1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * This file contains common routines for dealing with free of page tables
4 * Along with common page table handling code
5 *
6 * Derived from arch/powerpc/mm/tlb_64.c:
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 *
9 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
11 * Copyright (C) 1996 Paul Mackerras
12 *
13 * Derived from "arch/i386/mm/init.c"
14 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 *
16 * Dave Engebretsen <engebret@us.ibm.com>
17 * Rework for PPC64 port.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/percpu.h>
24 #include <linux/hardirq.h>
25 #include <linux/hugetlb.h>
26 #include <asm/tlbflush.h>
27 #include <asm/tlb.h>
28 #include <asm/hugetlb.h>
29 #include <asm/pte-walk.h>
30
31 #ifdef CONFIG_PPC64
32 #define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD)
33 #else
34 #define PGD_ALIGN PAGE_SIZE
35 #endif
36
37 pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN);
38
is_exec_fault(void)39 static inline int is_exec_fault(void)
40 {
41 return current->thread.regs && TRAP(current->thread.regs) == 0x400;
42 }
43
44 /* We only try to do i/d cache coherency on stuff that looks like
45 * reasonably "normal" PTEs. We currently require a PTE to be present
46 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
47 * on userspace PTEs
48 */
pte_looks_normal(pte_t pte)49 static inline int pte_looks_normal(pte_t pte)
50 {
51
52 if (pte_present(pte) && !pte_special(pte)) {
53 if (pte_ci(pte))
54 return 0;
55 if (pte_user(pte))
56 return 1;
57 }
58 return 0;
59 }
60
maybe_pte_to_folio(pte_t pte)61 static struct folio *maybe_pte_to_folio(pte_t pte)
62 {
63 unsigned long pfn = pte_pfn(pte);
64 struct page *page;
65
66 if (unlikely(!pfn_valid(pfn)))
67 return NULL;
68 page = pfn_to_page(pfn);
69 if (PageReserved(page))
70 return NULL;
71 return page_folio(page);
72 }
73
74 #ifdef CONFIG_PPC_BOOK3S
75
76 /* Server-style MMU handles coherency when hashing if HW exec permission
77 * is supposed per page (currently 64-bit only). If not, then, we always
78 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
79 * support falls into the same category.
80 */
81
set_pte_filter_hash(pte_t pte)82 static pte_t set_pte_filter_hash(pte_t pte)
83 {
84 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
85 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
86 cpu_has_feature(CPU_FTR_NOEXECUTE))) {
87 struct folio *folio = maybe_pte_to_folio(pte);
88 if (!folio)
89 return pte;
90 if (!test_bit(PG_dcache_clean, &folio->flags)) {
91 flush_dcache_icache_folio(folio);
92 set_bit(PG_dcache_clean, &folio->flags);
93 }
94 }
95 return pte;
96 }
97
98 #else /* CONFIG_PPC_BOOK3S */
99
set_pte_filter_hash(pte_t pte)100 static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
101
102 #endif /* CONFIG_PPC_BOOK3S */
103
104 /* Embedded type MMU with HW exec support. This is a bit more complicated
105 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
106 * instead we "filter out" the exec permission for non clean pages.
107 *
108 * This is also called once for the folio. So only work with folio->flags here.
109 */
set_pte_filter(pte_t pte)110 static inline pte_t set_pte_filter(pte_t pte)
111 {
112 struct folio *folio;
113
114 if (radix_enabled())
115 return pte;
116
117 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
118 return set_pte_filter_hash(pte);
119
120 /* No exec permission in the first place, move on */
121 if (!pte_exec(pte) || !pte_looks_normal(pte))
122 return pte;
123
124 /* If you set _PAGE_EXEC on weird pages you're on your own */
125 folio = maybe_pte_to_folio(pte);
126 if (unlikely(!folio))
127 return pte;
128
129 /* If the page clean, we move on */
130 if (test_bit(PG_dcache_clean, &folio->flags))
131 return pte;
132
133 /* If it's an exec fault, we flush the cache and make it clean */
134 if (is_exec_fault()) {
135 flush_dcache_icache_folio(folio);
136 set_bit(PG_dcache_clean, &folio->flags);
137 return pte;
138 }
139
140 /* Else, we filter out _PAGE_EXEC */
141 return pte_exprotect(pte);
142 }
143
set_access_flags_filter(pte_t pte,struct vm_area_struct * vma,int dirty)144 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
145 int dirty)
146 {
147 struct folio *folio;
148
149 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
150 return pte;
151
152 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
153 return pte;
154
155 /* So here, we only care about exec faults, as we use them
156 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
157 * if necessary. Also if _PAGE_EXEC is already set, same deal,
158 * we just bail out
159 */
160 if (dirty || pte_exec(pte) || !is_exec_fault())
161 return pte;
162
163 #ifdef CONFIG_DEBUG_VM
164 /* So this is an exec fault, _PAGE_EXEC is not set. If it was
165 * an error we would have bailed out earlier in do_page_fault()
166 * but let's make sure of it
167 */
168 if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
169 return pte;
170 #endif /* CONFIG_DEBUG_VM */
171
172 /* If you set _PAGE_EXEC on weird pages you're on your own */
173 folio = maybe_pte_to_folio(pte);
174 if (unlikely(!folio))
175 goto bail;
176
177 /* If the page is already clean, we move on */
178 if (test_bit(PG_dcache_clean, &folio->flags))
179 goto bail;
180
181 /* Clean the page and set PG_dcache_clean */
182 flush_dcache_icache_folio(folio);
183 set_bit(PG_dcache_clean, &folio->flags);
184
185 bail:
186 return pte_mkexec(pte);
187 }
188
189 /*
190 * set_pte stores a linux PTE into the linux page table.
191 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)192 void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
193 pte_t pte, unsigned int nr)
194 {
195
196 /* Note: mm->context.id might not yet have been assigned as
197 * this context might not have been activated yet when this
198 * is called. Filter the pte value and use the filtered value
199 * to setup all the ptes in the range.
200 */
201 pte = set_pte_filter(pte);
202
203 /*
204 * We don't need to call arch_enter/leave_lazy_mmu_mode()
205 * because we expect set_ptes to be only be used on not present
206 * and not hw_valid ptes. Hence there is no translation cache flush
207 * involved that need to be batched.
208 */
209 for (;;) {
210
211 /*
212 * Make sure hardware valid bit is not set. We don't do
213 * tlb flush for this update.
214 */
215 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
216
217 /* Perform the setting of the PTE */
218 __set_pte_at(mm, addr, ptep, pte, 0);
219 if (--nr == 0)
220 break;
221 ptep++;
222 addr += PAGE_SIZE;
223 /*
224 * increment the pfn.
225 */
226 pte = pfn_pte(pte_pfn(pte) + 1, pte_pgprot((pte)));
227 }
228 }
229
unmap_kernel_page(unsigned long va)230 void unmap_kernel_page(unsigned long va)
231 {
232 pmd_t *pmdp = pmd_off_k(va);
233 pte_t *ptep = pte_offset_kernel(pmdp, va);
234
235 pte_clear(&init_mm, va, ptep);
236 flush_tlb_kernel_range(va, va + PAGE_SIZE);
237 }
238
239 /*
240 * This is called when relaxing access to a PTE. It's also called in the page
241 * fault path when we don't hit any of the major fault cases, ie, a minor
242 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
243 * handled those two for us, we additionally deal with missing execute
244 * permission here on some processors
245 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)246 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
247 pte_t *ptep, pte_t entry, int dirty)
248 {
249 int changed;
250 entry = set_access_flags_filter(entry, vma, dirty);
251 changed = !pte_same(*(ptep), entry);
252 if (changed) {
253 assert_pte_locked(vma->vm_mm, address);
254 __ptep_set_access_flags(vma, ptep, entry,
255 address, mmu_virtual_psize);
256 }
257 return changed;
258 }
259
260 #ifdef CONFIG_HUGETLB_PAGE
huge_ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,int dirty)261 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
262 unsigned long addr, pte_t *ptep,
263 pte_t pte, int dirty)
264 {
265 #ifdef HUGETLB_NEED_PRELOAD
266 /*
267 * The "return 1" forces a call of update_mmu_cache, which will write a
268 * TLB entry. Without this, platforms that don't do a write of the TLB
269 * entry in the TLB miss handler asm will fault ad infinitum.
270 */
271 ptep_set_access_flags(vma, addr, ptep, pte, dirty);
272 return 1;
273 #else
274 int changed, psize;
275
276 pte = set_access_flags_filter(pte, vma, dirty);
277 changed = !pte_same(*(ptep), pte);
278 if (changed) {
279
280 #ifdef CONFIG_PPC_BOOK3S_64
281 struct hstate *h = hstate_vma(vma);
282
283 psize = hstate_get_psize(h);
284 #ifdef CONFIG_DEBUG_VM
285 assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
286 #endif
287
288 #else
289 /*
290 * Not used on non book3s64 platforms.
291 * 8xx compares it with mmu_virtual_psize to
292 * know if it is a huge page or not.
293 */
294 psize = MMU_PAGE_COUNT;
295 #endif
296 __ptep_set_access_flags(vma, ptep, pte, addr, psize);
297 }
298 return changed;
299 #endif
300 }
301
302 #if defined(CONFIG_PPC_8xx)
set_huge_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned long sz)303 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
304 pte_t pte, unsigned long sz)
305 {
306 pmd_t *pmd = pmd_off(mm, addr);
307 pte_basic_t val;
308 pte_basic_t *entry = (pte_basic_t *)ptep;
309 int num, i;
310
311 /*
312 * Make sure hardware valid bit is not set. We don't do
313 * tlb flush for this update.
314 */
315 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
316
317 pte = set_pte_filter(pte);
318
319 val = pte_val(pte);
320
321 num = number_of_cells_per_pte(pmd, val, 1);
322
323 for (i = 0; i < num; i++, entry++, val += SZ_4K)
324 *entry = val;
325 }
326 #endif
327 #endif /* CONFIG_HUGETLB_PAGE */
328
329 #ifdef CONFIG_DEBUG_VM
assert_pte_locked(struct mm_struct * mm,unsigned long addr)330 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
331 {
332 pgd_t *pgd;
333 p4d_t *p4d;
334 pud_t *pud;
335 pmd_t *pmd;
336 pte_t *pte;
337 spinlock_t *ptl;
338
339 if (mm == &init_mm)
340 return;
341 pgd = mm->pgd + pgd_index(addr);
342 BUG_ON(pgd_none(*pgd));
343 p4d = p4d_offset(pgd, addr);
344 BUG_ON(p4d_none(*p4d));
345 pud = pud_offset(p4d, addr);
346 BUG_ON(pud_none(*pud));
347 pmd = pmd_offset(pud, addr);
348 /*
349 * khugepaged to collapse normal pages to hugepage, first set
350 * pmd to none to force page fault/gup to take mmap_lock. After
351 * pmd is set to none, we do a pte_clear which does this assertion
352 * so if we find pmd none, return.
353 */
354 if (pmd_none(*pmd))
355 return;
356 pte = pte_offset_map_nolock(mm, pmd, addr, &ptl);
357 BUG_ON(!pte);
358 assert_spin_locked(ptl);
359 pte_unmap(pte);
360 }
361 #endif /* CONFIG_DEBUG_VM */
362
vmalloc_to_phys(void * va)363 unsigned long vmalloc_to_phys(void *va)
364 {
365 unsigned long pfn = vmalloc_to_pfn(va);
366
367 BUG_ON(!pfn);
368 return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
369 }
370 EXPORT_SYMBOL_GPL(vmalloc_to_phys);
371
372 /*
373 * We have 4 cases for pgds and pmds:
374 * (1) invalid (all zeroes)
375 * (2) pointer to next table, as normal; bottom 6 bits == 0
376 * (3) leaf pte for huge page _PAGE_PTE set
377 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
378 *
379 * So long as we atomically load page table pointers we are safe against teardown,
380 * we can follow the address down to the page and take a ref on it.
381 * This function need to be called with interrupts disabled. We use this variant
382 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
383 */
__find_linux_pte(pgd_t * pgdir,unsigned long ea,bool * is_thp,unsigned * hpage_shift)384 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
385 bool *is_thp, unsigned *hpage_shift)
386 {
387 pgd_t *pgdp;
388 p4d_t p4d, *p4dp;
389 pud_t pud, *pudp;
390 pmd_t pmd, *pmdp;
391 pte_t *ret_pte;
392 hugepd_t *hpdp = NULL;
393 unsigned pdshift;
394
395 if (hpage_shift)
396 *hpage_shift = 0;
397
398 if (is_thp)
399 *is_thp = false;
400
401 /*
402 * Always operate on the local stack value. This make sure the
403 * value don't get updated by a parallel THP split/collapse,
404 * page fault or a page unmap. The return pte_t * is still not
405 * stable. So should be checked there for above conditions.
406 * Top level is an exception because it is folded into p4d.
407 */
408 pgdp = pgdir + pgd_index(ea);
409 p4dp = p4d_offset(pgdp, ea);
410 p4d = READ_ONCE(*p4dp);
411 pdshift = P4D_SHIFT;
412
413 if (p4d_none(p4d))
414 return NULL;
415
416 if (p4d_is_leaf(p4d)) {
417 ret_pte = (pte_t *)p4dp;
418 goto out;
419 }
420
421 if (is_hugepd(__hugepd(p4d_val(p4d)))) {
422 hpdp = (hugepd_t *)&p4d;
423 goto out_huge;
424 }
425
426 /*
427 * Even if we end up with an unmap, the pgtable will not
428 * be freed, because we do an rcu free and here we are
429 * irq disabled
430 */
431 pdshift = PUD_SHIFT;
432 pudp = pud_offset(&p4d, ea);
433 pud = READ_ONCE(*pudp);
434
435 if (pud_none(pud))
436 return NULL;
437
438 if (pud_is_leaf(pud)) {
439 ret_pte = (pte_t *)pudp;
440 goto out;
441 }
442
443 if (is_hugepd(__hugepd(pud_val(pud)))) {
444 hpdp = (hugepd_t *)&pud;
445 goto out_huge;
446 }
447
448 pdshift = PMD_SHIFT;
449 pmdp = pmd_offset(&pud, ea);
450 pmd = READ_ONCE(*pmdp);
451
452 /*
453 * A hugepage collapse is captured by this condition, see
454 * pmdp_collapse_flush.
455 */
456 if (pmd_none(pmd))
457 return NULL;
458
459 #ifdef CONFIG_PPC_BOOK3S_64
460 /*
461 * A hugepage split is captured by this condition, see
462 * pmdp_invalidate.
463 *
464 * Huge page modification can be caught here too.
465 */
466 if (pmd_is_serializing(pmd))
467 return NULL;
468 #endif
469
470 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
471 if (is_thp)
472 *is_thp = true;
473 ret_pte = (pte_t *)pmdp;
474 goto out;
475 }
476
477 if (pmd_is_leaf(pmd)) {
478 ret_pte = (pte_t *)pmdp;
479 goto out;
480 }
481
482 if (is_hugepd(__hugepd(pmd_val(pmd)))) {
483 hpdp = (hugepd_t *)&pmd;
484 goto out_huge;
485 }
486
487 return pte_offset_kernel(&pmd, ea);
488
489 out_huge:
490 if (!hpdp)
491 return NULL;
492
493 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
494 pdshift = hugepd_shift(*hpdp);
495 out:
496 if (hpage_shift)
497 *hpage_shift = pdshift;
498 return ret_pte;
499 }
500 EXPORT_SYMBOL_GPL(__find_linux_pte);
501
502 /* Note due to the way vm flags are laid out, the bits are XWR */
503 const pgprot_t protection_map[16] = {
504 [VM_NONE] = PAGE_NONE,
505 [VM_READ] = PAGE_READONLY,
506 [VM_WRITE] = PAGE_COPY,
507 [VM_WRITE | VM_READ] = PAGE_COPY,
508 [VM_EXEC] = PAGE_READONLY_X,
509 [VM_EXEC | VM_READ] = PAGE_READONLY_X,
510 [VM_EXEC | VM_WRITE] = PAGE_COPY_X,
511 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_X,
512 [VM_SHARED] = PAGE_NONE,
513 [VM_SHARED | VM_READ] = PAGE_READONLY,
514 [VM_SHARED | VM_WRITE] = PAGE_SHARED,
515 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
516 [VM_SHARED | VM_EXEC] = PAGE_READONLY_X,
517 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READONLY_X,
518 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_X,
519 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_X
520 };
521
522 #ifndef CONFIG_PPC_BOOK3S_64
523 DECLARE_VM_GET_PAGE_PROT
524 #endif
525