1 /*
2  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
3  * Shaohua Li <shli@fb.com>
4  */
5 #include <linux/module.h>
6 
7 #include <linux/moduleparam.h>
8 #include <linux/sched.h>
9 #include <linux/fs.h>
10 #include <linux/init.h>
11 #include "null_blk.h"
12 
13 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
14 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
15 #define SECTOR_MASK		(PAGE_SECTORS - 1)
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 #endif
26 
mb_per_tick(int mbps)27 static inline u64 mb_per_tick(int mbps)
28 {
29 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
30 }
31 
32 /*
33  * Status flags for nullb_device.
34  *
35  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
36  * UP:		Device is currently on and visible in userspace.
37  * THROTTLED:	Device is being throttled.
38  * CACHE:	Device is using a write-back cache.
39  */
40 enum nullb_device_flags {
41 	NULLB_DEV_FL_CONFIGURED	= 0,
42 	NULLB_DEV_FL_UP		= 1,
43 	NULLB_DEV_FL_THROTTLED	= 2,
44 	NULLB_DEV_FL_CACHE	= 3,
45 };
46 
47 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
48 /*
49  * nullb_page is a page in memory for nullb devices.
50  *
51  * @page:	The page holding the data.
52  * @bitmap:	The bitmap represents which sector in the page has data.
53  *		Each bit represents one block size. For example, sector 8
54  *		will use the 7th bit
55  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
56  * page is being flushing to storage. FREE means the cache page is freed and
57  * should be skipped from flushing to storage. Please see
58  * null_make_cache_space
59  */
60 struct nullb_page {
61 	struct page *page;
62 	DECLARE_BITMAP(bitmap, MAP_SZ);
63 };
64 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
65 #define NULLB_PAGE_FREE (MAP_SZ - 2)
66 
67 static LIST_HEAD(nullb_list);
68 static struct mutex lock;
69 static int null_major;
70 static DEFINE_IDA(nullb_indexes);
71 static struct blk_mq_tag_set tag_set;
72 
73 enum {
74 	NULL_IRQ_NONE		= 0,
75 	NULL_IRQ_SOFTIRQ	= 1,
76 	NULL_IRQ_TIMER		= 2,
77 };
78 
79 enum {
80 	NULL_Q_BIO		= 0,
81 	NULL_Q_RQ		= 1,
82 	NULL_Q_MQ		= 2,
83 };
84 
85 static int g_no_sched;
86 module_param_named(no_sched, g_no_sched, int, 0444);
87 MODULE_PARM_DESC(no_sched, "No io scheduler");
88 
89 static int g_submit_queues = 1;
90 module_param_named(submit_queues, g_submit_queues, int, 0444);
91 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
92 
93 static int g_home_node = NUMA_NO_NODE;
94 module_param_named(home_node, g_home_node, int, 0444);
95 MODULE_PARM_DESC(home_node, "Home node for the device");
96 
97 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
98 static char g_timeout_str[80];
99 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
100 
101 static char g_requeue_str[80];
102 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
103 #endif
104 
105 static int g_queue_mode = NULL_Q_MQ;
106 
null_param_store_val(const char * str,int * val,int min,int max)107 static int null_param_store_val(const char *str, int *val, int min, int max)
108 {
109 	int ret, new_val;
110 
111 	ret = kstrtoint(str, 10, &new_val);
112 	if (ret)
113 		return -EINVAL;
114 
115 	if (new_val < min || new_val > max)
116 		return -EINVAL;
117 
118 	*val = new_val;
119 	return 0;
120 }
121 
null_set_queue_mode(const char * str,const struct kernel_param * kp)122 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
123 {
124 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
125 }
126 
127 static const struct kernel_param_ops null_queue_mode_param_ops = {
128 	.set	= null_set_queue_mode,
129 	.get	= param_get_int,
130 };
131 
132 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
133 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
134 
135 static int g_gb = 250;
136 module_param_named(gb, g_gb, int, 0444);
137 MODULE_PARM_DESC(gb, "Size in GB");
138 
139 static int g_bs = 512;
140 module_param_named(bs, g_bs, int, 0444);
141 MODULE_PARM_DESC(bs, "Block size (in bytes)");
142 
143 static int nr_devices = 1;
144 module_param(nr_devices, int, 0444);
145 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
146 
147 static bool g_blocking;
148 module_param_named(blocking, g_blocking, bool, 0444);
149 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
150 
151 static bool shared_tags;
152 module_param(shared_tags, bool, 0444);
153 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
154 
155 static int g_irqmode = NULL_IRQ_SOFTIRQ;
156 
null_set_irqmode(const char * str,const struct kernel_param * kp)157 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
158 {
159 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
160 					NULL_IRQ_TIMER);
161 }
162 
163 static const struct kernel_param_ops null_irqmode_param_ops = {
164 	.set	= null_set_irqmode,
165 	.get	= param_get_int,
166 };
167 
168 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
169 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
170 
171 static unsigned long g_completion_nsec = 10000;
172 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
173 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
174 
175 static int g_hw_queue_depth = 64;
176 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
177 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
178 
179 static bool g_use_per_node_hctx;
180 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
181 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
182 
183 static bool g_zoned;
184 module_param_named(zoned, g_zoned, bool, S_IRUGO);
185 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
186 
187 static unsigned long g_zone_size = 256;
188 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
189 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
190 
191 static struct nullb_device *null_alloc_dev(void);
192 static void null_free_dev(struct nullb_device *dev);
193 static void null_del_dev(struct nullb *nullb);
194 static int null_add_dev(struct nullb_device *dev);
195 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
196 
to_nullb_device(struct config_item * item)197 static inline struct nullb_device *to_nullb_device(struct config_item *item)
198 {
199 	return item ? container_of(item, struct nullb_device, item) : NULL;
200 }
201 
nullb_device_uint_attr_show(unsigned int val,char * page)202 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
203 {
204 	return snprintf(page, PAGE_SIZE, "%u\n", val);
205 }
206 
nullb_device_ulong_attr_show(unsigned long val,char * page)207 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
208 	char *page)
209 {
210 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
211 }
212 
nullb_device_bool_attr_show(bool val,char * page)213 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
214 {
215 	return snprintf(page, PAGE_SIZE, "%u\n", val);
216 }
217 
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)218 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
219 	const char *page, size_t count)
220 {
221 	unsigned int tmp;
222 	int result;
223 
224 	result = kstrtouint(page, 0, &tmp);
225 	if (result)
226 		return result;
227 
228 	*val = tmp;
229 	return count;
230 }
231 
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)232 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
233 	const char *page, size_t count)
234 {
235 	int result;
236 	unsigned long tmp;
237 
238 	result = kstrtoul(page, 0, &tmp);
239 	if (result)
240 		return result;
241 
242 	*val = tmp;
243 	return count;
244 }
245 
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)246 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
247 	size_t count)
248 {
249 	bool tmp;
250 	int result;
251 
252 	result = kstrtobool(page,  &tmp);
253 	if (result)
254 		return result;
255 
256 	*val = tmp;
257 	return count;
258 }
259 
260 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
261 #define NULLB_DEVICE_ATTR(NAME, TYPE)						\
262 static ssize_t									\
263 nullb_device_##NAME##_show(struct config_item *item, char *page)		\
264 {										\
265 	return nullb_device_##TYPE##_attr_show(					\
266 				to_nullb_device(item)->NAME, page);		\
267 }										\
268 static ssize_t									\
269 nullb_device_##NAME##_store(struct config_item *item, const char *page,		\
270 			    size_t count)					\
271 {										\
272 	if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags))	\
273 		return -EBUSY;							\
274 	return nullb_device_##TYPE##_attr_store(				\
275 			&to_nullb_device(item)->NAME, page, count);		\
276 }										\
277 CONFIGFS_ATTR(nullb_device_, NAME);
278 
279 NULLB_DEVICE_ATTR(size, ulong);
280 NULLB_DEVICE_ATTR(completion_nsec, ulong);
281 NULLB_DEVICE_ATTR(submit_queues, uint);
282 NULLB_DEVICE_ATTR(home_node, uint);
283 NULLB_DEVICE_ATTR(queue_mode, uint);
284 NULLB_DEVICE_ATTR(blocksize, uint);
285 NULLB_DEVICE_ATTR(irqmode, uint);
286 NULLB_DEVICE_ATTR(hw_queue_depth, uint);
287 NULLB_DEVICE_ATTR(index, uint);
288 NULLB_DEVICE_ATTR(blocking, bool);
289 NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
290 NULLB_DEVICE_ATTR(memory_backed, bool);
291 NULLB_DEVICE_ATTR(discard, bool);
292 NULLB_DEVICE_ATTR(mbps, uint);
293 NULLB_DEVICE_ATTR(cache_size, ulong);
294 NULLB_DEVICE_ATTR(zoned, bool);
295 NULLB_DEVICE_ATTR(zone_size, ulong);
296 
nullb_device_power_show(struct config_item * item,char * page)297 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
298 {
299 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
300 }
301 
nullb_device_power_store(struct config_item * item,const char * page,size_t count)302 static ssize_t nullb_device_power_store(struct config_item *item,
303 				     const char *page, size_t count)
304 {
305 	struct nullb_device *dev = to_nullb_device(item);
306 	bool newp = false;
307 	ssize_t ret;
308 
309 	ret = nullb_device_bool_attr_store(&newp, page, count);
310 	if (ret < 0)
311 		return ret;
312 
313 	if (!dev->power && newp) {
314 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
315 			return count;
316 		if (null_add_dev(dev)) {
317 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
318 			return -ENOMEM;
319 		}
320 
321 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
322 		dev->power = newp;
323 	} else if (dev->power && !newp) {
324 		mutex_lock(&lock);
325 		dev->power = newp;
326 		null_del_dev(dev->nullb);
327 		mutex_unlock(&lock);
328 		clear_bit(NULLB_DEV_FL_UP, &dev->flags);
329 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
330 	}
331 
332 	return count;
333 }
334 
335 CONFIGFS_ATTR(nullb_device_, power);
336 
nullb_device_badblocks_show(struct config_item * item,char * page)337 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
338 {
339 	struct nullb_device *t_dev = to_nullb_device(item);
340 
341 	return badblocks_show(&t_dev->badblocks, page, 0);
342 }
343 
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)344 static ssize_t nullb_device_badblocks_store(struct config_item *item,
345 				     const char *page, size_t count)
346 {
347 	struct nullb_device *t_dev = to_nullb_device(item);
348 	char *orig, *buf, *tmp;
349 	u64 start, end;
350 	int ret;
351 
352 	orig = kstrndup(page, count, GFP_KERNEL);
353 	if (!orig)
354 		return -ENOMEM;
355 
356 	buf = strstrip(orig);
357 
358 	ret = -EINVAL;
359 	if (buf[0] != '+' && buf[0] != '-')
360 		goto out;
361 	tmp = strchr(&buf[1], '-');
362 	if (!tmp)
363 		goto out;
364 	*tmp = '\0';
365 	ret = kstrtoull(buf + 1, 0, &start);
366 	if (ret)
367 		goto out;
368 	ret = kstrtoull(tmp + 1, 0, &end);
369 	if (ret)
370 		goto out;
371 	ret = -EINVAL;
372 	if (start > end)
373 		goto out;
374 	/* enable badblocks */
375 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
376 	if (buf[0] == '+')
377 		ret = badblocks_set(&t_dev->badblocks, start,
378 			end - start + 1, 1);
379 	else
380 		ret = badblocks_clear(&t_dev->badblocks, start,
381 			end - start + 1);
382 	if (ret == 0)
383 		ret = count;
384 out:
385 	kfree(orig);
386 	return ret;
387 }
388 CONFIGFS_ATTR(nullb_device_, badblocks);
389 
390 static struct configfs_attribute *nullb_device_attrs[] = {
391 	&nullb_device_attr_size,
392 	&nullb_device_attr_completion_nsec,
393 	&nullb_device_attr_submit_queues,
394 	&nullb_device_attr_home_node,
395 	&nullb_device_attr_queue_mode,
396 	&nullb_device_attr_blocksize,
397 	&nullb_device_attr_irqmode,
398 	&nullb_device_attr_hw_queue_depth,
399 	&nullb_device_attr_index,
400 	&nullb_device_attr_blocking,
401 	&nullb_device_attr_use_per_node_hctx,
402 	&nullb_device_attr_power,
403 	&nullb_device_attr_memory_backed,
404 	&nullb_device_attr_discard,
405 	&nullb_device_attr_mbps,
406 	&nullb_device_attr_cache_size,
407 	&nullb_device_attr_badblocks,
408 	&nullb_device_attr_zoned,
409 	&nullb_device_attr_zone_size,
410 	NULL,
411 };
412 
nullb_device_release(struct config_item * item)413 static void nullb_device_release(struct config_item *item)
414 {
415 	struct nullb_device *dev = to_nullb_device(item);
416 
417 	null_free_device_storage(dev, false);
418 	null_free_dev(dev);
419 }
420 
421 static struct configfs_item_operations nullb_device_ops = {
422 	.release	= nullb_device_release,
423 };
424 
425 static const struct config_item_type nullb_device_type = {
426 	.ct_item_ops	= &nullb_device_ops,
427 	.ct_attrs	= nullb_device_attrs,
428 	.ct_owner	= THIS_MODULE,
429 };
430 
431 static struct
nullb_group_make_item(struct config_group * group,const char * name)432 config_item *nullb_group_make_item(struct config_group *group, const char *name)
433 {
434 	struct nullb_device *dev;
435 
436 	dev = null_alloc_dev();
437 	if (!dev)
438 		return ERR_PTR(-ENOMEM);
439 
440 	config_item_init_type_name(&dev->item, name, &nullb_device_type);
441 
442 	return &dev->item;
443 }
444 
445 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)446 nullb_group_drop_item(struct config_group *group, struct config_item *item)
447 {
448 	struct nullb_device *dev = to_nullb_device(item);
449 
450 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
451 		mutex_lock(&lock);
452 		dev->power = false;
453 		null_del_dev(dev->nullb);
454 		mutex_unlock(&lock);
455 	}
456 
457 	config_item_put(item);
458 }
459 
memb_group_features_show(struct config_item * item,char * page)460 static ssize_t memb_group_features_show(struct config_item *item, char *page)
461 {
462 	return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
463 }
464 
465 CONFIGFS_ATTR_RO(memb_group_, features);
466 
467 static struct configfs_attribute *nullb_group_attrs[] = {
468 	&memb_group_attr_features,
469 	NULL,
470 };
471 
472 static struct configfs_group_operations nullb_group_ops = {
473 	.make_item	= nullb_group_make_item,
474 	.drop_item	= nullb_group_drop_item,
475 };
476 
477 static const struct config_item_type nullb_group_type = {
478 	.ct_group_ops	= &nullb_group_ops,
479 	.ct_attrs	= nullb_group_attrs,
480 	.ct_owner	= THIS_MODULE,
481 };
482 
483 static struct configfs_subsystem nullb_subsys = {
484 	.su_group = {
485 		.cg_item = {
486 			.ci_namebuf = "nullb",
487 			.ci_type = &nullb_group_type,
488 		},
489 	},
490 };
491 
null_cache_active(struct nullb * nullb)492 static inline int null_cache_active(struct nullb *nullb)
493 {
494 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
495 }
496 
null_alloc_dev(void)497 static struct nullb_device *null_alloc_dev(void)
498 {
499 	struct nullb_device *dev;
500 
501 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
502 	if (!dev)
503 		return NULL;
504 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
505 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
506 	if (badblocks_init(&dev->badblocks, 0)) {
507 		kfree(dev);
508 		return NULL;
509 	}
510 
511 	dev->size = g_gb * 1024;
512 	dev->completion_nsec = g_completion_nsec;
513 	dev->submit_queues = g_submit_queues;
514 	dev->home_node = g_home_node;
515 	dev->queue_mode = g_queue_mode;
516 	dev->blocksize = g_bs;
517 	dev->irqmode = g_irqmode;
518 	dev->hw_queue_depth = g_hw_queue_depth;
519 	dev->blocking = g_blocking;
520 	dev->use_per_node_hctx = g_use_per_node_hctx;
521 	dev->zoned = g_zoned;
522 	dev->zone_size = g_zone_size;
523 	return dev;
524 }
525 
null_free_dev(struct nullb_device * dev)526 static void null_free_dev(struct nullb_device *dev)
527 {
528 	if (!dev)
529 		return;
530 
531 	null_zone_exit(dev);
532 	badblocks_exit(&dev->badblocks);
533 	kfree(dev);
534 }
535 
put_tag(struct nullb_queue * nq,unsigned int tag)536 static void put_tag(struct nullb_queue *nq, unsigned int tag)
537 {
538 	clear_bit_unlock(tag, nq->tag_map);
539 
540 	if (waitqueue_active(&nq->wait))
541 		wake_up(&nq->wait);
542 }
543 
get_tag(struct nullb_queue * nq)544 static unsigned int get_tag(struct nullb_queue *nq)
545 {
546 	unsigned int tag;
547 
548 	do {
549 		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
550 		if (tag >= nq->queue_depth)
551 			return -1U;
552 	} while (test_and_set_bit_lock(tag, nq->tag_map));
553 
554 	return tag;
555 }
556 
free_cmd(struct nullb_cmd * cmd)557 static void free_cmd(struct nullb_cmd *cmd)
558 {
559 	put_tag(cmd->nq, cmd->tag);
560 }
561 
562 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
563 
__alloc_cmd(struct nullb_queue * nq)564 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
565 {
566 	struct nullb_cmd *cmd;
567 	unsigned int tag;
568 
569 	tag = get_tag(nq);
570 	if (tag != -1U) {
571 		cmd = &nq->cmds[tag];
572 		cmd->tag = tag;
573 		cmd->nq = nq;
574 		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
575 			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
576 				     HRTIMER_MODE_REL);
577 			cmd->timer.function = null_cmd_timer_expired;
578 		}
579 		return cmd;
580 	}
581 
582 	return NULL;
583 }
584 
alloc_cmd(struct nullb_queue * nq,int can_wait)585 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
586 {
587 	struct nullb_cmd *cmd;
588 	DEFINE_WAIT(wait);
589 
590 	cmd = __alloc_cmd(nq);
591 	if (cmd || !can_wait)
592 		return cmd;
593 
594 	do {
595 		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
596 		cmd = __alloc_cmd(nq);
597 		if (cmd)
598 			break;
599 
600 		io_schedule();
601 	} while (1);
602 
603 	finish_wait(&nq->wait, &wait);
604 	return cmd;
605 }
606 
end_cmd(struct nullb_cmd * cmd)607 static void end_cmd(struct nullb_cmd *cmd)
608 {
609 	struct request_queue *q = NULL;
610 	int queue_mode = cmd->nq->dev->queue_mode;
611 
612 	if (cmd->rq)
613 		q = cmd->rq->q;
614 
615 	switch (queue_mode)  {
616 	case NULL_Q_MQ:
617 		blk_mq_end_request(cmd->rq, cmd->error);
618 		return;
619 	case NULL_Q_RQ:
620 		INIT_LIST_HEAD(&cmd->rq->queuelist);
621 		blk_end_request_all(cmd->rq, cmd->error);
622 		break;
623 	case NULL_Q_BIO:
624 		cmd->bio->bi_status = cmd->error;
625 		bio_endio(cmd->bio);
626 		break;
627 	}
628 
629 	free_cmd(cmd);
630 
631 	/* Restart queue if needed, as we are freeing a tag */
632 	if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) {
633 		unsigned long flags;
634 
635 		spin_lock_irqsave(q->queue_lock, flags);
636 		blk_start_queue_async(q);
637 		spin_unlock_irqrestore(q->queue_lock, flags);
638 	}
639 }
640 
null_cmd_timer_expired(struct hrtimer * timer)641 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
642 {
643 	end_cmd(container_of(timer, struct nullb_cmd, timer));
644 
645 	return HRTIMER_NORESTART;
646 }
647 
null_cmd_end_timer(struct nullb_cmd * cmd)648 static void null_cmd_end_timer(struct nullb_cmd *cmd)
649 {
650 	ktime_t kt = cmd->nq->dev->completion_nsec;
651 
652 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
653 }
654 
null_softirq_done_fn(struct request * rq)655 static void null_softirq_done_fn(struct request *rq)
656 {
657 	struct nullb *nullb = rq->q->queuedata;
658 
659 	if (nullb->dev->queue_mode == NULL_Q_MQ)
660 		end_cmd(blk_mq_rq_to_pdu(rq));
661 	else
662 		end_cmd(rq->special);
663 }
664 
null_alloc_page(gfp_t gfp_flags)665 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
666 {
667 	struct nullb_page *t_page;
668 
669 	t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
670 	if (!t_page)
671 		goto out;
672 
673 	t_page->page = alloc_pages(gfp_flags, 0);
674 	if (!t_page->page)
675 		goto out_freepage;
676 
677 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
678 	return t_page;
679 out_freepage:
680 	kfree(t_page);
681 out:
682 	return NULL;
683 }
684 
null_free_page(struct nullb_page * t_page)685 static void null_free_page(struct nullb_page *t_page)
686 {
687 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
688 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
689 		return;
690 	__free_page(t_page->page);
691 	kfree(t_page);
692 }
693 
null_page_empty(struct nullb_page * page)694 static bool null_page_empty(struct nullb_page *page)
695 {
696 	int size = MAP_SZ - 2;
697 
698 	return find_first_bit(page->bitmap, size) == size;
699 }
700 
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)701 static void null_free_sector(struct nullb *nullb, sector_t sector,
702 	bool is_cache)
703 {
704 	unsigned int sector_bit;
705 	u64 idx;
706 	struct nullb_page *t_page, *ret;
707 	struct radix_tree_root *root;
708 
709 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
710 	idx = sector >> PAGE_SECTORS_SHIFT;
711 	sector_bit = (sector & SECTOR_MASK);
712 
713 	t_page = radix_tree_lookup(root, idx);
714 	if (t_page) {
715 		__clear_bit(sector_bit, t_page->bitmap);
716 
717 		if (null_page_empty(t_page)) {
718 			ret = radix_tree_delete_item(root, idx, t_page);
719 			WARN_ON(ret != t_page);
720 			null_free_page(ret);
721 			if (is_cache)
722 				nullb->dev->curr_cache -= PAGE_SIZE;
723 		}
724 	}
725 }
726 
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)727 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
728 	struct nullb_page *t_page, bool is_cache)
729 {
730 	struct radix_tree_root *root;
731 
732 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
733 
734 	if (radix_tree_insert(root, idx, t_page)) {
735 		null_free_page(t_page);
736 		t_page = radix_tree_lookup(root, idx);
737 		WARN_ON(!t_page || t_page->page->index != idx);
738 	} else if (is_cache)
739 		nullb->dev->curr_cache += PAGE_SIZE;
740 
741 	return t_page;
742 }
743 
null_free_device_storage(struct nullb_device * dev,bool is_cache)744 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
745 {
746 	unsigned long pos = 0;
747 	int nr_pages;
748 	struct nullb_page *ret, *t_pages[FREE_BATCH];
749 	struct radix_tree_root *root;
750 
751 	root = is_cache ? &dev->cache : &dev->data;
752 
753 	do {
754 		int i;
755 
756 		nr_pages = radix_tree_gang_lookup(root,
757 				(void **)t_pages, pos, FREE_BATCH);
758 
759 		for (i = 0; i < nr_pages; i++) {
760 			pos = t_pages[i]->page->index;
761 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
762 			WARN_ON(ret != t_pages[i]);
763 			null_free_page(ret);
764 		}
765 
766 		pos++;
767 	} while (nr_pages == FREE_BATCH);
768 
769 	if (is_cache)
770 		dev->curr_cache = 0;
771 }
772 
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)773 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
774 	sector_t sector, bool for_write, bool is_cache)
775 {
776 	unsigned int sector_bit;
777 	u64 idx;
778 	struct nullb_page *t_page;
779 	struct radix_tree_root *root;
780 
781 	idx = sector >> PAGE_SECTORS_SHIFT;
782 	sector_bit = (sector & SECTOR_MASK);
783 
784 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
785 	t_page = radix_tree_lookup(root, idx);
786 	WARN_ON(t_page && t_page->page->index != idx);
787 
788 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
789 		return t_page;
790 
791 	return NULL;
792 }
793 
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)794 static struct nullb_page *null_lookup_page(struct nullb *nullb,
795 	sector_t sector, bool for_write, bool ignore_cache)
796 {
797 	struct nullb_page *page = NULL;
798 
799 	if (!ignore_cache)
800 		page = __null_lookup_page(nullb, sector, for_write, true);
801 	if (page)
802 		return page;
803 	return __null_lookup_page(nullb, sector, for_write, false);
804 }
805 
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)806 static struct nullb_page *null_insert_page(struct nullb *nullb,
807 					   sector_t sector, bool ignore_cache)
808 	__releases(&nullb->lock)
809 	__acquires(&nullb->lock)
810 {
811 	u64 idx;
812 	struct nullb_page *t_page;
813 
814 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
815 	if (t_page)
816 		return t_page;
817 
818 	spin_unlock_irq(&nullb->lock);
819 
820 	t_page = null_alloc_page(GFP_NOIO);
821 	if (!t_page)
822 		goto out_lock;
823 
824 	if (radix_tree_preload(GFP_NOIO))
825 		goto out_freepage;
826 
827 	spin_lock_irq(&nullb->lock);
828 	idx = sector >> PAGE_SECTORS_SHIFT;
829 	t_page->page->index = idx;
830 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
831 	radix_tree_preload_end();
832 
833 	return t_page;
834 out_freepage:
835 	null_free_page(t_page);
836 out_lock:
837 	spin_lock_irq(&nullb->lock);
838 	return null_lookup_page(nullb, sector, true, ignore_cache);
839 }
840 
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)841 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
842 {
843 	int i;
844 	unsigned int offset;
845 	u64 idx;
846 	struct nullb_page *t_page, *ret;
847 	void *dst, *src;
848 
849 	idx = c_page->page->index;
850 
851 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
852 
853 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
854 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
855 		null_free_page(c_page);
856 		if (t_page && null_page_empty(t_page)) {
857 			ret = radix_tree_delete_item(&nullb->dev->data,
858 				idx, t_page);
859 			null_free_page(t_page);
860 		}
861 		return 0;
862 	}
863 
864 	if (!t_page)
865 		return -ENOMEM;
866 
867 	src = kmap_atomic(c_page->page);
868 	dst = kmap_atomic(t_page->page);
869 
870 	for (i = 0; i < PAGE_SECTORS;
871 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
872 		if (test_bit(i, c_page->bitmap)) {
873 			offset = (i << SECTOR_SHIFT);
874 			memcpy(dst + offset, src + offset,
875 				nullb->dev->blocksize);
876 			__set_bit(i, t_page->bitmap);
877 		}
878 	}
879 
880 	kunmap_atomic(dst);
881 	kunmap_atomic(src);
882 
883 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
884 	null_free_page(ret);
885 	nullb->dev->curr_cache -= PAGE_SIZE;
886 
887 	return 0;
888 }
889 
null_make_cache_space(struct nullb * nullb,unsigned long n)890 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
891 {
892 	int i, err, nr_pages;
893 	struct nullb_page *c_pages[FREE_BATCH];
894 	unsigned long flushed = 0, one_round;
895 
896 again:
897 	if ((nullb->dev->cache_size * 1024 * 1024) >
898 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
899 		return 0;
900 
901 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
902 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
903 	/*
904 	 * nullb_flush_cache_page could unlock before using the c_pages. To
905 	 * avoid race, we don't allow page free
906 	 */
907 	for (i = 0; i < nr_pages; i++) {
908 		nullb->cache_flush_pos = c_pages[i]->page->index;
909 		/*
910 		 * We found the page which is being flushed to disk by other
911 		 * threads
912 		 */
913 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
914 			c_pages[i] = NULL;
915 		else
916 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
917 	}
918 
919 	one_round = 0;
920 	for (i = 0; i < nr_pages; i++) {
921 		if (c_pages[i] == NULL)
922 			continue;
923 		err = null_flush_cache_page(nullb, c_pages[i]);
924 		if (err)
925 			return err;
926 		one_round++;
927 	}
928 	flushed += one_round << PAGE_SHIFT;
929 
930 	if (n > flushed) {
931 		if (nr_pages == 0)
932 			nullb->cache_flush_pos = 0;
933 		if (one_round == 0) {
934 			/* give other threads a chance */
935 			spin_unlock_irq(&nullb->lock);
936 			spin_lock_irq(&nullb->lock);
937 		}
938 		goto again;
939 	}
940 	return 0;
941 }
942 
copy_to_nullb(struct nullb * nullb,struct page * source,unsigned int off,sector_t sector,size_t n,bool is_fua)943 static int copy_to_nullb(struct nullb *nullb, struct page *source,
944 	unsigned int off, sector_t sector, size_t n, bool is_fua)
945 {
946 	size_t temp, count = 0;
947 	unsigned int offset;
948 	struct nullb_page *t_page;
949 	void *dst, *src;
950 
951 	while (count < n) {
952 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
953 
954 		if (null_cache_active(nullb) && !is_fua)
955 			null_make_cache_space(nullb, PAGE_SIZE);
956 
957 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
958 		t_page = null_insert_page(nullb, sector,
959 			!null_cache_active(nullb) || is_fua);
960 		if (!t_page)
961 			return -ENOSPC;
962 
963 		src = kmap_atomic(source);
964 		dst = kmap_atomic(t_page->page);
965 		memcpy(dst + offset, src + off + count, temp);
966 		kunmap_atomic(dst);
967 		kunmap_atomic(src);
968 
969 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
970 
971 		if (is_fua)
972 			null_free_sector(nullb, sector, true);
973 
974 		count += temp;
975 		sector += temp >> SECTOR_SHIFT;
976 	}
977 	return 0;
978 }
979 
copy_from_nullb(struct nullb * nullb,struct page * dest,unsigned int off,sector_t sector,size_t n)980 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
981 	unsigned int off, sector_t sector, size_t n)
982 {
983 	size_t temp, count = 0;
984 	unsigned int offset;
985 	struct nullb_page *t_page;
986 	void *dst, *src;
987 
988 	while (count < n) {
989 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
990 
991 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
992 		t_page = null_lookup_page(nullb, sector, false,
993 			!null_cache_active(nullb));
994 
995 		dst = kmap_atomic(dest);
996 		if (!t_page) {
997 			memset(dst + off + count, 0, temp);
998 			goto next;
999 		}
1000 		src = kmap_atomic(t_page->page);
1001 		memcpy(dst + off + count, src + offset, temp);
1002 		kunmap_atomic(src);
1003 next:
1004 		kunmap_atomic(dst);
1005 
1006 		count += temp;
1007 		sector += temp >> SECTOR_SHIFT;
1008 	}
1009 	return 0;
1010 }
1011 
null_handle_discard(struct nullb * nullb,sector_t sector,size_t n)1012 static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1013 {
1014 	size_t temp;
1015 
1016 	spin_lock_irq(&nullb->lock);
1017 	while (n > 0) {
1018 		temp = min_t(size_t, n, nullb->dev->blocksize);
1019 		null_free_sector(nullb, sector, false);
1020 		if (null_cache_active(nullb))
1021 			null_free_sector(nullb, sector, true);
1022 		sector += temp >> SECTOR_SHIFT;
1023 		n -= temp;
1024 	}
1025 	spin_unlock_irq(&nullb->lock);
1026 }
1027 
null_handle_flush(struct nullb * nullb)1028 static int null_handle_flush(struct nullb *nullb)
1029 {
1030 	int err;
1031 
1032 	if (!null_cache_active(nullb))
1033 		return 0;
1034 
1035 	spin_lock_irq(&nullb->lock);
1036 	while (true) {
1037 		err = null_make_cache_space(nullb,
1038 			nullb->dev->cache_size * 1024 * 1024);
1039 		if (err || nullb->dev->curr_cache == 0)
1040 			break;
1041 	}
1042 
1043 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1044 	spin_unlock_irq(&nullb->lock);
1045 	return err;
1046 }
1047 
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,sector_t sector,bool is_fua)1048 static int null_transfer(struct nullb *nullb, struct page *page,
1049 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1050 	bool is_fua)
1051 {
1052 	int err = 0;
1053 
1054 	if (!is_write) {
1055 		err = copy_from_nullb(nullb, page, off, sector, len);
1056 		flush_dcache_page(page);
1057 	} else {
1058 		flush_dcache_page(page);
1059 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1060 	}
1061 
1062 	return err;
1063 }
1064 
null_handle_rq(struct nullb_cmd * cmd)1065 static int null_handle_rq(struct nullb_cmd *cmd)
1066 {
1067 	struct request *rq = cmd->rq;
1068 	struct nullb *nullb = cmd->nq->dev->nullb;
1069 	int err;
1070 	unsigned int len;
1071 	sector_t sector;
1072 	struct req_iterator iter;
1073 	struct bio_vec bvec;
1074 
1075 	sector = blk_rq_pos(rq);
1076 
1077 	if (req_op(rq) == REQ_OP_DISCARD) {
1078 		null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1079 		return 0;
1080 	}
1081 
1082 	spin_lock_irq(&nullb->lock);
1083 	rq_for_each_segment(bvec, rq, iter) {
1084 		len = bvec.bv_len;
1085 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1086 				     op_is_write(req_op(rq)), sector,
1087 				     req_op(rq) & REQ_FUA);
1088 		if (err) {
1089 			spin_unlock_irq(&nullb->lock);
1090 			return err;
1091 		}
1092 		sector += len >> SECTOR_SHIFT;
1093 	}
1094 	spin_unlock_irq(&nullb->lock);
1095 
1096 	return 0;
1097 }
1098 
null_handle_bio(struct nullb_cmd * cmd)1099 static int null_handle_bio(struct nullb_cmd *cmd)
1100 {
1101 	struct bio *bio = cmd->bio;
1102 	struct nullb *nullb = cmd->nq->dev->nullb;
1103 	int err;
1104 	unsigned int len;
1105 	sector_t sector;
1106 	struct bio_vec bvec;
1107 	struct bvec_iter iter;
1108 
1109 	sector = bio->bi_iter.bi_sector;
1110 
1111 	if (bio_op(bio) == REQ_OP_DISCARD) {
1112 		null_handle_discard(nullb, sector,
1113 			bio_sectors(bio) << SECTOR_SHIFT);
1114 		return 0;
1115 	}
1116 
1117 	spin_lock_irq(&nullb->lock);
1118 	bio_for_each_segment(bvec, bio, iter) {
1119 		len = bvec.bv_len;
1120 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1121 				     op_is_write(bio_op(bio)), sector,
1122 				     bio_op(bio) & REQ_FUA);
1123 		if (err) {
1124 			spin_unlock_irq(&nullb->lock);
1125 			return err;
1126 		}
1127 		sector += len >> SECTOR_SHIFT;
1128 	}
1129 	spin_unlock_irq(&nullb->lock);
1130 	return 0;
1131 }
1132 
null_stop_queue(struct nullb * nullb)1133 static void null_stop_queue(struct nullb *nullb)
1134 {
1135 	struct request_queue *q = nullb->q;
1136 
1137 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1138 		blk_mq_stop_hw_queues(q);
1139 	else {
1140 		spin_lock_irq(q->queue_lock);
1141 		blk_stop_queue(q);
1142 		spin_unlock_irq(q->queue_lock);
1143 	}
1144 }
1145 
null_restart_queue_async(struct nullb * nullb)1146 static void null_restart_queue_async(struct nullb *nullb)
1147 {
1148 	struct request_queue *q = nullb->q;
1149 	unsigned long flags;
1150 
1151 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1152 		blk_mq_start_stopped_hw_queues(q, true);
1153 	else {
1154 		spin_lock_irqsave(q->queue_lock, flags);
1155 		blk_start_queue_async(q);
1156 		spin_unlock_irqrestore(q->queue_lock, flags);
1157 	}
1158 }
1159 
cmd_report_zone(struct nullb * nullb,struct nullb_cmd * cmd)1160 static bool cmd_report_zone(struct nullb *nullb, struct nullb_cmd *cmd)
1161 {
1162 	struct nullb_device *dev = cmd->nq->dev;
1163 
1164 	if (dev->queue_mode == NULL_Q_BIO) {
1165 		if (bio_op(cmd->bio) == REQ_OP_ZONE_REPORT) {
1166 			cmd->error = null_zone_report(nullb, cmd->bio);
1167 			return true;
1168 		}
1169 	} else {
1170 		if (req_op(cmd->rq) == REQ_OP_ZONE_REPORT) {
1171 			cmd->error = null_zone_report(nullb, cmd->rq->bio);
1172 			return true;
1173 		}
1174 	}
1175 
1176 	return false;
1177 }
1178 
null_handle_cmd(struct nullb_cmd * cmd)1179 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
1180 {
1181 	struct nullb_device *dev = cmd->nq->dev;
1182 	struct nullb *nullb = dev->nullb;
1183 	int err = 0;
1184 
1185 	if (cmd_report_zone(nullb, cmd))
1186 		goto out;
1187 
1188 	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1189 		struct request *rq = cmd->rq;
1190 
1191 		if (!hrtimer_active(&nullb->bw_timer))
1192 			hrtimer_restart(&nullb->bw_timer);
1193 
1194 		if (atomic_long_sub_return(blk_rq_bytes(rq),
1195 				&nullb->cur_bytes) < 0) {
1196 			null_stop_queue(nullb);
1197 			/* race with timer */
1198 			if (atomic_long_read(&nullb->cur_bytes) > 0)
1199 				null_restart_queue_async(nullb);
1200 			if (dev->queue_mode == NULL_Q_RQ) {
1201 				struct request_queue *q = nullb->q;
1202 
1203 				spin_lock_irq(q->queue_lock);
1204 				rq->rq_flags |= RQF_DONTPREP;
1205 				blk_requeue_request(q, rq);
1206 				spin_unlock_irq(q->queue_lock);
1207 				return BLK_STS_OK;
1208 			} else
1209 				/* requeue request */
1210 				return BLK_STS_DEV_RESOURCE;
1211 		}
1212 	}
1213 
1214 	if (nullb->dev->badblocks.shift != -1) {
1215 		int bad_sectors;
1216 		sector_t sector, size, first_bad;
1217 		bool is_flush = true;
1218 
1219 		if (dev->queue_mode == NULL_Q_BIO &&
1220 				bio_op(cmd->bio) != REQ_OP_FLUSH) {
1221 			is_flush = false;
1222 			sector = cmd->bio->bi_iter.bi_sector;
1223 			size = bio_sectors(cmd->bio);
1224 		}
1225 		if (dev->queue_mode != NULL_Q_BIO &&
1226 				req_op(cmd->rq) != REQ_OP_FLUSH) {
1227 			is_flush = false;
1228 			sector = blk_rq_pos(cmd->rq);
1229 			size = blk_rq_sectors(cmd->rq);
1230 		}
1231 		if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
1232 				size, &first_bad, &bad_sectors)) {
1233 			cmd->error = BLK_STS_IOERR;
1234 			goto out;
1235 		}
1236 	}
1237 
1238 	if (dev->memory_backed) {
1239 		if (dev->queue_mode == NULL_Q_BIO) {
1240 			if (bio_op(cmd->bio) == REQ_OP_FLUSH)
1241 				err = null_handle_flush(nullb);
1242 			else
1243 				err = null_handle_bio(cmd);
1244 		} else {
1245 			if (req_op(cmd->rq) == REQ_OP_FLUSH)
1246 				err = null_handle_flush(nullb);
1247 			else
1248 				err = null_handle_rq(cmd);
1249 		}
1250 	}
1251 	cmd->error = errno_to_blk_status(err);
1252 
1253 	if (!cmd->error && dev->zoned) {
1254 		sector_t sector;
1255 		unsigned int nr_sectors;
1256 		int op;
1257 
1258 		if (dev->queue_mode == NULL_Q_BIO) {
1259 			op = bio_op(cmd->bio);
1260 			sector = cmd->bio->bi_iter.bi_sector;
1261 			nr_sectors = cmd->bio->bi_iter.bi_size >> 9;
1262 		} else {
1263 			op = req_op(cmd->rq);
1264 			sector = blk_rq_pos(cmd->rq);
1265 			nr_sectors = blk_rq_sectors(cmd->rq);
1266 		}
1267 
1268 		if (op == REQ_OP_WRITE)
1269 			null_zone_write(cmd, sector, nr_sectors);
1270 		else if (op == REQ_OP_ZONE_RESET)
1271 			null_zone_reset(cmd, sector);
1272 	}
1273 out:
1274 	/* Complete IO by inline, softirq or timer */
1275 	switch (dev->irqmode) {
1276 	case NULL_IRQ_SOFTIRQ:
1277 		switch (dev->queue_mode)  {
1278 		case NULL_Q_MQ:
1279 			blk_mq_complete_request(cmd->rq);
1280 			break;
1281 		case NULL_Q_RQ:
1282 			blk_complete_request(cmd->rq);
1283 			break;
1284 		case NULL_Q_BIO:
1285 			/*
1286 			 * XXX: no proper submitting cpu information available.
1287 			 */
1288 			end_cmd(cmd);
1289 			break;
1290 		}
1291 		break;
1292 	case NULL_IRQ_NONE:
1293 		end_cmd(cmd);
1294 		break;
1295 	case NULL_IRQ_TIMER:
1296 		null_cmd_end_timer(cmd);
1297 		break;
1298 	}
1299 	return BLK_STS_OK;
1300 }
1301 
nullb_bwtimer_fn(struct hrtimer * timer)1302 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1303 {
1304 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1305 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1306 	unsigned int mbps = nullb->dev->mbps;
1307 
1308 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1309 		return HRTIMER_NORESTART;
1310 
1311 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1312 	null_restart_queue_async(nullb);
1313 
1314 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1315 
1316 	return HRTIMER_RESTART;
1317 }
1318 
nullb_setup_bwtimer(struct nullb * nullb)1319 static void nullb_setup_bwtimer(struct nullb *nullb)
1320 {
1321 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1322 
1323 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1324 	nullb->bw_timer.function = nullb_bwtimer_fn;
1325 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1326 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1327 }
1328 
nullb_to_queue(struct nullb * nullb)1329 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1330 {
1331 	int index = 0;
1332 
1333 	if (nullb->nr_queues != 1)
1334 		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1335 
1336 	return &nullb->queues[index];
1337 }
1338 
null_queue_bio(struct request_queue * q,struct bio * bio)1339 static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
1340 {
1341 	struct nullb *nullb = q->queuedata;
1342 	struct nullb_queue *nq = nullb_to_queue(nullb);
1343 	struct nullb_cmd *cmd;
1344 
1345 	cmd = alloc_cmd(nq, 1);
1346 	cmd->bio = bio;
1347 
1348 	null_handle_cmd(cmd);
1349 	return BLK_QC_T_NONE;
1350 }
1351 
null_rq_timed_out_fn(struct request * rq)1352 static enum blk_eh_timer_return null_rq_timed_out_fn(struct request *rq)
1353 {
1354 	pr_info("null: rq %p timed out\n", rq);
1355 	__blk_complete_request(rq);
1356 	return BLK_EH_DONE;
1357 }
1358 
null_rq_prep_fn(struct request_queue * q,struct request * req)1359 static int null_rq_prep_fn(struct request_queue *q, struct request *req)
1360 {
1361 	struct nullb *nullb = q->queuedata;
1362 	struct nullb_queue *nq = nullb_to_queue(nullb);
1363 	struct nullb_cmd *cmd;
1364 
1365 	cmd = alloc_cmd(nq, 0);
1366 	if (cmd) {
1367 		cmd->rq = req;
1368 		req->special = cmd;
1369 		return BLKPREP_OK;
1370 	}
1371 	blk_stop_queue(q);
1372 
1373 	return BLKPREP_DEFER;
1374 }
1375 
should_timeout_request(struct request * rq)1376 static bool should_timeout_request(struct request *rq)
1377 {
1378 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1379 	if (g_timeout_str[0])
1380 		return should_fail(&null_timeout_attr, 1);
1381 #endif
1382 	return false;
1383 }
1384 
should_requeue_request(struct request * rq)1385 static bool should_requeue_request(struct request *rq)
1386 {
1387 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1388 	if (g_requeue_str[0])
1389 		return should_fail(&null_requeue_attr, 1);
1390 #endif
1391 	return false;
1392 }
1393 
null_request_fn(struct request_queue * q)1394 static void null_request_fn(struct request_queue *q)
1395 {
1396 	struct request *rq;
1397 
1398 	while ((rq = blk_fetch_request(q)) != NULL) {
1399 		struct nullb_cmd *cmd = rq->special;
1400 
1401 		/* just ignore the request */
1402 		if (should_timeout_request(rq))
1403 			continue;
1404 		if (should_requeue_request(rq)) {
1405 			blk_requeue_request(q, rq);
1406 			continue;
1407 		}
1408 
1409 		spin_unlock_irq(q->queue_lock);
1410 		null_handle_cmd(cmd);
1411 		spin_lock_irq(q->queue_lock);
1412 	}
1413 }
1414 
null_timeout_rq(struct request * rq,bool res)1415 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1416 {
1417 	pr_info("null: rq %p timed out\n", rq);
1418 	blk_mq_complete_request(rq);
1419 	return BLK_EH_DONE;
1420 }
1421 
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1422 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1423 			 const struct blk_mq_queue_data *bd)
1424 {
1425 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1426 	struct nullb_queue *nq = hctx->driver_data;
1427 
1428 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1429 
1430 	if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1431 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1432 		cmd->timer.function = null_cmd_timer_expired;
1433 	}
1434 	cmd->rq = bd->rq;
1435 	cmd->nq = nq;
1436 
1437 	blk_mq_start_request(bd->rq);
1438 
1439 	if (should_requeue_request(bd->rq)) {
1440 		/*
1441 		 * Alternate between hitting the core BUSY path, and the
1442 		 * driver driven requeue path
1443 		 */
1444 		nq->requeue_selection++;
1445 		if (nq->requeue_selection & 1)
1446 			return BLK_STS_RESOURCE;
1447 		else {
1448 			blk_mq_requeue_request(bd->rq, true);
1449 			return BLK_STS_OK;
1450 		}
1451 	}
1452 	if (should_timeout_request(bd->rq))
1453 		return BLK_STS_OK;
1454 
1455 	return null_handle_cmd(cmd);
1456 }
1457 
1458 static const struct blk_mq_ops null_mq_ops = {
1459 	.queue_rq       = null_queue_rq,
1460 	.complete	= null_softirq_done_fn,
1461 	.timeout	= null_timeout_rq,
1462 };
1463 
cleanup_queue(struct nullb_queue * nq)1464 static void cleanup_queue(struct nullb_queue *nq)
1465 {
1466 	kfree(nq->tag_map);
1467 	kfree(nq->cmds);
1468 }
1469 
cleanup_queues(struct nullb * nullb)1470 static void cleanup_queues(struct nullb *nullb)
1471 {
1472 	int i;
1473 
1474 	for (i = 0; i < nullb->nr_queues; i++)
1475 		cleanup_queue(&nullb->queues[i]);
1476 
1477 	kfree(nullb->queues);
1478 }
1479 
null_del_dev(struct nullb * nullb)1480 static void null_del_dev(struct nullb *nullb)
1481 {
1482 	struct nullb_device *dev = nullb->dev;
1483 
1484 	ida_simple_remove(&nullb_indexes, nullb->index);
1485 
1486 	list_del_init(&nullb->list);
1487 
1488 	del_gendisk(nullb->disk);
1489 
1490 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1491 		hrtimer_cancel(&nullb->bw_timer);
1492 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1493 		null_restart_queue_async(nullb);
1494 	}
1495 
1496 	blk_cleanup_queue(nullb->q);
1497 	if (dev->queue_mode == NULL_Q_MQ &&
1498 	    nullb->tag_set == &nullb->__tag_set)
1499 		blk_mq_free_tag_set(nullb->tag_set);
1500 	put_disk(nullb->disk);
1501 	cleanup_queues(nullb);
1502 	if (null_cache_active(nullb))
1503 		null_free_device_storage(nullb->dev, true);
1504 	kfree(nullb);
1505 	dev->nullb = NULL;
1506 }
1507 
null_config_discard(struct nullb * nullb)1508 static void null_config_discard(struct nullb *nullb)
1509 {
1510 	if (nullb->dev->discard == false)
1511 		return;
1512 	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1513 	nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1514 	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1515 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1516 }
1517 
null_open(struct block_device * bdev,fmode_t mode)1518 static int null_open(struct block_device *bdev, fmode_t mode)
1519 {
1520 	return 0;
1521 }
1522 
null_release(struct gendisk * disk,fmode_t mode)1523 static void null_release(struct gendisk *disk, fmode_t mode)
1524 {
1525 }
1526 
1527 static const struct block_device_operations null_fops = {
1528 	.owner =	THIS_MODULE,
1529 	.open =		null_open,
1530 	.release =	null_release,
1531 };
1532 
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1533 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1534 {
1535 	BUG_ON(!nullb);
1536 	BUG_ON(!nq);
1537 
1538 	init_waitqueue_head(&nq->wait);
1539 	nq->queue_depth = nullb->queue_depth;
1540 	nq->dev = nullb->dev;
1541 }
1542 
null_init_queues(struct nullb * nullb)1543 static void null_init_queues(struct nullb *nullb)
1544 {
1545 	struct request_queue *q = nullb->q;
1546 	struct blk_mq_hw_ctx *hctx;
1547 	struct nullb_queue *nq;
1548 	int i;
1549 
1550 	queue_for_each_hw_ctx(q, hctx, i) {
1551 		if (!hctx->nr_ctx || !hctx->tags)
1552 			continue;
1553 		nq = &nullb->queues[i];
1554 		hctx->driver_data = nq;
1555 		null_init_queue(nullb, nq);
1556 		nullb->nr_queues++;
1557 	}
1558 }
1559 
setup_commands(struct nullb_queue * nq)1560 static int setup_commands(struct nullb_queue *nq)
1561 {
1562 	struct nullb_cmd *cmd;
1563 	int i, tag_size;
1564 
1565 	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1566 	if (!nq->cmds)
1567 		return -ENOMEM;
1568 
1569 	tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1570 	nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1571 	if (!nq->tag_map) {
1572 		kfree(nq->cmds);
1573 		return -ENOMEM;
1574 	}
1575 
1576 	for (i = 0; i < nq->queue_depth; i++) {
1577 		cmd = &nq->cmds[i];
1578 		INIT_LIST_HEAD(&cmd->list);
1579 		cmd->ll_list.next = NULL;
1580 		cmd->tag = -1U;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
setup_queues(struct nullb * nullb)1586 static int setup_queues(struct nullb *nullb)
1587 {
1588 	nullb->queues = kcalloc(nullb->dev->submit_queues,
1589 				sizeof(struct nullb_queue),
1590 				GFP_KERNEL);
1591 	if (!nullb->queues)
1592 		return -ENOMEM;
1593 
1594 	nullb->nr_queues = 0;
1595 	nullb->queue_depth = nullb->dev->hw_queue_depth;
1596 
1597 	return 0;
1598 }
1599 
init_driver_queues(struct nullb * nullb)1600 static int init_driver_queues(struct nullb *nullb)
1601 {
1602 	struct nullb_queue *nq;
1603 	int i, ret = 0;
1604 
1605 	for (i = 0; i < nullb->dev->submit_queues; i++) {
1606 		nq = &nullb->queues[i];
1607 
1608 		null_init_queue(nullb, nq);
1609 
1610 		ret = setup_commands(nq);
1611 		if (ret)
1612 			return ret;
1613 		nullb->nr_queues++;
1614 	}
1615 	return 0;
1616 }
1617 
null_gendisk_register(struct nullb * nullb)1618 static int null_gendisk_register(struct nullb *nullb)
1619 {
1620 	struct gendisk *disk;
1621 	sector_t size;
1622 
1623 	disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1624 	if (!disk)
1625 		return -ENOMEM;
1626 	size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
1627 	set_capacity(disk, size >> 9);
1628 
1629 	disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1630 	disk->major		= null_major;
1631 	disk->first_minor	= nullb->index;
1632 	disk->fops		= &null_fops;
1633 	disk->private_data	= nullb;
1634 	disk->queue		= nullb->q;
1635 	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1636 
1637 	add_disk(disk);
1638 	return 0;
1639 }
1640 
null_init_tag_set(struct nullb * nullb,struct blk_mq_tag_set * set)1641 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1642 {
1643 	set->ops = &null_mq_ops;
1644 	set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1645 						g_submit_queues;
1646 	set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1647 						g_hw_queue_depth;
1648 	set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1649 	set->cmd_size	= sizeof(struct nullb_cmd);
1650 	set->flags = BLK_MQ_F_SHOULD_MERGE;
1651 	if (g_no_sched)
1652 		set->flags |= BLK_MQ_F_NO_SCHED;
1653 	set->driver_data = NULL;
1654 
1655 	if ((nullb && nullb->dev->blocking) || g_blocking)
1656 		set->flags |= BLK_MQ_F_BLOCKING;
1657 
1658 	return blk_mq_alloc_tag_set(set);
1659 }
1660 
null_validate_conf(struct nullb_device * dev)1661 static void null_validate_conf(struct nullb_device *dev)
1662 {
1663 	dev->blocksize = round_down(dev->blocksize, 512);
1664 	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1665 
1666 	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1667 		if (dev->submit_queues != nr_online_nodes)
1668 			dev->submit_queues = nr_online_nodes;
1669 	} else if (dev->submit_queues > nr_cpu_ids)
1670 		dev->submit_queues = nr_cpu_ids;
1671 	else if (dev->submit_queues == 0)
1672 		dev->submit_queues = 1;
1673 
1674 	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1675 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1676 
1677 	/* Do memory allocation, so set blocking */
1678 	if (dev->memory_backed)
1679 		dev->blocking = true;
1680 	else /* cache is meaningless */
1681 		dev->cache_size = 0;
1682 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1683 						dev->cache_size);
1684 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1685 	/* can not stop a queue */
1686 	if (dev->queue_mode == NULL_Q_BIO)
1687 		dev->mbps = 0;
1688 }
1689 
1690 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)1691 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1692 {
1693 	if (!str[0])
1694 		return true;
1695 
1696 	if (!setup_fault_attr(attr, str))
1697 		return false;
1698 
1699 	attr->verbose = 0;
1700 	return true;
1701 }
1702 #endif
1703 
null_setup_fault(void)1704 static bool null_setup_fault(void)
1705 {
1706 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1707 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1708 		return false;
1709 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1710 		return false;
1711 #endif
1712 	return true;
1713 }
1714 
null_add_dev(struct nullb_device * dev)1715 static int null_add_dev(struct nullb_device *dev)
1716 {
1717 	struct nullb *nullb;
1718 	int rv;
1719 
1720 	null_validate_conf(dev);
1721 
1722 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1723 	if (!nullb) {
1724 		rv = -ENOMEM;
1725 		goto out;
1726 	}
1727 	nullb->dev = dev;
1728 	dev->nullb = nullb;
1729 
1730 	spin_lock_init(&nullb->lock);
1731 
1732 	rv = setup_queues(nullb);
1733 	if (rv)
1734 		goto out_free_nullb;
1735 
1736 	if (dev->queue_mode == NULL_Q_MQ) {
1737 		if (shared_tags) {
1738 			nullb->tag_set = &tag_set;
1739 			rv = 0;
1740 		} else {
1741 			nullb->tag_set = &nullb->__tag_set;
1742 			rv = null_init_tag_set(nullb, nullb->tag_set);
1743 		}
1744 
1745 		if (rv)
1746 			goto out_cleanup_queues;
1747 
1748 		if (!null_setup_fault())
1749 			goto out_cleanup_queues;
1750 
1751 		nullb->tag_set->timeout = 5 * HZ;
1752 		nullb->q = blk_mq_init_queue(nullb->tag_set);
1753 		if (IS_ERR(nullb->q)) {
1754 			rv = -ENOMEM;
1755 			goto out_cleanup_tags;
1756 		}
1757 		null_init_queues(nullb);
1758 	} else if (dev->queue_mode == NULL_Q_BIO) {
1759 		nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node,
1760 						NULL);
1761 		if (!nullb->q) {
1762 			rv = -ENOMEM;
1763 			goto out_cleanup_queues;
1764 		}
1765 		blk_queue_make_request(nullb->q, null_queue_bio);
1766 		rv = init_driver_queues(nullb);
1767 		if (rv)
1768 			goto out_cleanup_blk_queue;
1769 	} else {
1770 		nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock,
1771 						dev->home_node);
1772 		if (!nullb->q) {
1773 			rv = -ENOMEM;
1774 			goto out_cleanup_queues;
1775 		}
1776 
1777 		if (!null_setup_fault())
1778 			goto out_cleanup_blk_queue;
1779 
1780 		blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
1781 		blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
1782 		blk_queue_rq_timed_out(nullb->q, null_rq_timed_out_fn);
1783 		nullb->q->rq_timeout = 5 * HZ;
1784 		rv = init_driver_queues(nullb);
1785 		if (rv)
1786 			goto out_cleanup_blk_queue;
1787 	}
1788 
1789 	if (dev->mbps) {
1790 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1791 		nullb_setup_bwtimer(nullb);
1792 	}
1793 
1794 	if (dev->cache_size > 0) {
1795 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1796 		blk_queue_write_cache(nullb->q, true, true);
1797 		blk_queue_flush_queueable(nullb->q, true);
1798 	}
1799 
1800 	if (dev->zoned) {
1801 		rv = null_zone_init(dev);
1802 		if (rv)
1803 			goto out_cleanup_blk_queue;
1804 
1805 		blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
1806 		nullb->q->limits.zoned = BLK_ZONED_HM;
1807 	}
1808 
1809 	nullb->q->queuedata = nullb;
1810 	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1811 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1812 
1813 	mutex_lock(&lock);
1814 	nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1815 	dev->index = nullb->index;
1816 	mutex_unlock(&lock);
1817 
1818 	blk_queue_logical_block_size(nullb->q, dev->blocksize);
1819 	blk_queue_physical_block_size(nullb->q, dev->blocksize);
1820 
1821 	null_config_discard(nullb);
1822 
1823 	sprintf(nullb->disk_name, "nullb%d", nullb->index);
1824 
1825 	rv = null_gendisk_register(nullb);
1826 	if (rv)
1827 		goto out_cleanup_zone;
1828 
1829 	mutex_lock(&lock);
1830 	list_add_tail(&nullb->list, &nullb_list);
1831 	mutex_unlock(&lock);
1832 
1833 	return 0;
1834 out_cleanup_zone:
1835 	if (dev->zoned)
1836 		null_zone_exit(dev);
1837 out_cleanup_blk_queue:
1838 	blk_cleanup_queue(nullb->q);
1839 out_cleanup_tags:
1840 	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1841 		blk_mq_free_tag_set(nullb->tag_set);
1842 out_cleanup_queues:
1843 	cleanup_queues(nullb);
1844 out_free_nullb:
1845 	kfree(nullb);
1846 out:
1847 	return rv;
1848 }
1849 
null_init(void)1850 static int __init null_init(void)
1851 {
1852 	int ret = 0;
1853 	unsigned int i;
1854 	struct nullb *nullb;
1855 	struct nullb_device *dev;
1856 
1857 	if (g_bs > PAGE_SIZE) {
1858 		pr_warn("null_blk: invalid block size\n");
1859 		pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
1860 		g_bs = PAGE_SIZE;
1861 	}
1862 
1863 	if (!is_power_of_2(g_zone_size)) {
1864 		pr_err("null_blk: zone_size must be power-of-two\n");
1865 		return -EINVAL;
1866 	}
1867 
1868 	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1869 		if (g_submit_queues != nr_online_nodes) {
1870 			pr_warn("null_blk: submit_queues param is set to %u.\n",
1871 							nr_online_nodes);
1872 			g_submit_queues = nr_online_nodes;
1873 		}
1874 	} else if (g_submit_queues > nr_cpu_ids)
1875 		g_submit_queues = nr_cpu_ids;
1876 	else if (g_submit_queues <= 0)
1877 		g_submit_queues = 1;
1878 
1879 	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1880 		ret = null_init_tag_set(NULL, &tag_set);
1881 		if (ret)
1882 			return ret;
1883 	}
1884 
1885 	config_group_init(&nullb_subsys.su_group);
1886 	mutex_init(&nullb_subsys.su_mutex);
1887 
1888 	ret = configfs_register_subsystem(&nullb_subsys);
1889 	if (ret)
1890 		goto err_tagset;
1891 
1892 	mutex_init(&lock);
1893 
1894 	null_major = register_blkdev(0, "nullb");
1895 	if (null_major < 0) {
1896 		ret = null_major;
1897 		goto err_conf;
1898 	}
1899 
1900 	for (i = 0; i < nr_devices; i++) {
1901 		dev = null_alloc_dev();
1902 		if (!dev) {
1903 			ret = -ENOMEM;
1904 			goto err_dev;
1905 		}
1906 		ret = null_add_dev(dev);
1907 		if (ret) {
1908 			null_free_dev(dev);
1909 			goto err_dev;
1910 		}
1911 	}
1912 
1913 	pr_info("null: module loaded\n");
1914 	return 0;
1915 
1916 err_dev:
1917 	while (!list_empty(&nullb_list)) {
1918 		nullb = list_entry(nullb_list.next, struct nullb, list);
1919 		dev = nullb->dev;
1920 		null_del_dev(nullb);
1921 		null_free_dev(dev);
1922 	}
1923 	unregister_blkdev(null_major, "nullb");
1924 err_conf:
1925 	configfs_unregister_subsystem(&nullb_subsys);
1926 err_tagset:
1927 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
1928 		blk_mq_free_tag_set(&tag_set);
1929 	return ret;
1930 }
1931 
null_exit(void)1932 static void __exit null_exit(void)
1933 {
1934 	struct nullb *nullb;
1935 
1936 	configfs_unregister_subsystem(&nullb_subsys);
1937 
1938 	unregister_blkdev(null_major, "nullb");
1939 
1940 	mutex_lock(&lock);
1941 	while (!list_empty(&nullb_list)) {
1942 		struct nullb_device *dev;
1943 
1944 		nullb = list_entry(nullb_list.next, struct nullb, list);
1945 		dev = nullb->dev;
1946 		null_del_dev(nullb);
1947 		null_free_dev(dev);
1948 	}
1949 	mutex_unlock(&lock);
1950 
1951 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
1952 		blk_mq_free_tag_set(&tag_set);
1953 }
1954 
1955 module_init(null_init);
1956 module_exit(null_exit);
1957 
1958 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1959 MODULE_LICENSE("GPL");
1960