1  /*
2   *  Copyright (C) 1991, 1992  Linus Torvalds
3   *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4   */
5  #include <linux/kallsyms.h>
6  #include <linux/kprobes.h>
7  #include <linux/uaccess.h>
8  #include <linux/utsname.h>
9  #include <linux/hardirq.h>
10  #include <linux/kdebug.h>
11  #include <linux/module.h>
12  #include <linux/ptrace.h>
13  #include <linux/sched/debug.h>
14  #include <linux/sched/task_stack.h>
15  #include <linux/ftrace.h>
16  #include <linux/kexec.h>
17  #include <linux/bug.h>
18  #include <linux/nmi.h>
19  #include <linux/sysfs.h>
20  #include <linux/kasan.h>
21  
22  #include <asm/cpu_entry_area.h>
23  #include <asm/stacktrace.h>
24  #include <asm/unwind.h>
25  
26  int panic_on_unrecovered_nmi;
27  int panic_on_io_nmi;
28  static int die_counter;
29  
30  static struct pt_regs exec_summary_regs;
31  
in_task_stack(unsigned long * stack,struct task_struct * task,struct stack_info * info)32  bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
33  			   struct stack_info *info)
34  {
35  	unsigned long *begin = task_stack_page(task);
36  	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
37  
38  	if (stack < begin || stack >= end)
39  		return false;
40  
41  	info->type	= STACK_TYPE_TASK;
42  	info->begin	= begin;
43  	info->end	= end;
44  	info->next_sp	= NULL;
45  
46  	return true;
47  }
48  
49  /* Called from get_stack_info_noinstr - so must be noinstr too */
in_entry_stack(unsigned long * stack,struct stack_info * info)50  bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
51  {
52  	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
53  
54  	void *begin = ss;
55  	void *end = ss + 1;
56  
57  	if ((void *)stack < begin || (void *)stack >= end)
58  		return false;
59  
60  	info->type	= STACK_TYPE_ENTRY;
61  	info->begin	= begin;
62  	info->end	= end;
63  	info->next_sp	= NULL;
64  
65  	return true;
66  }
67  
printk_stack_address(unsigned long address,int reliable,const char * log_lvl)68  static void printk_stack_address(unsigned long address, int reliable,
69  				 const char *log_lvl)
70  {
71  	touch_nmi_watchdog();
72  	printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address);
73  }
74  
copy_code(struct pt_regs * regs,u8 * buf,unsigned long src,unsigned int nbytes)75  static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
76  		     unsigned int nbytes)
77  {
78  	if (!user_mode(regs))
79  		return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
80  
81  	/* The user space code from other tasks cannot be accessed. */
82  	if (regs != task_pt_regs(current))
83  		return -EPERM;
84  
85  	/*
86  	 * Even if named copy_from_user_nmi() this can be invoked from
87  	 * other contexts and will not try to resolve a pagefault, which is
88  	 * the correct thing to do here as this code can be called from any
89  	 * context.
90  	 */
91  	return copy_from_user_nmi(buf, (void __user *)src, nbytes);
92  }
93  
94  /*
95   * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
96   *
97   * In case where we don't have the exact kernel image (which, if we did, we can
98   * simply disassemble and navigate to the RIP), the purpose of the bigger
99   * prologue is to have more context and to be able to correlate the code from
100   * the different toolchains better.
101   *
102   * In addition, it helps in recreating the register allocation of the failing
103   * kernel and thus make sense of the register dump.
104   *
105   * What is more, the additional complication of a variable length insn arch like
106   * x86 warrants having longer byte sequence before rIP so that the disassembler
107   * can "sync" up properly and find instruction boundaries when decoding the
108   * opcode bytes.
109   *
110   * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
111   * guesstimate in attempt to achieve all of the above.
112   */
show_opcodes(struct pt_regs * regs,const char * loglvl)113  void show_opcodes(struct pt_regs *regs, const char *loglvl)
114  {
115  #define PROLOGUE_SIZE 42
116  #define EPILOGUE_SIZE 21
117  #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
118  	u8 opcodes[OPCODE_BUFSIZE];
119  	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
120  
121  	switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
122  	case 0:
123  		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
124  		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
125  		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
126  		break;
127  	case -EPERM:
128  		/* No access to the user space stack of other tasks. Ignore. */
129  		break;
130  	default:
131  		printk("%sCode: Unable to access opcode bytes at 0x%lx.\n",
132  		       loglvl, prologue);
133  		break;
134  	}
135  }
136  
show_ip(struct pt_regs * regs,const char * loglvl)137  void show_ip(struct pt_regs *regs, const char *loglvl)
138  {
139  #ifdef CONFIG_X86_32
140  	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
141  #else
142  	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
143  #endif
144  	show_opcodes(regs, loglvl);
145  }
146  
show_iret_regs(struct pt_regs * regs,const char * log_lvl)147  void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
148  {
149  	show_ip(regs, log_lvl);
150  	printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
151  		regs->sp, regs->flags);
152  }
153  
show_regs_if_on_stack(struct stack_info * info,struct pt_regs * regs,bool partial,const char * log_lvl)154  static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
155  				  bool partial, const char *log_lvl)
156  {
157  	/*
158  	 * These on_stack() checks aren't strictly necessary: the unwind code
159  	 * has already validated the 'regs' pointer.  The checks are done for
160  	 * ordering reasons: if the registers are on the next stack, we don't
161  	 * want to print them out yet.  Otherwise they'll be shown as part of
162  	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
163  	 * next stack, this function will be called again with the same regs so
164  	 * they can be printed in the right context.
165  	 */
166  	if (!partial && on_stack(info, regs, sizeof(*regs))) {
167  		__show_regs(regs, SHOW_REGS_SHORT, log_lvl);
168  
169  	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
170  				       IRET_FRAME_SIZE)) {
171  		/*
172  		 * When an interrupt or exception occurs in entry code, the
173  		 * full pt_regs might not have been saved yet.  In that case
174  		 * just print the iret frame.
175  		 */
176  		show_iret_regs(regs, log_lvl);
177  	}
178  }
179  
180  /*
181   * This function reads pointers from the stack and dereferences them. The
182   * pointers may not have their KMSAN shadow set up properly, which may result
183   * in false positive reports. Disable instrumentation to avoid those.
184   */
185  __no_kmsan_checks
show_trace_log_lvl(struct task_struct * task,struct pt_regs * regs,unsigned long * stack,const char * log_lvl)186  static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
187  			unsigned long *stack, const char *log_lvl)
188  {
189  	struct unwind_state state;
190  	struct stack_info stack_info = {0};
191  	unsigned long visit_mask = 0;
192  	int graph_idx = 0;
193  	bool partial = false;
194  
195  	printk("%sCall Trace:\n", log_lvl);
196  
197  	unwind_start(&state, task, regs, stack);
198  	regs = unwind_get_entry_regs(&state, &partial);
199  
200  	/*
201  	 * Iterate through the stacks, starting with the current stack pointer.
202  	 * Each stack has a pointer to the next one.
203  	 *
204  	 * x86-64 can have several stacks:
205  	 * - task stack
206  	 * - interrupt stack
207  	 * - HW exception stacks (double fault, nmi, debug, mce)
208  	 * - entry stack
209  	 *
210  	 * x86-32 can have up to four stacks:
211  	 * - task stack
212  	 * - softirq stack
213  	 * - hardirq stack
214  	 * - entry stack
215  	 */
216  	for (stack = stack ?: get_stack_pointer(task, regs);
217  	     stack;
218  	     stack = stack_info.next_sp) {
219  		const char *stack_name;
220  
221  		stack = PTR_ALIGN(stack, sizeof(long));
222  
223  		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
224  			/*
225  			 * We weren't on a valid stack.  It's possible that
226  			 * we overflowed a valid stack into a guard page.
227  			 * See if the next page up is valid so that we can
228  			 * generate some kind of backtrace if this happens.
229  			 */
230  			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
231  			if (get_stack_info(stack, task, &stack_info, &visit_mask))
232  				break;
233  		}
234  
235  		stack_name = stack_type_name(stack_info.type);
236  		if (stack_name)
237  			printk("%s <%s>\n", log_lvl, stack_name);
238  
239  		if (regs)
240  			show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
241  
242  		/*
243  		 * Scan the stack, printing any text addresses we find.  At the
244  		 * same time, follow proper stack frames with the unwinder.
245  		 *
246  		 * Addresses found during the scan which are not reported by
247  		 * the unwinder are considered to be additional clues which are
248  		 * sometimes useful for debugging and are prefixed with '?'.
249  		 * This also serves as a failsafe option in case the unwinder
250  		 * goes off in the weeds.
251  		 */
252  		for (; stack < stack_info.end; stack++) {
253  			unsigned long real_addr;
254  			int reliable = 0;
255  			unsigned long addr = READ_ONCE_NOCHECK(*stack);
256  			unsigned long *ret_addr_p =
257  				unwind_get_return_address_ptr(&state);
258  
259  			if (!__kernel_text_address(addr))
260  				continue;
261  
262  			/*
263  			 * Don't print regs->ip again if it was already printed
264  			 * by show_regs_if_on_stack().
265  			 */
266  			if (regs && stack == &regs->ip)
267  				goto next;
268  
269  			if (stack == ret_addr_p)
270  				reliable = 1;
271  
272  			/*
273  			 * When function graph tracing is enabled for a
274  			 * function, its return address on the stack is
275  			 * replaced with the address of an ftrace handler
276  			 * (return_to_handler).  In that case, before printing
277  			 * the "real" address, we want to print the handler
278  			 * address as an "unreliable" hint that function graph
279  			 * tracing was involved.
280  			 */
281  			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
282  							  addr, stack);
283  			if (real_addr != addr)
284  				printk_stack_address(addr, 0, log_lvl);
285  			printk_stack_address(real_addr, reliable, log_lvl);
286  
287  			if (!reliable)
288  				continue;
289  
290  next:
291  			/*
292  			 * Get the next frame from the unwinder.  No need to
293  			 * check for an error: if anything goes wrong, the rest
294  			 * of the addresses will just be printed as unreliable.
295  			 */
296  			unwind_next_frame(&state);
297  
298  			/* if the frame has entry regs, print them */
299  			regs = unwind_get_entry_regs(&state, &partial);
300  			if (regs)
301  				show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
302  		}
303  
304  		if (stack_name)
305  			printk("%s </%s>\n", log_lvl, stack_name);
306  	}
307  }
308  
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)309  void show_stack(struct task_struct *task, unsigned long *sp,
310  		       const char *loglvl)
311  {
312  	task = task ? : current;
313  
314  	/*
315  	 * Stack frames below this one aren't interesting.  Don't show them
316  	 * if we're printing for %current.
317  	 */
318  	if (!sp && task == current)
319  		sp = get_stack_pointer(current, NULL);
320  
321  	show_trace_log_lvl(task, NULL, sp, loglvl);
322  }
323  
show_stack_regs(struct pt_regs * regs)324  void show_stack_regs(struct pt_regs *regs)
325  {
326  	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
327  }
328  
329  static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
330  static int die_owner = -1;
331  static unsigned int die_nest_count;
332  
oops_begin(void)333  unsigned long oops_begin(void)
334  {
335  	int cpu;
336  	unsigned long flags;
337  
338  	oops_enter();
339  
340  	/* racy, but better than risking deadlock. */
341  	raw_local_irq_save(flags);
342  	cpu = smp_processor_id();
343  	if (!arch_spin_trylock(&die_lock)) {
344  		if (cpu == die_owner)
345  			/* nested oops. should stop eventually */;
346  		else
347  			arch_spin_lock(&die_lock);
348  	}
349  	die_nest_count++;
350  	die_owner = cpu;
351  	console_verbose();
352  	bust_spinlocks(1);
353  	return flags;
354  }
355  NOKPROBE_SYMBOL(oops_begin);
356  
357  void __noreturn rewind_stack_and_make_dead(int signr);
358  
oops_end(unsigned long flags,struct pt_regs * regs,int signr)359  void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
360  {
361  	if (regs && kexec_should_crash(current))
362  		crash_kexec(regs);
363  
364  	bust_spinlocks(0);
365  	die_owner = -1;
366  	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
367  	die_nest_count--;
368  	if (!die_nest_count)
369  		/* Nest count reaches zero, release the lock. */
370  		arch_spin_unlock(&die_lock);
371  	raw_local_irq_restore(flags);
372  	oops_exit();
373  
374  	/* Executive summary in case the oops scrolled away */
375  	__show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
376  
377  	if (!signr)
378  		return;
379  	if (in_interrupt())
380  		panic("Fatal exception in interrupt");
381  	if (panic_on_oops)
382  		panic("Fatal exception");
383  
384  	/*
385  	 * We're not going to return, but we might be on an IST stack or
386  	 * have very little stack space left.  Rewind the stack and kill
387  	 * the task.
388  	 * Before we rewind the stack, we have to tell KASAN that we're going to
389  	 * reuse the task stack and that existing poisons are invalid.
390  	 */
391  	kasan_unpoison_task_stack(current);
392  	rewind_stack_and_make_dead(signr);
393  }
394  NOKPROBE_SYMBOL(oops_end);
395  
__die_header(const char * str,struct pt_regs * regs,long err)396  static void __die_header(const char *str, struct pt_regs *regs, long err)
397  {
398  	const char *pr = "";
399  
400  	/* Save the regs of the first oops for the executive summary later. */
401  	if (!die_counter)
402  		exec_summary_regs = *regs;
403  
404  	if (IS_ENABLED(CONFIG_PREEMPTION))
405  		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
406  
407  	printk(KERN_DEFAULT
408  	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
409  	       pr,
410  	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
411  	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
412  	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
413  	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
414  	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
415  }
416  NOKPROBE_SYMBOL(__die_header);
417  
__die_body(const char * str,struct pt_regs * regs,long err)418  static int __die_body(const char *str, struct pt_regs *regs, long err)
419  {
420  	show_regs(regs);
421  	print_modules();
422  
423  	if (notify_die(DIE_OOPS, str, regs, err,
424  			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
425  		return 1;
426  
427  	return 0;
428  }
429  NOKPROBE_SYMBOL(__die_body);
430  
__die(const char * str,struct pt_regs * regs,long err)431  int __die(const char *str, struct pt_regs *regs, long err)
432  {
433  	__die_header(str, regs, err);
434  	return __die_body(str, regs, err);
435  }
436  NOKPROBE_SYMBOL(__die);
437  
438  /*
439   * This is gone through when something in the kernel has done something bad
440   * and is about to be terminated:
441   */
die(const char * str,struct pt_regs * regs,long err)442  void die(const char *str, struct pt_regs *regs, long err)
443  {
444  	unsigned long flags = oops_begin();
445  	int sig = SIGSEGV;
446  
447  	if (__die(str, regs, err))
448  		sig = 0;
449  	oops_end(flags, regs, sig);
450  }
451  
die_addr(const char * str,struct pt_regs * regs,long err,long gp_addr)452  void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
453  {
454  	unsigned long flags = oops_begin();
455  	int sig = SIGSEGV;
456  
457  	__die_header(str, regs, err);
458  	if (gp_addr)
459  		kasan_non_canonical_hook(gp_addr);
460  	if (__die_body(str, regs, err))
461  		sig = 0;
462  	oops_end(flags, regs, sig);
463  }
464  
show_regs(struct pt_regs * regs)465  void show_regs(struct pt_regs *regs)
466  {
467  	enum show_regs_mode print_kernel_regs;
468  
469  	show_regs_print_info(KERN_DEFAULT);
470  
471  	print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
472  	__show_regs(regs, print_kernel_regs, KERN_DEFAULT);
473  
474  	/*
475  	 * When in-kernel, we also print out the stack at the time of the fault..
476  	 */
477  	if (!user_mode(regs))
478  		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
479  }
480