1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18
emit_code(u8 * ptr,u32 bytes,unsigned int len)19 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
20 {
21 if (len == 1)
22 *ptr = bytes;
23 else if (len == 2)
24 *(u16 *)ptr = bytes;
25 else {
26 *(u32 *)ptr = bytes;
27 barrier();
28 }
29 return ptr + len;
30 }
31
32 #define EMIT(bytes, len) \
33 do { prog = emit_code(prog, bytes, len); } while (0)
34
35 #define EMIT1(b1) EMIT(b1, 1)
36 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
37 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
38 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
39
40 #define EMIT1_off32(b1, off) \
41 do { EMIT1(b1); EMIT(off, 4); } while (0)
42 #define EMIT2_off32(b1, b2, off) \
43 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
44 #define EMIT3_off32(b1, b2, b3, off) \
45 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
46 #define EMIT4_off32(b1, b2, b3, b4, off) \
47 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
48
49 #ifdef CONFIG_X86_KERNEL_IBT
50 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
51 #else
52 #define EMIT_ENDBR()
53 #endif
54
is_imm8(int value)55 static bool is_imm8(int value)
56 {
57 return value <= 127 && value >= -128;
58 }
59
is_simm32(s64 value)60 static bool is_simm32(s64 value)
61 {
62 return value == (s64)(s32)value;
63 }
64
is_uimm32(u64 value)65 static bool is_uimm32(u64 value)
66 {
67 return value == (u64)(u32)value;
68 }
69
70 /* mov dst, src */
71 #define EMIT_mov(DST, SRC) \
72 do { \
73 if (DST != SRC) \
74 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
75 } while (0)
76
bpf_size_to_x86_bytes(int bpf_size)77 static int bpf_size_to_x86_bytes(int bpf_size)
78 {
79 if (bpf_size == BPF_W)
80 return 4;
81 else if (bpf_size == BPF_H)
82 return 2;
83 else if (bpf_size == BPF_B)
84 return 1;
85 else if (bpf_size == BPF_DW)
86 return 4; /* imm32 */
87 else
88 return 0;
89 }
90
91 /*
92 * List of x86 cond jumps opcodes (. + s8)
93 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
94 */
95 #define X86_JB 0x72
96 #define X86_JAE 0x73
97 #define X86_JE 0x74
98 #define X86_JNE 0x75
99 #define X86_JBE 0x76
100 #define X86_JA 0x77
101 #define X86_JL 0x7C
102 #define X86_JGE 0x7D
103 #define X86_JLE 0x7E
104 #define X86_JG 0x7F
105
106 /* Pick a register outside of BPF range for JIT internal work */
107 #define AUX_REG (MAX_BPF_JIT_REG + 1)
108 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
109
110 /*
111 * The following table maps BPF registers to x86-64 registers.
112 *
113 * x86-64 register R12 is unused, since if used as base address
114 * register in load/store instructions, it always needs an
115 * extra byte of encoding and is callee saved.
116 *
117 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
118 * trampoline. x86-64 register R10 is used for blinding (if enabled).
119 */
120 static const int reg2hex[] = {
121 [BPF_REG_0] = 0, /* RAX */
122 [BPF_REG_1] = 7, /* RDI */
123 [BPF_REG_2] = 6, /* RSI */
124 [BPF_REG_3] = 2, /* RDX */
125 [BPF_REG_4] = 1, /* RCX */
126 [BPF_REG_5] = 0, /* R8 */
127 [BPF_REG_6] = 3, /* RBX callee saved */
128 [BPF_REG_7] = 5, /* R13 callee saved */
129 [BPF_REG_8] = 6, /* R14 callee saved */
130 [BPF_REG_9] = 7, /* R15 callee saved */
131 [BPF_REG_FP] = 5, /* RBP readonly */
132 [BPF_REG_AX] = 2, /* R10 temp register */
133 [AUX_REG] = 3, /* R11 temp register */
134 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
135 };
136
137 static const int reg2pt_regs[] = {
138 [BPF_REG_0] = offsetof(struct pt_regs, ax),
139 [BPF_REG_1] = offsetof(struct pt_regs, di),
140 [BPF_REG_2] = offsetof(struct pt_regs, si),
141 [BPF_REG_3] = offsetof(struct pt_regs, dx),
142 [BPF_REG_4] = offsetof(struct pt_regs, cx),
143 [BPF_REG_5] = offsetof(struct pt_regs, r8),
144 [BPF_REG_6] = offsetof(struct pt_regs, bx),
145 [BPF_REG_7] = offsetof(struct pt_regs, r13),
146 [BPF_REG_8] = offsetof(struct pt_regs, r14),
147 [BPF_REG_9] = offsetof(struct pt_regs, r15),
148 };
149
150 /*
151 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
152 * which need extra byte of encoding.
153 * rax,rcx,...,rbp have simpler encoding
154 */
is_ereg(u32 reg)155 static bool is_ereg(u32 reg)
156 {
157 return (1 << reg) & (BIT(BPF_REG_5) |
158 BIT(AUX_REG) |
159 BIT(BPF_REG_7) |
160 BIT(BPF_REG_8) |
161 BIT(BPF_REG_9) |
162 BIT(X86_REG_R9) |
163 BIT(BPF_REG_AX));
164 }
165
166 /*
167 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
168 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
169 * of encoding. al,cl,dl,bl have simpler encoding.
170 */
is_ereg_8l(u32 reg)171 static bool is_ereg_8l(u32 reg)
172 {
173 return is_ereg(reg) ||
174 (1 << reg) & (BIT(BPF_REG_1) |
175 BIT(BPF_REG_2) |
176 BIT(BPF_REG_FP));
177 }
178
is_axreg(u32 reg)179 static bool is_axreg(u32 reg)
180 {
181 return reg == BPF_REG_0;
182 }
183
184 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
add_1mod(u8 byte,u32 reg)185 static u8 add_1mod(u8 byte, u32 reg)
186 {
187 if (is_ereg(reg))
188 byte |= 1;
189 return byte;
190 }
191
add_2mod(u8 byte,u32 r1,u32 r2)192 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
193 {
194 if (is_ereg(r1))
195 byte |= 1;
196 if (is_ereg(r2))
197 byte |= 4;
198 return byte;
199 }
200
201 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)202 static u8 add_1reg(u8 byte, u32 dst_reg)
203 {
204 return byte + reg2hex[dst_reg];
205 }
206
207 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)208 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
209 {
210 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
211 }
212
213 /* Some 1-byte opcodes for binary ALU operations */
214 static u8 simple_alu_opcodes[] = {
215 [BPF_ADD] = 0x01,
216 [BPF_SUB] = 0x29,
217 [BPF_AND] = 0x21,
218 [BPF_OR] = 0x09,
219 [BPF_XOR] = 0x31,
220 [BPF_LSH] = 0xE0,
221 [BPF_RSH] = 0xE8,
222 [BPF_ARSH] = 0xF8,
223 };
224
jit_fill_hole(void * area,unsigned int size)225 static void jit_fill_hole(void *area, unsigned int size)
226 {
227 /* Fill whole space with INT3 instructions */
228 memset(area, 0xcc, size);
229 }
230
bpf_arch_text_invalidate(void * dst,size_t len)231 int bpf_arch_text_invalidate(void *dst, size_t len)
232 {
233 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
234 }
235
236 struct jit_context {
237 int cleanup_addr; /* Epilogue code offset */
238
239 /*
240 * Program specific offsets of labels in the code; these rely on the
241 * JIT doing at least 2 passes, recording the position on the first
242 * pass, only to generate the correct offset on the second pass.
243 */
244 int tail_call_direct_label;
245 int tail_call_indirect_label;
246 };
247
248 /* Maximum number of bytes emitted while JITing one eBPF insn */
249 #define BPF_MAX_INSN_SIZE 128
250 #define BPF_INSN_SAFETY 64
251
252 /* Number of bytes emit_patch() needs to generate instructions */
253 #define X86_PATCH_SIZE 5
254 /* Number of bytes that will be skipped on tailcall */
255 #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
256
push_callee_regs(u8 ** pprog,bool * callee_regs_used)257 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
258 {
259 u8 *prog = *pprog;
260
261 if (callee_regs_used[0])
262 EMIT1(0x53); /* push rbx */
263 if (callee_regs_used[1])
264 EMIT2(0x41, 0x55); /* push r13 */
265 if (callee_regs_used[2])
266 EMIT2(0x41, 0x56); /* push r14 */
267 if (callee_regs_used[3])
268 EMIT2(0x41, 0x57); /* push r15 */
269 *pprog = prog;
270 }
271
pop_callee_regs(u8 ** pprog,bool * callee_regs_used)272 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
273 {
274 u8 *prog = *pprog;
275
276 if (callee_regs_used[3])
277 EMIT2(0x41, 0x5F); /* pop r15 */
278 if (callee_regs_used[2])
279 EMIT2(0x41, 0x5E); /* pop r14 */
280 if (callee_regs_used[1])
281 EMIT2(0x41, 0x5D); /* pop r13 */
282 if (callee_regs_used[0])
283 EMIT1(0x5B); /* pop rbx */
284 *pprog = prog;
285 }
286
287 /*
288 * Emit x86-64 prologue code for BPF program.
289 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
290 * while jumping to another program
291 */
emit_prologue(u8 ** pprog,u32 stack_depth,bool ebpf_from_cbpf,bool tail_call_reachable,bool is_subprog)292 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
293 bool tail_call_reachable, bool is_subprog)
294 {
295 u8 *prog = *pprog;
296
297 /* BPF trampoline can be made to work without these nops,
298 * but let's waste 5 bytes for now and optimize later
299 */
300 EMIT_ENDBR();
301 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
302 prog += X86_PATCH_SIZE;
303 if (!ebpf_from_cbpf) {
304 if (tail_call_reachable && !is_subprog)
305 EMIT2(0x31, 0xC0); /* xor eax, eax */
306 else
307 EMIT2(0x66, 0x90); /* nop2 */
308 }
309 EMIT1(0x55); /* push rbp */
310 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
311
312 /* X86_TAIL_CALL_OFFSET is here */
313 EMIT_ENDBR();
314
315 /* sub rsp, rounded_stack_depth */
316 if (stack_depth)
317 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
318 if (tail_call_reachable)
319 EMIT1(0x50); /* push rax */
320 *pprog = prog;
321 }
322
emit_patch(u8 ** pprog,void * func,void * ip,u8 opcode)323 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
324 {
325 u8 *prog = *pprog;
326 s64 offset;
327
328 offset = func - (ip + X86_PATCH_SIZE);
329 if (!is_simm32(offset)) {
330 pr_err("Target call %p is out of range\n", func);
331 return -ERANGE;
332 }
333 EMIT1_off32(opcode, offset);
334 *pprog = prog;
335 return 0;
336 }
337
emit_call(u8 ** pprog,void * func,void * ip)338 static int emit_call(u8 **pprog, void *func, void *ip)
339 {
340 return emit_patch(pprog, func, ip, 0xE8);
341 }
342
emit_jump(u8 ** pprog,void * func,void * ip)343 static int emit_jump(u8 **pprog, void *func, void *ip)
344 {
345 return emit_patch(pprog, func, ip, 0xE9);
346 }
347
__bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)348 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
349 void *old_addr, void *new_addr)
350 {
351 const u8 *nop_insn = x86_nops[5];
352 u8 old_insn[X86_PATCH_SIZE];
353 u8 new_insn[X86_PATCH_SIZE];
354 u8 *prog;
355 int ret;
356
357 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
358 if (old_addr) {
359 prog = old_insn;
360 ret = t == BPF_MOD_CALL ?
361 emit_call(&prog, old_addr, ip) :
362 emit_jump(&prog, old_addr, ip);
363 if (ret)
364 return ret;
365 }
366
367 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
368 if (new_addr) {
369 prog = new_insn;
370 ret = t == BPF_MOD_CALL ?
371 emit_call(&prog, new_addr, ip) :
372 emit_jump(&prog, new_addr, ip);
373 if (ret)
374 return ret;
375 }
376
377 ret = -EBUSY;
378 mutex_lock(&text_mutex);
379 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
380 goto out;
381 ret = 1;
382 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
383 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
384 ret = 0;
385 }
386 out:
387 mutex_unlock(&text_mutex);
388 return ret;
389 }
390
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)391 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
392 void *old_addr, void *new_addr)
393 {
394 if (!is_kernel_text((long)ip) &&
395 !is_bpf_text_address((long)ip))
396 /* BPF poking in modules is not supported */
397 return -EINVAL;
398
399 /*
400 * See emit_prologue(), for IBT builds the trampoline hook is preceded
401 * with an ENDBR instruction.
402 */
403 if (is_endbr(*(u32 *)ip))
404 ip += ENDBR_INSN_SIZE;
405
406 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
407 }
408
409 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
410
emit_indirect_jump(u8 ** pprog,int reg,u8 * ip)411 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
412 {
413 u8 *prog = *pprog;
414
415 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
416 EMIT_LFENCE();
417 EMIT2(0xFF, 0xE0 + reg);
418 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
419 OPTIMIZER_HIDE_VAR(reg);
420 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
421 } else {
422 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
423 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
424 EMIT1(0xCC); /* int3 */
425 }
426
427 *pprog = prog;
428 }
429
emit_return(u8 ** pprog,u8 * ip)430 static void emit_return(u8 **pprog, u8 *ip)
431 {
432 u8 *prog = *pprog;
433
434 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
435 emit_jump(&prog, &__x86_return_thunk, ip);
436 } else {
437 EMIT1(0xC3); /* ret */
438 if (IS_ENABLED(CONFIG_SLS))
439 EMIT1(0xCC); /* int3 */
440 }
441
442 *pprog = prog;
443 }
444
445 /*
446 * Generate the following code:
447 *
448 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
449 * if (index >= array->map.max_entries)
450 * goto out;
451 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
452 * goto out;
453 * prog = array->ptrs[index];
454 * if (prog == NULL)
455 * goto out;
456 * goto *(prog->bpf_func + prologue_size);
457 * out:
458 */
emit_bpf_tail_call_indirect(u8 ** pprog,bool * callee_regs_used,u32 stack_depth,u8 * ip,struct jit_context * ctx)459 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
460 u32 stack_depth, u8 *ip,
461 struct jit_context *ctx)
462 {
463 int tcc_off = -4 - round_up(stack_depth, 8);
464 u8 *prog = *pprog, *start = *pprog;
465 int offset;
466
467 /*
468 * rdi - pointer to ctx
469 * rsi - pointer to bpf_array
470 * rdx - index in bpf_array
471 */
472
473 /*
474 * if (index >= array->map.max_entries)
475 * goto out;
476 */
477 EMIT2(0x89, 0xD2); /* mov edx, edx */
478 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
479 offsetof(struct bpf_array, map.max_entries));
480
481 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
482 EMIT2(X86_JBE, offset); /* jbe out */
483
484 /*
485 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
486 * goto out;
487 */
488 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
489 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
490
491 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
492 EMIT2(X86_JAE, offset); /* jae out */
493 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
494 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
495
496 /* prog = array->ptrs[index]; */
497 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
498 offsetof(struct bpf_array, ptrs));
499
500 /*
501 * if (prog == NULL)
502 * goto out;
503 */
504 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
505
506 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
507 EMIT2(X86_JE, offset); /* je out */
508
509 pop_callee_regs(&prog, callee_regs_used);
510
511 EMIT1(0x58); /* pop rax */
512 if (stack_depth)
513 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
514 round_up(stack_depth, 8));
515
516 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
517 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
518 offsetof(struct bpf_prog, bpf_func));
519 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
520 X86_TAIL_CALL_OFFSET);
521 /*
522 * Now we're ready to jump into next BPF program
523 * rdi == ctx (1st arg)
524 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
525 */
526 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
527
528 /* out: */
529 ctx->tail_call_indirect_label = prog - start;
530 *pprog = prog;
531 }
532
emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor * poke,u8 ** pprog,u8 * ip,bool * callee_regs_used,u32 stack_depth,struct jit_context * ctx)533 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
534 u8 **pprog, u8 *ip,
535 bool *callee_regs_used, u32 stack_depth,
536 struct jit_context *ctx)
537 {
538 int tcc_off = -4 - round_up(stack_depth, 8);
539 u8 *prog = *pprog, *start = *pprog;
540 int offset;
541
542 /*
543 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
544 * goto out;
545 */
546 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
547 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
548
549 offset = ctx->tail_call_direct_label - (prog + 2 - start);
550 EMIT2(X86_JAE, offset); /* jae out */
551 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
552 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
553
554 poke->tailcall_bypass = ip + (prog - start);
555 poke->adj_off = X86_TAIL_CALL_OFFSET;
556 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
557 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
558
559 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
560 poke->tailcall_bypass);
561
562 pop_callee_regs(&prog, callee_regs_used);
563 EMIT1(0x58); /* pop rax */
564 if (stack_depth)
565 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
566
567 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
568 prog += X86_PATCH_SIZE;
569
570 /* out: */
571 ctx->tail_call_direct_label = prog - start;
572
573 *pprog = prog;
574 }
575
bpf_tail_call_direct_fixup(struct bpf_prog * prog)576 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
577 {
578 struct bpf_jit_poke_descriptor *poke;
579 struct bpf_array *array;
580 struct bpf_prog *target;
581 int i, ret;
582
583 for (i = 0; i < prog->aux->size_poke_tab; i++) {
584 poke = &prog->aux->poke_tab[i];
585 if (poke->aux && poke->aux != prog->aux)
586 continue;
587
588 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
589
590 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
591 continue;
592
593 array = container_of(poke->tail_call.map, struct bpf_array, map);
594 mutex_lock(&array->aux->poke_mutex);
595 target = array->ptrs[poke->tail_call.key];
596 if (target) {
597 ret = __bpf_arch_text_poke(poke->tailcall_target,
598 BPF_MOD_JUMP, NULL,
599 (u8 *)target->bpf_func +
600 poke->adj_off);
601 BUG_ON(ret < 0);
602 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
603 BPF_MOD_JUMP,
604 (u8 *)poke->tailcall_target +
605 X86_PATCH_SIZE, NULL);
606 BUG_ON(ret < 0);
607 }
608 WRITE_ONCE(poke->tailcall_target_stable, true);
609 mutex_unlock(&array->aux->poke_mutex);
610 }
611 }
612
emit_mov_imm32(u8 ** pprog,bool sign_propagate,u32 dst_reg,const u32 imm32)613 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
614 u32 dst_reg, const u32 imm32)
615 {
616 u8 *prog = *pprog;
617 u8 b1, b2, b3;
618
619 /*
620 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
621 * (which zero-extends imm32) to save 2 bytes.
622 */
623 if (sign_propagate && (s32)imm32 < 0) {
624 /* 'mov %rax, imm32' sign extends imm32 */
625 b1 = add_1mod(0x48, dst_reg);
626 b2 = 0xC7;
627 b3 = 0xC0;
628 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
629 goto done;
630 }
631
632 /*
633 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
634 * to save 3 bytes.
635 */
636 if (imm32 == 0) {
637 if (is_ereg(dst_reg))
638 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
639 b2 = 0x31; /* xor */
640 b3 = 0xC0;
641 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
642 goto done;
643 }
644
645 /* mov %eax, imm32 */
646 if (is_ereg(dst_reg))
647 EMIT1(add_1mod(0x40, dst_reg));
648 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
649 done:
650 *pprog = prog;
651 }
652
emit_mov_imm64(u8 ** pprog,u32 dst_reg,const u32 imm32_hi,const u32 imm32_lo)653 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
654 const u32 imm32_hi, const u32 imm32_lo)
655 {
656 u8 *prog = *pprog;
657
658 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
659 /*
660 * For emitting plain u32, where sign bit must not be
661 * propagated LLVM tends to load imm64 over mov32
662 * directly, so save couple of bytes by just doing
663 * 'mov %eax, imm32' instead.
664 */
665 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
666 } else {
667 /* movabsq rax, imm64 */
668 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
669 EMIT(imm32_lo, 4);
670 EMIT(imm32_hi, 4);
671 }
672
673 *pprog = prog;
674 }
675
emit_mov_reg(u8 ** pprog,bool is64,u32 dst_reg,u32 src_reg)676 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
677 {
678 u8 *prog = *pprog;
679
680 if (is64) {
681 /* mov dst, src */
682 EMIT_mov(dst_reg, src_reg);
683 } else {
684 /* mov32 dst, src */
685 if (is_ereg(dst_reg) || is_ereg(src_reg))
686 EMIT1(add_2mod(0x40, dst_reg, src_reg));
687 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
688 }
689
690 *pprog = prog;
691 }
692
693 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
emit_insn_suffix(u8 ** pprog,u32 ptr_reg,u32 val_reg,int off)694 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
695 {
696 u8 *prog = *pprog;
697
698 if (is_imm8(off)) {
699 /* 1-byte signed displacement.
700 *
701 * If off == 0 we could skip this and save one extra byte, but
702 * special case of x86 R13 which always needs an offset is not
703 * worth the hassle
704 */
705 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
706 } else {
707 /* 4-byte signed displacement */
708 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
709 }
710 *pprog = prog;
711 }
712
713 /*
714 * Emit a REX byte if it will be necessary to address these registers
715 */
maybe_emit_mod(u8 ** pprog,u32 dst_reg,u32 src_reg,bool is64)716 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
717 {
718 u8 *prog = *pprog;
719
720 if (is64)
721 EMIT1(add_2mod(0x48, dst_reg, src_reg));
722 else if (is_ereg(dst_reg) || is_ereg(src_reg))
723 EMIT1(add_2mod(0x40, dst_reg, src_reg));
724 *pprog = prog;
725 }
726
727 /*
728 * Similar version of maybe_emit_mod() for a single register
729 */
maybe_emit_1mod(u8 ** pprog,u32 reg,bool is64)730 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
731 {
732 u8 *prog = *pprog;
733
734 if (is64)
735 EMIT1(add_1mod(0x48, reg));
736 else if (is_ereg(reg))
737 EMIT1(add_1mod(0x40, reg));
738 *pprog = prog;
739 }
740
741 /* LDX: dst_reg = *(u8*)(src_reg + off) */
emit_ldx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)742 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
743 {
744 u8 *prog = *pprog;
745
746 switch (size) {
747 case BPF_B:
748 /* Emit 'movzx rax, byte ptr [rax + off]' */
749 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
750 break;
751 case BPF_H:
752 /* Emit 'movzx rax, word ptr [rax + off]' */
753 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
754 break;
755 case BPF_W:
756 /* Emit 'mov eax, dword ptr [rax+0x14]' */
757 if (is_ereg(dst_reg) || is_ereg(src_reg))
758 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
759 else
760 EMIT1(0x8B);
761 break;
762 case BPF_DW:
763 /* Emit 'mov rax, qword ptr [rax+0x14]' */
764 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
765 break;
766 }
767 emit_insn_suffix(&prog, src_reg, dst_reg, off);
768 *pprog = prog;
769 }
770
771 /* STX: *(u8*)(dst_reg + off) = src_reg */
emit_stx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)772 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
773 {
774 u8 *prog = *pprog;
775
776 switch (size) {
777 case BPF_B:
778 /* Emit 'mov byte ptr [rax + off], al' */
779 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
780 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
781 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
782 else
783 EMIT1(0x88);
784 break;
785 case BPF_H:
786 if (is_ereg(dst_reg) || is_ereg(src_reg))
787 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
788 else
789 EMIT2(0x66, 0x89);
790 break;
791 case BPF_W:
792 if (is_ereg(dst_reg) || is_ereg(src_reg))
793 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
794 else
795 EMIT1(0x89);
796 break;
797 case BPF_DW:
798 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
799 break;
800 }
801 emit_insn_suffix(&prog, dst_reg, src_reg, off);
802 *pprog = prog;
803 }
804
emit_atomic(u8 ** pprog,u8 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)805 static int emit_atomic(u8 **pprog, u8 atomic_op,
806 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
807 {
808 u8 *prog = *pprog;
809
810 EMIT1(0xF0); /* lock prefix */
811
812 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
813
814 /* emit opcode */
815 switch (atomic_op) {
816 case BPF_ADD:
817 case BPF_AND:
818 case BPF_OR:
819 case BPF_XOR:
820 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
821 EMIT1(simple_alu_opcodes[atomic_op]);
822 break;
823 case BPF_ADD | BPF_FETCH:
824 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
825 EMIT2(0x0F, 0xC1);
826 break;
827 case BPF_XCHG:
828 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
829 EMIT1(0x87);
830 break;
831 case BPF_CMPXCHG:
832 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
833 EMIT2(0x0F, 0xB1);
834 break;
835 default:
836 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
837 return -EFAULT;
838 }
839
840 emit_insn_suffix(&prog, dst_reg, src_reg, off);
841
842 *pprog = prog;
843 return 0;
844 }
845
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)846 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
847 {
848 u32 reg = x->fixup >> 8;
849
850 /* jump over faulting load and clear dest register */
851 *(unsigned long *)((void *)regs + reg) = 0;
852 regs->ip += x->fixup & 0xff;
853 return true;
854 }
855
detect_reg_usage(struct bpf_insn * insn,int insn_cnt,bool * regs_used,bool * tail_call_seen)856 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
857 bool *regs_used, bool *tail_call_seen)
858 {
859 int i;
860
861 for (i = 1; i <= insn_cnt; i++, insn++) {
862 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
863 *tail_call_seen = true;
864 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
865 regs_used[0] = true;
866 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
867 regs_used[1] = true;
868 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
869 regs_used[2] = true;
870 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
871 regs_used[3] = true;
872 }
873 }
874
emit_nops(u8 ** pprog,int len)875 static void emit_nops(u8 **pprog, int len)
876 {
877 u8 *prog = *pprog;
878 int i, noplen;
879
880 while (len > 0) {
881 noplen = len;
882
883 if (noplen > ASM_NOP_MAX)
884 noplen = ASM_NOP_MAX;
885
886 for (i = 0; i < noplen; i++)
887 EMIT1(x86_nops[noplen][i]);
888 len -= noplen;
889 }
890
891 *pprog = prog;
892 }
893
894 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
895
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,u8 * rw_image,int oldproglen,struct jit_context * ctx,bool jmp_padding)896 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
897 int oldproglen, struct jit_context *ctx, bool jmp_padding)
898 {
899 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
900 struct bpf_insn *insn = bpf_prog->insnsi;
901 bool callee_regs_used[4] = {};
902 int insn_cnt = bpf_prog->len;
903 bool tail_call_seen = false;
904 bool seen_exit = false;
905 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
906 int i, excnt = 0;
907 int ilen, proglen = 0;
908 u8 *prog = temp;
909 int err;
910
911 detect_reg_usage(insn, insn_cnt, callee_regs_used,
912 &tail_call_seen);
913
914 /* tail call's presence in current prog implies it is reachable */
915 tail_call_reachable |= tail_call_seen;
916
917 emit_prologue(&prog, bpf_prog->aux->stack_depth,
918 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
919 bpf_prog->aux->func_idx != 0);
920 push_callee_regs(&prog, callee_regs_used);
921
922 ilen = prog - temp;
923 if (rw_image)
924 memcpy(rw_image + proglen, temp, ilen);
925 proglen += ilen;
926 addrs[0] = proglen;
927 prog = temp;
928
929 for (i = 1; i <= insn_cnt; i++, insn++) {
930 const s32 imm32 = insn->imm;
931 u32 dst_reg = insn->dst_reg;
932 u32 src_reg = insn->src_reg;
933 u8 b2 = 0, b3 = 0;
934 u8 *start_of_ldx;
935 s64 jmp_offset;
936 u8 jmp_cond;
937 u8 *func;
938 int nops;
939
940 switch (insn->code) {
941 /* ALU */
942 case BPF_ALU | BPF_ADD | BPF_X:
943 case BPF_ALU | BPF_SUB | BPF_X:
944 case BPF_ALU | BPF_AND | BPF_X:
945 case BPF_ALU | BPF_OR | BPF_X:
946 case BPF_ALU | BPF_XOR | BPF_X:
947 case BPF_ALU64 | BPF_ADD | BPF_X:
948 case BPF_ALU64 | BPF_SUB | BPF_X:
949 case BPF_ALU64 | BPF_AND | BPF_X:
950 case BPF_ALU64 | BPF_OR | BPF_X:
951 case BPF_ALU64 | BPF_XOR | BPF_X:
952 maybe_emit_mod(&prog, dst_reg, src_reg,
953 BPF_CLASS(insn->code) == BPF_ALU64);
954 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
955 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
956 break;
957
958 case BPF_ALU64 | BPF_MOV | BPF_X:
959 case BPF_ALU | BPF_MOV | BPF_X:
960 emit_mov_reg(&prog,
961 BPF_CLASS(insn->code) == BPF_ALU64,
962 dst_reg, src_reg);
963 break;
964
965 /* neg dst */
966 case BPF_ALU | BPF_NEG:
967 case BPF_ALU64 | BPF_NEG:
968 maybe_emit_1mod(&prog, dst_reg,
969 BPF_CLASS(insn->code) == BPF_ALU64);
970 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
971 break;
972
973 case BPF_ALU | BPF_ADD | BPF_K:
974 case BPF_ALU | BPF_SUB | BPF_K:
975 case BPF_ALU | BPF_AND | BPF_K:
976 case BPF_ALU | BPF_OR | BPF_K:
977 case BPF_ALU | BPF_XOR | BPF_K:
978 case BPF_ALU64 | BPF_ADD | BPF_K:
979 case BPF_ALU64 | BPF_SUB | BPF_K:
980 case BPF_ALU64 | BPF_AND | BPF_K:
981 case BPF_ALU64 | BPF_OR | BPF_K:
982 case BPF_ALU64 | BPF_XOR | BPF_K:
983 maybe_emit_1mod(&prog, dst_reg,
984 BPF_CLASS(insn->code) == BPF_ALU64);
985
986 /*
987 * b3 holds 'normal' opcode, b2 short form only valid
988 * in case dst is eax/rax.
989 */
990 switch (BPF_OP(insn->code)) {
991 case BPF_ADD:
992 b3 = 0xC0;
993 b2 = 0x05;
994 break;
995 case BPF_SUB:
996 b3 = 0xE8;
997 b2 = 0x2D;
998 break;
999 case BPF_AND:
1000 b3 = 0xE0;
1001 b2 = 0x25;
1002 break;
1003 case BPF_OR:
1004 b3 = 0xC8;
1005 b2 = 0x0D;
1006 break;
1007 case BPF_XOR:
1008 b3 = 0xF0;
1009 b2 = 0x35;
1010 break;
1011 }
1012
1013 if (is_imm8(imm32))
1014 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1015 else if (is_axreg(dst_reg))
1016 EMIT1_off32(b2, imm32);
1017 else
1018 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1019 break;
1020
1021 case BPF_ALU64 | BPF_MOV | BPF_K:
1022 case BPF_ALU | BPF_MOV | BPF_K:
1023 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1024 dst_reg, imm32);
1025 break;
1026
1027 case BPF_LD | BPF_IMM | BPF_DW:
1028 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1029 insn++;
1030 i++;
1031 break;
1032
1033 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1034 case BPF_ALU | BPF_MOD | BPF_X:
1035 case BPF_ALU | BPF_DIV | BPF_X:
1036 case BPF_ALU | BPF_MOD | BPF_K:
1037 case BPF_ALU | BPF_DIV | BPF_K:
1038 case BPF_ALU64 | BPF_MOD | BPF_X:
1039 case BPF_ALU64 | BPF_DIV | BPF_X:
1040 case BPF_ALU64 | BPF_MOD | BPF_K:
1041 case BPF_ALU64 | BPF_DIV | BPF_K: {
1042 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1043
1044 if (dst_reg != BPF_REG_0)
1045 EMIT1(0x50); /* push rax */
1046 if (dst_reg != BPF_REG_3)
1047 EMIT1(0x52); /* push rdx */
1048
1049 if (BPF_SRC(insn->code) == BPF_X) {
1050 if (src_reg == BPF_REG_0 ||
1051 src_reg == BPF_REG_3) {
1052 /* mov r11, src_reg */
1053 EMIT_mov(AUX_REG, src_reg);
1054 src_reg = AUX_REG;
1055 }
1056 } else {
1057 /* mov r11, imm32 */
1058 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1059 src_reg = AUX_REG;
1060 }
1061
1062 if (dst_reg != BPF_REG_0)
1063 /* mov rax, dst_reg */
1064 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1065
1066 /*
1067 * xor edx, edx
1068 * equivalent to 'xor rdx, rdx', but one byte less
1069 */
1070 EMIT2(0x31, 0xd2);
1071
1072 /* div src_reg */
1073 maybe_emit_1mod(&prog, src_reg, is64);
1074 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1075
1076 if (BPF_OP(insn->code) == BPF_MOD &&
1077 dst_reg != BPF_REG_3)
1078 /* mov dst_reg, rdx */
1079 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1080 else if (BPF_OP(insn->code) == BPF_DIV &&
1081 dst_reg != BPF_REG_0)
1082 /* mov dst_reg, rax */
1083 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1084
1085 if (dst_reg != BPF_REG_3)
1086 EMIT1(0x5A); /* pop rdx */
1087 if (dst_reg != BPF_REG_0)
1088 EMIT1(0x58); /* pop rax */
1089 break;
1090 }
1091
1092 case BPF_ALU | BPF_MUL | BPF_K:
1093 case BPF_ALU64 | BPF_MUL | BPF_K:
1094 maybe_emit_mod(&prog, dst_reg, dst_reg,
1095 BPF_CLASS(insn->code) == BPF_ALU64);
1096
1097 if (is_imm8(imm32))
1098 /* imul dst_reg, dst_reg, imm8 */
1099 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1100 imm32);
1101 else
1102 /* imul dst_reg, dst_reg, imm32 */
1103 EMIT2_off32(0x69,
1104 add_2reg(0xC0, dst_reg, dst_reg),
1105 imm32);
1106 break;
1107
1108 case BPF_ALU | BPF_MUL | BPF_X:
1109 case BPF_ALU64 | BPF_MUL | BPF_X:
1110 maybe_emit_mod(&prog, src_reg, dst_reg,
1111 BPF_CLASS(insn->code) == BPF_ALU64);
1112
1113 /* imul dst_reg, src_reg */
1114 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1115 break;
1116
1117 /* Shifts */
1118 case BPF_ALU | BPF_LSH | BPF_K:
1119 case BPF_ALU | BPF_RSH | BPF_K:
1120 case BPF_ALU | BPF_ARSH | BPF_K:
1121 case BPF_ALU64 | BPF_LSH | BPF_K:
1122 case BPF_ALU64 | BPF_RSH | BPF_K:
1123 case BPF_ALU64 | BPF_ARSH | BPF_K:
1124 maybe_emit_1mod(&prog, dst_reg,
1125 BPF_CLASS(insn->code) == BPF_ALU64);
1126
1127 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1128 if (imm32 == 1)
1129 EMIT2(0xD1, add_1reg(b3, dst_reg));
1130 else
1131 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1132 break;
1133
1134 case BPF_ALU | BPF_LSH | BPF_X:
1135 case BPF_ALU | BPF_RSH | BPF_X:
1136 case BPF_ALU | BPF_ARSH | BPF_X:
1137 case BPF_ALU64 | BPF_LSH | BPF_X:
1138 case BPF_ALU64 | BPF_RSH | BPF_X:
1139 case BPF_ALU64 | BPF_ARSH | BPF_X:
1140
1141 /* Check for bad case when dst_reg == rcx */
1142 if (dst_reg == BPF_REG_4) {
1143 /* mov r11, dst_reg */
1144 EMIT_mov(AUX_REG, dst_reg);
1145 dst_reg = AUX_REG;
1146 }
1147
1148 if (src_reg != BPF_REG_4) { /* common case */
1149 EMIT1(0x51); /* push rcx */
1150
1151 /* mov rcx, src_reg */
1152 EMIT_mov(BPF_REG_4, src_reg);
1153 }
1154
1155 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1156 maybe_emit_1mod(&prog, dst_reg,
1157 BPF_CLASS(insn->code) == BPF_ALU64);
1158
1159 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1160 EMIT2(0xD3, add_1reg(b3, dst_reg));
1161
1162 if (src_reg != BPF_REG_4)
1163 EMIT1(0x59); /* pop rcx */
1164
1165 if (insn->dst_reg == BPF_REG_4)
1166 /* mov dst_reg, r11 */
1167 EMIT_mov(insn->dst_reg, AUX_REG);
1168 break;
1169
1170 case BPF_ALU | BPF_END | BPF_FROM_BE:
1171 switch (imm32) {
1172 case 16:
1173 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1174 EMIT1(0x66);
1175 if (is_ereg(dst_reg))
1176 EMIT1(0x41);
1177 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1178
1179 /* Emit 'movzwl eax, ax' */
1180 if (is_ereg(dst_reg))
1181 EMIT3(0x45, 0x0F, 0xB7);
1182 else
1183 EMIT2(0x0F, 0xB7);
1184 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1185 break;
1186 case 32:
1187 /* Emit 'bswap eax' to swap lower 4 bytes */
1188 if (is_ereg(dst_reg))
1189 EMIT2(0x41, 0x0F);
1190 else
1191 EMIT1(0x0F);
1192 EMIT1(add_1reg(0xC8, dst_reg));
1193 break;
1194 case 64:
1195 /* Emit 'bswap rax' to swap 8 bytes */
1196 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1197 add_1reg(0xC8, dst_reg));
1198 break;
1199 }
1200 break;
1201
1202 case BPF_ALU | BPF_END | BPF_FROM_LE:
1203 switch (imm32) {
1204 case 16:
1205 /*
1206 * Emit 'movzwl eax, ax' to zero extend 16-bit
1207 * into 64 bit
1208 */
1209 if (is_ereg(dst_reg))
1210 EMIT3(0x45, 0x0F, 0xB7);
1211 else
1212 EMIT2(0x0F, 0xB7);
1213 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1214 break;
1215 case 32:
1216 /* Emit 'mov eax, eax' to clear upper 32-bits */
1217 if (is_ereg(dst_reg))
1218 EMIT1(0x45);
1219 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1220 break;
1221 case 64:
1222 /* nop */
1223 break;
1224 }
1225 break;
1226
1227 /* speculation barrier */
1228 case BPF_ST | BPF_NOSPEC:
1229 if (boot_cpu_has(X86_FEATURE_XMM2))
1230 EMIT_LFENCE();
1231 break;
1232
1233 /* ST: *(u8*)(dst_reg + off) = imm */
1234 case BPF_ST | BPF_MEM | BPF_B:
1235 if (is_ereg(dst_reg))
1236 EMIT2(0x41, 0xC6);
1237 else
1238 EMIT1(0xC6);
1239 goto st;
1240 case BPF_ST | BPF_MEM | BPF_H:
1241 if (is_ereg(dst_reg))
1242 EMIT3(0x66, 0x41, 0xC7);
1243 else
1244 EMIT2(0x66, 0xC7);
1245 goto st;
1246 case BPF_ST | BPF_MEM | BPF_W:
1247 if (is_ereg(dst_reg))
1248 EMIT2(0x41, 0xC7);
1249 else
1250 EMIT1(0xC7);
1251 goto st;
1252 case BPF_ST | BPF_MEM | BPF_DW:
1253 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1254
1255 st: if (is_imm8(insn->off))
1256 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1257 else
1258 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1259
1260 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1261 break;
1262
1263 /* STX: *(u8*)(dst_reg + off) = src_reg */
1264 case BPF_STX | BPF_MEM | BPF_B:
1265 case BPF_STX | BPF_MEM | BPF_H:
1266 case BPF_STX | BPF_MEM | BPF_W:
1267 case BPF_STX | BPF_MEM | BPF_DW:
1268 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1269 break;
1270
1271 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1272 case BPF_LDX | BPF_MEM | BPF_B:
1273 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1274 case BPF_LDX | BPF_MEM | BPF_H:
1275 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1276 case BPF_LDX | BPF_MEM | BPF_W:
1277 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1278 case BPF_LDX | BPF_MEM | BPF_DW:
1279 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1280 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1281 /* Though the verifier prevents negative insn->off in BPF_PROBE_MEM
1282 * add abs(insn->off) to the limit to make sure that negative
1283 * offset won't be an issue.
1284 * insn->off is s16, so it won't affect valid pointers.
1285 */
1286 u64 limit = TASK_SIZE_MAX + PAGE_SIZE + abs(insn->off);
1287 u8 *end_of_jmp1, *end_of_jmp2;
1288
1289 /* Conservatively check that src_reg + insn->off is a kernel address:
1290 * 1. src_reg + insn->off >= limit
1291 * 2. src_reg + insn->off doesn't become small positive.
1292 * Cannot do src_reg + insn->off >= limit in one branch,
1293 * since it needs two spare registers, but JIT has only one.
1294 */
1295
1296 /* movabsq r11, limit */
1297 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1298 EMIT((u32)limit, 4);
1299 EMIT(limit >> 32, 4);
1300 /* cmp src_reg, r11 */
1301 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1302 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1303 /* if unsigned '<' goto end_of_jmp2 */
1304 EMIT2(X86_JB, 0);
1305 end_of_jmp1 = prog;
1306
1307 /* mov r11, src_reg */
1308 emit_mov_reg(&prog, true, AUX_REG, src_reg);
1309 /* add r11, insn->off */
1310 maybe_emit_1mod(&prog, AUX_REG, true);
1311 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1312 /* jmp if not carry to start_of_ldx
1313 * Otherwise ERR_PTR(-EINVAL) + 128 will be the user addr
1314 * that has to be rejected.
1315 */
1316 EMIT2(0x73 /* JNC */, 0);
1317 end_of_jmp2 = prog;
1318
1319 /* xor dst_reg, dst_reg */
1320 emit_mov_imm32(&prog, false, dst_reg, 0);
1321 /* jmp byte_after_ldx */
1322 EMIT2(0xEB, 0);
1323
1324 /* populate jmp_offset for JB above to jump to xor dst_reg */
1325 end_of_jmp1[-1] = end_of_jmp2 - end_of_jmp1;
1326 /* populate jmp_offset for JNC above to jump to start_of_ldx */
1327 start_of_ldx = prog;
1328 end_of_jmp2[-1] = start_of_ldx - end_of_jmp2;
1329 }
1330 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1331 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1332 struct exception_table_entry *ex;
1333 u8 *_insn = image + proglen + (start_of_ldx - temp);
1334 s64 delta;
1335
1336 /* populate jmp_offset for JMP above */
1337 start_of_ldx[-1] = prog - start_of_ldx;
1338
1339 if (!bpf_prog->aux->extable)
1340 break;
1341
1342 if (excnt >= bpf_prog->aux->num_exentries) {
1343 pr_err("ex gen bug\n");
1344 return -EFAULT;
1345 }
1346 ex = &bpf_prog->aux->extable[excnt++];
1347
1348 delta = _insn - (u8 *)&ex->insn;
1349 if (!is_simm32(delta)) {
1350 pr_err("extable->insn doesn't fit into 32-bit\n");
1351 return -EFAULT;
1352 }
1353 /* switch ex to rw buffer for writes */
1354 ex = (void *)rw_image + ((void *)ex - (void *)image);
1355
1356 ex->insn = delta;
1357
1358 ex->data = EX_TYPE_BPF;
1359
1360 if (dst_reg > BPF_REG_9) {
1361 pr_err("verifier error\n");
1362 return -EFAULT;
1363 }
1364 /*
1365 * Compute size of x86 insn and its target dest x86 register.
1366 * ex_handler_bpf() will use lower 8 bits to adjust
1367 * pt_regs->ip to jump over this x86 instruction
1368 * and upper bits to figure out which pt_regs to zero out.
1369 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1370 * of 4 bytes will be ignored and rbx will be zero inited.
1371 */
1372 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1373 }
1374 break;
1375
1376 case BPF_STX | BPF_ATOMIC | BPF_W:
1377 case BPF_STX | BPF_ATOMIC | BPF_DW:
1378 if (insn->imm == (BPF_AND | BPF_FETCH) ||
1379 insn->imm == (BPF_OR | BPF_FETCH) ||
1380 insn->imm == (BPF_XOR | BPF_FETCH)) {
1381 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1382 u32 real_src_reg = src_reg;
1383 u32 real_dst_reg = dst_reg;
1384 u8 *branch_target;
1385
1386 /*
1387 * Can't be implemented with a single x86 insn.
1388 * Need to do a CMPXCHG loop.
1389 */
1390
1391 /* Will need RAX as a CMPXCHG operand so save R0 */
1392 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1393 if (src_reg == BPF_REG_0)
1394 real_src_reg = BPF_REG_AX;
1395 if (dst_reg == BPF_REG_0)
1396 real_dst_reg = BPF_REG_AX;
1397
1398 branch_target = prog;
1399 /* Load old value */
1400 emit_ldx(&prog, BPF_SIZE(insn->code),
1401 BPF_REG_0, real_dst_reg, insn->off);
1402 /*
1403 * Perform the (commutative) operation locally,
1404 * put the result in the AUX_REG.
1405 */
1406 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1407 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1408 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1409 add_2reg(0xC0, AUX_REG, real_src_reg));
1410 /* Attempt to swap in new value */
1411 err = emit_atomic(&prog, BPF_CMPXCHG,
1412 real_dst_reg, AUX_REG,
1413 insn->off,
1414 BPF_SIZE(insn->code));
1415 if (WARN_ON(err))
1416 return err;
1417 /*
1418 * ZF tells us whether we won the race. If it's
1419 * cleared we need to try again.
1420 */
1421 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1422 /* Return the pre-modification value */
1423 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1424 /* Restore R0 after clobbering RAX */
1425 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1426 break;
1427 }
1428
1429 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1430 insn->off, BPF_SIZE(insn->code));
1431 if (err)
1432 return err;
1433 break;
1434
1435 /* call */
1436 case BPF_JMP | BPF_CALL:
1437 func = (u8 *) __bpf_call_base + imm32;
1438 if (tail_call_reachable) {
1439 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1440 EMIT3_off32(0x48, 0x8B, 0x85,
1441 -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1442 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1443 return -EINVAL;
1444 } else {
1445 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1446 return -EINVAL;
1447 }
1448 break;
1449
1450 case BPF_JMP | BPF_TAIL_CALL:
1451 if (imm32)
1452 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1453 &prog, image + addrs[i - 1],
1454 callee_regs_used,
1455 bpf_prog->aux->stack_depth,
1456 ctx);
1457 else
1458 emit_bpf_tail_call_indirect(&prog,
1459 callee_regs_used,
1460 bpf_prog->aux->stack_depth,
1461 image + addrs[i - 1],
1462 ctx);
1463 break;
1464
1465 /* cond jump */
1466 case BPF_JMP | BPF_JEQ | BPF_X:
1467 case BPF_JMP | BPF_JNE | BPF_X:
1468 case BPF_JMP | BPF_JGT | BPF_X:
1469 case BPF_JMP | BPF_JLT | BPF_X:
1470 case BPF_JMP | BPF_JGE | BPF_X:
1471 case BPF_JMP | BPF_JLE | BPF_X:
1472 case BPF_JMP | BPF_JSGT | BPF_X:
1473 case BPF_JMP | BPF_JSLT | BPF_X:
1474 case BPF_JMP | BPF_JSGE | BPF_X:
1475 case BPF_JMP | BPF_JSLE | BPF_X:
1476 case BPF_JMP32 | BPF_JEQ | BPF_X:
1477 case BPF_JMP32 | BPF_JNE | BPF_X:
1478 case BPF_JMP32 | BPF_JGT | BPF_X:
1479 case BPF_JMP32 | BPF_JLT | BPF_X:
1480 case BPF_JMP32 | BPF_JGE | BPF_X:
1481 case BPF_JMP32 | BPF_JLE | BPF_X:
1482 case BPF_JMP32 | BPF_JSGT | BPF_X:
1483 case BPF_JMP32 | BPF_JSLT | BPF_X:
1484 case BPF_JMP32 | BPF_JSGE | BPF_X:
1485 case BPF_JMP32 | BPF_JSLE | BPF_X:
1486 /* cmp dst_reg, src_reg */
1487 maybe_emit_mod(&prog, dst_reg, src_reg,
1488 BPF_CLASS(insn->code) == BPF_JMP);
1489 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1490 goto emit_cond_jmp;
1491
1492 case BPF_JMP | BPF_JSET | BPF_X:
1493 case BPF_JMP32 | BPF_JSET | BPF_X:
1494 /* test dst_reg, src_reg */
1495 maybe_emit_mod(&prog, dst_reg, src_reg,
1496 BPF_CLASS(insn->code) == BPF_JMP);
1497 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1498 goto emit_cond_jmp;
1499
1500 case BPF_JMP | BPF_JSET | BPF_K:
1501 case BPF_JMP32 | BPF_JSET | BPF_K:
1502 /* test dst_reg, imm32 */
1503 maybe_emit_1mod(&prog, dst_reg,
1504 BPF_CLASS(insn->code) == BPF_JMP);
1505 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1506 goto emit_cond_jmp;
1507
1508 case BPF_JMP | BPF_JEQ | BPF_K:
1509 case BPF_JMP | BPF_JNE | BPF_K:
1510 case BPF_JMP | BPF_JGT | BPF_K:
1511 case BPF_JMP | BPF_JLT | BPF_K:
1512 case BPF_JMP | BPF_JGE | BPF_K:
1513 case BPF_JMP | BPF_JLE | BPF_K:
1514 case BPF_JMP | BPF_JSGT | BPF_K:
1515 case BPF_JMP | BPF_JSLT | BPF_K:
1516 case BPF_JMP | BPF_JSGE | BPF_K:
1517 case BPF_JMP | BPF_JSLE | BPF_K:
1518 case BPF_JMP32 | BPF_JEQ | BPF_K:
1519 case BPF_JMP32 | BPF_JNE | BPF_K:
1520 case BPF_JMP32 | BPF_JGT | BPF_K:
1521 case BPF_JMP32 | BPF_JLT | BPF_K:
1522 case BPF_JMP32 | BPF_JGE | BPF_K:
1523 case BPF_JMP32 | BPF_JLE | BPF_K:
1524 case BPF_JMP32 | BPF_JSGT | BPF_K:
1525 case BPF_JMP32 | BPF_JSLT | BPF_K:
1526 case BPF_JMP32 | BPF_JSGE | BPF_K:
1527 case BPF_JMP32 | BPF_JSLE | BPF_K:
1528 /* test dst_reg, dst_reg to save one extra byte */
1529 if (imm32 == 0) {
1530 maybe_emit_mod(&prog, dst_reg, dst_reg,
1531 BPF_CLASS(insn->code) == BPF_JMP);
1532 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1533 goto emit_cond_jmp;
1534 }
1535
1536 /* cmp dst_reg, imm8/32 */
1537 maybe_emit_1mod(&prog, dst_reg,
1538 BPF_CLASS(insn->code) == BPF_JMP);
1539
1540 if (is_imm8(imm32))
1541 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1542 else
1543 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1544
1545 emit_cond_jmp: /* Convert BPF opcode to x86 */
1546 switch (BPF_OP(insn->code)) {
1547 case BPF_JEQ:
1548 jmp_cond = X86_JE;
1549 break;
1550 case BPF_JSET:
1551 case BPF_JNE:
1552 jmp_cond = X86_JNE;
1553 break;
1554 case BPF_JGT:
1555 /* GT is unsigned '>', JA in x86 */
1556 jmp_cond = X86_JA;
1557 break;
1558 case BPF_JLT:
1559 /* LT is unsigned '<', JB in x86 */
1560 jmp_cond = X86_JB;
1561 break;
1562 case BPF_JGE:
1563 /* GE is unsigned '>=', JAE in x86 */
1564 jmp_cond = X86_JAE;
1565 break;
1566 case BPF_JLE:
1567 /* LE is unsigned '<=', JBE in x86 */
1568 jmp_cond = X86_JBE;
1569 break;
1570 case BPF_JSGT:
1571 /* Signed '>', GT in x86 */
1572 jmp_cond = X86_JG;
1573 break;
1574 case BPF_JSLT:
1575 /* Signed '<', LT in x86 */
1576 jmp_cond = X86_JL;
1577 break;
1578 case BPF_JSGE:
1579 /* Signed '>=', GE in x86 */
1580 jmp_cond = X86_JGE;
1581 break;
1582 case BPF_JSLE:
1583 /* Signed '<=', LE in x86 */
1584 jmp_cond = X86_JLE;
1585 break;
1586 default: /* to silence GCC warning */
1587 return -EFAULT;
1588 }
1589 jmp_offset = addrs[i + insn->off] - addrs[i];
1590 if (is_imm8(jmp_offset)) {
1591 if (jmp_padding) {
1592 /* To keep the jmp_offset valid, the extra bytes are
1593 * padded before the jump insn, so we subtract the
1594 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1595 *
1596 * If the previous pass already emits an imm8
1597 * jmp_cond, then this BPF insn won't shrink, so
1598 * "nops" is 0.
1599 *
1600 * On the other hand, if the previous pass emits an
1601 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1602 * keep the image from shrinking further.
1603 *
1604 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1605 * is 2 bytes, so the size difference is 4 bytes.
1606 */
1607 nops = INSN_SZ_DIFF - 2;
1608 if (nops != 0 && nops != 4) {
1609 pr_err("unexpected jmp_cond padding: %d bytes\n",
1610 nops);
1611 return -EFAULT;
1612 }
1613 emit_nops(&prog, nops);
1614 }
1615 EMIT2(jmp_cond, jmp_offset);
1616 } else if (is_simm32(jmp_offset)) {
1617 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1618 } else {
1619 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1620 return -EFAULT;
1621 }
1622
1623 break;
1624
1625 case BPF_JMP | BPF_JA:
1626 if (insn->off == -1)
1627 /* -1 jmp instructions will always jump
1628 * backwards two bytes. Explicitly handling
1629 * this case avoids wasting too many passes
1630 * when there are long sequences of replaced
1631 * dead code.
1632 */
1633 jmp_offset = -2;
1634 else
1635 jmp_offset = addrs[i + insn->off] - addrs[i];
1636
1637 if (!jmp_offset) {
1638 /*
1639 * If jmp_padding is enabled, the extra nops will
1640 * be inserted. Otherwise, optimize out nop jumps.
1641 */
1642 if (jmp_padding) {
1643 /* There are 3 possible conditions.
1644 * (1) This BPF_JA is already optimized out in
1645 * the previous run, so there is no need
1646 * to pad any extra byte (0 byte).
1647 * (2) The previous pass emits an imm8 jmp,
1648 * so we pad 2 bytes to match the previous
1649 * insn size.
1650 * (3) Similarly, the previous pass emits an
1651 * imm32 jmp, and 5 bytes is padded.
1652 */
1653 nops = INSN_SZ_DIFF;
1654 if (nops != 0 && nops != 2 && nops != 5) {
1655 pr_err("unexpected nop jump padding: %d bytes\n",
1656 nops);
1657 return -EFAULT;
1658 }
1659 emit_nops(&prog, nops);
1660 }
1661 break;
1662 }
1663 emit_jmp:
1664 if (is_imm8(jmp_offset)) {
1665 if (jmp_padding) {
1666 /* To avoid breaking jmp_offset, the extra bytes
1667 * are padded before the actual jmp insn, so
1668 * 2 bytes is subtracted from INSN_SZ_DIFF.
1669 *
1670 * If the previous pass already emits an imm8
1671 * jmp, there is nothing to pad (0 byte).
1672 *
1673 * If it emits an imm32 jmp (5 bytes) previously
1674 * and now an imm8 jmp (2 bytes), then we pad
1675 * (5 - 2 = 3) bytes to stop the image from
1676 * shrinking further.
1677 */
1678 nops = INSN_SZ_DIFF - 2;
1679 if (nops != 0 && nops != 3) {
1680 pr_err("unexpected jump padding: %d bytes\n",
1681 nops);
1682 return -EFAULT;
1683 }
1684 emit_nops(&prog, INSN_SZ_DIFF - 2);
1685 }
1686 EMIT2(0xEB, jmp_offset);
1687 } else if (is_simm32(jmp_offset)) {
1688 EMIT1_off32(0xE9, jmp_offset);
1689 } else {
1690 pr_err("jmp gen bug %llx\n", jmp_offset);
1691 return -EFAULT;
1692 }
1693 break;
1694
1695 case BPF_JMP | BPF_EXIT:
1696 if (seen_exit) {
1697 jmp_offset = ctx->cleanup_addr - addrs[i];
1698 goto emit_jmp;
1699 }
1700 seen_exit = true;
1701 /* Update cleanup_addr */
1702 ctx->cleanup_addr = proglen;
1703 pop_callee_regs(&prog, callee_regs_used);
1704 EMIT1(0xC9); /* leave */
1705 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1706 break;
1707
1708 default:
1709 /*
1710 * By design x86-64 JIT should support all BPF instructions.
1711 * This error will be seen if new instruction was added
1712 * to the interpreter, but not to the JIT, or if there is
1713 * junk in bpf_prog.
1714 */
1715 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1716 return -EINVAL;
1717 }
1718
1719 ilen = prog - temp;
1720 if (ilen > BPF_MAX_INSN_SIZE) {
1721 pr_err("bpf_jit: fatal insn size error\n");
1722 return -EFAULT;
1723 }
1724
1725 if (image) {
1726 /*
1727 * When populating the image, assert that:
1728 *
1729 * i) We do not write beyond the allocated space, and
1730 * ii) addrs[i] did not change from the prior run, in order
1731 * to validate assumptions made for computing branch
1732 * displacements.
1733 */
1734 if (unlikely(proglen + ilen > oldproglen ||
1735 proglen + ilen != addrs[i])) {
1736 pr_err("bpf_jit: fatal error\n");
1737 return -EFAULT;
1738 }
1739 memcpy(rw_image + proglen, temp, ilen);
1740 }
1741 proglen += ilen;
1742 addrs[i] = proglen;
1743 prog = temp;
1744 }
1745
1746 if (image && excnt != bpf_prog->aux->num_exentries) {
1747 pr_err("extable is not populated\n");
1748 return -EFAULT;
1749 }
1750 return proglen;
1751 }
1752
save_regs(const struct btf_func_model * m,u8 ** prog,int nr_args,int stack_size)1753 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1754 int stack_size)
1755 {
1756 int i, j, arg_size, nr_regs;
1757 /* Store function arguments to stack.
1758 * For a function that accepts two pointers the sequence will be:
1759 * mov QWORD PTR [rbp-0x10],rdi
1760 * mov QWORD PTR [rbp-0x8],rsi
1761 */
1762 for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1763 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1764 nr_regs = (m->arg_size[i] + 7) / 8;
1765 arg_size = 8;
1766 } else {
1767 nr_regs = 1;
1768 arg_size = m->arg_size[i];
1769 }
1770
1771 while (nr_regs) {
1772 emit_stx(prog, bytes_to_bpf_size(arg_size),
1773 BPF_REG_FP,
1774 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1775 -(stack_size - j * 8));
1776 nr_regs--;
1777 j++;
1778 }
1779 }
1780 }
1781
restore_regs(const struct btf_func_model * m,u8 ** prog,int nr_args,int stack_size)1782 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1783 int stack_size)
1784 {
1785 int i, j, arg_size, nr_regs;
1786
1787 /* Restore function arguments from stack.
1788 * For a function that accepts two pointers the sequence will be:
1789 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1790 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1791 */
1792 for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1793 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1794 nr_regs = (m->arg_size[i] + 7) / 8;
1795 arg_size = 8;
1796 } else {
1797 nr_regs = 1;
1798 arg_size = m->arg_size[i];
1799 }
1800
1801 while (nr_regs) {
1802 emit_ldx(prog, bytes_to_bpf_size(arg_size),
1803 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1804 BPF_REG_FP,
1805 -(stack_size - j * 8));
1806 nr_regs--;
1807 j++;
1808 }
1809 }
1810 }
1811
invoke_bpf_prog(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_link * l,int stack_size,int run_ctx_off,bool save_ret)1812 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1813 struct bpf_tramp_link *l, int stack_size,
1814 int run_ctx_off, bool save_ret)
1815 {
1816 void (*exit)(struct bpf_prog *prog, u64 start,
1817 struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_exit;
1818 u64 (*enter)(struct bpf_prog *prog,
1819 struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_enter;
1820 u8 *prog = *pprog;
1821 u8 *jmp_insn;
1822 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1823 struct bpf_prog *p = l->link.prog;
1824 u64 cookie = l->cookie;
1825
1826 /* mov rdi, cookie */
1827 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1828
1829 /* Prepare struct bpf_tramp_run_ctx.
1830 *
1831 * bpf_tramp_run_ctx is already preserved by
1832 * arch_prepare_bpf_trampoline().
1833 *
1834 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1835 */
1836 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1837
1838 if (p->aux->sleepable) {
1839 enter = __bpf_prog_enter_sleepable;
1840 exit = __bpf_prog_exit_sleepable;
1841 } else if (p->type == BPF_PROG_TYPE_STRUCT_OPS) {
1842 enter = __bpf_prog_enter_struct_ops;
1843 exit = __bpf_prog_exit_struct_ops;
1844 } else if (p->expected_attach_type == BPF_LSM_CGROUP) {
1845 enter = __bpf_prog_enter_lsm_cgroup;
1846 exit = __bpf_prog_exit_lsm_cgroup;
1847 }
1848
1849 /* arg1: mov rdi, progs[i] */
1850 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1851 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
1852 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
1853
1854 if (emit_call(&prog, enter, prog))
1855 return -EINVAL;
1856 /* remember prog start time returned by __bpf_prog_enter */
1857 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1858
1859 /* if (__bpf_prog_enter*(prog) == 0)
1860 * goto skip_exec_of_prog;
1861 */
1862 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
1863 /* emit 2 nops that will be replaced with JE insn */
1864 jmp_insn = prog;
1865 emit_nops(&prog, 2);
1866
1867 /* arg1: lea rdi, [rbp - stack_size] */
1868 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1869 /* arg2: progs[i]->insnsi for interpreter */
1870 if (!p->jited)
1871 emit_mov_imm64(&prog, BPF_REG_2,
1872 (long) p->insnsi >> 32,
1873 (u32) (long) p->insnsi);
1874 /* call JITed bpf program or interpreter */
1875 if (emit_call(&prog, p->bpf_func, prog))
1876 return -EINVAL;
1877
1878 /*
1879 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1880 * of the previous call which is then passed on the stack to
1881 * the next BPF program.
1882 *
1883 * BPF_TRAMP_FENTRY trampoline may need to return the return
1884 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1885 */
1886 if (save_ret)
1887 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1888
1889 /* replace 2 nops with JE insn, since jmp target is known */
1890 jmp_insn[0] = X86_JE;
1891 jmp_insn[1] = prog - jmp_insn - 2;
1892
1893 /* arg1: mov rdi, progs[i] */
1894 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1895 /* arg2: mov rsi, rbx <- start time in nsec */
1896 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1897 /* arg3: lea rdx, [rbp - run_ctx_off] */
1898 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1899 if (emit_call(&prog, exit, prog))
1900 return -EINVAL;
1901
1902 *pprog = prog;
1903 return 0;
1904 }
1905
emit_align(u8 ** pprog,u32 align)1906 static void emit_align(u8 **pprog, u32 align)
1907 {
1908 u8 *target, *prog = *pprog;
1909
1910 target = PTR_ALIGN(prog, align);
1911 if (target != prog)
1912 emit_nops(&prog, target - prog);
1913
1914 *pprog = prog;
1915 }
1916
emit_cond_near_jump(u8 ** pprog,void * func,void * ip,u8 jmp_cond)1917 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1918 {
1919 u8 *prog = *pprog;
1920 s64 offset;
1921
1922 offset = func - (ip + 2 + 4);
1923 if (!is_simm32(offset)) {
1924 pr_err("Target %p is out of range\n", func);
1925 return -EINVAL;
1926 }
1927 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1928 *pprog = prog;
1929 return 0;
1930 }
1931
invoke_bpf(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,bool save_ret)1932 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1933 struct bpf_tramp_links *tl, int stack_size,
1934 int run_ctx_off, bool save_ret)
1935 {
1936 int i;
1937 u8 *prog = *pprog;
1938
1939 for (i = 0; i < tl->nr_links; i++) {
1940 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
1941 run_ctx_off, save_ret))
1942 return -EINVAL;
1943 }
1944 *pprog = prog;
1945 return 0;
1946 }
1947
invoke_bpf_mod_ret(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,u8 ** branches)1948 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1949 struct bpf_tramp_links *tl, int stack_size,
1950 int run_ctx_off, u8 **branches)
1951 {
1952 u8 *prog = *pprog;
1953 int i;
1954
1955 /* The first fmod_ret program will receive a garbage return value.
1956 * Set this to 0 to avoid confusing the program.
1957 */
1958 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1959 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1960 for (i = 0; i < tl->nr_links; i++) {
1961 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
1962 return -EINVAL;
1963
1964 /* mod_ret prog stored return value into [rbp - 8]. Emit:
1965 * if (*(u64 *)(rbp - 8) != 0)
1966 * goto do_fexit;
1967 */
1968 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
1969 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1970
1971 /* Save the location of the branch and Generate 6 nops
1972 * (4 bytes for an offset and 2 bytes for the jump) These nops
1973 * are replaced with a conditional jump once do_fexit (i.e. the
1974 * start of the fexit invocation) is finalized.
1975 */
1976 branches[i] = prog;
1977 emit_nops(&prog, 4 + 2);
1978 }
1979
1980 *pprog = prog;
1981 return 0;
1982 }
1983
1984 /* Example:
1985 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1986 * its 'struct btf_func_model' will be nr_args=2
1987 * The assembly code when eth_type_trans is executing after trampoline:
1988 *
1989 * push rbp
1990 * mov rbp, rsp
1991 * sub rsp, 16 // space for skb and dev
1992 * push rbx // temp regs to pass start time
1993 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
1994 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
1995 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
1996 * mov rbx, rax // remember start time in bpf stats are enabled
1997 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
1998 * call addr_of_jited_FENTRY_prog
1999 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2000 * mov rsi, rbx // prog start time
2001 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2002 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2003 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2004 * pop rbx
2005 * leave
2006 * ret
2007 *
2008 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2009 * replaced with 'call generated_bpf_trampoline'. When it returns
2010 * eth_type_trans will continue executing with original skb and dev pointers.
2011 *
2012 * The assembly code when eth_type_trans is called from trampoline:
2013 *
2014 * push rbp
2015 * mov rbp, rsp
2016 * sub rsp, 24 // space for skb, dev, return value
2017 * push rbx // temp regs to pass start time
2018 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2019 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2020 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2021 * mov rbx, rax // remember start time if bpf stats are enabled
2022 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2023 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2024 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2025 * mov rsi, rbx // prog start time
2026 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2027 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2028 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2029 * call eth_type_trans+5 // execute body of eth_type_trans
2030 * mov qword ptr [rbp - 8], rax // save return value
2031 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2032 * mov rbx, rax // remember start time in bpf stats are enabled
2033 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2034 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2035 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2036 * mov rsi, rbx // prog start time
2037 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2038 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2039 * pop rbx
2040 * leave
2041 * add rsp, 8 // skip eth_type_trans's frame
2042 * ret // return to its caller
2043 */
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2044 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2045 const struct btf_func_model *m, u32 flags,
2046 struct bpf_tramp_links *tlinks,
2047 void *func_addr)
2048 {
2049 int ret, i, nr_args = m->nr_args, extra_nregs = 0;
2050 int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2051 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2052 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2053 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2054 void *orig_call = func_addr;
2055 u8 **branches = NULL;
2056 u8 *prog;
2057 bool save_ret;
2058
2059 /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2060 if (nr_args > 6)
2061 return -ENOTSUPP;
2062
2063 for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
2064 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2065 extra_nregs += (m->arg_size[i] + 7) / 8 - 1;
2066 }
2067 if (nr_args + extra_nregs > 6)
2068 return -ENOTSUPP;
2069 stack_size += extra_nregs * 8;
2070
2071 /* Generated trampoline stack layout:
2072 *
2073 * RBP + 8 [ return address ]
2074 * RBP + 0 [ RBP ]
2075 *
2076 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2077 * BPF_TRAMP_F_RET_FENTRY_RET flags
2078 *
2079 * [ reg_argN ] always
2080 * [ ... ]
2081 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2082 *
2083 * RBP - args_off [ arg regs count ] always
2084 *
2085 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2086 *
2087 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2088 */
2089
2090 /* room for return value of orig_call or fentry prog */
2091 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2092 if (save_ret)
2093 stack_size += 8;
2094
2095 regs_off = stack_size;
2096
2097 /* args count */
2098 stack_size += 8;
2099 args_off = stack_size;
2100
2101 if (flags & BPF_TRAMP_F_IP_ARG)
2102 stack_size += 8; /* room for IP address argument */
2103
2104 ip_off = stack_size;
2105
2106 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2107 run_ctx_off = stack_size;
2108
2109 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2110 /* skip patched call instruction and point orig_call to actual
2111 * body of the kernel function.
2112 */
2113 if (is_endbr(*(u32 *)orig_call))
2114 orig_call += ENDBR_INSN_SIZE;
2115 orig_call += X86_PATCH_SIZE;
2116 }
2117
2118 prog = image;
2119
2120 EMIT_ENDBR();
2121 EMIT1(0x55); /* push rbp */
2122 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2123 EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2124 EMIT1(0x53); /* push rbx */
2125
2126 /* Store number of argument registers of the traced function:
2127 * mov rax, nr_args + extra_nregs
2128 * mov QWORD PTR [rbp - args_off], rax
2129 */
2130 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args + extra_nregs);
2131 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2132
2133 if (flags & BPF_TRAMP_F_IP_ARG) {
2134 /* Store IP address of the traced function:
2135 * movabsq rax, func_addr
2136 * mov QWORD PTR [rbp - ip_off], rax
2137 */
2138 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2139 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2140 }
2141
2142 save_regs(m, &prog, nr_args, regs_off);
2143
2144 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2145 /* arg1: mov rdi, im */
2146 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2147 if (emit_call(&prog, __bpf_tramp_enter, prog)) {
2148 ret = -EINVAL;
2149 goto cleanup;
2150 }
2151 }
2152
2153 if (fentry->nr_links)
2154 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2155 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2156 return -EINVAL;
2157
2158 if (fmod_ret->nr_links) {
2159 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2160 GFP_KERNEL);
2161 if (!branches)
2162 return -ENOMEM;
2163
2164 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2165 run_ctx_off, branches)) {
2166 ret = -EINVAL;
2167 goto cleanup;
2168 }
2169 }
2170
2171 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2172 restore_regs(m, &prog, nr_args, regs_off);
2173
2174 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2175 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2176 EMIT2(0xff, 0xd0); /* call *rax */
2177 } else {
2178 /* call original function */
2179 if (emit_call(&prog, orig_call, prog)) {
2180 ret = -EINVAL;
2181 goto cleanup;
2182 }
2183 }
2184 /* remember return value in a stack for bpf prog to access */
2185 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2186 im->ip_after_call = prog;
2187 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2188 prog += X86_PATCH_SIZE;
2189 }
2190
2191 if (fmod_ret->nr_links) {
2192 /* From Intel 64 and IA-32 Architectures Optimization
2193 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2194 * Coding Rule 11: All branch targets should be 16-byte
2195 * aligned.
2196 */
2197 emit_align(&prog, 16);
2198 /* Update the branches saved in invoke_bpf_mod_ret with the
2199 * aligned address of do_fexit.
2200 */
2201 for (i = 0; i < fmod_ret->nr_links; i++)
2202 emit_cond_near_jump(&branches[i], prog, branches[i],
2203 X86_JNE);
2204 }
2205
2206 if (fexit->nr_links)
2207 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2208 ret = -EINVAL;
2209 goto cleanup;
2210 }
2211
2212 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2213 restore_regs(m, &prog, nr_args, regs_off);
2214
2215 /* This needs to be done regardless. If there were fmod_ret programs,
2216 * the return value is only updated on the stack and still needs to be
2217 * restored to R0.
2218 */
2219 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2220 im->ip_epilogue = prog;
2221 /* arg1: mov rdi, im */
2222 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2223 if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2224 ret = -EINVAL;
2225 goto cleanup;
2226 }
2227 }
2228 /* restore return value of orig_call or fentry prog back into RAX */
2229 if (save_ret)
2230 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2231
2232 EMIT1(0x5B); /* pop rbx */
2233 EMIT1(0xC9); /* leave */
2234 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2235 /* skip our return address and return to parent */
2236 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2237 emit_return(&prog, prog);
2238 /* Make sure the trampoline generation logic doesn't overflow */
2239 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2240 ret = -EFAULT;
2241 goto cleanup;
2242 }
2243 ret = prog - (u8 *)image;
2244
2245 cleanup:
2246 kfree(branches);
2247 return ret;
2248 }
2249
emit_bpf_dispatcher(u8 ** pprog,int a,int b,s64 * progs,u8 * image,u8 * buf)2250 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2251 {
2252 u8 *jg_reloc, *prog = *pprog;
2253 int pivot, err, jg_bytes = 1;
2254 s64 jg_offset;
2255
2256 if (a == b) {
2257 /* Leaf node of recursion, i.e. not a range of indices
2258 * anymore.
2259 */
2260 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2261 if (!is_simm32(progs[a]))
2262 return -1;
2263 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2264 progs[a]);
2265 err = emit_cond_near_jump(&prog, /* je func */
2266 (void *)progs[a], image + (prog - buf),
2267 X86_JE);
2268 if (err)
2269 return err;
2270
2271 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2272
2273 *pprog = prog;
2274 return 0;
2275 }
2276
2277 /* Not a leaf node, so we pivot, and recursively descend into
2278 * the lower and upper ranges.
2279 */
2280 pivot = (b - a) / 2;
2281 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2282 if (!is_simm32(progs[a + pivot]))
2283 return -1;
2284 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2285
2286 if (pivot > 2) { /* jg upper_part */
2287 /* Require near jump. */
2288 jg_bytes = 4;
2289 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2290 } else {
2291 EMIT2(X86_JG, 0);
2292 }
2293 jg_reloc = prog;
2294
2295 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
2296 progs, image, buf);
2297 if (err)
2298 return err;
2299
2300 /* From Intel 64 and IA-32 Architectures Optimization
2301 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2302 * Coding Rule 11: All branch targets should be 16-byte
2303 * aligned.
2304 */
2305 emit_align(&prog, 16);
2306 jg_offset = prog - jg_reloc;
2307 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2308
2309 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2310 b, progs, image, buf);
2311 if (err)
2312 return err;
2313
2314 *pprog = prog;
2315 return 0;
2316 }
2317
cmp_ips(const void * a,const void * b)2318 static int cmp_ips(const void *a, const void *b)
2319 {
2320 const s64 *ipa = a;
2321 const s64 *ipb = b;
2322
2323 if (*ipa > *ipb)
2324 return 1;
2325 if (*ipa < *ipb)
2326 return -1;
2327 return 0;
2328 }
2329
arch_prepare_bpf_dispatcher(void * image,void * buf,s64 * funcs,int num_funcs)2330 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2331 {
2332 u8 *prog = buf;
2333
2334 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2335 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2336 }
2337
2338 struct x64_jit_data {
2339 struct bpf_binary_header *rw_header;
2340 struct bpf_binary_header *header;
2341 int *addrs;
2342 u8 *image;
2343 int proglen;
2344 struct jit_context ctx;
2345 };
2346
2347 #define MAX_PASSES 20
2348 #define PADDING_PASSES (MAX_PASSES - 5)
2349
bpf_int_jit_compile(struct bpf_prog * prog)2350 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2351 {
2352 struct bpf_binary_header *rw_header = NULL;
2353 struct bpf_binary_header *header = NULL;
2354 struct bpf_prog *tmp, *orig_prog = prog;
2355 struct x64_jit_data *jit_data;
2356 int proglen, oldproglen = 0;
2357 struct jit_context ctx = {};
2358 bool tmp_blinded = false;
2359 bool extra_pass = false;
2360 bool padding = false;
2361 u8 *rw_image = NULL;
2362 u8 *image = NULL;
2363 int *addrs;
2364 int pass;
2365 int i;
2366
2367 if (!prog->jit_requested)
2368 return orig_prog;
2369
2370 tmp = bpf_jit_blind_constants(prog);
2371 /*
2372 * If blinding was requested and we failed during blinding,
2373 * we must fall back to the interpreter.
2374 */
2375 if (IS_ERR(tmp))
2376 return orig_prog;
2377 if (tmp != prog) {
2378 tmp_blinded = true;
2379 prog = tmp;
2380 }
2381
2382 jit_data = prog->aux->jit_data;
2383 if (!jit_data) {
2384 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2385 if (!jit_data) {
2386 prog = orig_prog;
2387 goto out;
2388 }
2389 prog->aux->jit_data = jit_data;
2390 }
2391 addrs = jit_data->addrs;
2392 if (addrs) {
2393 ctx = jit_data->ctx;
2394 oldproglen = jit_data->proglen;
2395 image = jit_data->image;
2396 header = jit_data->header;
2397 rw_header = jit_data->rw_header;
2398 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2399 extra_pass = true;
2400 padding = true;
2401 goto skip_init_addrs;
2402 }
2403 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2404 if (!addrs) {
2405 prog = orig_prog;
2406 goto out_addrs;
2407 }
2408
2409 /*
2410 * Before first pass, make a rough estimation of addrs[]
2411 * each BPF instruction is translated to less than 64 bytes
2412 */
2413 for (proglen = 0, i = 0; i <= prog->len; i++) {
2414 proglen += 64;
2415 addrs[i] = proglen;
2416 }
2417 ctx.cleanup_addr = proglen;
2418 skip_init_addrs:
2419
2420 /*
2421 * JITed image shrinks with every pass and the loop iterates
2422 * until the image stops shrinking. Very large BPF programs
2423 * may converge on the last pass. In such case do one more
2424 * pass to emit the final image.
2425 */
2426 for (pass = 0; pass < MAX_PASSES || image; pass++) {
2427 if (!padding && pass >= PADDING_PASSES)
2428 padding = true;
2429 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2430 if (proglen <= 0) {
2431 out_image:
2432 image = NULL;
2433 if (header) {
2434 bpf_arch_text_copy(&header->size, &rw_header->size,
2435 sizeof(rw_header->size));
2436 bpf_jit_binary_pack_free(header, rw_header);
2437 }
2438 /* Fall back to interpreter mode */
2439 prog = orig_prog;
2440 if (extra_pass) {
2441 prog->bpf_func = NULL;
2442 prog->jited = 0;
2443 prog->jited_len = 0;
2444 }
2445 goto out_addrs;
2446 }
2447 if (image) {
2448 if (proglen != oldproglen) {
2449 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2450 proglen, oldproglen);
2451 goto out_image;
2452 }
2453 break;
2454 }
2455 if (proglen == oldproglen) {
2456 /*
2457 * The number of entries in extable is the number of BPF_LDX
2458 * insns that access kernel memory via "pointer to BTF type".
2459 * The verifier changed their opcode from LDX|MEM|size
2460 * to LDX|PROBE_MEM|size to make JITing easier.
2461 */
2462 u32 align = __alignof__(struct exception_table_entry);
2463 u32 extable_size = prog->aux->num_exentries *
2464 sizeof(struct exception_table_entry);
2465
2466 /* allocate module memory for x86 insns and extable */
2467 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2468 &image, align, &rw_header, &rw_image,
2469 jit_fill_hole);
2470 if (!header) {
2471 prog = orig_prog;
2472 goto out_addrs;
2473 }
2474 prog->aux->extable = (void *) image + roundup(proglen, align);
2475 }
2476 oldproglen = proglen;
2477 cond_resched();
2478 }
2479
2480 if (bpf_jit_enable > 1)
2481 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2482
2483 if (image) {
2484 if (!prog->is_func || extra_pass) {
2485 /*
2486 * bpf_jit_binary_pack_finalize fails in two scenarios:
2487 * 1) header is not pointing to proper module memory;
2488 * 2) the arch doesn't support bpf_arch_text_copy().
2489 *
2490 * Both cases are serious bugs and justify WARN_ON.
2491 */
2492 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2493 /* header has been freed */
2494 header = NULL;
2495 goto out_image;
2496 }
2497
2498 bpf_tail_call_direct_fixup(prog);
2499 } else {
2500 jit_data->addrs = addrs;
2501 jit_data->ctx = ctx;
2502 jit_data->proglen = proglen;
2503 jit_data->image = image;
2504 jit_data->header = header;
2505 jit_data->rw_header = rw_header;
2506 }
2507 prog->bpf_func = (void *)image;
2508 prog->jited = 1;
2509 prog->jited_len = proglen;
2510 } else {
2511 prog = orig_prog;
2512 }
2513
2514 if (!image || !prog->is_func || extra_pass) {
2515 if (image)
2516 bpf_prog_fill_jited_linfo(prog, addrs + 1);
2517 out_addrs:
2518 kvfree(addrs);
2519 kfree(jit_data);
2520 prog->aux->jit_data = NULL;
2521 }
2522 out:
2523 if (tmp_blinded)
2524 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2525 tmp : orig_prog);
2526 return prog;
2527 }
2528
bpf_jit_supports_kfunc_call(void)2529 bool bpf_jit_supports_kfunc_call(void)
2530 {
2531 return true;
2532 }
2533
bpf_arch_text_copy(void * dst,void * src,size_t len)2534 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2535 {
2536 if (text_poke_copy(dst, src, len) == NULL)
2537 return ERR_PTR(-EINVAL);
2538 return dst;
2539 }
2540
2541 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2542 bool bpf_jit_supports_subprog_tailcalls(void)
2543 {
2544 return true;
2545 }
2546
bpf_jit_free(struct bpf_prog * prog)2547 void bpf_jit_free(struct bpf_prog *prog)
2548 {
2549 if (prog->jited) {
2550 struct x64_jit_data *jit_data = prog->aux->jit_data;
2551 struct bpf_binary_header *hdr;
2552
2553 /*
2554 * If we fail the final pass of JIT (from jit_subprogs),
2555 * the program may not be finalized yet. Call finalize here
2556 * before freeing it.
2557 */
2558 if (jit_data) {
2559 bpf_jit_binary_pack_finalize(prog, jit_data->header,
2560 jit_data->rw_header);
2561 kvfree(jit_data->addrs);
2562 kfree(jit_data);
2563 }
2564 hdr = bpf_jit_binary_pack_hdr(prog);
2565 bpf_jit_binary_pack_free(hdr, NULL);
2566 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2567 }
2568
2569 bpf_prog_unlock_free(prog);
2570 }
2571