1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/net/phy/micrel.c
4 *
5 * Driver for Micrel PHYs
6 *
7 * Author: David J. Choi
8 *
9 * Copyright (c) 2010-2013 Micrel, Inc.
10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11 *
12 * Support : Micrel Phys:
13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15 * ksz8021, ksz8031, ksz8051,
16 * ksz8081, ksz8091,
17 * ksz8061,
18 * Switch : ksz8873, ksz886x
19 * ksz9477, lan8804
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO 0x16
39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
44
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS 0x1B
47 #define KSZPHY_INTCS_JABBER BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
50 #define KSZPHY_INTCS_PARELLEL BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
54 #define KSZPHY_INTCS_LINK_UP BIT(8)
55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
56 KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 KSZPHY_INTCS_LINK_UP_STATUS)
61
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD 0x1d
64 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL 0
66 #define KSZ8081_LMD_STAT_OPEN 1
67 #define KSZ8081_LMD_STAT_SHORT 2
68 #define KSZ8081_LMD_STAT_FAIL 3
69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
73
74 #define KSZ9x31_LMD 0x12
75 #define KSZ9x31_LMD_VCT_EN BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
83 #define KSZ9x31_LMD_VCT_ST_OPEN 1
84 #define KSZ9x31_LMD_VCT_ST_SHORT 2
85 #define KSZ9x31_LMD_VCT_ST_FAIL 3
86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
94
95 #define KSZPHY_WIRE_PAIR_MASK 0x3
96
97 #define LAN8814_CABLE_DIAG 0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT 12
101
102 #define LAN8814_WIRE_PAIR_MASK 0xF
103
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC 0x18
106 #define LAN8814_INTS 0x1B
107
108 #define LAN8814_INT_LINK_DOWN BIT(2)
109 #define LAN8814_INT_LINK_UP BIT(0)
110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
111 LAN8814_INT_LINK_DOWN)
112
113 #define LAN8814_INTR_CTRL_REG 0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
116
117 /* Represents 1ppm adjustment in 2^32 format with
118 * each nsec contains 4 clock cycles.
119 * The value is calculated as following: (1/1000000)/((2^-32)/4)
120 */
121 #define LAN8814_1PPM_FORMAT 17179
122
123 #define PTP_RX_MOD 0x024F
124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
125 #define PTP_RX_TIMESTAMP_EN 0x024D
126 #define PTP_TX_TIMESTAMP_EN 0x028D
127
128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
132
133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
135
136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
138 #define LTC_HARD_RESET 0x023F
139 #define LTC_HARD_RESET_ BIT(0)
140
141 #define TSU_HARD_RESET 0x02C1
142 #define TSU_HARD_RESET_ BIT(0)
143
144 #define PTP_CMD_CTL 0x0200
145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
151
152 #define PTP_CLOCK_SET_SEC_MID 0x0206
153 #define PTP_CLOCK_SET_SEC_LO 0x0207
154 #define PTP_CLOCK_SET_NS_HI 0x0208
155 #define PTP_CLOCK_SET_NS_LO 0x0209
156
157 #define PTP_CLOCK_READ_SEC_MID 0x022A
158 #define PTP_CLOCK_READ_SEC_LO 0x022B
159 #define PTP_CLOCK_READ_NS_HI 0x022C
160 #define PTP_CLOCK_READ_NS_LO 0x022D
161
162 #define PTP_OPERATING_MODE 0x0241
163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
164
165 #define PTP_TX_MOD 0x028F
166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
168
169 #define PTP_RX_PARSE_CONFIG 0x0242
170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
173
174 #define PTP_TX_PARSE_CONFIG 0x0282
175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
178
179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
182
183 #define PTP_LTC_STEP_ADJ_HI 0x0212
184 #define PTP_LTC_STEP_ADJ_LO 0x0213
185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
186
187 #define LAN8814_INTR_STS_REG 0x0033
188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
192
193 #define PTP_CAP_INFO 0x022A
194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
196
197 #define PTP_TX_EGRESS_SEC_HI 0x0296
198 #define PTP_TX_EGRESS_SEC_LO 0x0297
199 #define PTP_TX_EGRESS_NS_HI 0x0294
200 #define PTP_TX_EGRESS_NS_LO 0x0295
201 #define PTP_TX_MSG_HEADER2 0x0299
202
203 #define PTP_RX_INGRESS_SEC_HI 0x0256
204 #define PTP_RX_INGRESS_SEC_LO 0x0257
205 #define PTP_RX_INGRESS_NS_HI 0x0254
206 #define PTP_RX_INGRESS_NS_LO 0x0255
207 #define PTP_RX_MSG_HEADER2 0x0259
208
209 #define PTP_TSU_INT_EN 0x0200
210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
214
215 #define PTP_TSU_INT_STS 0x0201
216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
220
221 #define LAN8814_LED_CTRL_1 0x0
222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
223
224 /* PHY Control 1 */
225 #define MII_KSZPHY_CTRL_1 0x1e
226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
227
228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
229 #define MII_KSZPHY_CTRL_2 0x1f
230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
231 /* bitmap of PHY register to set interrupt mode */
232 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
239
240 /* Write/read to/from extended registers */
241 #define MII_KSZPHY_EXTREG 0x0b
242 #define KSZPHY_EXTREG_WRITE 0x8000
243
244 #define MII_KSZPHY_EXTREG_WRITE 0x0c
245 #define MII_KSZPHY_EXTREG_READ 0x0d
246
247 /* Extended registers */
248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
251
252 #define PS_TO_REG 200
253 #define FIFO_SIZE 8
254
255 /* Delay used to get the second part from the LTC */
256 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC)
257
258 struct kszphy_hw_stat {
259 const char *string;
260 u8 reg;
261 u8 bits;
262 };
263
264 static struct kszphy_hw_stat kszphy_hw_stats[] = {
265 { "phy_receive_errors", 21, 16},
266 { "phy_idle_errors", 10, 8 },
267 };
268
269 struct kszphy_type {
270 u32 led_mode_reg;
271 u16 interrupt_level_mask;
272 u16 cable_diag_reg;
273 unsigned long pair_mask;
274 u16 disable_dll_tx_bit;
275 u16 disable_dll_rx_bit;
276 u16 disable_dll_mask;
277 bool has_broadcast_disable;
278 bool has_nand_tree_disable;
279 bool has_rmii_ref_clk_sel;
280 };
281
282 /* Shared structure between the PHYs of the same package. */
283 struct lan8814_shared_priv {
284 struct phy_device *phydev;
285 struct ptp_clock *ptp_clock;
286 struct ptp_clock_info ptp_clock_info;
287
288 /* Reference counter to how many ports in the package are enabling the
289 * timestamping
290 */
291 u8 ref;
292
293 /* Lock for ptp_clock and ref */
294 struct mutex shared_lock;
295 };
296
297 struct lan8814_ptp_rx_ts {
298 struct list_head list;
299 u32 seconds;
300 u32 nsec;
301 u16 seq_id;
302 };
303
304 struct kszphy_ptp_priv {
305 struct mii_timestamper mii_ts;
306 struct phy_device *phydev;
307
308 struct sk_buff_head tx_queue;
309 struct sk_buff_head rx_queue;
310
311 struct list_head rx_ts_list;
312 /* Lock for Rx ts fifo */
313 spinlock_t rx_ts_lock;
314
315 int hwts_tx_type;
316 enum hwtstamp_rx_filters rx_filter;
317 int layer;
318 int version;
319
320 struct ptp_clock *ptp_clock;
321 struct ptp_clock_info ptp_clock_info;
322 /* Lock for ptp_clock */
323 struct mutex ptp_lock;
324 struct ptp_pin_desc *pin_config;
325
326 s64 seconds;
327 /* Lock for accessing seconds */
328 spinlock_t seconds_lock;
329 };
330
331 struct kszphy_priv {
332 struct kszphy_ptp_priv ptp_priv;
333 const struct kszphy_type *type;
334 int led_mode;
335 u16 vct_ctrl1000;
336 bool rmii_ref_clk_sel;
337 bool rmii_ref_clk_sel_val;
338 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
339 };
340
341 static const struct kszphy_type lan8814_type = {
342 .led_mode_reg = ~LAN8814_LED_CTRL_1,
343 .cable_diag_reg = LAN8814_CABLE_DIAG,
344 .pair_mask = LAN8814_WIRE_PAIR_MASK,
345 };
346
347 static const struct kszphy_type ksz886x_type = {
348 .cable_diag_reg = KSZ8081_LMD,
349 .pair_mask = KSZPHY_WIRE_PAIR_MASK,
350 };
351
352 static const struct kszphy_type ksz8021_type = {
353 .led_mode_reg = MII_KSZPHY_CTRL_2,
354 .has_broadcast_disable = true,
355 .has_nand_tree_disable = true,
356 .has_rmii_ref_clk_sel = true,
357 };
358
359 static const struct kszphy_type ksz8041_type = {
360 .led_mode_reg = MII_KSZPHY_CTRL_1,
361 };
362
363 static const struct kszphy_type ksz8051_type = {
364 .led_mode_reg = MII_KSZPHY_CTRL_2,
365 .has_nand_tree_disable = true,
366 };
367
368 static const struct kszphy_type ksz8081_type = {
369 .led_mode_reg = MII_KSZPHY_CTRL_2,
370 .has_broadcast_disable = true,
371 .has_nand_tree_disable = true,
372 .has_rmii_ref_clk_sel = true,
373 };
374
375 static const struct kszphy_type ks8737_type = {
376 .interrupt_level_mask = BIT(14),
377 };
378
379 static const struct kszphy_type ksz9021_type = {
380 .interrupt_level_mask = BIT(14),
381 };
382
383 static const struct kszphy_type ksz9131_type = {
384 .interrupt_level_mask = BIT(14),
385 .disable_dll_tx_bit = BIT(12),
386 .disable_dll_rx_bit = BIT(12),
387 .disable_dll_mask = BIT_MASK(12),
388 };
389
390 static const struct kszphy_type lan8841_type = {
391 .disable_dll_tx_bit = BIT(14),
392 .disable_dll_rx_bit = BIT(14),
393 .disable_dll_mask = BIT_MASK(14),
394 .cable_diag_reg = LAN8814_CABLE_DIAG,
395 .pair_mask = LAN8814_WIRE_PAIR_MASK,
396 };
397
kszphy_extended_write(struct phy_device * phydev,u32 regnum,u16 val)398 static int kszphy_extended_write(struct phy_device *phydev,
399 u32 regnum, u16 val)
400 {
401 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
402 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
403 }
404
kszphy_extended_read(struct phy_device * phydev,u32 regnum)405 static int kszphy_extended_read(struct phy_device *phydev,
406 u32 regnum)
407 {
408 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
409 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
410 }
411
kszphy_ack_interrupt(struct phy_device * phydev)412 static int kszphy_ack_interrupt(struct phy_device *phydev)
413 {
414 /* bit[7..0] int status, which is a read and clear register. */
415 int rc;
416
417 rc = phy_read(phydev, MII_KSZPHY_INTCS);
418
419 return (rc < 0) ? rc : 0;
420 }
421
kszphy_config_intr(struct phy_device * phydev)422 static int kszphy_config_intr(struct phy_device *phydev)
423 {
424 const struct kszphy_type *type = phydev->drv->driver_data;
425 int temp, err;
426 u16 mask;
427
428 if (type && type->interrupt_level_mask)
429 mask = type->interrupt_level_mask;
430 else
431 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
432
433 /* set the interrupt pin active low */
434 temp = phy_read(phydev, MII_KSZPHY_CTRL);
435 if (temp < 0)
436 return temp;
437 temp &= ~mask;
438 phy_write(phydev, MII_KSZPHY_CTRL, temp);
439
440 /* enable / disable interrupts */
441 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
442 err = kszphy_ack_interrupt(phydev);
443 if (err)
444 return err;
445
446 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
447 } else {
448 err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
449 if (err)
450 return err;
451
452 err = kszphy_ack_interrupt(phydev);
453 }
454
455 return err;
456 }
457
kszphy_handle_interrupt(struct phy_device * phydev)458 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
459 {
460 int irq_status;
461
462 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
463 if (irq_status < 0) {
464 phy_error(phydev);
465 return IRQ_NONE;
466 }
467
468 if (!(irq_status & KSZPHY_INTCS_STATUS))
469 return IRQ_NONE;
470
471 phy_trigger_machine(phydev);
472
473 return IRQ_HANDLED;
474 }
475
kszphy_rmii_clk_sel(struct phy_device * phydev,bool val)476 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
477 {
478 int ctrl;
479
480 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
481 if (ctrl < 0)
482 return ctrl;
483
484 if (val)
485 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
486 else
487 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
488
489 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
490 }
491
kszphy_setup_led(struct phy_device * phydev,u32 reg,int val)492 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
493 {
494 int rc, temp, shift;
495
496 switch (reg) {
497 case MII_KSZPHY_CTRL_1:
498 shift = 14;
499 break;
500 case MII_KSZPHY_CTRL_2:
501 shift = 4;
502 break;
503 default:
504 return -EINVAL;
505 }
506
507 temp = phy_read(phydev, reg);
508 if (temp < 0) {
509 rc = temp;
510 goto out;
511 }
512
513 temp &= ~(3 << shift);
514 temp |= val << shift;
515 rc = phy_write(phydev, reg, temp);
516 out:
517 if (rc < 0)
518 phydev_err(phydev, "failed to set led mode\n");
519
520 return rc;
521 }
522
523 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
524 * unique (non-broadcast) address on a shared bus.
525 */
kszphy_broadcast_disable(struct phy_device * phydev)526 static int kszphy_broadcast_disable(struct phy_device *phydev)
527 {
528 int ret;
529
530 ret = phy_read(phydev, MII_KSZPHY_OMSO);
531 if (ret < 0)
532 goto out;
533
534 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
535 out:
536 if (ret)
537 phydev_err(phydev, "failed to disable broadcast address\n");
538
539 return ret;
540 }
541
kszphy_nand_tree_disable(struct phy_device * phydev)542 static int kszphy_nand_tree_disable(struct phy_device *phydev)
543 {
544 int ret;
545
546 ret = phy_read(phydev, MII_KSZPHY_OMSO);
547 if (ret < 0)
548 goto out;
549
550 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
551 return 0;
552
553 ret = phy_write(phydev, MII_KSZPHY_OMSO,
554 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
555 out:
556 if (ret)
557 phydev_err(phydev, "failed to disable NAND tree mode\n");
558
559 return ret;
560 }
561
562 /* Some config bits need to be set again on resume, handle them here. */
kszphy_config_reset(struct phy_device * phydev)563 static int kszphy_config_reset(struct phy_device *phydev)
564 {
565 struct kszphy_priv *priv = phydev->priv;
566 int ret;
567
568 if (priv->rmii_ref_clk_sel) {
569 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
570 if (ret) {
571 phydev_err(phydev,
572 "failed to set rmii reference clock\n");
573 return ret;
574 }
575 }
576
577 if (priv->type && priv->led_mode >= 0)
578 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
579
580 return 0;
581 }
582
kszphy_config_init(struct phy_device * phydev)583 static int kszphy_config_init(struct phy_device *phydev)
584 {
585 struct kszphy_priv *priv = phydev->priv;
586 const struct kszphy_type *type;
587
588 if (!priv)
589 return 0;
590
591 type = priv->type;
592
593 if (type && type->has_broadcast_disable)
594 kszphy_broadcast_disable(phydev);
595
596 if (type && type->has_nand_tree_disable)
597 kszphy_nand_tree_disable(phydev);
598
599 return kszphy_config_reset(phydev);
600 }
601
ksz8041_fiber_mode(struct phy_device * phydev)602 static int ksz8041_fiber_mode(struct phy_device *phydev)
603 {
604 struct device_node *of_node = phydev->mdio.dev.of_node;
605
606 return of_property_read_bool(of_node, "micrel,fiber-mode");
607 }
608
ksz8041_config_init(struct phy_device * phydev)609 static int ksz8041_config_init(struct phy_device *phydev)
610 {
611 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
612
613 /* Limit supported and advertised modes in fiber mode */
614 if (ksz8041_fiber_mode(phydev)) {
615 phydev->dev_flags |= MICREL_PHY_FXEN;
616 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
617 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
618
619 linkmode_and(phydev->supported, phydev->supported, mask);
620 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
621 phydev->supported);
622 linkmode_and(phydev->advertising, phydev->advertising, mask);
623 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
624 phydev->advertising);
625 phydev->autoneg = AUTONEG_DISABLE;
626 }
627
628 return kszphy_config_init(phydev);
629 }
630
ksz8041_config_aneg(struct phy_device * phydev)631 static int ksz8041_config_aneg(struct phy_device *phydev)
632 {
633 /* Skip auto-negotiation in fiber mode */
634 if (phydev->dev_flags & MICREL_PHY_FXEN) {
635 phydev->speed = SPEED_100;
636 return 0;
637 }
638
639 return genphy_config_aneg(phydev);
640 }
641
ksz8051_ksz8795_match_phy_device(struct phy_device * phydev,const bool ksz_8051)642 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
643 const bool ksz_8051)
644 {
645 int ret;
646
647 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
648 return 0;
649
650 ret = phy_read(phydev, MII_BMSR);
651 if (ret < 0)
652 return ret;
653
654 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
655 * exact PHY ID. However, they can be told apart by the extended
656 * capability registers presence. The KSZ8051 PHY has them while
657 * the switch does not.
658 */
659 ret &= BMSR_ERCAP;
660 if (ksz_8051)
661 return ret;
662 else
663 return !ret;
664 }
665
ksz8051_match_phy_device(struct phy_device * phydev)666 static int ksz8051_match_phy_device(struct phy_device *phydev)
667 {
668 return ksz8051_ksz8795_match_phy_device(phydev, true);
669 }
670
ksz8081_config_init(struct phy_device * phydev)671 static int ksz8081_config_init(struct phy_device *phydev)
672 {
673 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
674 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
675 * pull-down is missing, the factory test mode should be cleared by
676 * manually writing a 0.
677 */
678 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
679
680 return kszphy_config_init(phydev);
681 }
682
ksz8081_config_mdix(struct phy_device * phydev,u8 ctrl)683 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
684 {
685 u16 val;
686
687 switch (ctrl) {
688 case ETH_TP_MDI:
689 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
690 break;
691 case ETH_TP_MDI_X:
692 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
693 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
694 break;
695 case ETH_TP_MDI_AUTO:
696 val = 0;
697 break;
698 default:
699 return 0;
700 }
701
702 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
703 KSZ8081_CTRL2_HP_MDIX |
704 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
705 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
706 KSZ8081_CTRL2_HP_MDIX | val);
707 }
708
ksz8081_config_aneg(struct phy_device * phydev)709 static int ksz8081_config_aneg(struct phy_device *phydev)
710 {
711 int ret;
712
713 ret = genphy_config_aneg(phydev);
714 if (ret)
715 return ret;
716
717 /* The MDI-X configuration is automatically changed by the PHY after
718 * switching from autoneg off to on. So, take MDI-X configuration under
719 * own control and set it after autoneg configuration was done.
720 */
721 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
722 }
723
ksz8081_mdix_update(struct phy_device * phydev)724 static int ksz8081_mdix_update(struct phy_device *phydev)
725 {
726 int ret;
727
728 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
729 if (ret < 0)
730 return ret;
731
732 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
733 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
734 phydev->mdix_ctrl = ETH_TP_MDI_X;
735 else
736 phydev->mdix_ctrl = ETH_TP_MDI;
737 } else {
738 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
739 }
740
741 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
742 if (ret < 0)
743 return ret;
744
745 if (ret & KSZ8081_CTRL1_MDIX_STAT)
746 phydev->mdix = ETH_TP_MDI;
747 else
748 phydev->mdix = ETH_TP_MDI_X;
749
750 return 0;
751 }
752
ksz8081_read_status(struct phy_device * phydev)753 static int ksz8081_read_status(struct phy_device *phydev)
754 {
755 int ret;
756
757 ret = ksz8081_mdix_update(phydev);
758 if (ret < 0)
759 return ret;
760
761 return genphy_read_status(phydev);
762 }
763
ksz8061_config_init(struct phy_device * phydev)764 static int ksz8061_config_init(struct phy_device *phydev)
765 {
766 int ret;
767
768 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
769 if (ret)
770 return ret;
771
772 return kszphy_config_init(phydev);
773 }
774
ksz8795_match_phy_device(struct phy_device * phydev)775 static int ksz8795_match_phy_device(struct phy_device *phydev)
776 {
777 return ksz8051_ksz8795_match_phy_device(phydev, false);
778 }
779
ksz9021_load_values_from_of(struct phy_device * phydev,const struct device_node * of_node,u16 reg,const char * field1,const char * field2,const char * field3,const char * field4)780 static int ksz9021_load_values_from_of(struct phy_device *phydev,
781 const struct device_node *of_node,
782 u16 reg,
783 const char *field1, const char *field2,
784 const char *field3, const char *field4)
785 {
786 int val1 = -1;
787 int val2 = -2;
788 int val3 = -3;
789 int val4 = -4;
790 int newval;
791 int matches = 0;
792
793 if (!of_property_read_u32(of_node, field1, &val1))
794 matches++;
795
796 if (!of_property_read_u32(of_node, field2, &val2))
797 matches++;
798
799 if (!of_property_read_u32(of_node, field3, &val3))
800 matches++;
801
802 if (!of_property_read_u32(of_node, field4, &val4))
803 matches++;
804
805 if (!matches)
806 return 0;
807
808 if (matches < 4)
809 newval = kszphy_extended_read(phydev, reg);
810 else
811 newval = 0;
812
813 if (val1 != -1)
814 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
815
816 if (val2 != -2)
817 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
818
819 if (val3 != -3)
820 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
821
822 if (val4 != -4)
823 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
824
825 return kszphy_extended_write(phydev, reg, newval);
826 }
827
ksz9021_config_init(struct phy_device * phydev)828 static int ksz9021_config_init(struct phy_device *phydev)
829 {
830 const struct device_node *of_node;
831 const struct device *dev_walker;
832
833 /* The Micrel driver has a deprecated option to place phy OF
834 * properties in the MAC node. Walk up the tree of devices to
835 * find a device with an OF node.
836 */
837 dev_walker = &phydev->mdio.dev;
838 do {
839 of_node = dev_walker->of_node;
840 dev_walker = dev_walker->parent;
841
842 } while (!of_node && dev_walker);
843
844 if (of_node) {
845 ksz9021_load_values_from_of(phydev, of_node,
846 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
847 "txen-skew-ps", "txc-skew-ps",
848 "rxdv-skew-ps", "rxc-skew-ps");
849 ksz9021_load_values_from_of(phydev, of_node,
850 MII_KSZPHY_RX_DATA_PAD_SKEW,
851 "rxd0-skew-ps", "rxd1-skew-ps",
852 "rxd2-skew-ps", "rxd3-skew-ps");
853 ksz9021_load_values_from_of(phydev, of_node,
854 MII_KSZPHY_TX_DATA_PAD_SKEW,
855 "txd0-skew-ps", "txd1-skew-ps",
856 "txd2-skew-ps", "txd3-skew-ps");
857 }
858 return 0;
859 }
860
861 #define KSZ9031_PS_TO_REG 60
862
863 /* Extended registers */
864 /* MMD Address 0x0 */
865 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
866 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
867
868 /* MMD Address 0x2 */
869 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
870 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
871 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
872
873 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
874 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
875 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
876 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
877 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
878
879 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
880 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
881 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
882 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
883 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
884
885 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
886 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
887 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
888
889 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
890 * provide different RGMII options we need to configure delay offset
891 * for each pad relative to build in delay.
892 */
893 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
894 * 1.80ns
895 */
896 #define RX_ID 0x7
897 #define RX_CLK_ID 0x19
898
899 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
900 * internal 1.2ns delay.
901 */
902 #define RX_ND 0xc
903 #define RX_CLK_ND 0x0
904
905 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
906 #define TX_ID 0x0
907 #define TX_CLK_ID 0x1f
908
909 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
910 * dealy
911 */
912 #define TX_ND 0x7
913 #define TX_CLK_ND 0xf
914
915 /* MMD Address 0x1C */
916 #define MII_KSZ9031RN_EDPD 0x23
917 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
918
ksz9031_of_load_skew_values(struct phy_device * phydev,const struct device_node * of_node,u16 reg,size_t field_sz,const char * field[],u8 numfields,bool * update)919 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
920 const struct device_node *of_node,
921 u16 reg, size_t field_sz,
922 const char *field[], u8 numfields,
923 bool *update)
924 {
925 int val[4] = {-1, -2, -3, -4};
926 int matches = 0;
927 u16 mask;
928 u16 maxval;
929 u16 newval;
930 int i;
931
932 for (i = 0; i < numfields; i++)
933 if (!of_property_read_u32(of_node, field[i], val + i))
934 matches++;
935
936 if (!matches)
937 return 0;
938
939 *update |= true;
940
941 if (matches < numfields)
942 newval = phy_read_mmd(phydev, 2, reg);
943 else
944 newval = 0;
945
946 maxval = (field_sz == 4) ? 0xf : 0x1f;
947 for (i = 0; i < numfields; i++)
948 if (val[i] != -(i + 1)) {
949 mask = 0xffff;
950 mask ^= maxval << (field_sz * i);
951 newval = (newval & mask) |
952 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
953 << (field_sz * i));
954 }
955
956 return phy_write_mmd(phydev, 2, reg, newval);
957 }
958
959 /* Center KSZ9031RNX FLP timing at 16ms. */
ksz9031_center_flp_timing(struct phy_device * phydev)960 static int ksz9031_center_flp_timing(struct phy_device *phydev)
961 {
962 int result;
963
964 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
965 0x0006);
966 if (result)
967 return result;
968
969 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
970 0x1A80);
971 if (result)
972 return result;
973
974 return genphy_restart_aneg(phydev);
975 }
976
977 /* Enable energy-detect power-down mode */
ksz9031_enable_edpd(struct phy_device * phydev)978 static int ksz9031_enable_edpd(struct phy_device *phydev)
979 {
980 int reg;
981
982 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
983 if (reg < 0)
984 return reg;
985 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
986 reg | MII_KSZ9031RN_EDPD_ENABLE);
987 }
988
ksz9031_config_rgmii_delay(struct phy_device * phydev)989 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
990 {
991 u16 rx, tx, rx_clk, tx_clk;
992 int ret;
993
994 switch (phydev->interface) {
995 case PHY_INTERFACE_MODE_RGMII:
996 tx = TX_ND;
997 tx_clk = TX_CLK_ND;
998 rx = RX_ND;
999 rx_clk = RX_CLK_ND;
1000 break;
1001 case PHY_INTERFACE_MODE_RGMII_ID:
1002 tx = TX_ID;
1003 tx_clk = TX_CLK_ID;
1004 rx = RX_ID;
1005 rx_clk = RX_CLK_ID;
1006 break;
1007 case PHY_INTERFACE_MODE_RGMII_RXID:
1008 tx = TX_ND;
1009 tx_clk = TX_CLK_ND;
1010 rx = RX_ID;
1011 rx_clk = RX_CLK_ID;
1012 break;
1013 case PHY_INTERFACE_MODE_RGMII_TXID:
1014 tx = TX_ID;
1015 tx_clk = TX_CLK_ID;
1016 rx = RX_ND;
1017 rx_clk = RX_CLK_ND;
1018 break;
1019 default:
1020 return 0;
1021 }
1022
1023 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1024 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1025 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1026 if (ret < 0)
1027 return ret;
1028
1029 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1030 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1031 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1032 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1033 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1034 if (ret < 0)
1035 return ret;
1036
1037 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1038 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1039 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1040 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1041 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1042 if (ret < 0)
1043 return ret;
1044
1045 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1046 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1047 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1048 }
1049
ksz9031_config_init(struct phy_device * phydev)1050 static int ksz9031_config_init(struct phy_device *phydev)
1051 {
1052 const struct device_node *of_node;
1053 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1054 static const char *rx_data_skews[4] = {
1055 "rxd0-skew-ps", "rxd1-skew-ps",
1056 "rxd2-skew-ps", "rxd3-skew-ps"
1057 };
1058 static const char *tx_data_skews[4] = {
1059 "txd0-skew-ps", "txd1-skew-ps",
1060 "txd2-skew-ps", "txd3-skew-ps"
1061 };
1062 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1063 const struct device *dev_walker;
1064 int result;
1065
1066 result = ksz9031_enable_edpd(phydev);
1067 if (result < 0)
1068 return result;
1069
1070 /* The Micrel driver has a deprecated option to place phy OF
1071 * properties in the MAC node. Walk up the tree of devices to
1072 * find a device with an OF node.
1073 */
1074 dev_walker = &phydev->mdio.dev;
1075 do {
1076 of_node = dev_walker->of_node;
1077 dev_walker = dev_walker->parent;
1078 } while (!of_node && dev_walker);
1079
1080 if (of_node) {
1081 bool update = false;
1082
1083 if (phy_interface_is_rgmii(phydev)) {
1084 result = ksz9031_config_rgmii_delay(phydev);
1085 if (result < 0)
1086 return result;
1087 }
1088
1089 ksz9031_of_load_skew_values(phydev, of_node,
1090 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1091 clk_skews, 2, &update);
1092
1093 ksz9031_of_load_skew_values(phydev, of_node,
1094 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1095 control_skews, 2, &update);
1096
1097 ksz9031_of_load_skew_values(phydev, of_node,
1098 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1099 rx_data_skews, 4, &update);
1100
1101 ksz9031_of_load_skew_values(phydev, of_node,
1102 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1103 tx_data_skews, 4, &update);
1104
1105 if (update && !phy_interface_is_rgmii(phydev))
1106 phydev_warn(phydev,
1107 "*-skew-ps values should be used only with RGMII PHY modes\n");
1108
1109 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1110 * When the device links in the 1000BASE-T slave mode only,
1111 * the optional 125MHz reference output clock (CLK125_NDO)
1112 * has wide duty cycle variation.
1113 *
1114 * The optional CLK125_NDO clock does not meet the RGMII
1115 * 45/55 percent (min/max) duty cycle requirement and therefore
1116 * cannot be used directly by the MAC side for clocking
1117 * applications that have setup/hold time requirements on
1118 * rising and falling clock edges.
1119 *
1120 * Workaround:
1121 * Force the phy to be the master to receive a stable clock
1122 * which meets the duty cycle requirement.
1123 */
1124 if (of_property_read_bool(of_node, "micrel,force-master")) {
1125 result = phy_read(phydev, MII_CTRL1000);
1126 if (result < 0)
1127 goto err_force_master;
1128
1129 /* enable master mode, config & prefer master */
1130 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1131 result = phy_write(phydev, MII_CTRL1000, result);
1132 if (result < 0)
1133 goto err_force_master;
1134 }
1135 }
1136
1137 return ksz9031_center_flp_timing(phydev);
1138
1139 err_force_master:
1140 phydev_err(phydev, "failed to force the phy to master mode\n");
1141 return result;
1142 }
1143
1144 #define KSZ9131_SKEW_5BIT_MAX 2400
1145 #define KSZ9131_SKEW_4BIT_MAX 800
1146 #define KSZ9131_OFFSET 700
1147 #define KSZ9131_STEP 100
1148
ksz9131_of_load_skew_values(struct phy_device * phydev,struct device_node * of_node,u16 reg,size_t field_sz,char * field[],u8 numfields)1149 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1150 struct device_node *of_node,
1151 u16 reg, size_t field_sz,
1152 char *field[], u8 numfields)
1153 {
1154 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1155 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1156 int skewval, skewmax = 0;
1157 int matches = 0;
1158 u16 maxval;
1159 u16 newval;
1160 u16 mask;
1161 int i;
1162
1163 /* psec properties in dts should mean x pico seconds */
1164 if (field_sz == 5)
1165 skewmax = KSZ9131_SKEW_5BIT_MAX;
1166 else
1167 skewmax = KSZ9131_SKEW_4BIT_MAX;
1168
1169 for (i = 0; i < numfields; i++)
1170 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1171 if (skewval < -KSZ9131_OFFSET)
1172 skewval = -KSZ9131_OFFSET;
1173 else if (skewval > skewmax)
1174 skewval = skewmax;
1175
1176 val[i] = skewval + KSZ9131_OFFSET;
1177 matches++;
1178 }
1179
1180 if (!matches)
1181 return 0;
1182
1183 if (matches < numfields)
1184 newval = phy_read_mmd(phydev, 2, reg);
1185 else
1186 newval = 0;
1187
1188 maxval = (field_sz == 4) ? 0xf : 0x1f;
1189 for (i = 0; i < numfields; i++)
1190 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1191 mask = 0xffff;
1192 mask ^= maxval << (field_sz * i);
1193 newval = (newval & mask) |
1194 (((val[i] / KSZ9131_STEP) & maxval)
1195 << (field_sz * i));
1196 }
1197
1198 return phy_write_mmd(phydev, 2, reg, newval);
1199 }
1200
1201 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1202 #define KSZ9131RN_RXC_DLL_CTRL 76
1203 #define KSZ9131RN_TXC_DLL_CTRL 77
1204 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1205
ksz9131_config_rgmii_delay(struct phy_device * phydev)1206 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1207 {
1208 const struct kszphy_type *type = phydev->drv->driver_data;
1209 u16 rxcdll_val, txcdll_val;
1210 int ret;
1211
1212 switch (phydev->interface) {
1213 case PHY_INTERFACE_MODE_RGMII:
1214 rxcdll_val = type->disable_dll_rx_bit;
1215 txcdll_val = type->disable_dll_tx_bit;
1216 break;
1217 case PHY_INTERFACE_MODE_RGMII_ID:
1218 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1219 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1220 break;
1221 case PHY_INTERFACE_MODE_RGMII_RXID:
1222 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1223 txcdll_val = type->disable_dll_tx_bit;
1224 break;
1225 case PHY_INTERFACE_MODE_RGMII_TXID:
1226 rxcdll_val = type->disable_dll_rx_bit;
1227 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1228 break;
1229 default:
1230 return 0;
1231 }
1232
1233 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1234 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1235 rxcdll_val);
1236 if (ret < 0)
1237 return ret;
1238
1239 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1240 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1241 txcdll_val);
1242 }
1243
1244 /* Silicon Errata DS80000693B
1245 *
1246 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1247 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1248 * according to the datasheet (off if there is no link).
1249 */
ksz9131_led_errata(struct phy_device * phydev)1250 static int ksz9131_led_errata(struct phy_device *phydev)
1251 {
1252 int reg;
1253
1254 reg = phy_read_mmd(phydev, 2, 0);
1255 if (reg < 0)
1256 return reg;
1257
1258 if (!(reg & BIT(4)))
1259 return 0;
1260
1261 return phy_set_bits(phydev, 0x1e, BIT(9));
1262 }
1263
ksz9131_config_init(struct phy_device * phydev)1264 static int ksz9131_config_init(struct phy_device *phydev)
1265 {
1266 struct device_node *of_node;
1267 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1268 char *rx_data_skews[4] = {
1269 "rxd0-skew-psec", "rxd1-skew-psec",
1270 "rxd2-skew-psec", "rxd3-skew-psec"
1271 };
1272 char *tx_data_skews[4] = {
1273 "txd0-skew-psec", "txd1-skew-psec",
1274 "txd2-skew-psec", "txd3-skew-psec"
1275 };
1276 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1277 const struct device *dev_walker;
1278 int ret;
1279
1280 dev_walker = &phydev->mdio.dev;
1281 do {
1282 of_node = dev_walker->of_node;
1283 dev_walker = dev_walker->parent;
1284 } while (!of_node && dev_walker);
1285
1286 if (!of_node)
1287 return 0;
1288
1289 if (phy_interface_is_rgmii(phydev)) {
1290 ret = ksz9131_config_rgmii_delay(phydev);
1291 if (ret < 0)
1292 return ret;
1293 }
1294
1295 ret = ksz9131_of_load_skew_values(phydev, of_node,
1296 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1297 clk_skews, 2);
1298 if (ret < 0)
1299 return ret;
1300
1301 ret = ksz9131_of_load_skew_values(phydev, of_node,
1302 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1303 control_skews, 2);
1304 if (ret < 0)
1305 return ret;
1306
1307 ret = ksz9131_of_load_skew_values(phydev, of_node,
1308 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1309 rx_data_skews, 4);
1310 if (ret < 0)
1311 return ret;
1312
1313 ret = ksz9131_of_load_skew_values(phydev, of_node,
1314 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1315 tx_data_skews, 4);
1316 if (ret < 0)
1317 return ret;
1318
1319 ret = ksz9131_led_errata(phydev);
1320 if (ret < 0)
1321 return ret;
1322
1323 return 0;
1324 }
1325
1326 #define MII_KSZ9131_AUTO_MDIX 0x1C
1327 #define MII_KSZ9131_AUTO_MDI_SET BIT(7)
1328 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6)
1329
ksz9131_mdix_update(struct phy_device * phydev)1330 static int ksz9131_mdix_update(struct phy_device *phydev)
1331 {
1332 int ret;
1333
1334 ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1335 if (ret < 0)
1336 return ret;
1337
1338 if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1339 if (ret & MII_KSZ9131_AUTO_MDI_SET)
1340 phydev->mdix_ctrl = ETH_TP_MDI;
1341 else
1342 phydev->mdix_ctrl = ETH_TP_MDI_X;
1343 } else {
1344 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1345 }
1346
1347 if (ret & MII_KSZ9131_AUTO_MDI_SET)
1348 phydev->mdix = ETH_TP_MDI;
1349 else
1350 phydev->mdix = ETH_TP_MDI_X;
1351
1352 return 0;
1353 }
1354
ksz9131_config_mdix(struct phy_device * phydev,u8 ctrl)1355 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1356 {
1357 u16 val;
1358
1359 switch (ctrl) {
1360 case ETH_TP_MDI:
1361 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1362 MII_KSZ9131_AUTO_MDI_SET;
1363 break;
1364 case ETH_TP_MDI_X:
1365 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1366 break;
1367 case ETH_TP_MDI_AUTO:
1368 val = 0;
1369 break;
1370 default:
1371 return 0;
1372 }
1373
1374 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1375 MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1376 MII_KSZ9131_AUTO_MDI_SET, val);
1377 }
1378
ksz9131_read_status(struct phy_device * phydev)1379 static int ksz9131_read_status(struct phy_device *phydev)
1380 {
1381 int ret;
1382
1383 ret = ksz9131_mdix_update(phydev);
1384 if (ret < 0)
1385 return ret;
1386
1387 return genphy_read_status(phydev);
1388 }
1389
ksz9131_config_aneg(struct phy_device * phydev)1390 static int ksz9131_config_aneg(struct phy_device *phydev)
1391 {
1392 int ret;
1393
1394 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1395 if (ret)
1396 return ret;
1397
1398 return genphy_config_aneg(phydev);
1399 }
1400
ksz9477_get_features(struct phy_device * phydev)1401 static int ksz9477_get_features(struct phy_device *phydev)
1402 {
1403 int ret;
1404
1405 ret = genphy_read_abilities(phydev);
1406 if (ret)
1407 return ret;
1408
1409 /* The "EEE control and capability 1" (Register 3.20) seems to be
1410 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1411 * on the 7.60 will affect 3.20. So, we need to construct our own list
1412 * of caps.
1413 * KSZ8563R should have 100BaseTX/Full only.
1414 */
1415 linkmode_and(phydev->supported_eee, phydev->supported,
1416 PHY_EEE_CAP1_FEATURES);
1417
1418 return 0;
1419 }
1420
1421 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1422 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1423 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
ksz8873mll_read_status(struct phy_device * phydev)1424 static int ksz8873mll_read_status(struct phy_device *phydev)
1425 {
1426 int regval;
1427
1428 /* dummy read */
1429 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1430
1431 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1432
1433 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1434 phydev->duplex = DUPLEX_HALF;
1435 else
1436 phydev->duplex = DUPLEX_FULL;
1437
1438 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1439 phydev->speed = SPEED_10;
1440 else
1441 phydev->speed = SPEED_100;
1442
1443 phydev->link = 1;
1444 phydev->pause = phydev->asym_pause = 0;
1445
1446 return 0;
1447 }
1448
ksz9031_get_features(struct phy_device * phydev)1449 static int ksz9031_get_features(struct phy_device *phydev)
1450 {
1451 int ret;
1452
1453 ret = genphy_read_abilities(phydev);
1454 if (ret < 0)
1455 return ret;
1456
1457 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1458 * Whenever the device's Asymmetric Pause capability is set to 1,
1459 * link-up may fail after a link-up to link-down transition.
1460 *
1461 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1462 *
1463 * Workaround:
1464 * Do not enable the Asymmetric Pause capability bit.
1465 */
1466 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1467
1468 /* We force setting the Pause capability as the core will force the
1469 * Asymmetric Pause capability to 1 otherwise.
1470 */
1471 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1472
1473 return 0;
1474 }
1475
ksz9031_read_status(struct phy_device * phydev)1476 static int ksz9031_read_status(struct phy_device *phydev)
1477 {
1478 int err;
1479 int regval;
1480
1481 err = genphy_read_status(phydev);
1482 if (err)
1483 return err;
1484
1485 /* Make sure the PHY is not broken. Read idle error count,
1486 * and reset the PHY if it is maxed out.
1487 */
1488 regval = phy_read(phydev, MII_STAT1000);
1489 if ((regval & 0xFF) == 0xFF) {
1490 phy_init_hw(phydev);
1491 phydev->link = 0;
1492 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1493 phydev->drv->config_intr(phydev);
1494 return genphy_config_aneg(phydev);
1495 }
1496
1497 return 0;
1498 }
1499
ksz9x31_cable_test_start(struct phy_device * phydev)1500 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1501 {
1502 struct kszphy_priv *priv = phydev->priv;
1503 int ret;
1504
1505 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1506 * Prior to running the cable diagnostics, Auto-negotiation should
1507 * be disabled, full duplex set and the link speed set to 1000Mbps
1508 * via the Basic Control Register.
1509 */
1510 ret = phy_modify(phydev, MII_BMCR,
1511 BMCR_SPEED1000 | BMCR_FULLDPLX |
1512 BMCR_ANENABLE | BMCR_SPEED100,
1513 BMCR_SPEED1000 | BMCR_FULLDPLX);
1514 if (ret)
1515 return ret;
1516
1517 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1518 * The Master-Slave configuration should be set to Slave by writing
1519 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1520 * Register.
1521 */
1522 ret = phy_read(phydev, MII_CTRL1000);
1523 if (ret < 0)
1524 return ret;
1525
1526 /* Cache these bits, they need to be restored once LinkMD finishes. */
1527 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1528 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1529 ret |= CTL1000_ENABLE_MASTER;
1530
1531 return phy_write(phydev, MII_CTRL1000, ret);
1532 }
1533
ksz9x31_cable_test_result_trans(u16 status)1534 static int ksz9x31_cable_test_result_trans(u16 status)
1535 {
1536 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1537 case KSZ9x31_LMD_VCT_ST_NORMAL:
1538 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1539 case KSZ9x31_LMD_VCT_ST_OPEN:
1540 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1541 case KSZ9x31_LMD_VCT_ST_SHORT:
1542 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1543 case KSZ9x31_LMD_VCT_ST_FAIL:
1544 fallthrough;
1545 default:
1546 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1547 }
1548 }
1549
ksz9x31_cable_test_failed(u16 status)1550 static bool ksz9x31_cable_test_failed(u16 status)
1551 {
1552 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1553
1554 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1555 }
1556
ksz9x31_cable_test_fault_length_valid(u16 status)1557 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1558 {
1559 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1560 case KSZ9x31_LMD_VCT_ST_OPEN:
1561 fallthrough;
1562 case KSZ9x31_LMD_VCT_ST_SHORT:
1563 return true;
1564 }
1565 return false;
1566 }
1567
ksz9x31_cable_test_fault_length(struct phy_device * phydev,u16 stat)1568 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1569 {
1570 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1571
1572 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1573 *
1574 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1575 */
1576 if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1577 dt = clamp(dt - 22, 0, 255);
1578
1579 return (dt * 400) / 10;
1580 }
1581
ksz9x31_cable_test_wait_for_completion(struct phy_device * phydev)1582 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1583 {
1584 int val, ret;
1585
1586 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1587 !(val & KSZ9x31_LMD_VCT_EN),
1588 30000, 100000, true);
1589
1590 return ret < 0 ? ret : 0;
1591 }
1592
ksz9x31_cable_test_get_pair(int pair)1593 static int ksz9x31_cable_test_get_pair(int pair)
1594 {
1595 static const int ethtool_pair[] = {
1596 ETHTOOL_A_CABLE_PAIR_A,
1597 ETHTOOL_A_CABLE_PAIR_B,
1598 ETHTOOL_A_CABLE_PAIR_C,
1599 ETHTOOL_A_CABLE_PAIR_D,
1600 };
1601
1602 return ethtool_pair[pair];
1603 }
1604
ksz9x31_cable_test_one_pair(struct phy_device * phydev,int pair)1605 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1606 {
1607 int ret, val;
1608
1609 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1610 * To test each individual cable pair, set the cable pair in the Cable
1611 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1612 * Diagnostic Register, along with setting the Cable Diagnostics Test
1613 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1614 * will self clear when the test is concluded.
1615 */
1616 ret = phy_write(phydev, KSZ9x31_LMD,
1617 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1618 if (ret)
1619 return ret;
1620
1621 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1622 if (ret)
1623 return ret;
1624
1625 val = phy_read(phydev, KSZ9x31_LMD);
1626 if (val < 0)
1627 return val;
1628
1629 if (ksz9x31_cable_test_failed(val))
1630 return -EAGAIN;
1631
1632 ret = ethnl_cable_test_result(phydev,
1633 ksz9x31_cable_test_get_pair(pair),
1634 ksz9x31_cable_test_result_trans(val));
1635 if (ret)
1636 return ret;
1637
1638 if (!ksz9x31_cable_test_fault_length_valid(val))
1639 return 0;
1640
1641 return ethnl_cable_test_fault_length(phydev,
1642 ksz9x31_cable_test_get_pair(pair),
1643 ksz9x31_cable_test_fault_length(phydev, val));
1644 }
1645
ksz9x31_cable_test_get_status(struct phy_device * phydev,bool * finished)1646 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1647 bool *finished)
1648 {
1649 struct kszphy_priv *priv = phydev->priv;
1650 unsigned long pair_mask = 0xf;
1651 int retries = 20;
1652 int pair, ret, rv;
1653
1654 *finished = false;
1655
1656 /* Try harder if link partner is active */
1657 while (pair_mask && retries--) {
1658 for_each_set_bit(pair, &pair_mask, 4) {
1659 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1660 if (ret == -EAGAIN)
1661 continue;
1662 if (ret < 0)
1663 return ret;
1664 clear_bit(pair, &pair_mask);
1665 }
1666 /* If link partner is in autonegotiation mode it will send 2ms
1667 * of FLPs with at least 6ms of silence.
1668 * Add 2ms sleep to have better chances to hit this silence.
1669 */
1670 if (pair_mask)
1671 usleep_range(2000, 3000);
1672 }
1673
1674 /* Report remaining unfinished pair result as unknown. */
1675 for_each_set_bit(pair, &pair_mask, 4) {
1676 ret = ethnl_cable_test_result(phydev,
1677 ksz9x31_cable_test_get_pair(pair),
1678 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1679 }
1680
1681 *finished = true;
1682
1683 /* Restore cached bits from before LinkMD got started. */
1684 rv = phy_modify(phydev, MII_CTRL1000,
1685 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1686 priv->vct_ctrl1000);
1687 if (rv)
1688 return rv;
1689
1690 return ret;
1691 }
1692
ksz8873mll_config_aneg(struct phy_device * phydev)1693 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1694 {
1695 return 0;
1696 }
1697
ksz886x_config_mdix(struct phy_device * phydev,u8 ctrl)1698 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1699 {
1700 u16 val;
1701
1702 switch (ctrl) {
1703 case ETH_TP_MDI:
1704 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1705 break;
1706 case ETH_TP_MDI_X:
1707 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1708 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1709 * sheet seems to be missing:
1710 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1711 * 0 = Normal operation (transmit on TX+/TX- pins)
1712 */
1713 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1714 break;
1715 case ETH_TP_MDI_AUTO:
1716 val = 0;
1717 break;
1718 default:
1719 return 0;
1720 }
1721
1722 return phy_modify(phydev, MII_BMCR,
1723 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1724 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1725 KSZ886X_BMCR_HP_MDIX | val);
1726 }
1727
ksz886x_config_aneg(struct phy_device * phydev)1728 static int ksz886x_config_aneg(struct phy_device *phydev)
1729 {
1730 int ret;
1731
1732 ret = genphy_config_aneg(phydev);
1733 if (ret)
1734 return ret;
1735
1736 /* The MDI-X configuration is automatically changed by the PHY after
1737 * switching from autoneg off to on. So, take MDI-X configuration under
1738 * own control and set it after autoneg configuration was done.
1739 */
1740 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1741 }
1742
ksz886x_mdix_update(struct phy_device * phydev)1743 static int ksz886x_mdix_update(struct phy_device *phydev)
1744 {
1745 int ret;
1746
1747 ret = phy_read(phydev, MII_BMCR);
1748 if (ret < 0)
1749 return ret;
1750
1751 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1752 if (ret & KSZ886X_BMCR_FORCE_MDI)
1753 phydev->mdix_ctrl = ETH_TP_MDI_X;
1754 else
1755 phydev->mdix_ctrl = ETH_TP_MDI;
1756 } else {
1757 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1758 }
1759
1760 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1761 if (ret < 0)
1762 return ret;
1763
1764 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1765 if (ret & KSZ886X_CTRL_MDIX_STAT)
1766 phydev->mdix = ETH_TP_MDI_X;
1767 else
1768 phydev->mdix = ETH_TP_MDI;
1769
1770 return 0;
1771 }
1772
ksz886x_read_status(struct phy_device * phydev)1773 static int ksz886x_read_status(struct phy_device *phydev)
1774 {
1775 int ret;
1776
1777 ret = ksz886x_mdix_update(phydev);
1778 if (ret < 0)
1779 return ret;
1780
1781 return genphy_read_status(phydev);
1782 }
1783
1784 struct ksz9477_errata_write {
1785 u8 dev_addr;
1786 u8 reg_addr;
1787 u16 val;
1788 };
1789
1790 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1791 /* Register settings are needed to improve PHY receive performance */
1792 {0x01, 0x6f, 0xdd0b},
1793 {0x01, 0x8f, 0x6032},
1794 {0x01, 0x9d, 0x248c},
1795 {0x01, 0x75, 0x0060},
1796 {0x01, 0xd3, 0x7777},
1797 {0x1c, 0x06, 0x3008},
1798 {0x1c, 0x08, 0x2000},
1799
1800 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1801 {0x1c, 0x04, 0x00d0},
1802
1803 /* Register settings are required to meet data sheet supply current specifications */
1804 {0x1c, 0x13, 0x6eff},
1805 {0x1c, 0x14, 0xe6ff},
1806 {0x1c, 0x15, 0x6eff},
1807 {0x1c, 0x16, 0xe6ff},
1808 {0x1c, 0x17, 0x00ff},
1809 {0x1c, 0x18, 0x43ff},
1810 {0x1c, 0x19, 0xc3ff},
1811 {0x1c, 0x1a, 0x6fff},
1812 {0x1c, 0x1b, 0x07ff},
1813 {0x1c, 0x1c, 0x0fff},
1814 {0x1c, 0x1d, 0xe7ff},
1815 {0x1c, 0x1e, 0xefff},
1816 {0x1c, 0x20, 0xeeee},
1817 };
1818
ksz9477_config_init(struct phy_device * phydev)1819 static int ksz9477_config_init(struct phy_device *phydev)
1820 {
1821 int err;
1822 int i;
1823
1824 /* Apply PHY settings to address errata listed in
1825 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1826 * Silicon Errata and Data Sheet Clarification documents.
1827 *
1828 * Document notes: Before configuring the PHY MMD registers, it is
1829 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1830 * disabled by writing to register 0xN100-0xN101. After writing the
1831 * MMD registers, and after all errata workarounds that involve PHY
1832 * register settings, write register 0xN100-0xN101 again to enable
1833 * and restart auto-negotiation.
1834 */
1835 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1836 if (err)
1837 return err;
1838
1839 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1840 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1841
1842 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1843 if (err)
1844 return err;
1845 }
1846
1847 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1848 * in this switch shall be regarded as broken.
1849 */
1850 if (phydev->dev_flags & MICREL_NO_EEE)
1851 phydev->eee_broken_modes = -1;
1852
1853 err = genphy_restart_aneg(phydev);
1854 if (err)
1855 return err;
1856
1857 return kszphy_config_init(phydev);
1858 }
1859
kszphy_get_sset_count(struct phy_device * phydev)1860 static int kszphy_get_sset_count(struct phy_device *phydev)
1861 {
1862 return ARRAY_SIZE(kszphy_hw_stats);
1863 }
1864
kszphy_get_strings(struct phy_device * phydev,u8 * data)1865 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1866 {
1867 int i;
1868
1869 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1870 strscpy(data + i * ETH_GSTRING_LEN,
1871 kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1872 }
1873 }
1874
kszphy_get_stat(struct phy_device * phydev,int i)1875 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1876 {
1877 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1878 struct kszphy_priv *priv = phydev->priv;
1879 int val;
1880 u64 ret;
1881
1882 val = phy_read(phydev, stat.reg);
1883 if (val < 0) {
1884 ret = U64_MAX;
1885 } else {
1886 val = val & ((1 << stat.bits) - 1);
1887 priv->stats[i] += val;
1888 ret = priv->stats[i];
1889 }
1890
1891 return ret;
1892 }
1893
kszphy_get_stats(struct phy_device * phydev,struct ethtool_stats * stats,u64 * data)1894 static void kszphy_get_stats(struct phy_device *phydev,
1895 struct ethtool_stats *stats, u64 *data)
1896 {
1897 int i;
1898
1899 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1900 data[i] = kszphy_get_stat(phydev, i);
1901 }
1902
kszphy_suspend(struct phy_device * phydev)1903 static int kszphy_suspend(struct phy_device *phydev)
1904 {
1905 /* Disable PHY Interrupts */
1906 if (phy_interrupt_is_valid(phydev)) {
1907 phydev->interrupts = PHY_INTERRUPT_DISABLED;
1908 if (phydev->drv->config_intr)
1909 phydev->drv->config_intr(phydev);
1910 }
1911
1912 return genphy_suspend(phydev);
1913 }
1914
kszphy_parse_led_mode(struct phy_device * phydev)1915 static void kszphy_parse_led_mode(struct phy_device *phydev)
1916 {
1917 const struct kszphy_type *type = phydev->drv->driver_data;
1918 const struct device_node *np = phydev->mdio.dev.of_node;
1919 struct kszphy_priv *priv = phydev->priv;
1920 int ret;
1921
1922 if (type && type->led_mode_reg) {
1923 ret = of_property_read_u32(np, "micrel,led-mode",
1924 &priv->led_mode);
1925
1926 if (ret)
1927 priv->led_mode = -1;
1928
1929 if (priv->led_mode > 3) {
1930 phydev_err(phydev, "invalid led mode: 0x%02x\n",
1931 priv->led_mode);
1932 priv->led_mode = -1;
1933 }
1934 } else {
1935 priv->led_mode = -1;
1936 }
1937 }
1938
kszphy_resume(struct phy_device * phydev)1939 static int kszphy_resume(struct phy_device *phydev)
1940 {
1941 int ret;
1942
1943 genphy_resume(phydev);
1944
1945 /* After switching from power-down to normal mode, an internal global
1946 * reset is automatically generated. Wait a minimum of 1 ms before
1947 * read/write access to the PHY registers.
1948 */
1949 usleep_range(1000, 2000);
1950
1951 ret = kszphy_config_reset(phydev);
1952 if (ret)
1953 return ret;
1954
1955 /* Enable PHY Interrupts */
1956 if (phy_interrupt_is_valid(phydev)) {
1957 phydev->interrupts = PHY_INTERRUPT_ENABLED;
1958 if (phydev->drv->config_intr)
1959 phydev->drv->config_intr(phydev);
1960 }
1961
1962 return 0;
1963 }
1964
kszphy_probe(struct phy_device * phydev)1965 static int kszphy_probe(struct phy_device *phydev)
1966 {
1967 const struct kszphy_type *type = phydev->drv->driver_data;
1968 const struct device_node *np = phydev->mdio.dev.of_node;
1969 struct kszphy_priv *priv;
1970 struct clk *clk;
1971
1972 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1973 if (!priv)
1974 return -ENOMEM;
1975
1976 phydev->priv = priv;
1977
1978 priv->type = type;
1979
1980 kszphy_parse_led_mode(phydev);
1981
1982 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1983 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1984 if (!IS_ERR_OR_NULL(clk)) {
1985 unsigned long rate = clk_get_rate(clk);
1986 bool rmii_ref_clk_sel_25_mhz;
1987
1988 if (type)
1989 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1990 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1991 "micrel,rmii-reference-clock-select-25-mhz");
1992
1993 if (rate > 24500000 && rate < 25500000) {
1994 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1995 } else if (rate > 49500000 && rate < 50500000) {
1996 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1997 } else {
1998 phydev_err(phydev, "Clock rate out of range: %ld\n",
1999 rate);
2000 return -EINVAL;
2001 }
2002 }
2003
2004 if (ksz8041_fiber_mode(phydev))
2005 phydev->port = PORT_FIBRE;
2006
2007 /* Support legacy board-file configuration */
2008 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2009 priv->rmii_ref_clk_sel = true;
2010 priv->rmii_ref_clk_sel_val = true;
2011 }
2012
2013 return 0;
2014 }
2015
lan8814_cable_test_start(struct phy_device * phydev)2016 static int lan8814_cable_test_start(struct phy_device *phydev)
2017 {
2018 /* If autoneg is enabled, we won't be able to test cross pair
2019 * short. In this case, the PHY will "detect" a link and
2020 * confuse the internal state machine - disable auto neg here.
2021 * Set the speed to 1000mbit and full duplex.
2022 */
2023 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2024 BMCR_SPEED1000 | BMCR_FULLDPLX);
2025 }
2026
ksz886x_cable_test_start(struct phy_device * phydev)2027 static int ksz886x_cable_test_start(struct phy_device *phydev)
2028 {
2029 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2030 return -EOPNOTSUPP;
2031
2032 /* If autoneg is enabled, we won't be able to test cross pair
2033 * short. In this case, the PHY will "detect" a link and
2034 * confuse the internal state machine - disable auto neg here.
2035 * If autoneg is disabled, we should set the speed to 10mbit.
2036 */
2037 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2038 }
2039
ksz886x_cable_test_result_trans(u16 status,u16 mask)2040 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2041 {
2042 switch (FIELD_GET(mask, status)) {
2043 case KSZ8081_LMD_STAT_NORMAL:
2044 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2045 case KSZ8081_LMD_STAT_SHORT:
2046 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2047 case KSZ8081_LMD_STAT_OPEN:
2048 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2049 case KSZ8081_LMD_STAT_FAIL:
2050 fallthrough;
2051 default:
2052 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2053 }
2054 }
2055
ksz886x_cable_test_failed(u16 status,u16 mask)2056 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2057 {
2058 return FIELD_GET(mask, status) ==
2059 KSZ8081_LMD_STAT_FAIL;
2060 }
2061
ksz886x_cable_test_fault_length_valid(u16 status,u16 mask)2062 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2063 {
2064 switch (FIELD_GET(mask, status)) {
2065 case KSZ8081_LMD_STAT_OPEN:
2066 fallthrough;
2067 case KSZ8081_LMD_STAT_SHORT:
2068 return true;
2069 }
2070 return false;
2071 }
2072
ksz886x_cable_test_fault_length(struct phy_device * phydev,u16 status,u16 data_mask)2073 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2074 u16 status, u16 data_mask)
2075 {
2076 int dt;
2077
2078 /* According to the data sheet the distance to the fault is
2079 * DELTA_TIME * 0.4 meters for ksz phys.
2080 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2081 */
2082 dt = FIELD_GET(data_mask, status);
2083
2084 if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2085 return ((dt - 22) * 800) / 10;
2086 else
2087 return (dt * 400) / 10;
2088 }
2089
ksz886x_cable_test_wait_for_completion(struct phy_device * phydev)2090 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2091 {
2092 const struct kszphy_type *type = phydev->drv->driver_data;
2093 int val, ret;
2094
2095 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2096 !(val & KSZ8081_LMD_ENABLE_TEST),
2097 30000, 100000, true);
2098
2099 return ret < 0 ? ret : 0;
2100 }
2101
lan8814_cable_test_one_pair(struct phy_device * phydev,int pair)2102 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2103 {
2104 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2105 ETHTOOL_A_CABLE_PAIR_B,
2106 ETHTOOL_A_CABLE_PAIR_C,
2107 ETHTOOL_A_CABLE_PAIR_D,
2108 };
2109 u32 fault_length;
2110 int ret;
2111 int val;
2112
2113 val = KSZ8081_LMD_ENABLE_TEST;
2114 val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2115
2116 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2117 if (ret < 0)
2118 return ret;
2119
2120 ret = ksz886x_cable_test_wait_for_completion(phydev);
2121 if (ret)
2122 return ret;
2123
2124 val = phy_read(phydev, LAN8814_CABLE_DIAG);
2125 if (val < 0)
2126 return val;
2127
2128 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2129 return -EAGAIN;
2130
2131 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2132 ksz886x_cable_test_result_trans(val,
2133 LAN8814_CABLE_DIAG_STAT_MASK
2134 ));
2135 if (ret)
2136 return ret;
2137
2138 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2139 return 0;
2140
2141 fault_length = ksz886x_cable_test_fault_length(phydev, val,
2142 LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2143
2144 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2145 }
2146
ksz886x_cable_test_one_pair(struct phy_device * phydev,int pair)2147 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2148 {
2149 static const int ethtool_pair[] = {
2150 ETHTOOL_A_CABLE_PAIR_A,
2151 ETHTOOL_A_CABLE_PAIR_B,
2152 };
2153 int ret, val, mdix;
2154 u32 fault_length;
2155
2156 /* There is no way to choice the pair, like we do one ksz9031.
2157 * We can workaround this limitation by using the MDI-X functionality.
2158 */
2159 if (pair == 0)
2160 mdix = ETH_TP_MDI;
2161 else
2162 mdix = ETH_TP_MDI_X;
2163
2164 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2165 case PHY_ID_KSZ8081:
2166 ret = ksz8081_config_mdix(phydev, mdix);
2167 break;
2168 case PHY_ID_KSZ886X:
2169 ret = ksz886x_config_mdix(phydev, mdix);
2170 break;
2171 default:
2172 ret = -ENODEV;
2173 }
2174
2175 if (ret)
2176 return ret;
2177
2178 /* Now we are ready to fire. This command will send a 100ns pulse
2179 * to the pair.
2180 */
2181 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2182 if (ret)
2183 return ret;
2184
2185 ret = ksz886x_cable_test_wait_for_completion(phydev);
2186 if (ret)
2187 return ret;
2188
2189 val = phy_read(phydev, KSZ8081_LMD);
2190 if (val < 0)
2191 return val;
2192
2193 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2194 return -EAGAIN;
2195
2196 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2197 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2198 if (ret)
2199 return ret;
2200
2201 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2202 return 0;
2203
2204 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2205
2206 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2207 }
2208
ksz886x_cable_test_get_status(struct phy_device * phydev,bool * finished)2209 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2210 bool *finished)
2211 {
2212 const struct kszphy_type *type = phydev->drv->driver_data;
2213 unsigned long pair_mask = type->pair_mask;
2214 int retries = 20;
2215 int ret = 0;
2216 int pair;
2217
2218 *finished = false;
2219
2220 /* Try harder if link partner is active */
2221 while (pair_mask && retries--) {
2222 for_each_set_bit(pair, &pair_mask, 4) {
2223 if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2224 ret = lan8814_cable_test_one_pair(phydev, pair);
2225 else
2226 ret = ksz886x_cable_test_one_pair(phydev, pair);
2227 if (ret == -EAGAIN)
2228 continue;
2229 if (ret < 0)
2230 return ret;
2231 clear_bit(pair, &pair_mask);
2232 }
2233 /* If link partner is in autonegotiation mode it will send 2ms
2234 * of FLPs with at least 6ms of silence.
2235 * Add 2ms sleep to have better chances to hit this silence.
2236 */
2237 if (pair_mask)
2238 msleep(2);
2239 }
2240
2241 *finished = true;
2242
2243 return ret;
2244 }
2245
2246 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
2247 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
2248 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
2249
2250 #define LAN8814_QSGMII_SOFT_RESET 0x43
2251 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
2252 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
2253 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
2254 #define LAN8814_ALIGN_SWAP 0x4a
2255 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
2256 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2257
2258 #define LAN8804_ALIGN_SWAP 0x4a
2259 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
2260 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2261 #define LAN8814_CLOCK_MANAGEMENT 0xd
2262 #define LAN8814_LINK_QUALITY 0x8e
2263
lanphy_read_page_reg(struct phy_device * phydev,int page,u32 addr)2264 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2265 {
2266 int data;
2267
2268 phy_lock_mdio_bus(phydev);
2269 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2270 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2271 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2272 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2273 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2274 phy_unlock_mdio_bus(phydev);
2275
2276 return data;
2277 }
2278
lanphy_write_page_reg(struct phy_device * phydev,int page,u16 addr,u16 val)2279 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2280 u16 val)
2281 {
2282 phy_lock_mdio_bus(phydev);
2283 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2284 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2285 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2286 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2287
2288 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2289 if (val != 0)
2290 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2291 val);
2292 phy_unlock_mdio_bus(phydev);
2293 return val;
2294 }
2295
lan8814_config_ts_intr(struct phy_device * phydev,bool enable)2296 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2297 {
2298 u16 val = 0;
2299
2300 if (enable)
2301 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2302 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2303 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2304 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2305
2306 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2307 }
2308
lan8814_ptp_rx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2309 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2310 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2311 {
2312 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2313 *seconds = (*seconds << 16) |
2314 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2315
2316 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2317 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2318 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2319
2320 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2321 }
2322
lan8814_ptp_tx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2323 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2324 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2325 {
2326 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2327 *seconds = *seconds << 16 |
2328 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2329
2330 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2331 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2332 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2333
2334 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2335 }
2336
lan8814_ts_info(struct mii_timestamper * mii_ts,struct ethtool_ts_info * info)2337 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2338 {
2339 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2340 struct phy_device *phydev = ptp_priv->phydev;
2341 struct lan8814_shared_priv *shared = phydev->shared->priv;
2342
2343 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2344 SOF_TIMESTAMPING_RX_HARDWARE |
2345 SOF_TIMESTAMPING_RAW_HARDWARE;
2346
2347 info->phc_index = ptp_clock_index(shared->ptp_clock);
2348
2349 info->tx_types =
2350 (1 << HWTSTAMP_TX_OFF) |
2351 (1 << HWTSTAMP_TX_ON) |
2352 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2353
2354 info->rx_filters =
2355 (1 << HWTSTAMP_FILTER_NONE) |
2356 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2357 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2358 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2359 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2360
2361 return 0;
2362 }
2363
lan8814_flush_fifo(struct phy_device * phydev,bool egress)2364 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2365 {
2366 int i;
2367
2368 for (i = 0; i < FIFO_SIZE; ++i)
2369 lanphy_read_page_reg(phydev, 5,
2370 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2371
2372 /* Read to clear overflow status bit */
2373 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2374 }
2375
lan8814_hwtstamp(struct mii_timestamper * mii_ts,struct ifreq * ifr)2376 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2377 {
2378 struct kszphy_ptp_priv *ptp_priv =
2379 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2380 struct phy_device *phydev = ptp_priv->phydev;
2381 struct lan8814_shared_priv *shared = phydev->shared->priv;
2382 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2383 struct hwtstamp_config config;
2384 int txcfg = 0, rxcfg = 0;
2385 int pkt_ts_enable;
2386
2387 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2388 return -EFAULT;
2389
2390 ptp_priv->hwts_tx_type = config.tx_type;
2391 ptp_priv->rx_filter = config.rx_filter;
2392
2393 switch (config.rx_filter) {
2394 case HWTSTAMP_FILTER_NONE:
2395 ptp_priv->layer = 0;
2396 ptp_priv->version = 0;
2397 break;
2398 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2399 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2400 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2401 ptp_priv->layer = PTP_CLASS_L4;
2402 ptp_priv->version = PTP_CLASS_V2;
2403 break;
2404 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2405 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2406 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2407 ptp_priv->layer = PTP_CLASS_L2;
2408 ptp_priv->version = PTP_CLASS_V2;
2409 break;
2410 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2411 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2412 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2413 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2414 ptp_priv->version = PTP_CLASS_V2;
2415 break;
2416 default:
2417 return -ERANGE;
2418 }
2419
2420 if (ptp_priv->layer & PTP_CLASS_L2) {
2421 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2422 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2423 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2424 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2425 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2426 }
2427 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2428 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2429
2430 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2431 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2432 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2433 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2434
2435 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2436 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2437 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2438
2439 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2440 lan8814_config_ts_intr(ptp_priv->phydev, true);
2441 else
2442 lan8814_config_ts_intr(ptp_priv->phydev, false);
2443
2444 mutex_lock(&shared->shared_lock);
2445 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2446 shared->ref++;
2447 else
2448 shared->ref--;
2449
2450 if (shared->ref)
2451 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2452 PTP_CMD_CTL_PTP_ENABLE_);
2453 else
2454 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2455 PTP_CMD_CTL_PTP_DISABLE_);
2456 mutex_unlock(&shared->shared_lock);
2457
2458 /* In case of multiple starts and stops, these needs to be cleared */
2459 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2460 list_del(&rx_ts->list);
2461 kfree(rx_ts);
2462 }
2463 skb_queue_purge(&ptp_priv->rx_queue);
2464 skb_queue_purge(&ptp_priv->tx_queue);
2465
2466 lan8814_flush_fifo(ptp_priv->phydev, false);
2467 lan8814_flush_fifo(ptp_priv->phydev, true);
2468
2469 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2470 }
2471
lan8814_txtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2472 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2473 struct sk_buff *skb, int type)
2474 {
2475 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2476
2477 switch (ptp_priv->hwts_tx_type) {
2478 case HWTSTAMP_TX_ONESTEP_SYNC:
2479 if (ptp_msg_is_sync(skb, type)) {
2480 kfree_skb(skb);
2481 return;
2482 }
2483 fallthrough;
2484 case HWTSTAMP_TX_ON:
2485 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2486 skb_queue_tail(&ptp_priv->tx_queue, skb);
2487 break;
2488 case HWTSTAMP_TX_OFF:
2489 default:
2490 kfree_skb(skb);
2491 break;
2492 }
2493 }
2494
lan8814_get_sig_rx(struct sk_buff * skb,u16 * sig)2495 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2496 {
2497 struct ptp_header *ptp_header;
2498 u32 type;
2499
2500 skb_push(skb, ETH_HLEN);
2501 type = ptp_classify_raw(skb);
2502 ptp_header = ptp_parse_header(skb, type);
2503 skb_pull_inline(skb, ETH_HLEN);
2504
2505 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2506 }
2507
lan8814_match_rx_skb(struct kszphy_ptp_priv * ptp_priv,struct sk_buff * skb)2508 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2509 struct sk_buff *skb)
2510 {
2511 struct skb_shared_hwtstamps *shhwtstamps;
2512 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2513 unsigned long flags;
2514 bool ret = false;
2515 u16 skb_sig;
2516
2517 lan8814_get_sig_rx(skb, &skb_sig);
2518
2519 /* Iterate over all RX timestamps and match it with the received skbs */
2520 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2521 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2522 /* Check if we found the signature we were looking for. */
2523 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2524 continue;
2525
2526 shhwtstamps = skb_hwtstamps(skb);
2527 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2528 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2529 rx_ts->nsec);
2530 list_del(&rx_ts->list);
2531 kfree(rx_ts);
2532
2533 ret = true;
2534 break;
2535 }
2536 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2537
2538 if (ret)
2539 netif_rx(skb);
2540 return ret;
2541 }
2542
lan8814_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2543 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2544 {
2545 struct kszphy_ptp_priv *ptp_priv =
2546 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2547
2548 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2549 type == PTP_CLASS_NONE)
2550 return false;
2551
2552 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2553 return false;
2554
2555 /* If we failed to match then add it to the queue for when the timestamp
2556 * will come
2557 */
2558 if (!lan8814_match_rx_skb(ptp_priv, skb))
2559 skb_queue_tail(&ptp_priv->rx_queue, skb);
2560
2561 return true;
2562 }
2563
lan8814_ptp_clock_set(struct phy_device * phydev,u32 seconds,u32 nano_seconds)2564 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2565 u32 seconds, u32 nano_seconds)
2566 {
2567 u32 sec_low, sec_high, nsec_low, nsec_high;
2568
2569 sec_low = seconds & 0xffff;
2570 sec_high = (seconds >> 16) & 0xffff;
2571 nsec_low = nano_seconds & 0xffff;
2572 nsec_high = (nano_seconds >> 16) & 0x3fff;
2573
2574 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2575 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2576 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2577 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2578
2579 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2580 }
2581
lan8814_ptp_clock_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds)2582 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2583 u32 *seconds, u32 *nano_seconds)
2584 {
2585 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2586
2587 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2588 *seconds = (*seconds << 16) |
2589 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2590
2591 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2592 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2593 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2594 }
2595
lan8814_ptpci_gettime64(struct ptp_clock_info * ptpci,struct timespec64 * ts)2596 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2597 struct timespec64 *ts)
2598 {
2599 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2600 ptp_clock_info);
2601 struct phy_device *phydev = shared->phydev;
2602 u32 nano_seconds;
2603 u32 seconds;
2604
2605 mutex_lock(&shared->shared_lock);
2606 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2607 mutex_unlock(&shared->shared_lock);
2608 ts->tv_sec = seconds;
2609 ts->tv_nsec = nano_seconds;
2610
2611 return 0;
2612 }
2613
lan8814_ptpci_settime64(struct ptp_clock_info * ptpci,const struct timespec64 * ts)2614 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2615 const struct timespec64 *ts)
2616 {
2617 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2618 ptp_clock_info);
2619 struct phy_device *phydev = shared->phydev;
2620
2621 mutex_lock(&shared->shared_lock);
2622 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2623 mutex_unlock(&shared->shared_lock);
2624
2625 return 0;
2626 }
2627
lan8814_ptp_clock_step(struct phy_device * phydev,s64 time_step_ns)2628 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2629 s64 time_step_ns)
2630 {
2631 u32 nano_seconds_step;
2632 u64 abs_time_step_ns;
2633 u32 unsigned_seconds;
2634 u32 nano_seconds;
2635 u32 remainder;
2636 s32 seconds;
2637
2638 if (time_step_ns > 15000000000LL) {
2639 /* convert to clock set */
2640 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2641 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2642 &remainder);
2643 nano_seconds += remainder;
2644 if (nano_seconds >= 1000000000) {
2645 unsigned_seconds++;
2646 nano_seconds -= 1000000000;
2647 }
2648 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2649 return;
2650 } else if (time_step_ns < -15000000000LL) {
2651 /* convert to clock set */
2652 time_step_ns = -time_step_ns;
2653
2654 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2655 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2656 &remainder);
2657 nano_seconds_step = remainder;
2658 if (nano_seconds < nano_seconds_step) {
2659 unsigned_seconds--;
2660 nano_seconds += 1000000000;
2661 }
2662 nano_seconds -= nano_seconds_step;
2663 lan8814_ptp_clock_set(phydev, unsigned_seconds,
2664 nano_seconds);
2665 return;
2666 }
2667
2668 /* do clock step */
2669 if (time_step_ns >= 0) {
2670 abs_time_step_ns = (u64)time_step_ns;
2671 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2672 &remainder);
2673 nano_seconds = remainder;
2674 } else {
2675 abs_time_step_ns = (u64)(-time_step_ns);
2676 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2677 &remainder));
2678 nano_seconds = remainder;
2679 if (nano_seconds > 0) {
2680 /* subtracting nano seconds is not allowed
2681 * convert to subtracting from seconds,
2682 * and adding to nanoseconds
2683 */
2684 seconds--;
2685 nano_seconds = (1000000000 - nano_seconds);
2686 }
2687 }
2688
2689 if (nano_seconds > 0) {
2690 /* add 8 ns to cover the likely normal increment */
2691 nano_seconds += 8;
2692 }
2693
2694 if (nano_seconds >= 1000000000) {
2695 /* carry into seconds */
2696 seconds++;
2697 nano_seconds -= 1000000000;
2698 }
2699
2700 while (seconds) {
2701 if (seconds > 0) {
2702 u32 adjustment_value = (u32)seconds;
2703 u16 adjustment_value_lo, adjustment_value_hi;
2704
2705 if (adjustment_value > 0xF)
2706 adjustment_value = 0xF;
2707
2708 adjustment_value_lo = adjustment_value & 0xffff;
2709 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2710
2711 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2712 adjustment_value_lo);
2713 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2714 PTP_LTC_STEP_ADJ_DIR_ |
2715 adjustment_value_hi);
2716 seconds -= ((s32)adjustment_value);
2717 } else {
2718 u32 adjustment_value = (u32)(-seconds);
2719 u16 adjustment_value_lo, adjustment_value_hi;
2720
2721 if (adjustment_value > 0xF)
2722 adjustment_value = 0xF;
2723
2724 adjustment_value_lo = adjustment_value & 0xffff;
2725 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2726
2727 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2728 adjustment_value_lo);
2729 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2730 adjustment_value_hi);
2731 seconds += ((s32)adjustment_value);
2732 }
2733 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2734 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2735 }
2736 if (nano_seconds) {
2737 u16 nano_seconds_lo;
2738 u16 nano_seconds_hi;
2739
2740 nano_seconds_lo = nano_seconds & 0xffff;
2741 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2742
2743 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2744 nano_seconds_lo);
2745 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2746 PTP_LTC_STEP_ADJ_DIR_ |
2747 nano_seconds_hi);
2748 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2749 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2750 }
2751 }
2752
lan8814_ptpci_adjtime(struct ptp_clock_info * ptpci,s64 delta)2753 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2754 {
2755 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2756 ptp_clock_info);
2757 struct phy_device *phydev = shared->phydev;
2758
2759 mutex_lock(&shared->shared_lock);
2760 lan8814_ptp_clock_step(phydev, delta);
2761 mutex_unlock(&shared->shared_lock);
2762
2763 return 0;
2764 }
2765
lan8814_ptpci_adjfine(struct ptp_clock_info * ptpci,long scaled_ppm)2766 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2767 {
2768 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2769 ptp_clock_info);
2770 struct phy_device *phydev = shared->phydev;
2771 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2772 bool positive = true;
2773 u32 kszphy_rate_adj;
2774
2775 if (scaled_ppm < 0) {
2776 scaled_ppm = -scaled_ppm;
2777 positive = false;
2778 }
2779
2780 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2781 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2782
2783 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2784 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2785
2786 if (positive)
2787 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2788
2789 mutex_lock(&shared->shared_lock);
2790 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2791 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2792 mutex_unlock(&shared->shared_lock);
2793
2794 return 0;
2795 }
2796
lan8814_get_sig_tx(struct sk_buff * skb,u16 * sig)2797 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2798 {
2799 struct ptp_header *ptp_header;
2800 u32 type;
2801
2802 type = ptp_classify_raw(skb);
2803 ptp_header = ptp_parse_header(skb, type);
2804
2805 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2806 }
2807
lan8814_match_tx_skb(struct kszphy_ptp_priv * ptp_priv,u32 seconds,u32 nsec,u16 seq_id)2808 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2809 u32 seconds, u32 nsec, u16 seq_id)
2810 {
2811 struct skb_shared_hwtstamps shhwtstamps;
2812 struct sk_buff *skb, *skb_tmp;
2813 unsigned long flags;
2814 bool ret = false;
2815 u16 skb_sig;
2816
2817 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2818 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2819 lan8814_get_sig_tx(skb, &skb_sig);
2820
2821 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2822 continue;
2823
2824 __skb_unlink(skb, &ptp_priv->tx_queue);
2825 ret = true;
2826 break;
2827 }
2828 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2829
2830 if (ret) {
2831 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2832 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2833 skb_complete_tx_timestamp(skb, &shhwtstamps);
2834 }
2835 }
2836
lan8814_dequeue_tx_skb(struct kszphy_ptp_priv * ptp_priv)2837 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2838 {
2839 struct phy_device *phydev = ptp_priv->phydev;
2840 u32 seconds, nsec;
2841 u16 seq_id;
2842
2843 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2844 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2845 }
2846
lan8814_get_tx_ts(struct kszphy_ptp_priv * ptp_priv)2847 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2848 {
2849 struct phy_device *phydev = ptp_priv->phydev;
2850 u32 reg;
2851
2852 do {
2853 lan8814_dequeue_tx_skb(ptp_priv);
2854
2855 /* If other timestamps are available in the FIFO,
2856 * process them.
2857 */
2858 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2859 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2860 }
2861
lan8814_match_skb(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)2862 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2863 struct lan8814_ptp_rx_ts *rx_ts)
2864 {
2865 struct skb_shared_hwtstamps *shhwtstamps;
2866 struct sk_buff *skb, *skb_tmp;
2867 unsigned long flags;
2868 bool ret = false;
2869 u16 skb_sig;
2870
2871 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2872 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2873 lan8814_get_sig_rx(skb, &skb_sig);
2874
2875 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2876 continue;
2877
2878 __skb_unlink(skb, &ptp_priv->rx_queue);
2879
2880 ret = true;
2881 break;
2882 }
2883 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2884
2885 if (ret) {
2886 shhwtstamps = skb_hwtstamps(skb);
2887 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2888 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2889 netif_rx(skb);
2890 }
2891
2892 return ret;
2893 }
2894
lan8814_match_rx_ts(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)2895 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2896 struct lan8814_ptp_rx_ts *rx_ts)
2897 {
2898 unsigned long flags;
2899
2900 /* If we failed to match the skb add it to the queue for when
2901 * the frame will come
2902 */
2903 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2904 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2905 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2906 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2907 } else {
2908 kfree(rx_ts);
2909 }
2910 }
2911
lan8814_get_rx_ts(struct kszphy_ptp_priv * ptp_priv)2912 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2913 {
2914 struct phy_device *phydev = ptp_priv->phydev;
2915 struct lan8814_ptp_rx_ts *rx_ts;
2916 u32 reg;
2917
2918 do {
2919 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2920 if (!rx_ts)
2921 return;
2922
2923 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2924 &rx_ts->seq_id);
2925 lan8814_match_rx_ts(ptp_priv, rx_ts);
2926
2927 /* If other timestamps are available in the FIFO,
2928 * process them.
2929 */
2930 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2931 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2932 }
2933
lan8814_handle_ptp_interrupt(struct phy_device * phydev,u16 status)2934 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2935 {
2936 struct kszphy_priv *priv = phydev->priv;
2937 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2938
2939 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2940 lan8814_get_tx_ts(ptp_priv);
2941
2942 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2943 lan8814_get_rx_ts(ptp_priv);
2944
2945 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2946 lan8814_flush_fifo(phydev, true);
2947 skb_queue_purge(&ptp_priv->tx_queue);
2948 }
2949
2950 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2951 lan8814_flush_fifo(phydev, false);
2952 skb_queue_purge(&ptp_priv->rx_queue);
2953 }
2954 }
2955
lan8804_config_init(struct phy_device * phydev)2956 static int lan8804_config_init(struct phy_device *phydev)
2957 {
2958 int val;
2959
2960 /* MDI-X setting for swap A,B transmit */
2961 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2962 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2963 val |= LAN8804_ALIGN_TX_A_B_SWAP;
2964 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2965
2966 /* Make sure that the PHY will not stop generating the clock when the
2967 * link partner goes down
2968 */
2969 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2970 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2971
2972 return 0;
2973 }
2974
lan8804_handle_interrupt(struct phy_device * phydev)2975 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
2976 {
2977 int status;
2978
2979 status = phy_read(phydev, LAN8814_INTS);
2980 if (status < 0) {
2981 phy_error(phydev);
2982 return IRQ_NONE;
2983 }
2984
2985 if (status > 0)
2986 phy_trigger_machine(phydev);
2987
2988 return IRQ_HANDLED;
2989 }
2990
2991 #define LAN8804_OUTPUT_CONTROL 25
2992 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
2993 #define LAN8804_CONTROL 31
2994 #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
2995
lan8804_config_intr(struct phy_device * phydev)2996 static int lan8804_config_intr(struct phy_device *phydev)
2997 {
2998 int err;
2999
3000 /* This is an internal PHY of lan966x and is not possible to change the
3001 * polarity on the GIC found in lan966x, therefore change the polarity
3002 * of the interrupt in the PHY from being active low instead of active
3003 * high.
3004 */
3005 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3006
3007 /* By default interrupt buffer is open-drain in which case the interrupt
3008 * can be active only low. Therefore change the interrupt buffer to be
3009 * push-pull to be able to change interrupt polarity
3010 */
3011 phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3012 LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3013
3014 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3015 err = phy_read(phydev, LAN8814_INTS);
3016 if (err < 0)
3017 return err;
3018
3019 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3020 if (err)
3021 return err;
3022 } else {
3023 err = phy_write(phydev, LAN8814_INTC, 0);
3024 if (err)
3025 return err;
3026
3027 err = phy_read(phydev, LAN8814_INTS);
3028 if (err < 0)
3029 return err;
3030 }
3031
3032 return 0;
3033 }
3034
lan8814_handle_interrupt(struct phy_device * phydev)3035 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3036 {
3037 int ret = IRQ_NONE;
3038 int irq_status;
3039
3040 irq_status = phy_read(phydev, LAN8814_INTS);
3041 if (irq_status < 0) {
3042 phy_error(phydev);
3043 return IRQ_NONE;
3044 }
3045
3046 if (irq_status & LAN8814_INT_LINK) {
3047 phy_trigger_machine(phydev);
3048 ret = IRQ_HANDLED;
3049 }
3050
3051 while (true) {
3052 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3053 if (!irq_status)
3054 break;
3055
3056 lan8814_handle_ptp_interrupt(phydev, irq_status);
3057 ret = IRQ_HANDLED;
3058 }
3059
3060 return ret;
3061 }
3062
lan8814_ack_interrupt(struct phy_device * phydev)3063 static int lan8814_ack_interrupt(struct phy_device *phydev)
3064 {
3065 /* bit[12..0] int status, which is a read and clear register. */
3066 int rc;
3067
3068 rc = phy_read(phydev, LAN8814_INTS);
3069
3070 return (rc < 0) ? rc : 0;
3071 }
3072
lan8814_config_intr(struct phy_device * phydev)3073 static int lan8814_config_intr(struct phy_device *phydev)
3074 {
3075 int err;
3076
3077 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3078 LAN8814_INTR_CTRL_REG_POLARITY |
3079 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3080
3081 /* enable / disable interrupts */
3082 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3083 err = lan8814_ack_interrupt(phydev);
3084 if (err)
3085 return err;
3086
3087 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3088 } else {
3089 err = phy_write(phydev, LAN8814_INTC, 0);
3090 if (err)
3091 return err;
3092
3093 err = lan8814_ack_interrupt(phydev);
3094 }
3095
3096 return err;
3097 }
3098
lan8814_ptp_init(struct phy_device * phydev)3099 static void lan8814_ptp_init(struct phy_device *phydev)
3100 {
3101 struct kszphy_priv *priv = phydev->priv;
3102 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3103 u32 temp;
3104
3105 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3106 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3107 return;
3108
3109 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3110
3111 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3112 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3113 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3114
3115 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3116 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3117 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3118
3119 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3120 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3121
3122 /* Removing default registers configs related to L2 and IP */
3123 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3124 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3125 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3126 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3127
3128 skb_queue_head_init(&ptp_priv->tx_queue);
3129 skb_queue_head_init(&ptp_priv->rx_queue);
3130 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3131 spin_lock_init(&ptp_priv->rx_ts_lock);
3132
3133 ptp_priv->phydev = phydev;
3134
3135 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3136 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3137 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3138 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
3139
3140 phydev->mii_ts = &ptp_priv->mii_ts;
3141 }
3142
lan8814_ptp_probe_once(struct phy_device * phydev)3143 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3144 {
3145 struct lan8814_shared_priv *shared = phydev->shared->priv;
3146
3147 /* Initialise shared lock for clock*/
3148 mutex_init(&shared->shared_lock);
3149
3150 shared->ptp_clock_info.owner = THIS_MODULE;
3151 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3152 shared->ptp_clock_info.max_adj = 31249999;
3153 shared->ptp_clock_info.n_alarm = 0;
3154 shared->ptp_clock_info.n_ext_ts = 0;
3155 shared->ptp_clock_info.n_pins = 0;
3156 shared->ptp_clock_info.pps = 0;
3157 shared->ptp_clock_info.pin_config = NULL;
3158 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3159 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3160 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3161 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3162 shared->ptp_clock_info.getcrosststamp = NULL;
3163
3164 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3165 &phydev->mdio.dev);
3166 if (IS_ERR(shared->ptp_clock)) {
3167 phydev_err(phydev, "ptp_clock_register failed %lu\n",
3168 PTR_ERR(shared->ptp_clock));
3169 return -EINVAL;
3170 }
3171
3172 /* Check if PHC support is missing at the configuration level */
3173 if (!shared->ptp_clock)
3174 return 0;
3175
3176 phydev_dbg(phydev, "successfully registered ptp clock\n");
3177
3178 shared->phydev = phydev;
3179
3180 /* The EP.4 is shared between all the PHYs in the package and also it
3181 * can be accessed by any of the PHYs
3182 */
3183 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3184 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3185 PTP_OPERATING_MODE_STANDALONE_);
3186
3187 return 0;
3188 }
3189
lan8814_setup_led(struct phy_device * phydev,int val)3190 static void lan8814_setup_led(struct phy_device *phydev, int val)
3191 {
3192 int temp;
3193
3194 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3195
3196 if (val)
3197 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3198 else
3199 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3200
3201 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3202 }
3203
lan8814_config_init(struct phy_device * phydev)3204 static int lan8814_config_init(struct phy_device *phydev)
3205 {
3206 struct kszphy_priv *lan8814 = phydev->priv;
3207 int val;
3208
3209 /* Reset the PHY */
3210 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3211 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3212 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3213
3214 /* Disable ANEG with QSGMII PCS Host side */
3215 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3216 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3217 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3218
3219 /* MDI-X setting for swap A,B transmit */
3220 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3221 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3222 val |= LAN8814_ALIGN_TX_A_B_SWAP;
3223 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3224
3225 if (lan8814->led_mode >= 0)
3226 lan8814_setup_led(phydev, lan8814->led_mode);
3227
3228 return 0;
3229 }
3230
3231 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3232 * function called in suspend. Because the GPIO line can be shared, so if one of
3233 * the phys goes back in coma mode, then all the other PHYs will go, which is
3234 * wrong.
3235 */
lan8814_release_coma_mode(struct phy_device * phydev)3236 static int lan8814_release_coma_mode(struct phy_device *phydev)
3237 {
3238 struct gpio_desc *gpiod;
3239
3240 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3241 GPIOD_OUT_HIGH_OPEN_DRAIN |
3242 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3243 if (IS_ERR(gpiod))
3244 return PTR_ERR(gpiod);
3245
3246 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3247 gpiod_set_value_cansleep(gpiod, 0);
3248
3249 return 0;
3250 }
3251
lan8814_probe(struct phy_device * phydev)3252 static int lan8814_probe(struct phy_device *phydev)
3253 {
3254 const struct kszphy_type *type = phydev->drv->driver_data;
3255 struct kszphy_priv *priv;
3256 u16 addr;
3257 int err;
3258
3259 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3260 if (!priv)
3261 return -ENOMEM;
3262
3263 phydev->priv = priv;
3264
3265 priv->type = type;
3266
3267 kszphy_parse_led_mode(phydev);
3268
3269 /* Strap-in value for PHY address, below register read gives starting
3270 * phy address value
3271 */
3272 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3273 devm_phy_package_join(&phydev->mdio.dev, phydev,
3274 addr, sizeof(struct lan8814_shared_priv));
3275
3276 if (phy_package_init_once(phydev)) {
3277 err = lan8814_release_coma_mode(phydev);
3278 if (err)
3279 return err;
3280
3281 err = lan8814_ptp_probe_once(phydev);
3282 if (err)
3283 return err;
3284 }
3285
3286 lan8814_ptp_init(phydev);
3287
3288 return 0;
3289 }
3290
3291 #define LAN8841_MMD_TIMER_REG 0
3292 #define LAN8841_MMD0_REGISTER_17 17
3293 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3)
3294 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3)
3295 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2
3296 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14)
3297 #define LAN8841_MMD_ANALOG_REG 28
3298 #define LAN8841_ANALOG_CONTROL_1 1
3299 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5)
3300 #define LAN8841_ANALOG_CONTROL_10 13
3301 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3)
3302 #define LAN8841_ANALOG_CONTROL_11 14
3303 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12)
3304 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69
3305 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3306 #define LAN8841_BTRX_POWER_DOWN 70
3307 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0)
3308 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1)
3309 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2)
3310 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3)
3311 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5)
3312 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7)
3313 #define LAN8841_ADC_CHANNEL_MASK 198
3314 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370
3315 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371
3316 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434
3317 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435
3318 #define LAN8841_PTP_CMD_CTL 256
3319 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2)
3320 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1)
3321 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0)
3322 #define LAN8841_PTP_RX_PARSE_CONFIG 368
3323 #define LAN8841_PTP_TX_PARSE_CONFIG 432
3324 #define LAN8841_PTP_RX_MODE 381
3325 #define LAN8841_PTP_INSERT_TS_EN BIT(0)
3326 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1)
3327
lan8841_config_init(struct phy_device * phydev)3328 static int lan8841_config_init(struct phy_device *phydev)
3329 {
3330 int ret;
3331
3332 ret = ksz9131_config_init(phydev);
3333 if (ret)
3334 return ret;
3335
3336 /* Initialize the HW by resetting everything */
3337 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3338 LAN8841_PTP_CMD_CTL,
3339 LAN8841_PTP_CMD_CTL_PTP_RESET,
3340 LAN8841_PTP_CMD_CTL_PTP_RESET);
3341
3342 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3343 LAN8841_PTP_CMD_CTL,
3344 LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3345 LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3346
3347 /* Don't process any frames */
3348 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3349 LAN8841_PTP_RX_PARSE_CONFIG, 0);
3350 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3351 LAN8841_PTP_TX_PARSE_CONFIG, 0);
3352 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3353 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3354 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3355 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3356 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3357 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3358 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3359 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3360
3361 /* 100BT Clause 40 improvenent errata */
3362 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3363 LAN8841_ANALOG_CONTROL_1,
3364 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3365 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3366 LAN8841_ANALOG_CONTROL_10,
3367 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3368
3369 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3370 * Magnetics
3371 */
3372 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3373 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3374 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3375 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3376 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3377 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3378 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3379 LAN8841_BTRX_POWER_DOWN,
3380 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3381 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3382 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3383 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3384 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3385 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3386 }
3387
3388 /* LDO Adjustment errata */
3389 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3390 LAN8841_ANALOG_CONTROL_11,
3391 LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3392
3393 /* 100BT RGMII latency tuning errata */
3394 phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3395 LAN8841_ADC_CHANNEL_MASK, 0x0);
3396 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3397 LAN8841_MMD0_REGISTER_17,
3398 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3399 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3400
3401 return 0;
3402 }
3403
3404 #define LAN8841_OUTPUT_CTRL 25
3405 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14)
3406 #define LAN8841_INT_PTP BIT(9)
3407
lan8841_config_intr(struct phy_device * phydev)3408 static int lan8841_config_intr(struct phy_device *phydev)
3409 {
3410 int err;
3411
3412 phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3413 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3414
3415 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3416 err = phy_read(phydev, LAN8814_INTS);
3417 if (err)
3418 return err;
3419
3420 /* Enable / disable interrupts. It is OK to enable PTP interrupt
3421 * even if it PTP is not enabled. Because the underneath blocks
3422 * will not enable the PTP so we will never get the PTP
3423 * interrupt.
3424 */
3425 err = phy_write(phydev, LAN8814_INTC,
3426 LAN8814_INT_LINK | LAN8841_INT_PTP);
3427 } else {
3428 err = phy_write(phydev, LAN8814_INTC, 0);
3429 if (err)
3430 return err;
3431
3432 err = phy_read(phydev, LAN8814_INTS);
3433 }
3434
3435 return err;
3436 }
3437
3438 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453
3439 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452
3440 #define LAN8841_PTP_TX_EGRESS_NS_LO 451
3441 #define LAN8841_PTP_TX_EGRESS_NS_HI 450
3442 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15)
3443 #define LAN8841_PTP_TX_MSG_HEADER2 455
3444
lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv * ptp_priv,u32 * sec,u32 * nsec,u16 * seq)3445 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3446 u32 *sec, u32 *nsec, u16 *seq)
3447 {
3448 struct phy_device *phydev = ptp_priv->phydev;
3449
3450 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3451 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3452 return false;
3453
3454 *nsec = ((*nsec & 0x3fff) << 16);
3455 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3456
3457 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3458 *sec = *sec << 16;
3459 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3460
3461 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3462
3463 return true;
3464 }
3465
lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv * ptp_priv)3466 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3467 {
3468 u32 sec, nsec;
3469 u16 seq;
3470
3471 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3472 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3473 }
3474
3475 #define LAN8841_PTP_INT_STS 259
3476 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13)
3477 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12)
3478 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2)
3479
lan8841_ptp_flush_fifo(struct kszphy_ptp_priv * ptp_priv)3480 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3481 {
3482 struct phy_device *phydev = ptp_priv->phydev;
3483 int i;
3484
3485 for (i = 0; i < FIFO_SIZE; ++i)
3486 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3487
3488 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3489 }
3490
3491 #define LAN8841_PTP_GPIO_CAP_STS 506
3492 #define LAN8841_PTP_GPIO_SEL 327
3493 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8)
3494 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498
3495 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499
3496 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500
3497 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501
3498 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502
3499 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503
3500 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504
3501 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505
3502
lan8841_gpio_process_cap(struct kszphy_ptp_priv * ptp_priv)3503 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3504 {
3505 struct phy_device *phydev = ptp_priv->phydev;
3506 struct ptp_clock_event ptp_event = {0};
3507 int pin, ret, tmp;
3508 s32 sec, nsec;
3509
3510 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3511 if (pin == -1)
3512 return;
3513
3514 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3515 if (tmp < 0)
3516 return;
3517
3518 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3519 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3520 if (ret)
3521 return;
3522
3523 mutex_lock(&ptp_priv->ptp_lock);
3524 if (tmp & BIT(pin)) {
3525 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3526 sec <<= 16;
3527 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3528
3529 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3530 nsec <<= 16;
3531 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3532 } else {
3533 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3534 sec <<= 16;
3535 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3536
3537 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3538 nsec <<= 16;
3539 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3540 }
3541 mutex_unlock(&ptp_priv->ptp_lock);
3542 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3543 if (ret)
3544 return;
3545
3546 ptp_event.index = 0;
3547 ptp_event.timestamp = ktime_set(sec, nsec);
3548 ptp_event.type = PTP_CLOCK_EXTTS;
3549 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3550 }
3551
lan8841_handle_ptp_interrupt(struct phy_device * phydev)3552 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3553 {
3554 struct kszphy_priv *priv = phydev->priv;
3555 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3556 u16 status;
3557
3558 do {
3559 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3560
3561 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3562 lan8841_ptp_process_tx_ts(ptp_priv);
3563
3564 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3565 lan8841_gpio_process_cap(ptp_priv);
3566
3567 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3568 lan8841_ptp_flush_fifo(ptp_priv);
3569 skb_queue_purge(&ptp_priv->tx_queue);
3570 }
3571
3572 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3573 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3574 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3575 }
3576
3577 #define LAN8841_INTS_PTP BIT(9)
3578
lan8841_handle_interrupt(struct phy_device * phydev)3579 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3580 {
3581 irqreturn_t ret = IRQ_NONE;
3582 int irq_status;
3583
3584 irq_status = phy_read(phydev, LAN8814_INTS);
3585 if (irq_status < 0) {
3586 phy_error(phydev);
3587 return IRQ_NONE;
3588 }
3589
3590 if (irq_status & LAN8814_INT_LINK) {
3591 phy_trigger_machine(phydev);
3592 ret = IRQ_HANDLED;
3593 }
3594
3595 if (irq_status & LAN8841_INTS_PTP) {
3596 lan8841_handle_ptp_interrupt(phydev);
3597 ret = IRQ_HANDLED;
3598 }
3599
3600 return ret;
3601 }
3602
lan8841_ts_info(struct mii_timestamper * mii_ts,struct ethtool_ts_info * info)3603 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3604 struct ethtool_ts_info *info)
3605 {
3606 struct kszphy_ptp_priv *ptp_priv;
3607
3608 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3609
3610 info->phc_index = ptp_priv->ptp_clock ?
3611 ptp_clock_index(ptp_priv->ptp_clock) : -1;
3612 if (info->phc_index == -1) {
3613 info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE |
3614 SOF_TIMESTAMPING_RX_SOFTWARE |
3615 SOF_TIMESTAMPING_SOFTWARE;
3616 return 0;
3617 }
3618
3619 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3620 SOF_TIMESTAMPING_RX_HARDWARE |
3621 SOF_TIMESTAMPING_RAW_HARDWARE;
3622
3623 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3624 (1 << HWTSTAMP_TX_ON) |
3625 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3626
3627 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3628 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3629 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3630 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3631
3632 return 0;
3633 }
3634
3635 #define LAN8841_PTP_INT_EN 260
3636 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13)
3637 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12)
3638
lan8841_ptp_enable_processing(struct kszphy_ptp_priv * ptp_priv,bool enable)3639 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3640 bool enable)
3641 {
3642 struct phy_device *phydev = ptp_priv->phydev;
3643
3644 if (enable) {
3645 /* Enable interrupts on the TX side */
3646 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3647 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3648 LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3649 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3650 LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3651
3652 /* Enable the modification of the frame on RX side,
3653 * this will add the ns and 2 bits of sec in the reserved field
3654 * of the PTP header
3655 */
3656 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3657 LAN8841_PTP_RX_MODE,
3658 LAN8841_PTP_INSERT_TS_EN |
3659 LAN8841_PTP_INSERT_TS_32BIT,
3660 LAN8841_PTP_INSERT_TS_EN |
3661 LAN8841_PTP_INSERT_TS_32BIT);
3662
3663 ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3664 } else {
3665 /* Disable interrupts on the TX side */
3666 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3667 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3668 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3669
3670 /* Disable modification of the RX frames */
3671 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3672 LAN8841_PTP_RX_MODE,
3673 LAN8841_PTP_INSERT_TS_EN |
3674 LAN8841_PTP_INSERT_TS_32BIT, 0);
3675
3676 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3677 }
3678 }
3679
3680 #define LAN8841_PTP_RX_TIMESTAMP_EN 379
3681 #define LAN8841_PTP_TX_TIMESTAMP_EN 443
3682 #define LAN8841_PTP_TX_MOD 445
3683
lan8841_hwtstamp(struct mii_timestamper * mii_ts,struct ifreq * ifr)3684 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
3685 {
3686 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3687 struct phy_device *phydev = ptp_priv->phydev;
3688 struct hwtstamp_config config;
3689 int txcfg = 0, rxcfg = 0;
3690 int pkt_ts_enable;
3691
3692 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
3693 return -EFAULT;
3694
3695 ptp_priv->hwts_tx_type = config.tx_type;
3696 ptp_priv->rx_filter = config.rx_filter;
3697
3698 switch (config.rx_filter) {
3699 case HWTSTAMP_FILTER_NONE:
3700 ptp_priv->layer = 0;
3701 ptp_priv->version = 0;
3702 break;
3703 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3704 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3705 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3706 ptp_priv->layer = PTP_CLASS_L4;
3707 ptp_priv->version = PTP_CLASS_V2;
3708 break;
3709 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3710 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3711 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3712 ptp_priv->layer = PTP_CLASS_L2;
3713 ptp_priv->version = PTP_CLASS_V2;
3714 break;
3715 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3716 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3717 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3718 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3719 ptp_priv->version = PTP_CLASS_V2;
3720 break;
3721 default:
3722 return -ERANGE;
3723 }
3724
3725 /* Setup parsing of the frames and enable the timestamping for ptp
3726 * frames
3727 */
3728 if (ptp_priv->layer & PTP_CLASS_L2) {
3729 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3730 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3731 } else if (ptp_priv->layer & PTP_CLASS_L4) {
3732 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3733 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3734 }
3735
3736 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3737 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3738
3739 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3740 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3741 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3742 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3743
3744 /* Enable / disable of the TX timestamp in the SYNC frames */
3745 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3746 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3747 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3748 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3749
3750 /* Now enable/disable the timestamping */
3751 lan8841_ptp_enable_processing(ptp_priv,
3752 config.rx_filter != HWTSTAMP_FILTER_NONE);
3753
3754 skb_queue_purge(&ptp_priv->tx_queue);
3755
3756 lan8841_ptp_flush_fifo(ptp_priv);
3757
3758 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
3759 }
3760
lan8841_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)3761 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3762 struct sk_buff *skb, int type)
3763 {
3764 struct kszphy_ptp_priv *ptp_priv =
3765 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3766 struct ptp_header *header = ptp_parse_header(skb, type);
3767 struct skb_shared_hwtstamps *shhwtstamps;
3768 struct timespec64 ts;
3769 unsigned long flags;
3770 u32 ts_header;
3771
3772 if (!header)
3773 return false;
3774
3775 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3776 type == PTP_CLASS_NONE)
3777 return false;
3778
3779 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3780 return false;
3781
3782 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3783 ts.tv_sec = ptp_priv->seconds;
3784 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3785 ts_header = __be32_to_cpu(header->reserved2);
3786
3787 shhwtstamps = skb_hwtstamps(skb);
3788 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3789
3790 /* Check for any wrap arounds for the second part */
3791 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3792 ts.tv_sec -= GENMASK(1, 0) + 1;
3793 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3794 ts.tv_sec += 1;
3795
3796 shhwtstamps->hwtstamp =
3797 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3798 ts_header & GENMASK(29, 0));
3799 header->reserved2 = 0;
3800
3801 netif_rx(skb);
3802
3803 return true;
3804 }
3805
3806 #define LAN8841_EVENT_A 0
3807 #define LAN8841_EVENT_B 1
3808 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288)
3809 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289)
3810 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290)
3811 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291)
3812
lan8841_ptp_set_target(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)3813 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3814 s64 sec, u32 nsec)
3815 {
3816 struct phy_device *phydev = ptp_priv->phydev;
3817 int ret;
3818
3819 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3820 upper_16_bits(sec));
3821 if (ret)
3822 return ret;
3823
3824 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3825 lower_16_bits(sec));
3826 if (ret)
3827 return ret;
3828
3829 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3830 upper_16_bits(nsec));
3831 if (ret)
3832 return ret;
3833
3834 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3835 lower_16_bits(nsec));
3836 }
3837
3838 #define LAN8841_BUFFER_TIME 2
3839
lan8841_ptp_update_target(struct kszphy_ptp_priv * ptp_priv,const struct timespec64 * ts)3840 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3841 const struct timespec64 *ts)
3842 {
3843 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3844 ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3845 }
3846
3847 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292)
3848 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293)
3849 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294)
3850 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295)
3851
lan8841_ptp_set_reload(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)3852 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3853 s64 sec, u32 nsec)
3854 {
3855 struct phy_device *phydev = ptp_priv->phydev;
3856 int ret;
3857
3858 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3859 upper_16_bits(sec));
3860 if (ret)
3861 return ret;
3862
3863 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3864 lower_16_bits(sec));
3865 if (ret)
3866 return ret;
3867
3868 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3869 upper_16_bits(nsec));
3870 if (ret)
3871 return ret;
3872
3873 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
3874 lower_16_bits(nsec));
3875 }
3876
3877 #define LAN8841_PTP_LTC_SET_SEC_HI 262
3878 #define LAN8841_PTP_LTC_SET_SEC_MID 263
3879 #define LAN8841_PTP_LTC_SET_SEC_LO 264
3880 #define LAN8841_PTP_LTC_SET_NS_HI 265
3881 #define LAN8841_PTP_LTC_SET_NS_LO 266
3882 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4)
3883
lan8841_ptp_settime64(struct ptp_clock_info * ptp,const struct timespec64 * ts)3884 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3885 const struct timespec64 *ts)
3886 {
3887 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3888 ptp_clock_info);
3889 struct phy_device *phydev = ptp_priv->phydev;
3890 unsigned long flags;
3891 int ret;
3892
3893 /* Set the value to be stored */
3894 mutex_lock(&ptp_priv->ptp_lock);
3895 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3896 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3897 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3898 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3899 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3900
3901 /* Set the command to load the LTC */
3902 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3903 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
3904 ret = lan8841_ptp_update_target(ptp_priv, ts);
3905 mutex_unlock(&ptp_priv->ptp_lock);
3906
3907 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3908 ptp_priv->seconds = ts->tv_sec;
3909 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3910
3911 return ret;
3912 }
3913
3914 #define LAN8841_PTP_LTC_RD_SEC_HI 358
3915 #define LAN8841_PTP_LTC_RD_SEC_MID 359
3916 #define LAN8841_PTP_LTC_RD_SEC_LO 360
3917 #define LAN8841_PTP_LTC_RD_NS_HI 361
3918 #define LAN8841_PTP_LTC_RD_NS_LO 362
3919 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3)
3920
lan8841_ptp_gettime64(struct ptp_clock_info * ptp,struct timespec64 * ts)3921 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
3922 struct timespec64 *ts)
3923 {
3924 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3925 ptp_clock_info);
3926 struct phy_device *phydev = ptp_priv->phydev;
3927 time64_t s;
3928 s64 ns;
3929
3930 mutex_lock(&ptp_priv->ptp_lock);
3931 /* Issue the command to read the LTC */
3932 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3933 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3934
3935 /* Read the LTC */
3936 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3937 s <<= 16;
3938 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3939 s <<= 16;
3940 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3941
3942 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
3943 ns <<= 16;
3944 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
3945 mutex_unlock(&ptp_priv->ptp_lock);
3946
3947 set_normalized_timespec64(ts, s, ns);
3948 return 0;
3949 }
3950
lan8841_ptp_getseconds(struct ptp_clock_info * ptp,struct timespec64 * ts)3951 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
3952 struct timespec64 *ts)
3953 {
3954 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3955 ptp_clock_info);
3956 struct phy_device *phydev = ptp_priv->phydev;
3957 time64_t s;
3958
3959 mutex_lock(&ptp_priv->ptp_lock);
3960 /* Issue the command to read the LTC */
3961 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3962 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3963
3964 /* Read the LTC */
3965 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3966 s <<= 16;
3967 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3968 s <<= 16;
3969 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3970 mutex_unlock(&ptp_priv->ptp_lock);
3971
3972 set_normalized_timespec64(ts, s, 0);
3973 }
3974
3975 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276
3976 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275
3977 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15)
3978 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5)
3979 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6)
3980
lan8841_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)3981 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
3982 {
3983 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3984 ptp_clock_info);
3985 struct phy_device *phydev = ptp_priv->phydev;
3986 struct timespec64 ts;
3987 bool add = true;
3988 u32 nsec;
3989 s32 sec;
3990 int ret;
3991
3992 /* The HW allows up to 15 sec to adjust the time, but here we limit to
3993 * 10 sec the adjustment. The reason is, in case the adjustment is 14
3994 * sec and 999999999 nsec, then we add 8ns to compansate the actual
3995 * increment so the value can be bigger than 15 sec. Therefore limit the
3996 * possible adjustments so we will not have these corner cases
3997 */
3998 if (delta > 10000000000LL || delta < -10000000000LL) {
3999 /* The timeadjustment is too big, so fall back using set time */
4000 u64 now;
4001
4002 ptp->gettime64(ptp, &ts);
4003
4004 now = ktime_to_ns(timespec64_to_ktime(ts));
4005 ts = ns_to_timespec64(now + delta);
4006
4007 ptp->settime64(ptp, &ts);
4008 return 0;
4009 }
4010
4011 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4012 if (delta < 0 && nsec != 0) {
4013 /* It is not allowed to adjust low the nsec part, therefore
4014 * subtract more from second part and add to nanosecond such
4015 * that would roll over, so the second part will increase
4016 */
4017 sec--;
4018 nsec = NSEC_PER_SEC - nsec;
4019 }
4020
4021 /* Calculate the adjustments and the direction */
4022 if (delta < 0)
4023 add = false;
4024
4025 if (nsec > 0)
4026 /* add 8 ns to cover the likely normal increment */
4027 nsec += 8;
4028
4029 if (nsec >= NSEC_PER_SEC) {
4030 /* carry into seconds */
4031 sec++;
4032 nsec -= NSEC_PER_SEC;
4033 }
4034
4035 mutex_lock(&ptp_priv->ptp_lock);
4036 if (sec) {
4037 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4038 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4039 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4040 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4041 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4042 }
4043
4044 if (nsec) {
4045 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4046 nsec & 0xffff);
4047 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4048 (nsec >> 16) & 0x3fff);
4049 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4050 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4051 }
4052 mutex_unlock(&ptp_priv->ptp_lock);
4053
4054 /* Update the target clock */
4055 ptp->gettime64(ptp, &ts);
4056 mutex_lock(&ptp_priv->ptp_lock);
4057 ret = lan8841_ptp_update_target(ptp_priv, &ts);
4058 mutex_unlock(&ptp_priv->ptp_lock);
4059
4060 return ret;
4061 }
4062
4063 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269
4064 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15)
4065 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270
4066
lan8841_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)4067 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4068 {
4069 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4070 ptp_clock_info);
4071 struct phy_device *phydev = ptp_priv->phydev;
4072 bool faster = true;
4073 u32 rate;
4074
4075 if (!scaled_ppm)
4076 return 0;
4077
4078 if (scaled_ppm < 0) {
4079 scaled_ppm = -scaled_ppm;
4080 faster = false;
4081 }
4082
4083 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4084 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4085
4086 mutex_lock(&ptp_priv->ptp_lock);
4087 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4088 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4089 : upper_16_bits(rate) & 0x3fff);
4090 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4091 mutex_unlock(&ptp_priv->ptp_lock);
4092
4093 return 0;
4094 }
4095
lan8841_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)4096 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4097 enum ptp_pin_function func, unsigned int chan)
4098 {
4099 switch (func) {
4100 case PTP_PF_NONE:
4101 case PTP_PF_PEROUT:
4102 case PTP_PF_EXTTS:
4103 break;
4104 default:
4105 return -1;
4106 }
4107
4108 return 0;
4109 }
4110
4111 #define LAN8841_PTP_GPIO_NUM 10
4112 #define LAN8841_GPIO_EN 128
4113 #define LAN8841_GPIO_DIR 129
4114 #define LAN8841_GPIO_BUF 130
4115
lan8841_ptp_perout_off(struct kszphy_ptp_priv * ptp_priv,int pin)4116 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4117 {
4118 struct phy_device *phydev = ptp_priv->phydev;
4119 int ret;
4120
4121 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4122 if (ret)
4123 return ret;
4124
4125 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4126 if (ret)
4127 return ret;
4128
4129 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4130 }
4131
lan8841_ptp_perout_on(struct kszphy_ptp_priv * ptp_priv,int pin)4132 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4133 {
4134 struct phy_device *phydev = ptp_priv->phydev;
4135 int ret;
4136
4137 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4138 if (ret)
4139 return ret;
4140
4141 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4142 if (ret)
4143 return ret;
4144
4145 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4146 }
4147
4148 #define LAN8841_GPIO_DATA_SEL1 131
4149 #define LAN8841_GPIO_DATA_SEL2 132
4150 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0)
4151 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1
4152 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2
4153 #define LAN8841_PTP_GENERAL_CONFIG 257
4154 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1)
4155 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3)
4156 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4)
4157 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8)
4158 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4
4159 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7
4160
lan8841_ptp_remove_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event)4161 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4162 u8 event)
4163 {
4164 struct phy_device *phydev = ptp_priv->phydev;
4165 u16 tmp;
4166 int ret;
4167
4168 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4169 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4170 * depending on the pin, it requires to read a different register
4171 */
4172 if (pin < 5) {
4173 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4174 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4175 } else {
4176 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4177 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4178 }
4179 if (ret)
4180 return ret;
4181
4182 /* Disable the event */
4183 if (event == LAN8841_EVENT_A)
4184 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4185 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4186 else
4187 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4188 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4189 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4190 }
4191
lan8841_ptp_enable_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event,int pulse_width)4192 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4193 u8 event, int pulse_width)
4194 {
4195 struct phy_device *phydev = ptp_priv->phydev;
4196 u16 tmp;
4197 int ret;
4198
4199 /* Enable the event */
4200 if (event == LAN8841_EVENT_A)
4201 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4202 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4203 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4204 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4205 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4206 else
4207 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4208 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4209 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4210 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4211 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4212 if (ret)
4213 return ret;
4214
4215 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4216 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4217 * depending on the pin, it requires to read a different register
4218 */
4219 if (event == LAN8841_EVENT_A)
4220 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4221 else
4222 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4223
4224 if (pin < 5)
4225 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4226 tmp << (3 * pin));
4227 else
4228 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4229 tmp << (3 * (pin - 5)));
4230
4231 return ret;
4232 }
4233
4234 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
4235 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
4236 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
4237 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
4238 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
4239 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
4240 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
4241 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
4242 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
4243 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
4244 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
4245 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
4246 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
4247 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
4248
lan8841_ptp_perout(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4249 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4250 struct ptp_clock_request *rq, int on)
4251 {
4252 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4253 ptp_clock_info);
4254 struct phy_device *phydev = ptp_priv->phydev;
4255 struct timespec64 ts_on, ts_period;
4256 s64 on_nsec, period_nsec;
4257 int pulse_width;
4258 int pin;
4259 int ret;
4260
4261 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4262 return -EOPNOTSUPP;
4263
4264 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4265 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4266 return -EINVAL;
4267
4268 if (!on) {
4269 ret = lan8841_ptp_perout_off(ptp_priv, pin);
4270 if (ret)
4271 return ret;
4272
4273 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4274 }
4275
4276 ts_on.tv_sec = rq->perout.on.sec;
4277 ts_on.tv_nsec = rq->perout.on.nsec;
4278 on_nsec = timespec64_to_ns(&ts_on);
4279
4280 ts_period.tv_sec = rq->perout.period.sec;
4281 ts_period.tv_nsec = rq->perout.period.nsec;
4282 period_nsec = timespec64_to_ns(&ts_period);
4283
4284 if (period_nsec < 200) {
4285 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4286 phydev_name(phydev));
4287 return -EOPNOTSUPP;
4288 }
4289
4290 if (on_nsec >= period_nsec) {
4291 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4292 phydev_name(phydev));
4293 return -EINVAL;
4294 }
4295
4296 switch (on_nsec) {
4297 case 200000000:
4298 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4299 break;
4300 case 100000000:
4301 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4302 break;
4303 case 50000000:
4304 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4305 break;
4306 case 10000000:
4307 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4308 break;
4309 case 5000000:
4310 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4311 break;
4312 case 1000000:
4313 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4314 break;
4315 case 500000:
4316 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4317 break;
4318 case 100000:
4319 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4320 break;
4321 case 50000:
4322 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4323 break;
4324 case 10000:
4325 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4326 break;
4327 case 5000:
4328 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4329 break;
4330 case 1000:
4331 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4332 break;
4333 case 500:
4334 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4335 break;
4336 case 100:
4337 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4338 break;
4339 default:
4340 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4341 phydev_name(phydev));
4342 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4343 break;
4344 }
4345
4346 mutex_lock(&ptp_priv->ptp_lock);
4347 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4348 rq->perout.start.nsec);
4349 mutex_unlock(&ptp_priv->ptp_lock);
4350 if (ret)
4351 return ret;
4352
4353 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4354 rq->perout.period.nsec);
4355 if (ret)
4356 return ret;
4357
4358 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4359 pulse_width);
4360 if (ret)
4361 return ret;
4362
4363 ret = lan8841_ptp_perout_on(ptp_priv, pin);
4364 if (ret)
4365 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4366
4367 return ret;
4368 }
4369
4370 #define LAN8841_PTP_GPIO_CAP_EN 496
4371 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio))
4372 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
4373 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2)
4374
lan8841_ptp_extts_on(struct kszphy_ptp_priv * ptp_priv,int pin,u32 flags)4375 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4376 u32 flags)
4377 {
4378 struct phy_device *phydev = ptp_priv->phydev;
4379 u16 tmp = 0;
4380 int ret;
4381
4382 /* Set GPIO to be intput */
4383 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4384 if (ret)
4385 return ret;
4386
4387 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4388 if (ret)
4389 return ret;
4390
4391 /* Enable capture on the edges of the pin */
4392 if (flags & PTP_RISING_EDGE)
4393 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4394 if (flags & PTP_FALLING_EDGE)
4395 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4396 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4397 if (ret)
4398 return ret;
4399
4400 /* Enable interrupt */
4401 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4402 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4403 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4404 }
4405
lan8841_ptp_extts_off(struct kszphy_ptp_priv * ptp_priv,int pin)4406 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4407 {
4408 struct phy_device *phydev = ptp_priv->phydev;
4409 int ret;
4410
4411 /* Set GPIO to be output */
4412 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4413 if (ret)
4414 return ret;
4415
4416 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4417 if (ret)
4418 return ret;
4419
4420 /* Disable capture on both of the edges */
4421 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4422 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4423 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4424 0);
4425 if (ret)
4426 return ret;
4427
4428 /* Disable interrupt */
4429 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4430 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4431 0);
4432 }
4433
lan8841_ptp_extts(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4434 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4435 struct ptp_clock_request *rq, int on)
4436 {
4437 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4438 ptp_clock_info);
4439 int pin;
4440 int ret;
4441
4442 /* Reject requests with unsupported flags */
4443 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4444 PTP_EXTTS_EDGES |
4445 PTP_STRICT_FLAGS))
4446 return -EOPNOTSUPP;
4447
4448 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4449 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4450 return -EINVAL;
4451
4452 mutex_lock(&ptp_priv->ptp_lock);
4453 if (on)
4454 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4455 else
4456 ret = lan8841_ptp_extts_off(ptp_priv, pin);
4457 mutex_unlock(&ptp_priv->ptp_lock);
4458
4459 return ret;
4460 }
4461
lan8841_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4462 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4463 struct ptp_clock_request *rq, int on)
4464 {
4465 switch (rq->type) {
4466 case PTP_CLK_REQ_EXTTS:
4467 return lan8841_ptp_extts(ptp, rq, on);
4468 case PTP_CLK_REQ_PEROUT:
4469 return lan8841_ptp_perout(ptp, rq, on);
4470 default:
4471 return -EOPNOTSUPP;
4472 }
4473
4474 return 0;
4475 }
4476
lan8841_ptp_do_aux_work(struct ptp_clock_info * ptp)4477 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4478 {
4479 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4480 ptp_clock_info);
4481 struct timespec64 ts;
4482 unsigned long flags;
4483
4484 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4485
4486 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4487 ptp_priv->seconds = ts.tv_sec;
4488 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4489
4490 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4491 }
4492
4493 static struct ptp_clock_info lan8841_ptp_clock_info = {
4494 .owner = THIS_MODULE,
4495 .name = "lan8841 ptp",
4496 .max_adj = 31249999,
4497 .gettime64 = lan8841_ptp_gettime64,
4498 .settime64 = lan8841_ptp_settime64,
4499 .adjtime = lan8841_ptp_adjtime,
4500 .adjfine = lan8841_ptp_adjfine,
4501 .verify = lan8841_ptp_verify,
4502 .enable = lan8841_ptp_enable,
4503 .do_aux_work = lan8841_ptp_do_aux_work,
4504 .n_per_out = LAN8841_PTP_GPIO_NUM,
4505 .n_ext_ts = LAN8841_PTP_GPIO_NUM,
4506 .n_pins = LAN8841_PTP_GPIO_NUM,
4507 };
4508
4509 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4510 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4511
lan8841_probe(struct phy_device * phydev)4512 static int lan8841_probe(struct phy_device *phydev)
4513 {
4514 struct kszphy_ptp_priv *ptp_priv;
4515 struct kszphy_priv *priv;
4516 int err;
4517
4518 err = kszphy_probe(phydev);
4519 if (err)
4520 return err;
4521
4522 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4523 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4524 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4525 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4526
4527 /* Register the clock */
4528 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4529 return 0;
4530
4531 priv = phydev->priv;
4532 ptp_priv = &priv->ptp_priv;
4533
4534 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4535 LAN8841_PTP_GPIO_NUM,
4536 sizeof(*ptp_priv->pin_config),
4537 GFP_KERNEL);
4538 if (!ptp_priv->pin_config)
4539 return -ENOMEM;
4540
4541 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4542 struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4543
4544 snprintf(p->name, sizeof(p->name), "pin%d", i);
4545 p->index = i;
4546 p->func = PTP_PF_NONE;
4547 }
4548
4549 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4550 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4551 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4552 &phydev->mdio.dev);
4553 if (IS_ERR(ptp_priv->ptp_clock)) {
4554 phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4555 PTR_ERR(ptp_priv->ptp_clock));
4556 return -EINVAL;
4557 }
4558
4559 if (!ptp_priv->ptp_clock)
4560 return 0;
4561
4562 /* Initialize the SW */
4563 skb_queue_head_init(&ptp_priv->tx_queue);
4564 ptp_priv->phydev = phydev;
4565 mutex_init(&ptp_priv->ptp_lock);
4566 spin_lock_init(&ptp_priv->seconds_lock);
4567
4568 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4569 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4570 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4571 ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4572
4573 phydev->mii_ts = &ptp_priv->mii_ts;
4574
4575 return 0;
4576 }
4577
lan8841_suspend(struct phy_device * phydev)4578 static int lan8841_suspend(struct phy_device *phydev)
4579 {
4580 struct kszphy_priv *priv = phydev->priv;
4581 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4582
4583 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4584
4585 return genphy_suspend(phydev);
4586 }
4587
4588 static struct phy_driver ksphy_driver[] = {
4589 {
4590 .phy_id = PHY_ID_KS8737,
4591 .phy_id_mask = MICREL_PHY_ID_MASK,
4592 .name = "Micrel KS8737",
4593 /* PHY_BASIC_FEATURES */
4594 .driver_data = &ks8737_type,
4595 .probe = kszphy_probe,
4596 .config_init = kszphy_config_init,
4597 .config_intr = kszphy_config_intr,
4598 .handle_interrupt = kszphy_handle_interrupt,
4599 .suspend = kszphy_suspend,
4600 .resume = kszphy_resume,
4601 }, {
4602 .phy_id = PHY_ID_KSZ8021,
4603 .phy_id_mask = 0x00ffffff,
4604 .name = "Micrel KSZ8021 or KSZ8031",
4605 /* PHY_BASIC_FEATURES */
4606 .driver_data = &ksz8021_type,
4607 .probe = kszphy_probe,
4608 .config_init = kszphy_config_init,
4609 .config_intr = kszphy_config_intr,
4610 .handle_interrupt = kszphy_handle_interrupt,
4611 .get_sset_count = kszphy_get_sset_count,
4612 .get_strings = kszphy_get_strings,
4613 .get_stats = kszphy_get_stats,
4614 .suspend = kszphy_suspend,
4615 .resume = kszphy_resume,
4616 }, {
4617 .phy_id = PHY_ID_KSZ8031,
4618 .phy_id_mask = 0x00ffffff,
4619 .name = "Micrel KSZ8031",
4620 /* PHY_BASIC_FEATURES */
4621 .driver_data = &ksz8021_type,
4622 .probe = kszphy_probe,
4623 .config_init = kszphy_config_init,
4624 .config_intr = kszphy_config_intr,
4625 .handle_interrupt = kszphy_handle_interrupt,
4626 .get_sset_count = kszphy_get_sset_count,
4627 .get_strings = kszphy_get_strings,
4628 .get_stats = kszphy_get_stats,
4629 .suspend = kszphy_suspend,
4630 .resume = kszphy_resume,
4631 }, {
4632 .phy_id = PHY_ID_KSZ8041,
4633 .phy_id_mask = MICREL_PHY_ID_MASK,
4634 .name = "Micrel KSZ8041",
4635 /* PHY_BASIC_FEATURES */
4636 .driver_data = &ksz8041_type,
4637 .probe = kszphy_probe,
4638 .config_init = ksz8041_config_init,
4639 .config_aneg = ksz8041_config_aneg,
4640 .config_intr = kszphy_config_intr,
4641 .handle_interrupt = kszphy_handle_interrupt,
4642 .get_sset_count = kszphy_get_sset_count,
4643 .get_strings = kszphy_get_strings,
4644 .get_stats = kszphy_get_stats,
4645 /* No suspend/resume callbacks because of errata DS80000700A,
4646 * receiver error following software power down.
4647 */
4648 }, {
4649 .phy_id = PHY_ID_KSZ8041RNLI,
4650 .phy_id_mask = MICREL_PHY_ID_MASK,
4651 .name = "Micrel KSZ8041RNLI",
4652 /* PHY_BASIC_FEATURES */
4653 .driver_data = &ksz8041_type,
4654 .probe = kszphy_probe,
4655 .config_init = kszphy_config_init,
4656 .config_intr = kszphy_config_intr,
4657 .handle_interrupt = kszphy_handle_interrupt,
4658 .get_sset_count = kszphy_get_sset_count,
4659 .get_strings = kszphy_get_strings,
4660 .get_stats = kszphy_get_stats,
4661 .suspend = kszphy_suspend,
4662 .resume = kszphy_resume,
4663 }, {
4664 .name = "Micrel KSZ8051",
4665 /* PHY_BASIC_FEATURES */
4666 .driver_data = &ksz8051_type,
4667 .probe = kszphy_probe,
4668 .config_init = kszphy_config_init,
4669 .config_intr = kszphy_config_intr,
4670 .handle_interrupt = kszphy_handle_interrupt,
4671 .get_sset_count = kszphy_get_sset_count,
4672 .get_strings = kszphy_get_strings,
4673 .get_stats = kszphy_get_stats,
4674 .match_phy_device = ksz8051_match_phy_device,
4675 .suspend = kszphy_suspend,
4676 .resume = kszphy_resume,
4677 }, {
4678 .phy_id = PHY_ID_KSZ8001,
4679 .name = "Micrel KSZ8001 or KS8721",
4680 .phy_id_mask = 0x00fffffc,
4681 /* PHY_BASIC_FEATURES */
4682 .driver_data = &ksz8041_type,
4683 .probe = kszphy_probe,
4684 .config_init = kszphy_config_init,
4685 .config_intr = kszphy_config_intr,
4686 .handle_interrupt = kszphy_handle_interrupt,
4687 .get_sset_count = kszphy_get_sset_count,
4688 .get_strings = kszphy_get_strings,
4689 .get_stats = kszphy_get_stats,
4690 .suspend = kszphy_suspend,
4691 .resume = kszphy_resume,
4692 }, {
4693 .phy_id = PHY_ID_KSZ8081,
4694 .name = "Micrel KSZ8081 or KSZ8091",
4695 .phy_id_mask = MICREL_PHY_ID_MASK,
4696 .flags = PHY_POLL_CABLE_TEST,
4697 /* PHY_BASIC_FEATURES */
4698 .driver_data = &ksz8081_type,
4699 .probe = kszphy_probe,
4700 .config_init = ksz8081_config_init,
4701 .soft_reset = genphy_soft_reset,
4702 .config_aneg = ksz8081_config_aneg,
4703 .read_status = ksz8081_read_status,
4704 .config_intr = kszphy_config_intr,
4705 .handle_interrupt = kszphy_handle_interrupt,
4706 .get_sset_count = kszphy_get_sset_count,
4707 .get_strings = kszphy_get_strings,
4708 .get_stats = kszphy_get_stats,
4709 .suspend = kszphy_suspend,
4710 .resume = kszphy_resume,
4711 .cable_test_start = ksz886x_cable_test_start,
4712 .cable_test_get_status = ksz886x_cable_test_get_status,
4713 }, {
4714 .phy_id = PHY_ID_KSZ8061,
4715 .name = "Micrel KSZ8061",
4716 .phy_id_mask = MICREL_PHY_ID_MASK,
4717 /* PHY_BASIC_FEATURES */
4718 .probe = kszphy_probe,
4719 .config_init = ksz8061_config_init,
4720 .config_intr = kszphy_config_intr,
4721 .handle_interrupt = kszphy_handle_interrupt,
4722 .suspend = kszphy_suspend,
4723 .resume = kszphy_resume,
4724 }, {
4725 .phy_id = PHY_ID_KSZ9021,
4726 .phy_id_mask = 0x000ffffe,
4727 .name = "Micrel KSZ9021 Gigabit PHY",
4728 /* PHY_GBIT_FEATURES */
4729 .driver_data = &ksz9021_type,
4730 .probe = kszphy_probe,
4731 .get_features = ksz9031_get_features,
4732 .config_init = ksz9021_config_init,
4733 .config_intr = kszphy_config_intr,
4734 .handle_interrupt = kszphy_handle_interrupt,
4735 .get_sset_count = kszphy_get_sset_count,
4736 .get_strings = kszphy_get_strings,
4737 .get_stats = kszphy_get_stats,
4738 .suspend = kszphy_suspend,
4739 .resume = kszphy_resume,
4740 .read_mmd = genphy_read_mmd_unsupported,
4741 .write_mmd = genphy_write_mmd_unsupported,
4742 }, {
4743 .phy_id = PHY_ID_KSZ9031,
4744 .phy_id_mask = MICREL_PHY_ID_MASK,
4745 .name = "Micrel KSZ9031 Gigabit PHY",
4746 .flags = PHY_POLL_CABLE_TEST,
4747 .driver_data = &ksz9021_type,
4748 .probe = kszphy_probe,
4749 .get_features = ksz9031_get_features,
4750 .config_init = ksz9031_config_init,
4751 .soft_reset = genphy_soft_reset,
4752 .read_status = ksz9031_read_status,
4753 .config_intr = kszphy_config_intr,
4754 .handle_interrupt = kszphy_handle_interrupt,
4755 .get_sset_count = kszphy_get_sset_count,
4756 .get_strings = kszphy_get_strings,
4757 .get_stats = kszphy_get_stats,
4758 .suspend = kszphy_suspend,
4759 .resume = kszphy_resume,
4760 .cable_test_start = ksz9x31_cable_test_start,
4761 .cable_test_get_status = ksz9x31_cable_test_get_status,
4762 }, {
4763 .phy_id = PHY_ID_LAN8814,
4764 .phy_id_mask = MICREL_PHY_ID_MASK,
4765 .name = "Microchip INDY Gigabit Quad PHY",
4766 .flags = PHY_POLL_CABLE_TEST,
4767 .config_init = lan8814_config_init,
4768 .driver_data = &lan8814_type,
4769 .probe = lan8814_probe,
4770 .soft_reset = genphy_soft_reset,
4771 .read_status = ksz9031_read_status,
4772 .get_sset_count = kszphy_get_sset_count,
4773 .get_strings = kszphy_get_strings,
4774 .get_stats = kszphy_get_stats,
4775 .suspend = genphy_suspend,
4776 .resume = kszphy_resume,
4777 .config_intr = lan8814_config_intr,
4778 .handle_interrupt = lan8814_handle_interrupt,
4779 .cable_test_start = lan8814_cable_test_start,
4780 .cable_test_get_status = ksz886x_cable_test_get_status,
4781 }, {
4782 .phy_id = PHY_ID_LAN8804,
4783 .phy_id_mask = MICREL_PHY_ID_MASK,
4784 .name = "Microchip LAN966X Gigabit PHY",
4785 .config_init = lan8804_config_init,
4786 .driver_data = &ksz9021_type,
4787 .probe = kszphy_probe,
4788 .soft_reset = genphy_soft_reset,
4789 .read_status = ksz9031_read_status,
4790 .get_sset_count = kszphy_get_sset_count,
4791 .get_strings = kszphy_get_strings,
4792 .get_stats = kszphy_get_stats,
4793 .suspend = genphy_suspend,
4794 .resume = kszphy_resume,
4795 .config_intr = lan8804_config_intr,
4796 .handle_interrupt = lan8804_handle_interrupt,
4797 }, {
4798 .phy_id = PHY_ID_LAN8841,
4799 .phy_id_mask = MICREL_PHY_ID_MASK,
4800 .name = "Microchip LAN8841 Gigabit PHY",
4801 .flags = PHY_POLL_CABLE_TEST,
4802 .driver_data = &lan8841_type,
4803 .config_init = lan8841_config_init,
4804 .probe = lan8841_probe,
4805 .soft_reset = genphy_soft_reset,
4806 .config_intr = lan8841_config_intr,
4807 .handle_interrupt = lan8841_handle_interrupt,
4808 .get_sset_count = kszphy_get_sset_count,
4809 .get_strings = kszphy_get_strings,
4810 .get_stats = kszphy_get_stats,
4811 .suspend = lan8841_suspend,
4812 .resume = genphy_resume,
4813 .cable_test_start = lan8814_cable_test_start,
4814 .cable_test_get_status = ksz886x_cable_test_get_status,
4815 }, {
4816 .phy_id = PHY_ID_KSZ9131,
4817 .phy_id_mask = MICREL_PHY_ID_MASK,
4818 .name = "Microchip KSZ9131 Gigabit PHY",
4819 /* PHY_GBIT_FEATURES */
4820 .flags = PHY_POLL_CABLE_TEST,
4821 .driver_data = &ksz9131_type,
4822 .probe = kszphy_probe,
4823 .config_init = ksz9131_config_init,
4824 .config_intr = kszphy_config_intr,
4825 .config_aneg = ksz9131_config_aneg,
4826 .read_status = ksz9131_read_status,
4827 .handle_interrupt = kszphy_handle_interrupt,
4828 .get_sset_count = kszphy_get_sset_count,
4829 .get_strings = kszphy_get_strings,
4830 .get_stats = kszphy_get_stats,
4831 .suspend = kszphy_suspend,
4832 .resume = kszphy_resume,
4833 .cable_test_start = ksz9x31_cable_test_start,
4834 .cable_test_get_status = ksz9x31_cable_test_get_status,
4835 .get_features = ksz9477_get_features,
4836 }, {
4837 .phy_id = PHY_ID_KSZ8873MLL,
4838 .phy_id_mask = MICREL_PHY_ID_MASK,
4839 .name = "Micrel KSZ8873MLL Switch",
4840 /* PHY_BASIC_FEATURES */
4841 .config_init = kszphy_config_init,
4842 .config_aneg = ksz8873mll_config_aneg,
4843 .read_status = ksz8873mll_read_status,
4844 .suspend = genphy_suspend,
4845 .resume = genphy_resume,
4846 }, {
4847 .phy_id = PHY_ID_KSZ886X,
4848 .phy_id_mask = MICREL_PHY_ID_MASK,
4849 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4850 .driver_data = &ksz886x_type,
4851 /* PHY_BASIC_FEATURES */
4852 .flags = PHY_POLL_CABLE_TEST,
4853 .config_init = kszphy_config_init,
4854 .config_aneg = ksz886x_config_aneg,
4855 .read_status = ksz886x_read_status,
4856 .suspend = genphy_suspend,
4857 .resume = genphy_resume,
4858 .cable_test_start = ksz886x_cable_test_start,
4859 .cable_test_get_status = ksz886x_cable_test_get_status,
4860 }, {
4861 .name = "Micrel KSZ87XX Switch",
4862 /* PHY_BASIC_FEATURES */
4863 .config_init = kszphy_config_init,
4864 .match_phy_device = ksz8795_match_phy_device,
4865 .suspend = genphy_suspend,
4866 .resume = genphy_resume,
4867 }, {
4868 .phy_id = PHY_ID_KSZ9477,
4869 .phy_id_mask = MICREL_PHY_ID_MASK,
4870 .name = "Microchip KSZ9477",
4871 /* PHY_GBIT_FEATURES */
4872 .config_init = ksz9477_config_init,
4873 .config_intr = kszphy_config_intr,
4874 .handle_interrupt = kszphy_handle_interrupt,
4875 .suspend = genphy_suspend,
4876 .resume = genphy_resume,
4877 .get_features = ksz9477_get_features,
4878 } };
4879
4880 module_phy_driver(ksphy_driver);
4881
4882 MODULE_DESCRIPTION("Micrel PHY driver");
4883 MODULE_AUTHOR("David J. Choi");
4884 MODULE_LICENSE("GPL");
4885
4886 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4887 { PHY_ID_KSZ9021, 0x000ffffe },
4888 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4889 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4890 { PHY_ID_KSZ8001, 0x00fffffc },
4891 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4892 { PHY_ID_KSZ8021, 0x00ffffff },
4893 { PHY_ID_KSZ8031, 0x00ffffff },
4894 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4895 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4896 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4897 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4898 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4899 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4900 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4901 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4902 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
4903 { }
4904 };
4905
4906 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
4907