 unsigned long sz;
1946 int ret;
1947
1948 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1949 /*
1950 * When writing, try to get more consistent results by running
1951 * the test twice with exactly the same I/O but outputting the
1952 * results only for the 2nd run.
1953 */
1954 if (write) {
1955 next = rnd_next;
1956 ret = mmc_test_rnd_perf(test, write, 0, sz);
1957 if (ret)
1958 return ret;
1959 rnd_next = next;
1960 }
1961 ret = mmc_test_rnd_perf(test, write, 1, sz);
1962 if (ret)
1963 return ret;
1964 }
1965 sz = t->max_tfr;
1966 if (write) {
1967 next = rnd_next;
1968 ret = mmc_test_rnd_perf(test, write, 0, sz);
1969 if (ret)
1970 return ret;
1971 rnd_next = next;
1972 }
1973 return mmc_test_rnd_perf(test, write, 1, sz);
1974 }
1975
1976 /*
1977 * Random read performance by transfer size.
1978 */
mmc_test_random_read_perf(struct mmc_test_card * test)1979 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1980 {
1981 return mmc_test_random_perf(test, 0);
1982 }
1983
1984 /*
1985 * Random write performance by transfer size.
1986 */
mmc_test_random_write_perf(struct mmc_test_card * test)1987 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1988 {
1989 return mmc_test_random_perf(test, 1);
1990 }
1991
mmc_test_seq_perf(struct mmc_test_card * test,int write,unsigned int tot_sz,int max_scatter)1992 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1993 unsigned int tot_sz, int max_scatter)
1994 {
1995 struct mmc_test_area *t = &test->area;
1996 unsigned int dev_addr, i, cnt, sz, ssz;
1997 struct timespec64 ts1, ts2;
1998 int ret;
1999
2000 sz = t->max_tfr;
2001
2002 /*
2003 * In the case of a maximally scattered transfer, the maximum transfer
2004 * size is further limited by using PAGE_SIZE segments.
2005 */
2006 if (max_scatter) {
2007 unsigned long max_tfr;
2008
2009 if (t->max_seg_sz >= PAGE_SIZE)
2010 max_tfr = t->max_segs * PAGE_SIZE;
2011 else
2012 max_tfr = t->max_segs * t->max_seg_sz;
2013 if (sz > max_tfr)
2014 sz = max_tfr;
2015 }
2016
2017 ssz = sz >> 9;
2018 dev_addr = mmc_test_capacity(test->card) / 4;
2019 if (tot_sz > dev_addr << 9)
2020 tot_sz = dev_addr << 9;
2021 cnt = tot_sz / sz;
2022 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2023
2024 ktime_get_ts64(&ts1);
2025 for (i = 0; i < cnt; i++) {
2026 ret = mmc_test_area_io(test, sz, dev_addr, write,
2027 max_scatter, 0);
2028 if (ret)
2029 return ret;
2030 dev_addr += ssz;
2031 }
2032 ktime_get_ts64(&ts2);
2033
2034 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2035
2036 return 0;
2037 }
2038
mmc_test_large_seq_perf(struct mmc_test_card * test,int write)2039 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2040 {
2041 int ret, i;
2042
2043 for (i = 0; i < 10; i++) {
2044 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2045 if (ret)
2046 return ret;
2047 }
2048 for (i = 0; i < 5; i++) {
2049 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2050 if (ret)
2051 return ret;
2052 }
2053 for (i = 0; i < 3; i++) {
2054 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2055 if (ret)
2056 return ret;
2057 }
2058
2059 return ret;
2060 }
2061
2062 /*
2063 * Large sequential read performance.
2064 */
mmc_test_large_seq_read_perf(struct mmc_test_card * test)2065 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2066 {
2067 return mmc_test_large_seq_perf(test, 0);
2068 }
2069
2070 /*
2071 * Large sequential write performance.
2072 */
mmc_test_large_seq_write_perf(struct mmc_test_card * test)2073 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2074 {
2075 return mmc_test_large_seq_perf(test, 1);
2076 }
2077
mmc_test_rw_multiple(struct mmc_test_card * test,struct mmc_test_multiple_rw * tdata,unsigned int reqsize,unsigned int size,int min_sg_len)2078 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2079 struct mmc_test_multiple_rw *tdata,
2080 unsigned int reqsize, unsigned int size,
2081 int min_sg_len)
2082 {
2083 unsigned int dev_addr;
2084 struct mmc_test_area *t = &test->area;
2085 int ret = 0;
2086
2087 /* Set up test area */
2088 if (size > mmc_test_capacity(test->card) / 2 * 512)
2089 size = mmc_test_capacity(test->card) / 2 * 512;
2090 if (reqsize > t->max_tfr)
2091 reqsize = t->max_tfr;
2092 dev_addr = mmc_test_capacity(test->card) / 4;
2093 if ((dev_addr & 0xffff0000))
2094 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2095 else
2096 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2097 if (!dev_addr)
2098 goto err;
2099
2100 if (reqsize > size)
2101 return 0;
2102
2103 /* prepare test area */
2104 if (mmc_can_erase(test->card) &&
2105 tdata->prepare & MMC_TEST_PREP_ERASE) {
2106 ret = mmc_erase(test->card, dev_addr,
2107 size / 512, test->card->erase_arg);
2108 if (ret)
2109 ret = mmc_erase(test->card, dev_addr,
2110 size / 512, MMC_ERASE_ARG);
2111 if (ret)
2112 goto err;
2113 }
2114
2115 /* Run test */
2116 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2117 tdata->do_write, 0, 1, size / reqsize,
2118 tdata->do_nonblock_req, min_sg_len);
2119 if (ret)
2120 goto err;
2121
2122 return ret;
2123 err:
2124 pr_info("[%s] error\n", __func__);
2125 return ret;
2126 }
2127
mmc_test_rw_multiple_size(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2128 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2129 struct mmc_test_multiple_rw *rw)
2130 {
2131 int ret = 0;
2132 int i;
2133 void *pre_req = test->card->host->ops->pre_req;
2134 void *post_req = test->card->host->ops->post_req;
2135
2136 if (rw->do_nonblock_req &&
2137 ((!pre_req && post_req) || (pre_req && !post_req))) {
2138 pr_info("error: only one of pre/post is defined\n");
2139 return -EINVAL;
2140 }
2141
2142 for (i = 0 ; i < rw->len && ret == 0; i++) {
2143 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2144 if (ret)
2145 break;
2146 }
2147 return ret;
2148 }
2149
mmc_test_rw_multiple_sg_len(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2150 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2151 struct mmc_test_multiple_rw *rw)
2152 {
2153 int ret = 0;
2154 int i;
2155
2156 for (i = 0 ; i < rw->len && ret == 0; i++) {
2157 ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2158 rw->sg_len[i]);
2159 if (ret)
2160 break;
2161 }
2162 return ret;
2163 }
2164
2165 /*
2166 * Multiple blocking write 4k to 4 MB chunks
2167 */
mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card * test)2168 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2169 {
2170 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2171 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2172 struct mmc_test_multiple_rw test_data = {
2173 .bs = bs,
2174 .size = TEST_AREA_MAX_SIZE,
2175 .len = ARRAY_SIZE(bs),
2176 .do_write = true,
2177 .do_nonblock_req = false,
2178 .prepare = MMC_TEST_PREP_ERASE,
2179 };
2180
2181 return mmc_test_rw_multiple_size(test, &test_data);
2182 };
2183
2184 /*
2185 * Multiple non-blocking write 4k to 4 MB chunks
2186 */
mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card * test)2187 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2188 {
2189 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2190 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2191 struct mmc_test_multiple_rw test_data = {
2192 .bs = bs,
2193 .size = TEST_AREA_MAX_SIZE,
2194 .len = ARRAY_SIZE(bs),
2195 .do_write = true,
2196 .do_nonblock_req = true,
2197 .prepare = MMC_TEST_PREP_ERASE,
2198 };
2199
2200 return mmc_test_rw_multiple_size(test, &test_data);
2201 }
2202
2203 /*
2204 * Multiple blocking read 4k to 4 MB chunks
2205 */
mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card * test)2206 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2207 {
2208 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2209 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2210 struct mmc_test_multiple_rw test_data = {
2211 .bs = bs,
2212 .size = TEST_AREA_MAX_SIZE,
2213 .len = ARRAY_SIZE(bs),
2214 .do_write = false,
2215 .do_nonblock_req = false,
2216 .prepare = MMC_TEST_PREP_NONE,
2217 };
2218
2219 return mmc_test_rw_multiple_size(test, &test_data);
2220 }
2221
2222 /*
2223 * Multiple non-blocking read 4k to 4 MB chunks
2224 */
mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card * test)2225 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2226 {
2227 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2228 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2229 struct mmc_test_multiple_rw test_data = {
2230 .bs = bs,
2231 .size = TEST_AREA_MAX_SIZE,
2232 .len = ARRAY_SIZE(bs),
2233 .do_write = false,
2234 .do_nonblock_req = true,
2235 .prepare = MMC_TEST_PREP_NONE,
2236 };
2237
2238 return mmc_test_rw_multiple_size(test, &test_data);
2239 }
2240
2241 /*
2242 * Multiple blocking write 1 to 512 sg elements
2243 */
mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card * test)2244 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2245 {
2246 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2247 1 << 7, 1 << 8, 1 << 9};
2248 struct mmc_test_multiple_rw test_data = {
2249 .sg_len = sg_len,
2250 .size = TEST_AREA_MAX_SIZE,
2251 .len = ARRAY_SIZE(sg_len),
2252 .do_write = true,
2253 .do_nonblock_req = false,
2254 .prepare = MMC_TEST_PREP_ERASE,
2255 };
2256
2257 return mmc_test_rw_multiple_sg_len(test, &test_data);
2258 };
2259
2260 /*
2261 * Multiple non-blocking write 1 to 512 sg elements
2262 */
mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card * test)2263 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2264 {
2265 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2266 1 << 7, 1 << 8, 1 << 9};
2267 struct mmc_test_multiple_rw test_data = {
2268 .sg_len = sg_len,
2269 .size = TEST_AREA_MAX_SIZE,
2270 .len = ARRAY_SIZE(sg_len),
2271 .do_write = true,
2272 .do_nonblock_req = true,
2273 .prepare = MMC_TEST_PREP_ERASE,
2274 };
2275
2276 return mmc_test_rw_multiple_sg_len(test, &test_data);
2277 }
2278
2279 /*
2280 * Multiple blocking read 1 to 512 sg elements
2281 */
mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card * test)2282 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2283 {
2284 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2285 1 << 7, 1 << 8, 1 << 9};
2286 struct mmc_test_multiple_rw test_data = {
2287 .sg_len = sg_len,
2288 .size = TEST_AREA_MAX_SIZE,
2289 .len = ARRAY_SIZE(sg_len),
2290 .do_write = false,
2291 .do_nonblock_req = false,
2292 .prepare = MMC_TEST_PREP_NONE,
2293 };
2294
2295 return mmc_test_rw_multiple_sg_len(test, &test_data);
2296 }
2297
2298 /*
2299 * Multiple non-blocking read 1 to 512 sg elements
2300 */
mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card * test)2301 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2302 {
2303 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2304 1 << 7, 1 << 8, 1 << 9};
2305 struct mmc_test_multiple_rw test_data = {
2306 .sg_len = sg_len,
2307 .size = TEST_AREA_MAX_SIZE,
2308 .len = ARRAY_SIZE(sg_len),
2309 .do_write = false,
2310 .do_nonblock_req = true,
2311 .prepare = MMC_TEST_PREP_NONE,
2312 };
2313
2314 return mmc_test_rw_multiple_sg_len(test, &test_data);
2315 }
2316
2317 /*
2318 * eMMC hardware reset.
2319 */
mmc_test_reset(struct mmc_test_card * test)2320 static int mmc_test_reset(struct mmc_test_card *test)
2321 {
2322 struct mmc_card *card = test->card;
2323 int err;
2324
2325 err = mmc_hw_reset(card);
2326 if (!err) {
2327 /*
2328 * Reset will re-enable the card's command queue, but tests
2329 * expect it to be disabled.
2330 */
2331 if (card->ext_csd.cmdq_en)
2332 mmc_cmdq_disable(card);
2333 return RESULT_OK;
2334 } else if (err == -EOPNOTSUPP) {
2335 return RESULT_UNSUP_HOST;
2336 }
2337
2338 return RESULT_FAIL;
2339 }
2340
mmc_test_send_status(struct mmc_test_card * test,struct mmc_command * cmd)2341 static int mmc_test_send_status(struct mmc_test_card *test,
2342 struct mmc_command *cmd)
2343 {
2344 memset(cmd, 0, sizeof(*cmd));
2345
2346 cmd->opcode = MMC_SEND_STATUS;
2347 if (!mmc_host_is_spi(test->card->host))
2348 cmd->arg = test->card->rca << 16;
2349 cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2350
2351 return mmc_wait_for_cmd(test->card->host, cmd, 0);
2352 }
2353
mmc_test_ongoing_transfer(struct mmc_test_card * test,unsigned int dev_addr,int use_sbc,int repeat_cmd,int write,int use_areq)2354 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2355 unsigned int dev_addr, int use_sbc,
2356 int repeat_cmd, int write, int use_areq)
2357 {
2358 struct mmc_test_req *rq = mmc_test_req_alloc();
2359 struct mmc_host *host = test->card->host;
2360 struct mmc_test_area *t = &test->area;
2361 struct mmc_request *mrq;
2362 unsigned long timeout;
2363 bool expired = false;
2364 int ret = 0, cmd_ret;
2365 u32 status = 0;
2366 int count = 0;
2367
2368 if (!rq)
2369 return -ENOMEM;
2370
2371 mrq = &rq->mrq;
2372 if (use_sbc)
2373 mrq->sbc = &rq->sbc;
2374 mrq->cap_cmd_during_tfr = true;
2375
2376 mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2377 512, write);
2378
2379 if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2380 ret = mmc_host_cmd23(host) ?
2381 RESULT_UNSUP_CARD :
2382 RESULT_UNSUP_HOST;
2383 goto out_free;
2384 }
2385
2386 /* Start ongoing data request */
2387 if (use_areq) {
2388 ret = mmc_test_start_areq(test, mrq, NULL);
2389 if (ret)
2390 goto out_free;
2391 } else {
2392 mmc_wait_for_req(host, mrq);
2393 }
2394
2395 timeout = jiffies + msecs_to_jiffies(3000);
2396 do {
2397 count += 1;
2398
2399 /* Send status command while data transfer in progress */
2400 cmd_ret = mmc_test_send_status(test, &rq->status);
2401 if (cmd_ret)
2402 break;
2403
2404 status = rq->status.resp[0];
2405 if (status & R1_ERROR) {
2406 cmd_ret = -EIO;
2407 break;
2408 }
2409
2410 if (mmc_is_req_done(host, mrq))
2411 break;
2412
2413 expired = time_after(jiffies, timeout);
2414 if (expired) {
2415 pr_info("%s: timeout waiting for Tran state status %#x\n",
2416 mmc_hostname(host), status);
2417 cmd_ret = -ETIMEDOUT;
2418 break;
2419 }
2420 } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2421
2422 /* Wait for data request to complete */
2423 if (use_areq) {
2424 ret = mmc_test_start_areq(test, NULL, mrq);
2425 } else {
2426 mmc_wait_for_req_done(test->card->host, mrq);
2427 }
2428
2429 /*
2430 * For cap_cmd_during_tfr request, upper layer must send stop if
2431 * required.
2432 */
2433 if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2434 if (ret)
2435 mmc_wait_for_cmd(host, mrq->data->stop, 0);
2436 else
2437 ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2438 }
2439
2440 if (ret)
2441 goto out_free;
2442
2443 if (cmd_ret) {
2444 pr_info("%s: Send Status failed: status %#x, error %d\n",
2445 mmc_hostname(test->card->host), status, cmd_ret);
2446 }
2447
2448 ret = mmc_test_check_result(test, mrq);
2449 if (ret)
2450 goto out_free;
2451
2452 ret = mmc_test_wait_busy(test);
2453 if (ret)
2454 goto out_free;
2455
2456 if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2457 pr_info("%s: %d commands completed during transfer of %u blocks\n",
2458 mmc_hostname(test->card->host), count, t->blocks);
2459
2460 if (cmd_ret)
2461 ret = cmd_ret;
2462 out_free:
2463 kfree(rq);
2464
2465 return ret;
2466 }
2467
__mmc_test_cmds_during_tfr(struct mmc_test_card * test,unsigned long sz,int use_sbc,int write,int use_areq)2468 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2469 unsigned long sz, int use_sbc, int write,
2470 int use_areq)
2471 {
2472 struct mmc_test_area *t = &test->area;
2473 int ret;
2474
2475 if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2476 return RESULT_UNSUP_HOST;
2477
2478 ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2479 if (ret)
2480 return ret;
2481
2482 ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2483 use_areq);
2484 if (ret)
2485 return ret;
2486
2487 return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2488 use_areq);
2489 }
2490
mmc_test_cmds_during_tfr(struct mmc_test_card * test,int use_sbc,int write,int use_areq)2491 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2492 int write, int use_areq)
2493 {
2494 struct mmc_test_area *t = &test->area;
2495 unsigned long sz;
2496 int ret;
2497
2498 for (sz = 512; sz <= t->max_tfr; sz += 512) {
2499 ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2500 use_areq);
2501 if (ret)
2502 return ret;
2503 }
2504 return 0;
2505 }
2506
2507 /*
2508 * Commands during read - no Set Block Count (CMD23).
2509 */
mmc_test_cmds_during_read(struct mmc_test_card * test)2510 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2511 {
2512 return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2513 }
2514
2515 /*
2516 * Commands during write - no Set Block Count (CMD23).
2517 */
mmc_test_cmds_during_write(struct mmc_test_card * test)2518 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2519 {
2520 return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2521 }
2522
2523 /*
2524 * Commands during read - use Set Block Count (CMD23).
2525 */
mmc_test_cmds_during_read_cmd23(struct mmc_test_card * test)2526 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2527 {
2528 return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2529 }
2530
2531 /*
2532 * Commands during write - use Set Block Count (CMD23).
2533 */
mmc_test_cmds_during_write_cmd23(struct mmc_test_card * test)2534 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2535 {
2536 return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2537 }
2538
2539 /*
2540 * Commands during non-blocking read - use Set Block Count (CMD23).
2541 */
mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card * test)2542 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2543 {
2544 return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2545 }
2546
2547 /*
2548 * Commands during non-blocking write - use Set Block Count (CMD23).
2549 */
mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card * test)2550 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2551 {
2552 return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2553 }
2554
2555 static const struct mmc_test_case mmc_test_cases[] = {
2556 {
2557 .name = "Basic write (no data verification)",
2558 .run = mmc_test_basic_write,
2559 },
2560
2561 {
2562 .name = "Basic read (no data verification)",
2563 .run = mmc_test_basic_read,
2564 },
2565
2566 {
2567 .name = "Basic write (with data verification)",
2568 .prepare = mmc_test_prepare_write,
2569 .run = mmc_test_verify_write,
2570 .cleanup = mmc_test_cleanup,
2571 },
2572
2573 {
2574 .name = "Basic read (with data verification)",
2575 .prepare = mmc_test_prepare_read,
2576 .run = mmc_test_verify_read,
2577 .cleanup = mmc_test_cleanup,
2578 },
2579
2580 {
2581 .name = "Multi-block write",
2582 .prepare = mmc_test_prepare_write,
2583 .run = mmc_test_multi_write,
2584 .cleanup = mmc_test_cleanup,
2585 },
2586
2587 {
2588 .name = "Multi-block read",
2589 .prepare = mmc_test_prepare_read,
2590 .run = mmc_test_multi_read,
2591 .cleanup = mmc_test_cleanup,
2592 },
2593
2594 {
2595 .name = "Power of two block writes",
2596 .prepare = mmc_test_prepare_write,
2597 .run = mmc_test_pow2_write,
2598 .cleanup = mmc_test_cleanup,
2599 },
2600
2601 {
2602 .name = "Power of two block reads",
2603 .prepare = mmc_test_prepare_read,
2604 .run = mmc_test_pow2_read,
2605 .cleanup = mmc_test_cleanup,
2606 },
2607
2608 {
2609 .name = "Weird sized block writes",
2610 .prepare = mmc_test_prepare_write,
2611 .run = mmc_test_weird_write,
2612 .cleanup = mmc_test_cleanup,
2613 },
2614
2615 {
2616 .name = "Weird sized block reads",
2617 .prepare = mmc_test_prepare_read,
2618 .run = mmc_test_weird_read,
2619 .cleanup = mmc_test_cleanup,
2620 },
2621
2622 {
2623 .name = "Badly aligned write",
2624 .prepare = mmc_test_prepare_write,
2625 .run = mmc_test_align_write,
2626 .cleanup = mmc_test_cleanup,
2627 },
2628
2629 {
2630 .name = "Badly aligned read",
2631 .prepare = mmc_test_prepare_read,
2632 .run = mmc_test_align_read,
2633 .cleanup = mmc_test_cleanup,
2634 },
2635
2636 {
2637 .name = "Badly aligned multi-block write",
2638 .prepare = mmc_test_prepare_write,
2639 .run = mmc_test_align_multi_write,
2640 .cleanup = mmc_test_cleanup,
2641 },
2642
2643 {
2644 .name = "Badly aligned multi-block read",
2645 .prepare = mmc_test_prepare_read,
2646 .run = mmc_test_align_multi_read,
2647 .cleanup = mmc_test_cleanup,
2648 },
2649
2650 {
2651 .name = "Proper xfer_size at write (start failure)",
2652 .run = mmc_test_xfersize_write,
2653 },
2654
2655 {
2656 .name = "Proper xfer_size at read (start failure)",
2657 .run = mmc_test_xfersize_read,
2658 },
2659
2660 {
2661 .name = "Proper xfer_size at write (midway failure)",
2662 .run = mmc_test_multi_xfersize_write,
2663 },
2664
2665 {
2666 .name = "Proper xfer_size at read (midway failure)",
2667 .run = mmc_test_multi_xfersize_read,
2668 },
2669
2670 #ifdef CONFIG_HIGHMEM
2671
2672 {
2673 .name = "Highmem write",
2674 .prepare = mmc_test_prepare_write,
2675 .run = mmc_test_write_high,
2676 .cleanup = mmc_test_cleanup,
2677 },
2678
2679 {
2680 .name = "Highmem read",
2681 .prepare = mmc_test_prepare_read,
2682 .run = mmc_test_read_high,
2683 .cleanup = mmc_test_cleanup,
2684 },
2685
2686 {
2687 .name = "Multi-block highmem write",
2688 .prepare = mmc_test_prepare_write,
2689 .run = mmc_test_multi_write_high,
2690 .cleanup = mmc_test_cleanup,
2691 },
2692
2693 {
2694 .name = "Multi-block highmem read",
2695 .prepare = mmc_test_prepare_read,
2696 .run = mmc_test_multi_read_high,
2697 .cleanup = mmc_test_cleanup,
2698 },
2699
2700 #else
2701
2702 {
2703 .name = "Highmem write",
2704 .run = mmc_test_no_highmem,
2705 },
2706
2707 {
2708 .name = "Highmem read",
2709 .run = mmc_test_no_highmem,
2710 },
2711
2712 {
2713 .name = "Multi-block highmem write",
2714 .run = mmc_test_no_highmem,
2715 },
2716
2717 {
2718 .name = "Multi-block highmem read",
2719 .run = mmc_test_no_highmem,
2720 },
2721
2722 #endif /* CONFIG_HIGHMEM */
2723
2724 {
2725 .name = "Best-case read performance",
2726 .prepare = mmc_test_area_prepare_fill,
2727 .run = mmc_test_best_read_performance,
2728 .cleanup = mmc_test_area_cleanup,
2729 },
2730
2731 {
2732 .name = "Best-case write performance",
2733 .prepare = mmc_test_area_prepare_erase,
2734 .run = mmc_test_best_write_performance,
2735 .cleanup = mmc_test_area_cleanup,
2736 },
2737
2738 {
2739 .name = "Best-case read performance into scattered pages",
2740 .prepare = mmc_test_area_prepare_fill,
2741 .run = mmc_test_best_read_perf_max_scatter,
2742 .cleanup = mmc_test_area_cleanup,
2743 },
2744
2745 {
2746 .name = "Best-case write performance from scattered pages",
2747 .prepare = mmc_test_area_prepare_erase,
2748 .run = mmc_test_best_write_perf_max_scatter,
2749 .cleanup = mmc_test_area_cleanup,
2750 },
2751
2752 {
2753 .name = "Single read performance by transfer size",
2754 .prepare = mmc_test_area_prepare_fill,
2755 .run = mmc_test_profile_read_perf,
2756 .cleanup = mmc_test_area_cleanup,
2757 },
2758
2759 {
2760 .name = "Single write performance by transfer size",
2761 .prepare = mmc_test_area_prepare,
2762 .run = mmc_test_profile_write_perf,
2763 .cleanup = mmc_test_area_cleanup,
2764 },
2765
2766 {
2767 .name = "Single trim performance by transfer size",
2768 .prepare = mmc_test_area_prepare_fill,
2769 .run = mmc_test_profile_trim_perf,
2770 .cleanup = mmc_test_area_cleanup,
2771 },
2772
2773 {
2774 .name = "Consecutive read performance by transfer size",
2775 .prepare = mmc_test_area_prepare_fill,
2776 .run = mmc_test_profile_seq_read_perf,
2777 .cleanup = mmc_test_area_cleanup,
2778 },
2779
2780 {
2781 .name = "Consecutive write performance by transfer size",
2782 .prepare = mmc_test_area_prepare,
2783 .run = mmc_test_profile_seq_write_perf,
2784 .cleanup = mmc_test_area_cleanup,
2785 },
2786
2787 {
2788 .name = "Consecutive trim performance by transfer size",
2789 .prepare = mmc_test_area_prepare,
2790 .run = mmc_test_profile_seq_trim_perf,
2791 .cleanup = mmc_test_area_cleanup,
2792 },
2793
2794 {
2795 .name = "Random read performance by transfer size",
2796 .prepare = mmc_test_area_prepare,
2797 .run = mmc_test_random_read_perf,
2798 .cleanup = mmc_test_area_cleanup,
2799 },
2800
2801 {
2802 .name = "Random write performance by transfer size",
2803 .prepare = mmc_test_area_prepare,
2804 .run = mmc_test_random_write_perf,
2805 .cleanup = mmc_test_area_cleanup,
2806 },
2807
2808 {
2809 .name = "Large sequential read into scattered pages",
2810 .prepare = mmc_test_area_prepare,
2811 .run = mmc_test_large_seq_read_perf,
2812 .cleanup = mmc_test_area_cleanup,
2813 },
2814
2815 {
2816 .name = "Large sequential write from scattered pages",
2817 .prepare = mmc_test_area_prepare,
2818 .run = mmc_test_large_seq_write_perf,
2819 .cleanup = mmc_test_area_cleanup,
2820 },
2821
2822 {
2823 .name = "Write performance with blocking req 4k to 4MB",
2824 .prepare = mmc_test_area_prepare,
2825 .run = mmc_test_profile_mult_write_blocking_perf,
2826 .cleanup = mmc_test_area_cleanup,
2827 },
2828
2829 {
2830 .name = "Write performance with non-blocking req 4k to 4MB",
2831 .prepare = mmc_test_area_prepare,
2832 .run = mmc_test_profile_mult_write_nonblock_perf,
2833 .cleanup = mmc_test_area_cleanup,
2834 },
2835
2836 {
2837 .name = "Read performance with blocking req 4k to 4MB",
2838 .prepare = mmc_test_area_prepare,
2839 .run = mmc_test_profile_mult_read_blocking_perf,
2840 .cleanup = mmc_test_area_cleanup,
2841 },
2842
2843 {
2844 .name = "Read performance with non-blocking req 4k to 4MB",
2845 .prepare = mmc_test_area_prepare,
2846 .run = mmc_test_profile_mult_read_nonblock_perf,
2847 .cleanup = mmc_test_area_cleanup,
2848 },
2849
2850 {
2851 .name = "Write performance blocking req 1 to 512 sg elems",
2852 .prepare = mmc_test_area_prepare,
2853 .run = mmc_test_profile_sglen_wr_blocking_perf,
2854 .cleanup = mmc_test_area_cleanup,
2855 },
2856
2857 {
2858 .name = "Write performance non-blocking req 1 to 512 sg elems",
2859 .prepare = mmc_test_area_prepare,
2860 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2861 .cleanup = mmc_test_area_cleanup,
2862 },
2863
2864 {
2865 .name = "Read performance blocking req 1 to 512 sg elems",
2866 .prepare = mmc_test_area_prepare,
2867 .run = mmc_test_profile_sglen_r_blocking_perf,
2868 .cleanup = mmc_test_area_cleanup,
2869 },
2870
2871 {
2872 .name = "Read performance non-blocking req 1 to 512 sg elems",
2873 .prepare = mmc_test_area_prepare,
2874 .run = mmc_test_profile_sglen_r_nonblock_perf,
2875 .cleanup = mmc_test_area_cleanup,
2876 },
2877
2878 {
2879 .name = "Reset test",
2880 .run = mmc_test_reset,
2881 },
2882
2883 {
2884 .name = "Commands during read - no Set Block Count (CMD23)",
2885 .prepare = mmc_test_area_prepare,
2886 .run = mmc_test_cmds_during_read,
2887 .cleanup = mmc_test_area_cleanup,
2888 },
2889
2890 {
2891 .name = "Commands during write - no Set Block Count (CMD23)",
2892 .prepare = mmc_test_area_prepare,
2893 .run = mmc_test_cmds_during_write,
2894 .cleanup = mmc_test_area_cleanup,
2895 },
2896
2897 {
2898 .name = "Commands during read - use Set Block Count (CMD23)",
2899 .prepare = mmc_test_area_prepare,
2900 .run = mmc_test_cmds_during_read_cmd23,
2901 .cleanup = mmc_test_area_cleanup,
2902 },
2903
2904 {
2905 .name = "Commands during write - use Set Block Count (CMD23)",
2906 .prepare = mmc_test_area_prepare,
2907 .run = mmc_test_cmds_during_write_cmd23,
2908 .cleanup = mmc_test_area_cleanup,
2909 },
2910
2911 {
2912 .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2913 .prepare = mmc_test_area_prepare,
2914 .run = mmc_test_cmds_during_read_cmd23_nonblock,
2915 .cleanup = mmc_test_area_cleanup,
2916 },
2917
2918 {
2919 .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2920 .prepare = mmc_test_area_prepare,
2921 .run = mmc_test_cmds_during_write_cmd23_nonblock,
2922 .cleanup = mmc_test_area_cleanup,
2923 },
2924 };
2925
2926 static DEFINE_MUTEX(mmc_test_lock);
2927
2928 static LIST_HEAD(mmc_test_result);
2929
mmc_test_run(struct mmc_test_card * test,int testcase)2930 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2931 {
2932 int i, ret;
2933
2934 pr_info("%s: Starting tests of card %s...\n",
2935 mmc_hostname(test->card->host), mmc_card_id(test->card));
2936
2937 mmc_claim_host(test->card->host);
2938
2939 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2940 struct mmc_test_general_result *gr;
2941
2942 if (testcase && ((i + 1) != testcase))
2943 continue;
2944
2945 pr_info("%s: Test case %d. %s...\n",
2946 mmc_hostname(test->card->host), i + 1,
2947 mmc_test_cases[i].name);
2948
2949 if (mmc_test_cases[i].prepare) {
2950 ret = mmc_test_cases[i].prepare(test);
2951 if (ret) {
2952 pr_info("%s: Result: Prepare stage failed! (%d)\n",
2953 mmc_hostname(test->card->host),
2954 ret);
2955 continue;
2956 }
2957 }
2958
2959 gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2960 if (gr) {
2961 INIT_LIST_HEAD(&gr->tr_lst);
2962
2963 /* Assign data what we know already */
2964 gr->card = test->card;
2965 gr->testcase = i;
2966
2967 /* Append container to global one */
2968 list_add_tail(&gr->link, &mmc_test_result);
2969
2970 /*
2971 * Save the pointer to created container in our private
2972 * structure.
2973 */
2974 test->gr = gr;
2975 }
2976
2977 ret = mmc_test_cases[i].run(test);
2978 switch (ret) {
2979 case RESULT_OK:
2980 pr_info("%s: Result: OK\n",
2981 mmc_hostname(test->card->host));
2982 break;
2983 case RESULT_FAIL:
2984 pr_info("%s: Result: FAILED\n",
2985 mmc_hostname(test->card->host));
2986 break;
2987 case RESULT_UNSUP_HOST:
2988 pr_info("%s: Result: UNSUPPORTED (by host)\n",
2989 mmc_hostname(test->card->host));
2990 break;
2991 case RESULT_UNSUP_CARD:
2992 pr_info("%s: Result: UNSUPPORTED (by card)\n",
2993 mmc_hostname(test->card->host));
2994 break;
2995 default:
2996 pr_info("%s: Result: ERROR (%d)\n",
2997 mmc_hostname(test->card->host), ret);
2998 }
2999
3000 /* Save the result */
3001 if (gr)
3002 gr->result = ret;
3003
3004 if (mmc_test_cases[i].cleanup) {
3005 ret = mmc_test_cases[i].cleanup(test);
3006 if (ret) {
3007 pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3008 mmc_hostname(test->card->host),
3009 ret);
3010 }
3011 }
3012 }
3013
3014 mmc_release_host(test->card->host);
3015
3016 pr_info("%s: Tests completed.\n",
3017 mmc_hostname(test->card->host));
3018 }
3019
mmc_test_free_result(struct mmc_card * card)3020 static void mmc_test_free_result(struct mmc_card *card)
3021 {
3022 struct mmc_test_general_result *gr, *grs;
3023
3024 mutex_lock(&mmc_test_lock);
3025
3026 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3027 struct mmc_test_transfer_result *tr, *trs;
3028
3029 if (card && gr->card != card)
3030 continue;
3031
3032 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3033 list_del(&tr->link);
3034 kfree(tr);
3035 }
3036
3037 list_del(&gr->link);
3038 kfree(gr);
3039 }
3040
3041 mutex_unlock(&mmc_test_lock);
3042 }
3043
3044 static LIST_HEAD(mmc_test_file_test);
3045
mtf_test_show(struct seq_file * sf,void * data)3046 static int mtf_test_show(struct seq_file *sf, void *data)
3047 {
3048 struct mmc_card *card = sf->private;
3049 struct mmc_test_general_result *gr;
3050
3051 mutex_lock(&mmc_test_lock);
3052
3053 list_for_each_entry(gr, &mmc_test_result, link) {
3054 struct mmc_test_transfer_result *tr;
3055
3056 if (gr->card != card)
3057 continue;
3058
3059 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3060
3061 list_for_each_entry(tr, &gr->tr_lst, link) {
3062 seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3063 tr->count, tr->sectors,
3064 (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3065 tr->rate, tr->iops / 100, tr->iops % 100);
3066 }
3067 }
3068
3069 mutex_unlock(&mmc_test_lock);
3070
3071 return 0;
3072 }
3073
mtf_test_open(struct inode * inode,struct file * file)3074 static int mtf_test_open(struct inode *inode, struct file *file)
3075 {
3076 return single_open(file, mtf_test_show, inode->i_private);
3077 }
3078
mtf_test_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)3079 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3080 size_t count, loff_t *pos)
3081 {
3082 struct seq_file *sf = file->private_data;
3083 struct mmc_card *card = sf->private;
3084 struct mmc_test_card *test;
3085 long testcase;
3086 int ret;
3087
3088 ret = kstrtol_from_user(buf, count, 10, &testcase);
3089 if (ret)
3090 return ret;
3091
3092 test = kzalloc(sizeof(*test), GFP_KERNEL);
3093 if (!test)
3094 return -ENOMEM;
3095
3096 /*
3097 * Remove all test cases associated with given card. Thus we have only
3098 * actual data of the last run.
3099 */
3100 mmc_test_free_result(card);
3101
3102 test->card = card;
3103
3104 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3105 #ifdef CONFIG_HIGHMEM
3106 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3107 #endif
3108
3109 #ifdef CONFIG_HIGHMEM
3110 if (test->buffer && test->highmem) {
3111 #else
3112 if (test->buffer) {
3113 #endif
3114 mutex_lock(&mmc_test_lock);
3115 mmc_test_run(test, testcase);
3116 mutex_unlock(&mmc_test_lock);
3117 }
3118
3119 #ifdef CONFIG_HIGHMEM
3120 __free_pages(test->highmem, BUFFER_ORDER);
3121 #endif
3122 kfree(test->buffer);
3123 kfree(test);
3124
3125 return count;
3126 }
3127
3128 static const struct file_operations mmc_test_fops_test = {
3129 .open = mtf_test_open,
3130 .read = seq_read,
3131 .write = mtf_test_write,
3132 .llseek = seq_lseek,
3133 .release = single_release,
3134 };
3135
3136 static int mtf_testlist_show(struct seq_file *sf, void *data)
3137 {
3138 int i;
3139
3140 mutex_lock(&mmc_test_lock);
3141
3142 seq_puts(sf, "0:\tRun all tests\n");
3143 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3144 seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3145
3146 mutex_unlock(&mmc_test_lock);
3147
3148 return 0;
3149 }
3150
3151 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3152
3153 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3154 {
3155 struct mmc_test_dbgfs_file *df, *dfs;
3156
3157 mutex_lock(&mmc_test_lock);
3158
3159 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3160 if (card && df->card != card)
3161 continue;
3162 debugfs_remove(df->file);
3163 list_del(&df->link);
3164 kfree(df);
3165 }
3166
3167 mutex_unlock(&mmc_test_lock);
3168 }
3169
3170 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3171 const char *name, umode_t mode, const struct file_operations *fops)
3172 {
3173 struct dentry *file = NULL;
3174 struct mmc_test_dbgfs_file *df;
3175
3176 if (card->debugfs_root)
3177 file = debugfs_create_file(name, mode, card->debugfs_root,
3178 card, fops);
3179
3180 df = kmalloc(sizeof(*df), GFP_KERNEL);
3181 if (!df) {
3182 debugfs_remove(file);
3183 return -ENOMEM;
3184 }
3185
3186 df->card = card;
3187 df->file = file;
3188
3189 list_add(&df->link, &mmc_test_file_test);
3190 return 0;
3191 }
3192
3193 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3194 {
3195 int ret;
3196
3197 mutex_lock(&mmc_test_lock);
3198
3199 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3200 &mmc_test_fops_test);
3201 if (ret)
3202 goto err;
3203
3204 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3205 &mtf_testlist_fops);
3206 if (ret)
3207 goto err;
3208
3209 err:
3210 mutex_unlock(&mmc_test_lock);
3211
3212 return ret;
3213 }
3214
3215 static int mmc_test_probe(struct mmc_card *card)
3216 {
3217 int ret;
3218
3219 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3220 return -ENODEV;
3221
3222 ret = mmc_test_register_dbgfs_file(card);
3223 if (ret)
3224 return ret;
3225
3226 if (card->ext_csd.cmdq_en) {
3227 mmc_claim_host(card->host);
3228 ret = mmc_cmdq_disable(card);
3229 mmc_release_host(card->host);
3230 if (ret)
3231 return ret;
3232 }
3233
3234 dev_info(&card->dev, "Card claimed for testing.\n");
3235
3236 return 0;
3237 }
3238
3239 static void mmc_test_remove(struct mmc_card *card)
3240 {
3241 if (card->reenable_cmdq) {
3242 mmc_claim_host(card->host);
3243 mmc_cmdq_enable(card);
3244 mmc_release_host(card->host);
3245 }
3246 mmc_test_free_result(card);
3247 mmc_test_free_dbgfs_file(card);
3248 }
3249
3250 static struct mmc_driver mmc_driver = {
3251 .drv = {
3252 .name = "mmc_test",
3253 },
3254 .probe = mmc_test_probe,
3255 .remove = mmc_test_remove,
3256 };
3257
3258 static int __init mmc_test_init(void)
3259 {
3260 return mmc_register_driver(&mmc_driver);
3261 }
3262
3263 static void __exit mmc_test_exit(void)
3264 {
3265 /* Clear stalled data if card is still plugged */
3266 mmc_test_free_result(NULL);
3267 mmc_test_free_dbgfs_file(NULL);
3268
3269 mmc_unregister_driver(&mmc_driver);
3270 }
3271
3272 module_init(mmc_test_init);
3273 module_exit(mmc_test_exit);
3274
3275 MODULE_LICENSE("GPL");
3276 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3277 MODULE_AUTHOR("Pierre Ossman");
3278