1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale GPMI NAND Flash Driver
4 *
5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 */
8 #include <linux/clk.h>
9 #include <linux/slab.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include "gpmi-nand.h"
17 #include "bch-regs.h"
18
19 /* Resource names for the GPMI NAND driver. */
20 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
21 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
22 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
23
24 /* add our owner bbt descriptor */
25 static uint8_t scan_ff_pattern[] = { 0xff };
26 static struct nand_bbt_descr gpmi_bbt_descr = {
27 .options = 0,
28 .offs = 0,
29 .len = 1,
30 .pattern = scan_ff_pattern
31 };
32
33 /*
34 * We may change the layout if we can get the ECC info from the datasheet,
35 * else we will use all the (page + OOB).
36 */
gpmi_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)37 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
38 struct mtd_oob_region *oobregion)
39 {
40 struct nand_chip *chip = mtd_to_nand(mtd);
41 struct gpmi_nand_data *this = nand_get_controller_data(chip);
42 struct bch_geometry *geo = &this->bch_geometry;
43
44 if (section)
45 return -ERANGE;
46
47 oobregion->offset = 0;
48 oobregion->length = geo->page_size - mtd->writesize;
49
50 return 0;
51 }
52
gpmi_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)53 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
54 struct mtd_oob_region *oobregion)
55 {
56 struct nand_chip *chip = mtd_to_nand(mtd);
57 struct gpmi_nand_data *this = nand_get_controller_data(chip);
58 struct bch_geometry *geo = &this->bch_geometry;
59
60 if (section)
61 return -ERANGE;
62
63 /* The available oob size we have. */
64 if (geo->page_size < mtd->writesize + mtd->oobsize) {
65 oobregion->offset = geo->page_size - mtd->writesize;
66 oobregion->length = mtd->oobsize - oobregion->offset;
67 }
68
69 return 0;
70 }
71
72 static const char * const gpmi_clks_for_mx2x[] = {
73 "gpmi_io",
74 };
75
76 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
77 .ecc = gpmi_ooblayout_ecc,
78 .free = gpmi_ooblayout_free,
79 };
80
81 static const struct gpmi_devdata gpmi_devdata_imx23 = {
82 .type = IS_MX23,
83 .bch_max_ecc_strength = 20,
84 .max_chain_delay = 16000,
85 .clks = gpmi_clks_for_mx2x,
86 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
87 };
88
89 static const struct gpmi_devdata gpmi_devdata_imx28 = {
90 .type = IS_MX28,
91 .bch_max_ecc_strength = 20,
92 .max_chain_delay = 16000,
93 .clks = gpmi_clks_for_mx2x,
94 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
95 };
96
97 static const char * const gpmi_clks_for_mx6[] = {
98 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
99 };
100
101 static const struct gpmi_devdata gpmi_devdata_imx6q = {
102 .type = IS_MX6Q,
103 .bch_max_ecc_strength = 40,
104 .max_chain_delay = 12000,
105 .clks = gpmi_clks_for_mx6,
106 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
107 };
108
109 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
110 .type = IS_MX6SX,
111 .bch_max_ecc_strength = 62,
112 .max_chain_delay = 12000,
113 .clks = gpmi_clks_for_mx6,
114 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
115 };
116
117 static const char * const gpmi_clks_for_mx7d[] = {
118 "gpmi_io", "gpmi_bch_apb",
119 };
120
121 static const struct gpmi_devdata gpmi_devdata_imx7d = {
122 .type = IS_MX7D,
123 .bch_max_ecc_strength = 62,
124 .max_chain_delay = 12000,
125 .clks = gpmi_clks_for_mx7d,
126 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
127 };
128
bch_irq(int irq,void * cookie)129 static irqreturn_t bch_irq(int irq, void *cookie)
130 {
131 struct gpmi_nand_data *this = cookie;
132
133 gpmi_clear_bch(this);
134 complete(&this->bch_done);
135 return IRQ_HANDLED;
136 }
137
138 /*
139 * Calculate the ECC strength by hand:
140 * E : The ECC strength.
141 * G : the length of Galois Field.
142 * N : The chunk count of per page.
143 * O : the oobsize of the NAND chip.
144 * M : the metasize of per page.
145 *
146 * The formula is :
147 * E * G * N
148 * ------------ <= (O - M)
149 * 8
150 *
151 * So, we get E by:
152 * (O - M) * 8
153 * E <= -------------
154 * G * N
155 */
get_ecc_strength(struct gpmi_nand_data * this)156 static inline int get_ecc_strength(struct gpmi_nand_data *this)
157 {
158 struct bch_geometry *geo = &this->bch_geometry;
159 struct mtd_info *mtd = nand_to_mtd(&this->nand);
160 int ecc_strength;
161
162 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
163 / (geo->gf_len * geo->ecc_chunk_count);
164
165 /* We need the minor even number. */
166 return round_down(ecc_strength, 2);
167 }
168
gpmi_check_ecc(struct gpmi_nand_data * this)169 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
170 {
171 struct bch_geometry *geo = &this->bch_geometry;
172
173 /* Do the sanity check. */
174 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
175 /* The mx23/mx28 only support the GF13. */
176 if (geo->gf_len == 14)
177 return false;
178 }
179 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
180 }
181
182 /*
183 * If we can get the ECC information from the nand chip, we do not
184 * need to calculate them ourselves.
185 *
186 * We may have available oob space in this case.
187 */
set_geometry_by_ecc_info(struct gpmi_nand_data * this,unsigned int ecc_strength,unsigned int ecc_step)188 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
189 unsigned int ecc_strength,
190 unsigned int ecc_step)
191 {
192 struct bch_geometry *geo = &this->bch_geometry;
193 struct nand_chip *chip = &this->nand;
194 struct mtd_info *mtd = nand_to_mtd(chip);
195 unsigned int block_mark_bit_offset;
196
197 switch (ecc_step) {
198 case SZ_512:
199 geo->gf_len = 13;
200 break;
201 case SZ_1K:
202 geo->gf_len = 14;
203 break;
204 default:
205 dev_err(this->dev,
206 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
207 chip->ecc_strength_ds, chip->ecc_step_ds);
208 return -EINVAL;
209 }
210 geo->ecc_chunk_size = ecc_step;
211 geo->ecc_strength = round_up(ecc_strength, 2);
212 if (!gpmi_check_ecc(this))
213 return -EINVAL;
214
215 /* Keep the C >= O */
216 if (geo->ecc_chunk_size < mtd->oobsize) {
217 dev_err(this->dev,
218 "unsupported nand chip. ecc size: %d, oob size : %d\n",
219 ecc_step, mtd->oobsize);
220 return -EINVAL;
221 }
222
223 /* The default value, see comment in the legacy_set_geometry(). */
224 geo->metadata_size = 10;
225
226 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
227
228 /*
229 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
230 *
231 * | P |
232 * |<----------------------------------------------------->|
233 * | |
234 * | (Block Mark) |
235 * | P' | | | |
236 * |<-------------------------------------------->| D | | O' |
237 * | |<---->| |<--->|
238 * V V V V V
239 * +---+----------+-+----------+-+----------+-+----------+-+-----+
240 * | M | data |E| data |E| data |E| data |E| |
241 * +---+----------+-+----------+-+----------+-+----------+-+-----+
242 * ^ ^
243 * | O |
244 * |<------------>|
245 * | |
246 *
247 * P : the page size for BCH module.
248 * E : The ECC strength.
249 * G : the length of Galois Field.
250 * N : The chunk count of per page.
251 * M : the metasize of per page.
252 * C : the ecc chunk size, aka the "data" above.
253 * P': the nand chip's page size.
254 * O : the nand chip's oob size.
255 * O': the free oob.
256 *
257 * The formula for P is :
258 *
259 * E * G * N
260 * P = ------------ + P' + M
261 * 8
262 *
263 * The position of block mark moves forward in the ECC-based view
264 * of page, and the delta is:
265 *
266 * E * G * (N - 1)
267 * D = (---------------- + M)
268 * 8
269 *
270 * Please see the comment in legacy_set_geometry().
271 * With the condition C >= O , we still can get same result.
272 * So the bit position of the physical block mark within the ECC-based
273 * view of the page is :
274 * (P' - D) * 8
275 */
276 geo->page_size = mtd->writesize + geo->metadata_size +
277 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
278
279 geo->payload_size = mtd->writesize;
280
281 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
282 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
283 + ALIGN(geo->ecc_chunk_count, 4);
284
285 if (!this->swap_block_mark)
286 return 0;
287
288 /* For bit swap. */
289 block_mark_bit_offset = mtd->writesize * 8 -
290 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
291 + geo->metadata_size * 8);
292
293 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
294 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
295 return 0;
296 }
297
legacy_set_geometry(struct gpmi_nand_data * this)298 static int legacy_set_geometry(struct gpmi_nand_data *this)
299 {
300 struct bch_geometry *geo = &this->bch_geometry;
301 struct mtd_info *mtd = nand_to_mtd(&this->nand);
302 unsigned int metadata_size;
303 unsigned int status_size;
304 unsigned int block_mark_bit_offset;
305
306 /*
307 * The size of the metadata can be changed, though we set it to 10
308 * bytes now. But it can't be too large, because we have to save
309 * enough space for BCH.
310 */
311 geo->metadata_size = 10;
312
313 /* The default for the length of Galois Field. */
314 geo->gf_len = 13;
315
316 /* The default for chunk size. */
317 geo->ecc_chunk_size = 512;
318 while (geo->ecc_chunk_size < mtd->oobsize) {
319 geo->ecc_chunk_size *= 2; /* keep C >= O */
320 geo->gf_len = 14;
321 }
322
323 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
324
325 /* We use the same ECC strength for all chunks. */
326 geo->ecc_strength = get_ecc_strength(this);
327 if (!gpmi_check_ecc(this)) {
328 dev_err(this->dev,
329 "ecc strength: %d cannot be supported by the controller (%d)\n"
330 "try to use minimum ecc strength that NAND chip required\n",
331 geo->ecc_strength,
332 this->devdata->bch_max_ecc_strength);
333 return -EINVAL;
334 }
335
336 geo->page_size = mtd->writesize + geo->metadata_size +
337 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
338 geo->payload_size = mtd->writesize;
339
340 /*
341 * The auxiliary buffer contains the metadata and the ECC status. The
342 * metadata is padded to the nearest 32-bit boundary. The ECC status
343 * contains one byte for every ECC chunk, and is also padded to the
344 * nearest 32-bit boundary.
345 */
346 metadata_size = ALIGN(geo->metadata_size, 4);
347 status_size = ALIGN(geo->ecc_chunk_count, 4);
348
349 geo->auxiliary_size = metadata_size + status_size;
350 geo->auxiliary_status_offset = metadata_size;
351
352 if (!this->swap_block_mark)
353 return 0;
354
355 /*
356 * We need to compute the byte and bit offsets of
357 * the physical block mark within the ECC-based view of the page.
358 *
359 * NAND chip with 2K page shows below:
360 * (Block Mark)
361 * | |
362 * | D |
363 * |<---->|
364 * V V
365 * +---+----------+-+----------+-+----------+-+----------+-+
366 * | M | data |E| data |E| data |E| data |E|
367 * +---+----------+-+----------+-+----------+-+----------+-+
368 *
369 * The position of block mark moves forward in the ECC-based view
370 * of page, and the delta is:
371 *
372 * E * G * (N - 1)
373 * D = (---------------- + M)
374 * 8
375 *
376 * With the formula to compute the ECC strength, and the condition
377 * : C >= O (C is the ecc chunk size)
378 *
379 * It's easy to deduce to the following result:
380 *
381 * E * G (O - M) C - M C - M
382 * ----------- <= ------- <= -------- < ---------
383 * 8 N N (N - 1)
384 *
385 * So, we get:
386 *
387 * E * G * (N - 1)
388 * D = (---------------- + M) < C
389 * 8
390 *
391 * The above inequality means the position of block mark
392 * within the ECC-based view of the page is still in the data chunk,
393 * and it's NOT in the ECC bits of the chunk.
394 *
395 * Use the following to compute the bit position of the
396 * physical block mark within the ECC-based view of the page:
397 * (page_size - D) * 8
398 *
399 * --Huang Shijie
400 */
401 block_mark_bit_offset = mtd->writesize * 8 -
402 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
403 + geo->metadata_size * 8);
404
405 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
406 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
407 return 0;
408 }
409
common_nfc_set_geometry(struct gpmi_nand_data * this)410 int common_nfc_set_geometry(struct gpmi_nand_data *this)
411 {
412 struct nand_chip *chip = &this->nand;
413
414 if (chip->ecc.strength > 0 && chip->ecc.size > 0)
415 return set_geometry_by_ecc_info(this, chip->ecc.strength,
416 chip->ecc.size);
417
418 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
419 || legacy_set_geometry(this)) {
420 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
421 return -EINVAL;
422
423 return set_geometry_by_ecc_info(this, chip->ecc_strength_ds,
424 chip->ecc_step_ds);
425 }
426
427 return 0;
428 }
429
get_dma_chan(struct gpmi_nand_data * this)430 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
431 {
432 /* We use the DMA channel 0 to access all the nand chips. */
433 return this->dma_chans[0];
434 }
435
436 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,const void * buf,int len,enum dma_data_direction dr)437 bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
438 enum dma_data_direction dr)
439 {
440 struct scatterlist *sgl = &this->data_sgl;
441 int ret;
442
443 /* first try to map the upper buffer directly */
444 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
445 sg_init_one(sgl, buf, len);
446 ret = dma_map_sg(this->dev, sgl, 1, dr);
447 if (ret == 0)
448 goto map_fail;
449
450 return true;
451 }
452
453 map_fail:
454 /* We have to use our own DMA buffer. */
455 sg_init_one(sgl, this->data_buffer_dma, len);
456
457 if (dr == DMA_TO_DEVICE)
458 memcpy(this->data_buffer_dma, buf, len);
459
460 dma_map_sg(this->dev, sgl, 1, dr);
461
462 return false;
463 }
464
465 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)466 static void dma_irq_callback(void *param)
467 {
468 struct gpmi_nand_data *this = param;
469 struct completion *dma_c = &this->dma_done;
470
471 complete(dma_c);
472 }
473
start_dma_without_bch_irq(struct gpmi_nand_data * this,struct dma_async_tx_descriptor * desc)474 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
475 struct dma_async_tx_descriptor *desc)
476 {
477 struct completion *dma_c = &this->dma_done;
478 unsigned long timeout;
479
480 init_completion(dma_c);
481
482 desc->callback = dma_irq_callback;
483 desc->callback_param = this;
484 dmaengine_submit(desc);
485 dma_async_issue_pending(get_dma_chan(this));
486
487 /* Wait for the interrupt from the DMA block. */
488 timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
489 if (!timeout) {
490 dev_err(this->dev, "DMA timeout, last DMA\n");
491 gpmi_dump_info(this);
492 return -ETIMEDOUT;
493 }
494 return 0;
495 }
496
497 /*
498 * This function is used in BCH reading or BCH writing pages.
499 * It will wait for the BCH interrupt as long as ONE second.
500 * Actually, we must wait for two interrupts :
501 * [1] firstly the DMA interrupt and
502 * [2] secondly the BCH interrupt.
503 */
start_dma_with_bch_irq(struct gpmi_nand_data * this,struct dma_async_tx_descriptor * desc)504 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
505 struct dma_async_tx_descriptor *desc)
506 {
507 struct completion *bch_c = &this->bch_done;
508 unsigned long timeout;
509
510 /* Prepare to receive an interrupt from the BCH block. */
511 init_completion(bch_c);
512
513 /* start the DMA */
514 start_dma_without_bch_irq(this, desc);
515
516 /* Wait for the interrupt from the BCH block. */
517 timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
518 if (!timeout) {
519 dev_err(this->dev, "BCH timeout\n");
520 gpmi_dump_info(this);
521 return -ETIMEDOUT;
522 }
523 return 0;
524 }
525
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)526 static int acquire_register_block(struct gpmi_nand_data *this,
527 const char *res_name)
528 {
529 struct platform_device *pdev = this->pdev;
530 struct resources *res = &this->resources;
531 struct resource *r;
532 void __iomem *p;
533
534 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
535 p = devm_ioremap_resource(&pdev->dev, r);
536 if (IS_ERR(p))
537 return PTR_ERR(p);
538
539 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
540 res->gpmi_regs = p;
541 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
542 res->bch_regs = p;
543 else
544 dev_err(this->dev, "unknown resource name : %s\n", res_name);
545
546 return 0;
547 }
548
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)549 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
550 {
551 struct platform_device *pdev = this->pdev;
552 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
553 struct resource *r;
554 int err;
555
556 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
557 if (!r) {
558 dev_err(this->dev, "Can't get resource for %s\n", res_name);
559 return -ENODEV;
560 }
561
562 err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
563 if (err)
564 dev_err(this->dev, "error requesting BCH IRQ\n");
565
566 return err;
567 }
568
release_dma_channels(struct gpmi_nand_data * this)569 static void release_dma_channels(struct gpmi_nand_data *this)
570 {
571 unsigned int i;
572 for (i = 0; i < DMA_CHANS; i++)
573 if (this->dma_chans[i]) {
574 dma_release_channel(this->dma_chans[i]);
575 this->dma_chans[i] = NULL;
576 }
577 }
578
acquire_dma_channels(struct gpmi_nand_data * this)579 static int acquire_dma_channels(struct gpmi_nand_data *this)
580 {
581 struct platform_device *pdev = this->pdev;
582 struct dma_chan *dma_chan;
583
584 /* request dma channel */
585 dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
586 if (!dma_chan) {
587 dev_err(this->dev, "Failed to request DMA channel.\n");
588 goto acquire_err;
589 }
590
591 this->dma_chans[0] = dma_chan;
592 return 0;
593
594 acquire_err:
595 release_dma_channels(this);
596 return -EINVAL;
597 }
598
gpmi_get_clks(struct gpmi_nand_data * this)599 static int gpmi_get_clks(struct gpmi_nand_data *this)
600 {
601 struct resources *r = &this->resources;
602 struct clk *clk;
603 int err, i;
604
605 for (i = 0; i < this->devdata->clks_count; i++) {
606 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
607 if (IS_ERR(clk)) {
608 err = PTR_ERR(clk);
609 goto err_clock;
610 }
611
612 r->clock[i] = clk;
613 }
614
615 if (GPMI_IS_MX6(this))
616 /*
617 * Set the default value for the gpmi clock.
618 *
619 * If you want to use the ONFI nand which is in the
620 * Synchronous Mode, you should change the clock as you need.
621 */
622 clk_set_rate(r->clock[0], 22000000);
623
624 return 0;
625
626 err_clock:
627 dev_dbg(this->dev, "failed in finding the clocks.\n");
628 return err;
629 }
630
acquire_resources(struct gpmi_nand_data * this)631 static int acquire_resources(struct gpmi_nand_data *this)
632 {
633 int ret;
634
635 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
636 if (ret)
637 goto exit_regs;
638
639 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
640 if (ret)
641 goto exit_regs;
642
643 ret = acquire_bch_irq(this, bch_irq);
644 if (ret)
645 goto exit_regs;
646
647 ret = acquire_dma_channels(this);
648 if (ret)
649 goto exit_regs;
650
651 ret = gpmi_get_clks(this);
652 if (ret)
653 goto exit_clock;
654 return 0;
655
656 exit_clock:
657 release_dma_channels(this);
658 exit_regs:
659 return ret;
660 }
661
release_resources(struct gpmi_nand_data * this)662 static void release_resources(struct gpmi_nand_data *this)
663 {
664 release_dma_channels(this);
665 }
666
send_page_prepare(struct gpmi_nand_data * this,const void * source,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,const void ** use_virt,dma_addr_t * use_phys)667 static int send_page_prepare(struct gpmi_nand_data *this,
668 const void *source, unsigned length,
669 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
670 const void **use_virt, dma_addr_t *use_phys)
671 {
672 struct device *dev = this->dev;
673
674 if (virt_addr_valid(source)) {
675 dma_addr_t source_phys;
676
677 source_phys = dma_map_single(dev, (void *)source, length,
678 DMA_TO_DEVICE);
679 if (dma_mapping_error(dev, source_phys)) {
680 if (alt_size < length) {
681 dev_err(dev, "Alternate buffer is too small\n");
682 return -ENOMEM;
683 }
684 goto map_failed;
685 }
686 *use_virt = source;
687 *use_phys = source_phys;
688 return 0;
689 }
690 map_failed:
691 /*
692 * Copy the content of the source buffer into the alternate
693 * buffer and set up the return values accordingly.
694 */
695 memcpy(alt_virt, source, length);
696
697 *use_virt = alt_virt;
698 *use_phys = alt_phys;
699 return 0;
700 }
701
send_page_end(struct gpmi_nand_data * this,const void * source,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,const void * used_virt,dma_addr_t used_phys)702 static void send_page_end(struct gpmi_nand_data *this,
703 const void *source, unsigned length,
704 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
705 const void *used_virt, dma_addr_t used_phys)
706 {
707 struct device *dev = this->dev;
708 if (used_virt == source)
709 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
710 }
711
gpmi_free_dma_buffer(struct gpmi_nand_data * this)712 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
713 {
714 struct device *dev = this->dev;
715
716 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
717 dma_free_coherent(dev, this->page_buffer_size,
718 this->page_buffer_virt,
719 this->page_buffer_phys);
720 kfree(this->cmd_buffer);
721 kfree(this->data_buffer_dma);
722 kfree(this->raw_buffer);
723
724 this->cmd_buffer = NULL;
725 this->data_buffer_dma = NULL;
726 this->raw_buffer = NULL;
727 this->page_buffer_virt = NULL;
728 this->page_buffer_size = 0;
729 }
730
731 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)732 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
733 {
734 struct bch_geometry *geo = &this->bch_geometry;
735 struct device *dev = this->dev;
736 struct mtd_info *mtd = nand_to_mtd(&this->nand);
737
738 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
739 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
740 if (this->cmd_buffer == NULL)
741 goto error_alloc;
742
743 /*
744 * [2] Allocate a read/write data buffer.
745 * The gpmi_alloc_dma_buffer can be called twice.
746 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
747 * is called before the NAND identification; and we allocate a
748 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer
749 * is called after.
750 */
751 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
752 GFP_DMA | GFP_KERNEL);
753 if (this->data_buffer_dma == NULL)
754 goto error_alloc;
755
756 /*
757 * [3] Allocate the page buffer.
758 *
759 * Both the payload buffer and the auxiliary buffer must appear on
760 * 32-bit boundaries. We presume the size of the payload buffer is a
761 * power of two and is much larger than four, which guarantees the
762 * auxiliary buffer will appear on a 32-bit boundary.
763 */
764 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
765 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
766 &this->page_buffer_phys, GFP_DMA);
767 if (!this->page_buffer_virt)
768 goto error_alloc;
769
770 this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
771 if (!this->raw_buffer)
772 goto error_alloc;
773
774 /* Slice up the page buffer. */
775 this->payload_virt = this->page_buffer_virt;
776 this->payload_phys = this->page_buffer_phys;
777 this->auxiliary_virt = this->payload_virt + geo->payload_size;
778 this->auxiliary_phys = this->payload_phys + geo->payload_size;
779 return 0;
780
781 error_alloc:
782 gpmi_free_dma_buffer(this);
783 return -ENOMEM;
784 }
785
gpmi_cmd_ctrl(struct mtd_info * mtd,int data,unsigned int ctrl)786 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
787 {
788 struct nand_chip *chip = mtd_to_nand(mtd);
789 struct gpmi_nand_data *this = nand_get_controller_data(chip);
790 int ret;
791
792 /*
793 * Every operation begins with a command byte and a series of zero or
794 * more address bytes. These are distinguished by either the Address
795 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
796 * asserted. When MTD is ready to execute the command, it will deassert
797 * both latch enables.
798 *
799 * Rather than run a separate DMA operation for every single byte, we
800 * queue them up and run a single DMA operation for the entire series
801 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
802 */
803 if ((ctrl & (NAND_ALE | NAND_CLE))) {
804 if (data != NAND_CMD_NONE)
805 this->cmd_buffer[this->command_length++] = data;
806 return;
807 }
808
809 if (!this->command_length)
810 return;
811
812 ret = gpmi_send_command(this);
813 if (ret)
814 dev_err(this->dev, "Chip: %u, Error %d\n",
815 this->current_chip, ret);
816
817 this->command_length = 0;
818 }
819
gpmi_dev_ready(struct mtd_info * mtd)820 static int gpmi_dev_ready(struct mtd_info *mtd)
821 {
822 struct nand_chip *chip = mtd_to_nand(mtd);
823 struct gpmi_nand_data *this = nand_get_controller_data(chip);
824
825 return gpmi_is_ready(this, this->current_chip);
826 }
827
gpmi_select_chip(struct mtd_info * mtd,int chipnr)828 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
829 {
830 struct nand_chip *chip = mtd_to_nand(mtd);
831 struct gpmi_nand_data *this = nand_get_controller_data(chip);
832 int ret;
833
834 /*
835 * For power consumption matters, disable/enable the clock each time a
836 * die is selected/unselected.
837 */
838 if (this->current_chip < 0 && chipnr >= 0) {
839 ret = gpmi_enable_clk(this);
840 if (ret)
841 dev_err(this->dev, "Failed to enable the clock\n");
842 } else if (this->current_chip >= 0 && chipnr < 0) {
843 ret = gpmi_disable_clk(this);
844 if (ret)
845 dev_err(this->dev, "Failed to disable the clock\n");
846 }
847
848 /*
849 * This driver currently supports only one NAND chip. Plus, dies share
850 * the same configuration. So once timings have been applied on the
851 * controller side, they will not change anymore. When the time will
852 * come, the check on must_apply_timings will have to be dropped.
853 */
854 if (chipnr >= 0 && this->hw.must_apply_timings) {
855 this->hw.must_apply_timings = false;
856 gpmi_nfc_apply_timings(this);
857 }
858
859 this->current_chip = chipnr;
860 }
861
gpmi_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)862 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
863 {
864 struct nand_chip *chip = mtd_to_nand(mtd);
865 struct gpmi_nand_data *this = nand_get_controller_data(chip);
866
867 dev_dbg(this->dev, "len is %d\n", len);
868
869 gpmi_read_data(this, buf, len);
870 }
871
gpmi_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)872 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
873 {
874 struct nand_chip *chip = mtd_to_nand(mtd);
875 struct gpmi_nand_data *this = nand_get_controller_data(chip);
876
877 dev_dbg(this->dev, "len is %d\n", len);
878
879 gpmi_send_data(this, buf, len);
880 }
881
gpmi_read_byte(struct mtd_info * mtd)882 static uint8_t gpmi_read_byte(struct mtd_info *mtd)
883 {
884 struct nand_chip *chip = mtd_to_nand(mtd);
885 struct gpmi_nand_data *this = nand_get_controller_data(chip);
886 uint8_t *buf = this->data_buffer_dma;
887
888 gpmi_read_buf(mtd, buf, 1);
889 return buf[0];
890 }
891
892 /*
893 * Handles block mark swapping.
894 * It can be called in swapping the block mark, or swapping it back,
895 * because the the operations are the same.
896 */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)897 static void block_mark_swapping(struct gpmi_nand_data *this,
898 void *payload, void *auxiliary)
899 {
900 struct bch_geometry *nfc_geo = &this->bch_geometry;
901 unsigned char *p;
902 unsigned char *a;
903 unsigned int bit;
904 unsigned char mask;
905 unsigned char from_data;
906 unsigned char from_oob;
907
908 if (!this->swap_block_mark)
909 return;
910
911 /*
912 * If control arrives here, we're swapping. Make some convenience
913 * variables.
914 */
915 bit = nfc_geo->block_mark_bit_offset;
916 p = payload + nfc_geo->block_mark_byte_offset;
917 a = auxiliary;
918
919 /*
920 * Get the byte from the data area that overlays the block mark. Since
921 * the ECC engine applies its own view to the bits in the page, the
922 * physical block mark won't (in general) appear on a byte boundary in
923 * the data.
924 */
925 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
926
927 /* Get the byte from the OOB. */
928 from_oob = a[0];
929
930 /* Swap them. */
931 a[0] = from_data;
932
933 mask = (0x1 << bit) - 1;
934 p[0] = (p[0] & mask) | (from_oob << bit);
935
936 mask = ~0 << bit;
937 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
938 }
939
gpmi_ecc_read_page_data(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)940 static int gpmi_ecc_read_page_data(struct nand_chip *chip,
941 uint8_t *buf, int oob_required,
942 int page)
943 {
944 struct gpmi_nand_data *this = nand_get_controller_data(chip);
945 struct bch_geometry *nfc_geo = &this->bch_geometry;
946 struct mtd_info *mtd = nand_to_mtd(chip);
947 dma_addr_t payload_phys;
948 unsigned int i;
949 unsigned char *status;
950 unsigned int max_bitflips = 0;
951 int ret;
952 bool direct = false;
953
954 dev_dbg(this->dev, "page number is : %d\n", page);
955
956 payload_phys = this->payload_phys;
957
958 if (virt_addr_valid(buf)) {
959 dma_addr_t dest_phys;
960
961 dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
962 DMA_FROM_DEVICE);
963 if (!dma_mapping_error(this->dev, dest_phys)) {
964 payload_phys = dest_phys;
965 direct = true;
966 }
967 }
968
969 /* go! */
970 ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
971
972 if (direct)
973 dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
974 DMA_FROM_DEVICE);
975
976 if (ret) {
977 dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
978 return ret;
979 }
980
981 /* Loop over status bytes, accumulating ECC status. */
982 status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
983
984 if (!direct)
985 memcpy(buf, this->payload_virt, nfc_geo->payload_size);
986
987 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
988 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
989 continue;
990
991 if (*status == STATUS_UNCORRECTABLE) {
992 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
993 u8 *eccbuf = this->raw_buffer;
994 int offset, bitoffset;
995 int eccbytes;
996 int flips;
997
998 /* Read ECC bytes into our internal raw_buffer */
999 offset = nfc_geo->metadata_size * 8;
1000 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1001 offset -= eccbits;
1002 bitoffset = offset % 8;
1003 eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1004 offset /= 8;
1005 eccbytes -= offset;
1006 nand_change_read_column_op(chip, offset, eccbuf,
1007 eccbytes, false);
1008
1009 /*
1010 * ECC data are not byte aligned and we may have
1011 * in-band data in the first and last byte of
1012 * eccbuf. Set non-eccbits to one so that
1013 * nand_check_erased_ecc_chunk() does not count them
1014 * as bitflips.
1015 */
1016 if (bitoffset)
1017 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1018
1019 bitoffset = (bitoffset + eccbits) % 8;
1020 if (bitoffset)
1021 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1022
1023 /*
1024 * The ECC hardware has an uncorrectable ECC status
1025 * code in case we have bitflips in an erased page. As
1026 * nothing was written into this subpage the ECC is
1027 * obviously wrong and we can not trust it. We assume
1028 * at this point that we are reading an erased page and
1029 * try to correct the bitflips in buffer up to
1030 * ecc_strength bitflips. If this is a page with random
1031 * data, we exceed this number of bitflips and have a
1032 * ECC failure. Otherwise we use the corrected buffer.
1033 */
1034 if (i == 0) {
1035 /* The first block includes metadata */
1036 flips = nand_check_erased_ecc_chunk(
1037 buf + i * nfc_geo->ecc_chunk_size,
1038 nfc_geo->ecc_chunk_size,
1039 eccbuf, eccbytes,
1040 this->auxiliary_virt,
1041 nfc_geo->metadata_size,
1042 nfc_geo->ecc_strength);
1043 } else {
1044 flips = nand_check_erased_ecc_chunk(
1045 buf + i * nfc_geo->ecc_chunk_size,
1046 nfc_geo->ecc_chunk_size,
1047 eccbuf, eccbytes,
1048 NULL, 0,
1049 nfc_geo->ecc_strength);
1050 }
1051
1052 if (flips > 0) {
1053 max_bitflips = max_t(unsigned int, max_bitflips,
1054 flips);
1055 mtd->ecc_stats.corrected += flips;
1056 continue;
1057 }
1058
1059 mtd->ecc_stats.failed++;
1060 continue;
1061 }
1062
1063 mtd->ecc_stats.corrected += *status;
1064 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1065 }
1066
1067 /* handle the block mark swapping */
1068 block_mark_swapping(this, buf, this->auxiliary_virt);
1069
1070 if (oob_required) {
1071 /*
1072 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1073 * for details about our policy for delivering the OOB.
1074 *
1075 * We fill the caller's buffer with set bits, and then copy the
1076 * block mark to th caller's buffer. Note that, if block mark
1077 * swapping was necessary, it has already been done, so we can
1078 * rely on the first byte of the auxiliary buffer to contain
1079 * the block mark.
1080 */
1081 memset(chip->oob_poi, ~0, mtd->oobsize);
1082 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1083 }
1084
1085 return max_bitflips;
1086 }
1087
gpmi_ecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1088 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1089 uint8_t *buf, int oob_required, int page)
1090 {
1091 nand_read_page_op(chip, page, 0, NULL, 0);
1092
1093 return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
1094 }
1095
1096 /* Fake a virtual small page for the subpage read */
gpmi_ecc_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offs,uint32_t len,uint8_t * buf,int page)1097 static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1098 uint32_t offs, uint32_t len, uint8_t *buf, int page)
1099 {
1100 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1101 void __iomem *bch_regs = this->resources.bch_regs;
1102 struct bch_geometry old_geo = this->bch_geometry;
1103 struct bch_geometry *geo = &this->bch_geometry;
1104 int size = chip->ecc.size; /* ECC chunk size */
1105 int meta, n, page_size;
1106 u32 r1_old, r2_old, r1_new, r2_new;
1107 unsigned int max_bitflips;
1108 int first, last, marker_pos;
1109 int ecc_parity_size;
1110 int col = 0;
1111 int old_swap_block_mark = this->swap_block_mark;
1112
1113 /* The size of ECC parity */
1114 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1115
1116 /* Align it with the chunk size */
1117 first = offs / size;
1118 last = (offs + len - 1) / size;
1119
1120 if (this->swap_block_mark) {
1121 /*
1122 * Find the chunk which contains the Block Marker.
1123 * If this chunk is in the range of [first, last],
1124 * we have to read out the whole page.
1125 * Why? since we had swapped the data at the position of Block
1126 * Marker to the metadata which is bound with the chunk 0.
1127 */
1128 marker_pos = geo->block_mark_byte_offset / size;
1129 if (last >= marker_pos && first <= marker_pos) {
1130 dev_dbg(this->dev,
1131 "page:%d, first:%d, last:%d, marker at:%d\n",
1132 page, first, last, marker_pos);
1133 return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1134 }
1135 }
1136
1137 meta = geo->metadata_size;
1138 if (first) {
1139 col = meta + (size + ecc_parity_size) * first;
1140 meta = 0;
1141 buf = buf + first * size;
1142 }
1143
1144 nand_read_page_op(chip, page, col, NULL, 0);
1145
1146 /* Save the old environment */
1147 r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
1148 r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
1149
1150 /* change the BCH registers and bch_geometry{} */
1151 n = last - first + 1;
1152 page_size = meta + (size + ecc_parity_size) * n;
1153
1154 r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
1155 BM_BCH_FLASH0LAYOUT0_META_SIZE);
1156 r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
1157 | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
1158 writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
1159
1160 r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
1161 r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
1162 writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
1163
1164 geo->ecc_chunk_count = n;
1165 geo->payload_size = n * size;
1166 geo->page_size = page_size;
1167 geo->auxiliary_status_offset = ALIGN(meta, 4);
1168
1169 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1170 page, offs, len, col, first, n, page_size);
1171
1172 /* Read the subpage now */
1173 this->swap_block_mark = false;
1174 max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
1175
1176 /* Restore */
1177 writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
1178 writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
1179 this->bch_geometry = old_geo;
1180 this->swap_block_mark = old_swap_block_mark;
1181
1182 return max_bitflips;
1183 }
1184
gpmi_ecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1185 static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1186 const uint8_t *buf, int oob_required, int page)
1187 {
1188 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1189 struct bch_geometry *nfc_geo = &this->bch_geometry;
1190 const void *payload_virt;
1191 dma_addr_t payload_phys;
1192 const void *auxiliary_virt;
1193 dma_addr_t auxiliary_phys;
1194 int ret;
1195
1196 dev_dbg(this->dev, "ecc write page.\n");
1197
1198 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1199
1200 if (this->swap_block_mark) {
1201 /*
1202 * If control arrives here, we're doing block mark swapping.
1203 * Since we can't modify the caller's buffers, we must copy them
1204 * into our own.
1205 */
1206 memcpy(this->payload_virt, buf, mtd->writesize);
1207 payload_virt = this->payload_virt;
1208 payload_phys = this->payload_phys;
1209
1210 memcpy(this->auxiliary_virt, chip->oob_poi,
1211 nfc_geo->auxiliary_size);
1212 auxiliary_virt = this->auxiliary_virt;
1213 auxiliary_phys = this->auxiliary_phys;
1214
1215 /* Handle block mark swapping. */
1216 block_mark_swapping(this,
1217 (void *)payload_virt, (void *)auxiliary_virt);
1218 } else {
1219 /*
1220 * If control arrives here, we're not doing block mark swapping,
1221 * so we can to try and use the caller's buffers.
1222 */
1223 ret = send_page_prepare(this,
1224 buf, mtd->writesize,
1225 this->payload_virt, this->payload_phys,
1226 nfc_geo->payload_size,
1227 &payload_virt, &payload_phys);
1228 if (ret) {
1229 dev_err(this->dev, "Inadequate payload DMA buffer\n");
1230 return 0;
1231 }
1232
1233 ret = send_page_prepare(this,
1234 chip->oob_poi, mtd->oobsize,
1235 this->auxiliary_virt, this->auxiliary_phys,
1236 nfc_geo->auxiliary_size,
1237 &auxiliary_virt, &auxiliary_phys);
1238 if (ret) {
1239 dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1240 goto exit_auxiliary;
1241 }
1242 }
1243
1244 /* Ask the NFC. */
1245 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1246 if (ret)
1247 dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1248
1249 if (!this->swap_block_mark) {
1250 send_page_end(this, chip->oob_poi, mtd->oobsize,
1251 this->auxiliary_virt, this->auxiliary_phys,
1252 nfc_geo->auxiliary_size,
1253 auxiliary_virt, auxiliary_phys);
1254 exit_auxiliary:
1255 send_page_end(this, buf, mtd->writesize,
1256 this->payload_virt, this->payload_phys,
1257 nfc_geo->payload_size,
1258 payload_virt, payload_phys);
1259 }
1260
1261 if (ret)
1262 return ret;
1263
1264 return nand_prog_page_end_op(chip);
1265 }
1266
1267 /*
1268 * There are several places in this driver where we have to handle the OOB and
1269 * block marks. This is the function where things are the most complicated, so
1270 * this is where we try to explain it all. All the other places refer back to
1271 * here.
1272 *
1273 * These are the rules, in order of decreasing importance:
1274 *
1275 * 1) Nothing the caller does can be allowed to imperil the block mark.
1276 *
1277 * 2) In read operations, the first byte of the OOB we return must reflect the
1278 * true state of the block mark, no matter where that block mark appears in
1279 * the physical page.
1280 *
1281 * 3) ECC-based read operations return an OOB full of set bits (since we never
1282 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1283 * return).
1284 *
1285 * 4) "Raw" read operations return a direct view of the physical bytes in the
1286 * page, using the conventional definition of which bytes are data and which
1287 * are OOB. This gives the caller a way to see the actual, physical bytes
1288 * in the page, without the distortions applied by our ECC engine.
1289 *
1290 *
1291 * What we do for this specific read operation depends on two questions:
1292 *
1293 * 1) Are we doing a "raw" read, or an ECC-based read?
1294 *
1295 * 2) Are we using block mark swapping or transcription?
1296 *
1297 * There are four cases, illustrated by the following Karnaugh map:
1298 *
1299 * | Raw | ECC-based |
1300 * -------------+-------------------------+-------------------------+
1301 * | Read the conventional | |
1302 * | OOB at the end of the | |
1303 * Swapping | page and return it. It | |
1304 * | contains exactly what | |
1305 * | we want. | Read the block mark and |
1306 * -------------+-------------------------+ return it in a buffer |
1307 * | Read the conventional | full of set bits. |
1308 * | OOB at the end of the | |
1309 * | page and also the block | |
1310 * Transcribing | mark in the metadata. | |
1311 * | Copy the block mark | |
1312 * | into the first byte of | |
1313 * | the OOB. | |
1314 * -------------+-------------------------+-------------------------+
1315 *
1316 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1317 * giving an accurate view of the actual, physical bytes in the page (we're
1318 * overwriting the block mark). That's OK because it's more important to follow
1319 * rule #2.
1320 *
1321 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1322 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1323 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1324 * ECC-based or raw view of the page is implicit in which function it calls
1325 * (there is a similar pair of ECC-based/raw functions for writing).
1326 */
gpmi_ecc_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1327 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1328 int page)
1329 {
1330 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1331
1332 dev_dbg(this->dev, "page number is %d\n", page);
1333 /* clear the OOB buffer */
1334 memset(chip->oob_poi, ~0, mtd->oobsize);
1335
1336 /* Read out the conventional OOB. */
1337 nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1338 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1339
1340 /*
1341 * Now, we want to make sure the block mark is correct. In the
1342 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1343 * Otherwise, we need to explicitly read it.
1344 */
1345 if (GPMI_IS_MX23(this)) {
1346 /* Read the block mark into the first byte of the OOB buffer. */
1347 nand_read_page_op(chip, page, 0, NULL, 0);
1348 chip->oob_poi[0] = chip->read_byte(mtd);
1349 }
1350
1351 return 0;
1352 }
1353
1354 static int
gpmi_ecc_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1355 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1356 {
1357 struct mtd_oob_region of = { };
1358
1359 /* Do we have available oob area? */
1360 mtd_ooblayout_free(mtd, 0, &of);
1361 if (!of.length)
1362 return -EPERM;
1363
1364 if (!nand_is_slc(chip))
1365 return -EPERM;
1366
1367 return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1368 chip->oob_poi + of.offset, of.length);
1369 }
1370
1371 /*
1372 * This function reads a NAND page without involving the ECC engine (no HW
1373 * ECC correction).
1374 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1375 * inline (interleaved with payload DATA), and do not align data chunk on
1376 * byte boundaries.
1377 * We thus need to take care moving the payload data and ECC bits stored in the
1378 * page into the provided buffers, which is why we're using gpmi_copy_bits.
1379 *
1380 * See set_geometry_by_ecc_info inline comments to have a full description
1381 * of the layout used by the GPMI controller.
1382 */
gpmi_ecc_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1383 static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
1384 struct nand_chip *chip, uint8_t *buf,
1385 int oob_required, int page)
1386 {
1387 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1388 struct bch_geometry *nfc_geo = &this->bch_geometry;
1389 int eccsize = nfc_geo->ecc_chunk_size;
1390 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1391 u8 *tmp_buf = this->raw_buffer;
1392 size_t src_bit_off;
1393 size_t oob_bit_off;
1394 size_t oob_byte_off;
1395 uint8_t *oob = chip->oob_poi;
1396 int step;
1397
1398 nand_read_page_op(chip, page, 0, tmp_buf,
1399 mtd->writesize + mtd->oobsize);
1400
1401 /*
1402 * If required, swap the bad block marker and the data stored in the
1403 * metadata section, so that we don't wrongly consider a block as bad.
1404 *
1405 * See the layout description for a detailed explanation on why this
1406 * is needed.
1407 */
1408 if (this->swap_block_mark)
1409 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1410
1411 /*
1412 * Copy the metadata section into the oob buffer (this section is
1413 * guaranteed to be aligned on a byte boundary).
1414 */
1415 if (oob_required)
1416 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1417
1418 oob_bit_off = nfc_geo->metadata_size * 8;
1419 src_bit_off = oob_bit_off;
1420
1421 /* Extract interleaved payload data and ECC bits */
1422 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1423 if (buf)
1424 gpmi_copy_bits(buf, step * eccsize * 8,
1425 tmp_buf, src_bit_off,
1426 eccsize * 8);
1427 src_bit_off += eccsize * 8;
1428
1429 /* Align last ECC block to align a byte boundary */
1430 if (step == nfc_geo->ecc_chunk_count - 1 &&
1431 (oob_bit_off + eccbits) % 8)
1432 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1433
1434 if (oob_required)
1435 gpmi_copy_bits(oob, oob_bit_off,
1436 tmp_buf, src_bit_off,
1437 eccbits);
1438
1439 src_bit_off += eccbits;
1440 oob_bit_off += eccbits;
1441 }
1442
1443 if (oob_required) {
1444 oob_byte_off = oob_bit_off / 8;
1445
1446 if (oob_byte_off < mtd->oobsize)
1447 memcpy(oob + oob_byte_off,
1448 tmp_buf + mtd->writesize + oob_byte_off,
1449 mtd->oobsize - oob_byte_off);
1450 }
1451
1452 return 0;
1453 }
1454
1455 /*
1456 * This function writes a NAND page without involving the ECC engine (no HW
1457 * ECC generation).
1458 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1459 * inline (interleaved with payload DATA), and do not align data chunk on
1460 * byte boundaries.
1461 * We thus need to take care moving the OOB area at the right place in the
1462 * final page, which is why we're using gpmi_copy_bits.
1463 *
1464 * See set_geometry_by_ecc_info inline comments to have a full description
1465 * of the layout used by the GPMI controller.
1466 */
gpmi_ecc_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1467 static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
1468 struct nand_chip *chip,
1469 const uint8_t *buf,
1470 int oob_required, int page)
1471 {
1472 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1473 struct bch_geometry *nfc_geo = &this->bch_geometry;
1474 int eccsize = nfc_geo->ecc_chunk_size;
1475 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1476 u8 *tmp_buf = this->raw_buffer;
1477 uint8_t *oob = chip->oob_poi;
1478 size_t dst_bit_off;
1479 size_t oob_bit_off;
1480 size_t oob_byte_off;
1481 int step;
1482
1483 /*
1484 * Initialize all bits to 1 in case we don't have a buffer for the
1485 * payload or oob data in order to leave unspecified bits of data
1486 * to their initial state.
1487 */
1488 if (!buf || !oob_required)
1489 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1490
1491 /*
1492 * First copy the metadata section (stored in oob buffer) at the
1493 * beginning of the page, as imposed by the GPMI layout.
1494 */
1495 memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1496 oob_bit_off = nfc_geo->metadata_size * 8;
1497 dst_bit_off = oob_bit_off;
1498
1499 /* Interleave payload data and ECC bits */
1500 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1501 if (buf)
1502 gpmi_copy_bits(tmp_buf, dst_bit_off,
1503 buf, step * eccsize * 8, eccsize * 8);
1504 dst_bit_off += eccsize * 8;
1505
1506 /* Align last ECC block to align a byte boundary */
1507 if (step == nfc_geo->ecc_chunk_count - 1 &&
1508 (oob_bit_off + eccbits) % 8)
1509 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1510
1511 if (oob_required)
1512 gpmi_copy_bits(tmp_buf, dst_bit_off,
1513 oob, oob_bit_off, eccbits);
1514
1515 dst_bit_off += eccbits;
1516 oob_bit_off += eccbits;
1517 }
1518
1519 oob_byte_off = oob_bit_off / 8;
1520
1521 if (oob_required && oob_byte_off < mtd->oobsize)
1522 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1523 oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1524
1525 /*
1526 * If required, swap the bad block marker and the first byte of the
1527 * metadata section, so that we don't modify the bad block marker.
1528 *
1529 * See the layout description for a detailed explanation on why this
1530 * is needed.
1531 */
1532 if (this->swap_block_mark)
1533 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1534
1535 return nand_prog_page_op(chip, page, 0, tmp_buf,
1536 mtd->writesize + mtd->oobsize);
1537 }
1538
gpmi_ecc_read_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1539 static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1540 int page)
1541 {
1542 return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
1543 }
1544
gpmi_ecc_write_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1545 static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1546 int page)
1547 {
1548 return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
1549 }
1550
gpmi_block_markbad(struct mtd_info * mtd,loff_t ofs)1551 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1552 {
1553 struct nand_chip *chip = mtd_to_nand(mtd);
1554 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1555 int ret = 0;
1556 uint8_t *block_mark;
1557 int column, page, chipnr;
1558
1559 chipnr = (int)(ofs >> chip->chip_shift);
1560 chip->select_chip(mtd, chipnr);
1561
1562 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1563
1564 /* Write the block mark. */
1565 block_mark = this->data_buffer_dma;
1566 block_mark[0] = 0; /* bad block marker */
1567
1568 /* Shift to get page */
1569 page = (int)(ofs >> chip->page_shift);
1570
1571 ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1572
1573 chip->select_chip(mtd, -1);
1574
1575 return ret;
1576 }
1577
nand_boot_set_geometry(struct gpmi_nand_data * this)1578 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1579 {
1580 struct boot_rom_geometry *geometry = &this->rom_geometry;
1581
1582 /*
1583 * Set the boot block stride size.
1584 *
1585 * In principle, we should be reading this from the OTP bits, since
1586 * that's where the ROM is going to get it. In fact, we don't have any
1587 * way to read the OTP bits, so we go with the default and hope for the
1588 * best.
1589 */
1590 geometry->stride_size_in_pages = 64;
1591
1592 /*
1593 * Set the search area stride exponent.
1594 *
1595 * In principle, we should be reading this from the OTP bits, since
1596 * that's where the ROM is going to get it. In fact, we don't have any
1597 * way to read the OTP bits, so we go with the default and hope for the
1598 * best.
1599 */
1600 geometry->search_area_stride_exponent = 2;
1601 return 0;
1602 }
1603
1604 static const char *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)1605 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1606 {
1607 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1608 struct device *dev = this->dev;
1609 struct nand_chip *chip = &this->nand;
1610 struct mtd_info *mtd = nand_to_mtd(chip);
1611 unsigned int search_area_size_in_strides;
1612 unsigned int stride;
1613 unsigned int page;
1614 uint8_t *buffer = chip->data_buf;
1615 int saved_chip_number;
1616 int found_an_ncb_fingerprint = false;
1617
1618 /* Compute the number of strides in a search area. */
1619 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1620
1621 saved_chip_number = this->current_chip;
1622 chip->select_chip(mtd, 0);
1623
1624 /*
1625 * Loop through the first search area, looking for the NCB fingerprint.
1626 */
1627 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1628
1629 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1630 /* Compute the page addresses. */
1631 page = stride * rom_geo->stride_size_in_pages;
1632
1633 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1634
1635 /*
1636 * Read the NCB fingerprint. The fingerprint is four bytes long
1637 * and starts in the 12th byte of the page.
1638 */
1639 nand_read_page_op(chip, page, 12, NULL, 0);
1640 chip->read_buf(mtd, buffer, strlen(fingerprint));
1641
1642 /* Look for the fingerprint. */
1643 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1644 found_an_ncb_fingerprint = true;
1645 break;
1646 }
1647
1648 }
1649
1650 chip->select_chip(mtd, saved_chip_number);
1651
1652 if (found_an_ncb_fingerprint)
1653 dev_dbg(dev, "\tFound a fingerprint\n");
1654 else
1655 dev_dbg(dev, "\tNo fingerprint found\n");
1656 return found_an_ncb_fingerprint;
1657 }
1658
1659 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)1660 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1661 {
1662 struct device *dev = this->dev;
1663 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1664 struct nand_chip *chip = &this->nand;
1665 struct mtd_info *mtd = nand_to_mtd(chip);
1666 unsigned int block_size_in_pages;
1667 unsigned int search_area_size_in_strides;
1668 unsigned int search_area_size_in_pages;
1669 unsigned int search_area_size_in_blocks;
1670 unsigned int block;
1671 unsigned int stride;
1672 unsigned int page;
1673 uint8_t *buffer = chip->data_buf;
1674 int saved_chip_number;
1675 int status;
1676
1677 /* Compute the search area geometry. */
1678 block_size_in_pages = mtd->erasesize / mtd->writesize;
1679 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1680 search_area_size_in_pages = search_area_size_in_strides *
1681 rom_geo->stride_size_in_pages;
1682 search_area_size_in_blocks =
1683 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1684 block_size_in_pages;
1685
1686 dev_dbg(dev, "Search Area Geometry :\n");
1687 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1688 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1689 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1690
1691 /* Select chip 0. */
1692 saved_chip_number = this->current_chip;
1693 chip->select_chip(mtd, 0);
1694
1695 /* Loop over blocks in the first search area, erasing them. */
1696 dev_dbg(dev, "Erasing the search area...\n");
1697
1698 for (block = 0; block < search_area_size_in_blocks; block++) {
1699 /* Erase this block. */
1700 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1701 status = nand_erase_op(chip, block);
1702 if (status)
1703 dev_err(dev, "[%s] Erase failed.\n", __func__);
1704 }
1705
1706 /* Write the NCB fingerprint into the page buffer. */
1707 memset(buffer, ~0, mtd->writesize);
1708 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1709
1710 /* Loop through the first search area, writing NCB fingerprints. */
1711 dev_dbg(dev, "Writing NCB fingerprints...\n");
1712 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1713 /* Compute the page addresses. */
1714 page = stride * rom_geo->stride_size_in_pages;
1715
1716 /* Write the first page of the current stride. */
1717 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1718
1719 status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
1720 if (status)
1721 dev_err(dev, "[%s] Write failed.\n", __func__);
1722 }
1723
1724 /* Deselect chip 0. */
1725 chip->select_chip(mtd, saved_chip_number);
1726 return 0;
1727 }
1728
mx23_boot_init(struct gpmi_nand_data * this)1729 static int mx23_boot_init(struct gpmi_nand_data *this)
1730 {
1731 struct device *dev = this->dev;
1732 struct nand_chip *chip = &this->nand;
1733 struct mtd_info *mtd = nand_to_mtd(chip);
1734 unsigned int block_count;
1735 unsigned int block;
1736 int chipnr;
1737 int page;
1738 loff_t byte;
1739 uint8_t block_mark;
1740 int ret = 0;
1741
1742 /*
1743 * If control arrives here, we can't use block mark swapping, which
1744 * means we're forced to use transcription. First, scan for the
1745 * transcription stamp. If we find it, then we don't have to do
1746 * anything -- the block marks are already transcribed.
1747 */
1748 if (mx23_check_transcription_stamp(this))
1749 return 0;
1750
1751 /*
1752 * If control arrives here, we couldn't find a transcription stamp, so
1753 * so we presume the block marks are in the conventional location.
1754 */
1755 dev_dbg(dev, "Transcribing bad block marks...\n");
1756
1757 /* Compute the number of blocks in the entire medium. */
1758 block_count = chip->chipsize >> chip->phys_erase_shift;
1759
1760 /*
1761 * Loop over all the blocks in the medium, transcribing block marks as
1762 * we go.
1763 */
1764 for (block = 0; block < block_count; block++) {
1765 /*
1766 * Compute the chip, page and byte addresses for this block's
1767 * conventional mark.
1768 */
1769 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1770 page = block << (chip->phys_erase_shift - chip->page_shift);
1771 byte = block << chip->phys_erase_shift;
1772
1773 /* Send the command to read the conventional block mark. */
1774 chip->select_chip(mtd, chipnr);
1775 nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1776 block_mark = chip->read_byte(mtd);
1777 chip->select_chip(mtd, -1);
1778
1779 /*
1780 * Check if the block is marked bad. If so, we need to mark it
1781 * again, but this time the result will be a mark in the
1782 * location where we transcribe block marks.
1783 */
1784 if (block_mark != 0xff) {
1785 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1786 ret = chip->block_markbad(mtd, byte);
1787 if (ret)
1788 dev_err(dev,
1789 "Failed to mark block bad with ret %d\n",
1790 ret);
1791 }
1792 }
1793
1794 /* Write the stamp that indicates we've transcribed the block marks. */
1795 mx23_write_transcription_stamp(this);
1796 return 0;
1797 }
1798
nand_boot_init(struct gpmi_nand_data * this)1799 static int nand_boot_init(struct gpmi_nand_data *this)
1800 {
1801 nand_boot_set_geometry(this);
1802
1803 /* This is ROM arch-specific initilization before the BBT scanning. */
1804 if (GPMI_IS_MX23(this))
1805 return mx23_boot_init(this);
1806 return 0;
1807 }
1808
gpmi_set_geometry(struct gpmi_nand_data * this)1809 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1810 {
1811 int ret;
1812
1813 /* Free the temporary DMA memory for reading ID. */
1814 gpmi_free_dma_buffer(this);
1815
1816 /* Set up the NFC geometry which is used by BCH. */
1817 ret = bch_set_geometry(this);
1818 if (ret) {
1819 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1820 return ret;
1821 }
1822
1823 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1824 return gpmi_alloc_dma_buffer(this);
1825 }
1826
gpmi_init_last(struct gpmi_nand_data * this)1827 static int gpmi_init_last(struct gpmi_nand_data *this)
1828 {
1829 struct nand_chip *chip = &this->nand;
1830 struct mtd_info *mtd = nand_to_mtd(chip);
1831 struct nand_ecc_ctrl *ecc = &chip->ecc;
1832 struct bch_geometry *bch_geo = &this->bch_geometry;
1833 int ret;
1834
1835 /* Set up the medium geometry */
1836 ret = gpmi_set_geometry(this);
1837 if (ret)
1838 return ret;
1839
1840 /* Init the nand_ecc_ctrl{} */
1841 ecc->read_page = gpmi_ecc_read_page;
1842 ecc->write_page = gpmi_ecc_write_page;
1843 ecc->read_oob = gpmi_ecc_read_oob;
1844 ecc->write_oob = gpmi_ecc_write_oob;
1845 ecc->read_page_raw = gpmi_ecc_read_page_raw;
1846 ecc->write_page_raw = gpmi_ecc_write_page_raw;
1847 ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
1848 ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
1849 ecc->mode = NAND_ECC_HW;
1850 ecc->size = bch_geo->ecc_chunk_size;
1851 ecc->strength = bch_geo->ecc_strength;
1852 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
1853
1854 /*
1855 * We only enable the subpage read when:
1856 * (1) the chip is imx6, and
1857 * (2) the size of the ECC parity is byte aligned.
1858 */
1859 if (GPMI_IS_MX6(this) &&
1860 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
1861 ecc->read_subpage = gpmi_ecc_read_subpage;
1862 chip->options |= NAND_SUBPAGE_READ;
1863 }
1864
1865 return 0;
1866 }
1867
gpmi_nand_attach_chip(struct nand_chip * chip)1868 static int gpmi_nand_attach_chip(struct nand_chip *chip)
1869 {
1870 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1871 int ret;
1872
1873 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1874 chip->bbt_options |= NAND_BBT_NO_OOB;
1875
1876 if (of_property_read_bool(this->dev->of_node,
1877 "fsl,no-blockmark-swap"))
1878 this->swap_block_mark = false;
1879 }
1880 dev_dbg(this->dev, "Blockmark swapping %sabled\n",
1881 this->swap_block_mark ? "en" : "dis");
1882
1883 ret = gpmi_init_last(this);
1884 if (ret)
1885 return ret;
1886
1887 chip->options |= NAND_SKIP_BBTSCAN;
1888
1889 return 0;
1890 }
1891
1892 static const struct nand_controller_ops gpmi_nand_controller_ops = {
1893 .attach_chip = gpmi_nand_attach_chip,
1894 };
1895
gpmi_nand_init(struct gpmi_nand_data * this)1896 static int gpmi_nand_init(struct gpmi_nand_data *this)
1897 {
1898 struct nand_chip *chip = &this->nand;
1899 struct mtd_info *mtd = nand_to_mtd(chip);
1900 int ret;
1901
1902 /* init current chip */
1903 this->current_chip = -1;
1904
1905 /* init the MTD data structures */
1906 mtd->name = "gpmi-nand";
1907 mtd->dev.parent = this->dev;
1908
1909 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1910 nand_set_controller_data(chip, this);
1911 nand_set_flash_node(chip, this->pdev->dev.of_node);
1912 chip->select_chip = gpmi_select_chip;
1913 chip->setup_data_interface = gpmi_setup_data_interface;
1914 chip->cmd_ctrl = gpmi_cmd_ctrl;
1915 chip->dev_ready = gpmi_dev_ready;
1916 chip->read_byte = gpmi_read_byte;
1917 chip->read_buf = gpmi_read_buf;
1918 chip->write_buf = gpmi_write_buf;
1919 chip->badblock_pattern = &gpmi_bbt_descr;
1920 chip->block_markbad = gpmi_block_markbad;
1921 chip->options |= NAND_NO_SUBPAGE_WRITE;
1922
1923 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1924 this->swap_block_mark = !GPMI_IS_MX23(this);
1925
1926 /*
1927 * Allocate a temporary DMA buffer for reading ID in the
1928 * nand_scan_ident().
1929 */
1930 this->bch_geometry.payload_size = 1024;
1931 this->bch_geometry.auxiliary_size = 128;
1932 ret = gpmi_alloc_dma_buffer(this);
1933 if (ret)
1934 goto err_out;
1935
1936 chip->dummy_controller.ops = &gpmi_nand_controller_ops;
1937 ret = nand_scan(mtd, GPMI_IS_MX6(this) ? 2 : 1);
1938 if (ret)
1939 goto err_out;
1940
1941 ret = nand_boot_init(this);
1942 if (ret)
1943 goto err_nand_cleanup;
1944 ret = nand_create_bbt(chip);
1945 if (ret)
1946 goto err_nand_cleanup;
1947
1948 ret = mtd_device_register(mtd, NULL, 0);
1949 if (ret)
1950 goto err_nand_cleanup;
1951 return 0;
1952
1953 err_nand_cleanup:
1954 nand_cleanup(chip);
1955 err_out:
1956 gpmi_free_dma_buffer(this);
1957 return ret;
1958 }
1959
1960 static const struct of_device_id gpmi_nand_id_table[] = {
1961 {
1962 .compatible = "fsl,imx23-gpmi-nand",
1963 .data = &gpmi_devdata_imx23,
1964 }, {
1965 .compatible = "fsl,imx28-gpmi-nand",
1966 .data = &gpmi_devdata_imx28,
1967 }, {
1968 .compatible = "fsl,imx6q-gpmi-nand",
1969 .data = &gpmi_devdata_imx6q,
1970 }, {
1971 .compatible = "fsl,imx6sx-gpmi-nand",
1972 .data = &gpmi_devdata_imx6sx,
1973 }, {
1974 .compatible = "fsl,imx7d-gpmi-nand",
1975 .data = &gpmi_devdata_imx7d,
1976 }, {}
1977 };
1978 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1979
gpmi_nand_probe(struct platform_device * pdev)1980 static int gpmi_nand_probe(struct platform_device *pdev)
1981 {
1982 struct gpmi_nand_data *this;
1983 const struct of_device_id *of_id;
1984 int ret;
1985
1986 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
1987 if (!this)
1988 return -ENOMEM;
1989
1990 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1991 if (of_id) {
1992 this->devdata = of_id->data;
1993 } else {
1994 dev_err(&pdev->dev, "Failed to find the right device id.\n");
1995 return -ENODEV;
1996 }
1997
1998 platform_set_drvdata(pdev, this);
1999 this->pdev = pdev;
2000 this->dev = &pdev->dev;
2001
2002 ret = acquire_resources(this);
2003 if (ret)
2004 goto exit_acquire_resources;
2005
2006 ret = gpmi_init(this);
2007 if (ret)
2008 goto exit_nfc_init;
2009
2010 ret = gpmi_nand_init(this);
2011 if (ret)
2012 goto exit_nfc_init;
2013
2014 dev_info(this->dev, "driver registered.\n");
2015
2016 return 0;
2017
2018 exit_nfc_init:
2019 release_resources(this);
2020 exit_acquire_resources:
2021
2022 return ret;
2023 }
2024
gpmi_nand_remove(struct platform_device * pdev)2025 static int gpmi_nand_remove(struct platform_device *pdev)
2026 {
2027 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2028
2029 nand_release(nand_to_mtd(&this->nand));
2030 gpmi_free_dma_buffer(this);
2031 release_resources(this);
2032 return 0;
2033 }
2034
2035 #ifdef CONFIG_PM_SLEEP
gpmi_pm_suspend(struct device * dev)2036 static int gpmi_pm_suspend(struct device *dev)
2037 {
2038 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2039
2040 release_dma_channels(this);
2041 return 0;
2042 }
2043
gpmi_pm_resume(struct device * dev)2044 static int gpmi_pm_resume(struct device *dev)
2045 {
2046 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2047 int ret;
2048
2049 ret = acquire_dma_channels(this);
2050 if (ret < 0)
2051 return ret;
2052
2053 /* re-init the GPMI registers */
2054 ret = gpmi_init(this);
2055 if (ret) {
2056 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2057 return ret;
2058 }
2059
2060 /* re-init the BCH registers */
2061 ret = bch_set_geometry(this);
2062 if (ret) {
2063 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2064 return ret;
2065 }
2066
2067 return 0;
2068 }
2069 #endif /* CONFIG_PM_SLEEP */
2070
2071 static const struct dev_pm_ops gpmi_pm_ops = {
2072 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2073 };
2074
2075 static struct platform_driver gpmi_nand_driver = {
2076 .driver = {
2077 .name = "gpmi-nand",
2078 .pm = &gpmi_pm_ops,
2079 .of_match_table = gpmi_nand_id_table,
2080 },
2081 .probe = gpmi_nand_probe,
2082 .remove = gpmi_nand_remove,
2083 };
2084 module_platform_driver(gpmi_nand_driver);
2085
2086 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2087 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2088 MODULE_LICENSE("GPL");
2089