1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES 4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29
30 /*
31 * Location of the first zone of superblock logging zone pairs.
32 *
33 * - primary superblock: 0B (zone 0)
34 * - first copy: 512G (zone starting at that offset)
35 * - second copy: 4T (zone starting at that offset)
36 */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
40
41 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46
47 /*
48 * Minimum of active zones we need:
49 *
50 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52 * - 1 zone for tree-log dedicated block group
53 * - 1 zone for relocation
54 */
55 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
56
57 /*
58 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60 * We do not expect the zone size to become larger than 8GiB or smaller than
61 * 4MiB in the near future.
62 */
63 #define BTRFS_MAX_ZONE_SIZE SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE SZ_4M
65
66 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70
sb_zone_is_full(const struct blk_zone * zone)71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73 return (zone->cond == BLK_ZONE_COND_FULL) ||
74 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79 struct blk_zone *zones = data;
80
81 memcpy(&zones[idx], zone, sizeof(*zone));
82
83 return 0;
84 }
85
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87 u64 *wp_ret)
88 {
89 bool empty[BTRFS_NR_SB_LOG_ZONES];
90 bool full[BTRFS_NR_SB_LOG_ZONES];
91 sector_t sector;
92 int i;
93
94 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97 full[i] = sb_zone_is_full(&zones[i]);
98 }
99
100 /*
101 * Possible states of log buffer zones
102 *
103 * Empty[0] In use[0] Full[0]
104 * Empty[1] * 0 1
105 * In use[1] x x 1
106 * Full[1] 0 0 C
107 *
108 * Log position:
109 * *: Special case, no superblock is written
110 * 0: Use write pointer of zones[0]
111 * 1: Use write pointer of zones[1]
112 * C: Compare super blocks from zones[0] and zones[1], use the latest
113 * one determined by generation
114 * x: Invalid state
115 */
116
117 if (empty[0] && empty[1]) {
118 /* Special case to distinguish no superblock to read */
119 *wp_ret = zones[0].start << SECTOR_SHIFT;
120 return -ENOENT;
121 } else if (full[0] && full[1]) {
122 /* Compare two super blocks */
123 struct address_space *mapping = bdev->bd_inode->i_mapping;
124 struct page *page[BTRFS_NR_SB_LOG_ZONES];
125 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126 int i;
127
128 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 BTRFS_SUPER_INFO_SIZE;
132
133 page[i] = read_cache_page_gfp(mapping,
134 bytenr >> PAGE_SHIFT, GFP_NOFS);
135 if (IS_ERR(page[i])) {
136 if (i == 1)
137 btrfs_release_disk_super(super[0]);
138 return PTR_ERR(page[i]);
139 }
140 super[i] = page_address(page[i]);
141 }
142
143 if (btrfs_super_generation(super[0]) >
144 btrfs_super_generation(super[1]))
145 sector = zones[1].start;
146 else
147 sector = zones[0].start;
148
149 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 btrfs_release_disk_super(super[i]);
151 } else if (!full[0] && (empty[1] || full[1])) {
152 sector = zones[0].wp;
153 } else if (full[0]) {
154 sector = zones[1].wp;
155 } else {
156 return -EUCLEAN;
157 }
158 *wp_ret = sector << SECTOR_SHIFT;
159 return 0;
160 }
161
162 /*
163 * Get the first zone number of the superblock mirror
164 */
sb_zone_number(int shift,int mirror)165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167 u64 zone = U64_MAX;
168
169 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 switch (mirror) {
171 case 0: zone = 0; break;
172 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 }
175
176 ASSERT(zone <= U32_MAX);
177
178 return (u32)zone;
179 }
180
zone_start_sector(u32 zone_number,struct block_device * bdev)181 static inline sector_t zone_start_sector(u32 zone_number,
182 struct block_device *bdev)
183 {
184 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)187 static inline u64 zone_start_physical(u32 zone_number,
188 struct btrfs_zoned_device_info *zone_info)
189 {
190 return (u64)zone_number << zone_info->zone_size_shift;
191 }
192
193 /*
194 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195 * device into static sized chunks and fake a conventional zone on each of
196 * them.
197 */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 struct blk_zone *zones, unsigned int nr_zones)
200 {
201 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 unsigned int i;
204
205 pos >>= SECTOR_SHIFT;
206 for (i = 0; i < nr_zones; i++) {
207 zones[i].start = i * zone_sectors + pos;
208 zones[i].len = zone_sectors;
209 zones[i].capacity = zone_sectors;
210 zones[i].wp = zones[i].start + zone_sectors;
211 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214 if (zones[i].wp >= bdev_size) {
215 i++;
216 break;
217 }
218 }
219
220 return i;
221 }
222
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 struct blk_zone *zones, unsigned int *nr_zones)
225 {
226 struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 int ret;
228
229 if (!*nr_zones)
230 return 0;
231
232 if (!bdev_is_zoned(device->bdev)) {
233 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 *nr_zones = ret;
235 return 0;
236 }
237
238 /* Check cache */
239 if (zinfo->zone_cache) {
240 unsigned int i;
241 u32 zno;
242
243 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 zno = pos >> zinfo->zone_size_shift;
245 /*
246 * We cannot report zones beyond the zone end. So, it is OK to
247 * cap *nr_zones to at the end.
248 */
249 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251 for (i = 0; i < *nr_zones; i++) {
252 struct blk_zone *zone_info;
253
254 zone_info = &zinfo->zone_cache[zno + i];
255 if (!zone_info->len)
256 break;
257 }
258
259 if (i == *nr_zones) {
260 /* Cache hit on all the zones */
261 memcpy(zones, zinfo->zone_cache + zno,
262 sizeof(*zinfo->zone_cache) * *nr_zones);
263 return 0;
264 }
265 }
266
267 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 copy_zone_info_cb, zones);
269 if (ret < 0) {
270 btrfs_err_in_rcu(device->fs_info,
271 "zoned: failed to read zone %llu on %s (devid %llu)",
272 pos, rcu_str_deref(device->name),
273 device->devid);
274 return ret;
275 }
276 *nr_zones = ret;
277 if (!ret)
278 return -EIO;
279
280 /* Populate cache */
281 if (zinfo->zone_cache) {
282 u32 zno = pos >> zinfo->zone_size_shift;
283
284 memcpy(zinfo->zone_cache + zno, zones,
285 sizeof(*zinfo->zone_cache) * *nr_zones);
286 }
287
288 return 0;
289 }
290
291 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294 struct btrfs_path *path;
295 struct btrfs_root *root = fs_info->dev_root;
296 struct btrfs_key key;
297 struct extent_buffer *leaf;
298 struct btrfs_dev_extent *dext;
299 int ret = 0;
300
301 key.objectid = 1;
302 key.type = BTRFS_DEV_EXTENT_KEY;
303 key.offset = 0;
304
305 path = btrfs_alloc_path();
306 if (!path)
307 return -ENOMEM;
308
309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 if (ret < 0)
311 goto out;
312
313 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 ret = btrfs_next_leaf(root, path);
315 if (ret < 0)
316 goto out;
317 /* No dev extents at all? Not good */
318 if (ret > 0) {
319 ret = -EUCLEAN;
320 goto out;
321 }
322 }
323
324 leaf = path->nodes[0];
325 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 ret = 0;
328
329 out:
330 btrfs_free_path(path);
331
332 return ret;
333 }
334
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338 struct btrfs_device *device;
339 int ret = 0;
340
341 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342 if (!btrfs_fs_incompat(fs_info, ZONED))
343 return 0;
344
345 mutex_lock(&fs_devices->device_list_mutex);
346 list_for_each_entry(device, &fs_devices->devices, dev_list) {
347 /* We can skip reading of zone info for missing devices */
348 if (!device->bdev)
349 continue;
350
351 ret = btrfs_get_dev_zone_info(device, true);
352 if (ret)
353 break;
354 }
355 mutex_unlock(&fs_devices->device_list_mutex);
356
357 return ret;
358 }
359
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362 struct btrfs_fs_info *fs_info = device->fs_info;
363 struct btrfs_zoned_device_info *zone_info = NULL;
364 struct block_device *bdev = device->bdev;
365 unsigned int max_active_zones;
366 unsigned int nactive;
367 sector_t nr_sectors;
368 sector_t sector = 0;
369 struct blk_zone *zones = NULL;
370 unsigned int i, nreported = 0, nr_zones;
371 sector_t zone_sectors;
372 char *model, *emulated;
373 int ret;
374
375 /*
376 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377 * yet be set.
378 */
379 if (!btrfs_fs_incompat(fs_info, ZONED))
380 return 0;
381
382 if (device->zone_info)
383 return 0;
384
385 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386 if (!zone_info)
387 return -ENOMEM;
388
389 device->zone_info = zone_info;
390
391 if (!bdev_is_zoned(bdev)) {
392 if (!fs_info->zone_size) {
393 ret = calculate_emulated_zone_size(fs_info);
394 if (ret)
395 goto out;
396 }
397
398 ASSERT(fs_info->zone_size);
399 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400 } else {
401 zone_sectors = bdev_zone_sectors(bdev);
402 }
403
404 ASSERT(is_power_of_two_u64(zone_sectors));
405 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406
407 /* We reject devices with a zone size larger than 8GB */
408 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409 btrfs_err_in_rcu(fs_info,
410 "zoned: %s: zone size %llu larger than supported maximum %llu",
411 rcu_str_deref(device->name),
412 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413 ret = -EINVAL;
414 goto out;
415 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416 btrfs_err_in_rcu(fs_info,
417 "zoned: %s: zone size %llu smaller than supported minimum %u",
418 rcu_str_deref(device->name),
419 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420 ret = -EINVAL;
421 goto out;
422 }
423
424 nr_sectors = bdev_nr_sectors(bdev);
425 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427 if (!IS_ALIGNED(nr_sectors, zone_sectors))
428 zone_info->nr_zones++;
429
430 max_active_zones = bdev_max_active_zones(bdev);
431 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432 btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434 rcu_str_deref(device->name), max_active_zones,
435 BTRFS_MIN_ACTIVE_ZONES);
436 ret = -EINVAL;
437 goto out;
438 }
439 zone_info->max_active_zones = max_active_zones;
440
441 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442 if (!zone_info->seq_zones) {
443 ret = -ENOMEM;
444 goto out;
445 }
446
447 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448 if (!zone_info->empty_zones) {
449 ret = -ENOMEM;
450 goto out;
451 }
452
453 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 if (!zone_info->active_zones) {
455 ret = -ENOMEM;
456 goto out;
457 }
458
459 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460 if (!zones) {
461 ret = -ENOMEM;
462 goto out;
463 }
464
465 /*
466 * Enable zone cache only for a zoned device. On a non-zoned device, we
467 * fill the zone info with emulated CONVENTIONAL zones, so no need to
468 * use the cache.
469 */
470 if (populate_cache && bdev_is_zoned(device->bdev)) {
471 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472 sizeof(struct blk_zone));
473 if (!zone_info->zone_cache) {
474 btrfs_err_in_rcu(device->fs_info,
475 "zoned: failed to allocate zone cache for %s",
476 rcu_str_deref(device->name));
477 ret = -ENOMEM;
478 goto out;
479 }
480 }
481
482 /* Get zones type */
483 nactive = 0;
484 while (sector < nr_sectors) {
485 nr_zones = BTRFS_REPORT_NR_ZONES;
486 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487 &nr_zones);
488 if (ret)
489 goto out;
490
491 for (i = 0; i < nr_zones; i++) {
492 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493 __set_bit(nreported, zone_info->seq_zones);
494 switch (zones[i].cond) {
495 case BLK_ZONE_COND_EMPTY:
496 __set_bit(nreported, zone_info->empty_zones);
497 break;
498 case BLK_ZONE_COND_IMP_OPEN:
499 case BLK_ZONE_COND_EXP_OPEN:
500 case BLK_ZONE_COND_CLOSED:
501 __set_bit(nreported, zone_info->active_zones);
502 nactive++;
503 break;
504 }
505 nreported++;
506 }
507 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508 }
509
510 if (nreported != zone_info->nr_zones) {
511 btrfs_err_in_rcu(device->fs_info,
512 "inconsistent number of zones on %s (%u/%u)",
513 rcu_str_deref(device->name), nreported,
514 zone_info->nr_zones);
515 ret = -EIO;
516 goto out;
517 }
518
519 if (max_active_zones) {
520 if (nactive > max_active_zones) {
521 btrfs_err_in_rcu(device->fs_info,
522 "zoned: %u active zones on %s exceeds max_active_zones %u",
523 nactive, rcu_str_deref(device->name),
524 max_active_zones);
525 ret = -EIO;
526 goto out;
527 }
528 atomic_set(&zone_info->active_zones_left,
529 max_active_zones - nactive);
530 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531 }
532
533 /* Validate superblock log */
534 nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 u32 sb_zone;
537 u64 sb_wp;
538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 if (sb_zone + 1 >= zone_info->nr_zones)
542 continue;
543
544 ret = btrfs_get_dev_zones(device,
545 zone_start_physical(sb_zone, zone_info),
546 &zone_info->sb_zones[sb_pos],
547 &nr_zones);
548 if (ret)
549 goto out;
550
551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 btrfs_err_in_rcu(device->fs_info,
553 "zoned: failed to read super block log zone info at devid %llu zone %u",
554 device->devid, sb_zone);
555 ret = -EUCLEAN;
556 goto out;
557 }
558
559 /*
560 * If zones[0] is conventional, always use the beginning of the
561 * zone to record superblock. No need to validate in that case.
562 */
563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 BLK_ZONE_TYPE_CONVENTIONAL)
565 continue;
566
567 ret = sb_write_pointer(device->bdev,
568 &zone_info->sb_zones[sb_pos], &sb_wp);
569 if (ret != -ENOENT && ret) {
570 btrfs_err_in_rcu(device->fs_info,
571 "zoned: super block log zone corrupted devid %llu zone %u",
572 device->devid, sb_zone);
573 ret = -EUCLEAN;
574 goto out;
575 }
576 }
577
578
579 kvfree(zones);
580
581 switch (bdev_zoned_model(bdev)) {
582 case BLK_ZONED_HM:
583 model = "host-managed zoned";
584 emulated = "";
585 break;
586 case BLK_ZONED_HA:
587 model = "host-aware zoned";
588 emulated = "";
589 break;
590 case BLK_ZONED_NONE:
591 model = "regular";
592 emulated = "emulated ";
593 break;
594 default:
595 /* Just in case */
596 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 bdev_zoned_model(bdev),
598 rcu_str_deref(device->name));
599 ret = -EOPNOTSUPP;
600 goto out_free_zone_info;
601 }
602
603 btrfs_info_in_rcu(fs_info,
604 "%s block device %s, %u %szones of %llu bytes",
605 model, rcu_str_deref(device->name), zone_info->nr_zones,
606 emulated, zone_info->zone_size);
607
608 return 0;
609
610 out:
611 kvfree(zones);
612 out_free_zone_info:
613 btrfs_destroy_dev_zone_info(device);
614
615 return ret;
616 }
617
btrfs_destroy_dev_zone_info(struct btrfs_device * device)618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620 struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622 if (!zone_info)
623 return;
624
625 bitmap_free(zone_info->active_zones);
626 bitmap_free(zone_info->seq_zones);
627 bitmap_free(zone_info->empty_zones);
628 vfree(zone_info->zone_cache);
629 kfree(zone_info);
630 device->zone_info = NULL;
631 }
632
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634 {
635 struct btrfs_zoned_device_info *zone_info;
636
637 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638 if (!zone_info)
639 return NULL;
640
641 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642 if (!zone_info->seq_zones)
643 goto out;
644
645 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646 zone_info->nr_zones);
647
648 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649 if (!zone_info->empty_zones)
650 goto out;
651
652 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653 zone_info->nr_zones);
654
655 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656 if (!zone_info->active_zones)
657 goto out;
658
659 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660 zone_info->nr_zones);
661 zone_info->zone_cache = NULL;
662
663 return zone_info;
664
665 out:
666 bitmap_free(zone_info->seq_zones);
667 bitmap_free(zone_info->empty_zones);
668 bitmap_free(zone_info->active_zones);
669 kfree(zone_info);
670 return NULL;
671 }
672
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674 struct blk_zone *zone)
675 {
676 unsigned int nr_zones = 1;
677 int ret;
678
679 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680 if (ret != 0 || !nr_zones)
681 return ret ? ret : -EIO;
682
683 return 0;
684 }
685
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687 {
688 struct btrfs_device *device;
689
690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 if (device->bdev &&
692 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693 btrfs_err(fs_info,
694 "zoned: mode not enabled but zoned device found: %pg",
695 device->bdev);
696 return -EINVAL;
697 }
698 }
699
700 return 0;
701 }
702
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704 {
705 struct queue_limits *lim = &fs_info->limits;
706 struct btrfs_device *device;
707 u64 zone_size = 0;
708 int ret;
709
710 /*
711 * Host-Managed devices can't be used without the ZONED flag. With the
712 * ZONED all devices can be used, using zone emulation if required.
713 */
714 if (!btrfs_fs_incompat(fs_info, ZONED))
715 return btrfs_check_for_zoned_device(fs_info);
716
717 blk_set_stacking_limits(lim);
718
719 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720 struct btrfs_zoned_device_info *zone_info = device->zone_info;
721
722 if (!device->bdev)
723 continue;
724
725 if (!zone_size) {
726 zone_size = zone_info->zone_size;
727 } else if (zone_info->zone_size != zone_size) {
728 btrfs_err(fs_info,
729 "zoned: unequal block device zone sizes: have %llu found %llu",
730 zone_info->zone_size, zone_size);
731 return -EINVAL;
732 }
733
734 /*
735 * With the zoned emulation, we can have non-zoned device on the
736 * zoned mode. In this case, we don't have a valid max zone
737 * append size.
738 */
739 if (bdev_is_zoned(device->bdev)) {
740 blk_stack_limits(lim,
741 &bdev_get_queue(device->bdev)->limits,
742 0);
743 }
744 }
745
746 /*
747 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749 * check the alignment here.
750 */
751 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752 btrfs_err(fs_info,
753 "zoned: zone size %llu not aligned to stripe %u",
754 zone_size, BTRFS_STRIPE_LEN);
755 return -EINVAL;
756 }
757
758 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759 btrfs_err(fs_info, "zoned: mixed block groups not supported");
760 return -EINVAL;
761 }
762
763 fs_info->zone_size = zone_size;
764 /*
765 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766 * Technically, we can have multiple pages per segment. But, since
767 * we add the pages one by one to a bio, and cannot increase the
768 * metadata reservation even if it increases the number of extents, it
769 * is safe to stick with the limit.
770 */
771 fs_info->max_zone_append_size = ALIGN_DOWN(
772 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773 (u64)lim->max_sectors << SECTOR_SHIFT,
774 (u64)lim->max_segments << PAGE_SHIFT),
775 fs_info->sectorsize);
776 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
777 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778 fs_info->max_extent_size = fs_info->max_zone_append_size;
779
780 /*
781 * Check mount options here, because we might change fs_info->zoned
782 * from fs_info->zone_size.
783 */
784 ret = btrfs_check_mountopts_zoned(fs_info);
785 if (ret)
786 return ret;
787
788 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
789 return 0;
790 }
791
btrfs_check_mountopts_zoned(struct btrfs_fs_info * info)792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
793 {
794 if (!btrfs_is_zoned(info))
795 return 0;
796
797 /*
798 * Space cache writing is not COWed. Disable that to avoid write errors
799 * in sequential zones.
800 */
801 if (btrfs_test_opt(info, SPACE_CACHE)) {
802 btrfs_err(info, "zoned: space cache v1 is not supported");
803 return -EINVAL;
804 }
805
806 if (btrfs_test_opt(info, NODATACOW)) {
807 btrfs_err(info, "zoned: NODATACOW not supported");
808 return -EINVAL;
809 }
810
811 btrfs_clear_and_info(info, DISCARD_ASYNC,
812 "zoned: async discard ignored and disabled for zoned mode");
813
814 return 0;
815 }
816
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)817 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
818 int rw, u64 *bytenr_ret)
819 {
820 u64 wp;
821 int ret;
822
823 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
824 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
825 return 0;
826 }
827
828 ret = sb_write_pointer(bdev, zones, &wp);
829 if (ret != -ENOENT && ret < 0)
830 return ret;
831
832 if (rw == WRITE) {
833 struct blk_zone *reset = NULL;
834
835 if (wp == zones[0].start << SECTOR_SHIFT)
836 reset = &zones[0];
837 else if (wp == zones[1].start << SECTOR_SHIFT)
838 reset = &zones[1];
839
840 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
841 ASSERT(sb_zone_is_full(reset));
842
843 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
844 reset->start, reset->len,
845 GFP_NOFS);
846 if (ret)
847 return ret;
848
849 reset->cond = BLK_ZONE_COND_EMPTY;
850 reset->wp = reset->start;
851 }
852 } else if (ret != -ENOENT) {
853 /*
854 * For READ, we want the previous one. Move write pointer to
855 * the end of a zone, if it is at the head of a zone.
856 */
857 u64 zone_end = 0;
858
859 if (wp == zones[0].start << SECTOR_SHIFT)
860 zone_end = zones[1].start + zones[1].capacity;
861 else if (wp == zones[1].start << SECTOR_SHIFT)
862 zone_end = zones[0].start + zones[0].capacity;
863 if (zone_end)
864 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
865 BTRFS_SUPER_INFO_SIZE);
866
867 wp -= BTRFS_SUPER_INFO_SIZE;
868 }
869
870 *bytenr_ret = wp;
871 return 0;
872
873 }
874
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)875 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
876 u64 *bytenr_ret)
877 {
878 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
879 sector_t zone_sectors;
880 u32 sb_zone;
881 int ret;
882 u8 zone_sectors_shift;
883 sector_t nr_sectors;
884 u32 nr_zones;
885
886 if (!bdev_is_zoned(bdev)) {
887 *bytenr_ret = btrfs_sb_offset(mirror);
888 return 0;
889 }
890
891 ASSERT(rw == READ || rw == WRITE);
892
893 zone_sectors = bdev_zone_sectors(bdev);
894 if (!is_power_of_2(zone_sectors))
895 return -EINVAL;
896 zone_sectors_shift = ilog2(zone_sectors);
897 nr_sectors = bdev_nr_sectors(bdev);
898 nr_zones = nr_sectors >> zone_sectors_shift;
899
900 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
901 if (sb_zone + 1 >= nr_zones)
902 return -ENOENT;
903
904 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
905 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
906 zones);
907 if (ret < 0)
908 return ret;
909 if (ret != BTRFS_NR_SB_LOG_ZONES)
910 return -EIO;
911
912 return sb_log_location(bdev, zones, rw, bytenr_ret);
913 }
914
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)915 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
916 u64 *bytenr_ret)
917 {
918 struct btrfs_zoned_device_info *zinfo = device->zone_info;
919 u32 zone_num;
920
921 /*
922 * For a zoned filesystem on a non-zoned block device, use the same
923 * super block locations as regular filesystem. Doing so, the super
924 * block can always be retrieved and the zoned flag of the volume
925 * detected from the super block information.
926 */
927 if (!bdev_is_zoned(device->bdev)) {
928 *bytenr_ret = btrfs_sb_offset(mirror);
929 return 0;
930 }
931
932 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
933 if (zone_num + 1 >= zinfo->nr_zones)
934 return -ENOENT;
935
936 return sb_log_location(device->bdev,
937 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
938 rw, bytenr_ret);
939 }
940
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)941 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
942 int mirror)
943 {
944 u32 zone_num;
945
946 if (!zinfo)
947 return false;
948
949 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
950 if (zone_num + 1 >= zinfo->nr_zones)
951 return false;
952
953 if (!test_bit(zone_num, zinfo->seq_zones))
954 return false;
955
956 return true;
957 }
958
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)959 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
960 {
961 struct btrfs_zoned_device_info *zinfo = device->zone_info;
962 struct blk_zone *zone;
963 int i;
964
965 if (!is_sb_log_zone(zinfo, mirror))
966 return 0;
967
968 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
969 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
970 /* Advance the next zone */
971 if (zone->cond == BLK_ZONE_COND_FULL) {
972 zone++;
973 continue;
974 }
975
976 if (zone->cond == BLK_ZONE_COND_EMPTY)
977 zone->cond = BLK_ZONE_COND_IMP_OPEN;
978
979 zone->wp += SUPER_INFO_SECTORS;
980
981 if (sb_zone_is_full(zone)) {
982 /*
983 * No room left to write new superblock. Since
984 * superblock is written with REQ_SYNC, it is safe to
985 * finish the zone now.
986 *
987 * If the write pointer is exactly at the capacity,
988 * explicit ZONE_FINISH is not necessary.
989 */
990 if (zone->wp != zone->start + zone->capacity) {
991 int ret;
992
993 ret = blkdev_zone_mgmt(device->bdev,
994 REQ_OP_ZONE_FINISH, zone->start,
995 zone->len, GFP_NOFS);
996 if (ret)
997 return ret;
998 }
999
1000 zone->wp = zone->start + zone->len;
1001 zone->cond = BLK_ZONE_COND_FULL;
1002 }
1003 return 0;
1004 }
1005
1006 /* All the zones are FULL. Should not reach here. */
1007 ASSERT(0);
1008 return -EIO;
1009 }
1010
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)1011 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1012 {
1013 sector_t zone_sectors;
1014 sector_t nr_sectors;
1015 u8 zone_sectors_shift;
1016 u32 sb_zone;
1017 u32 nr_zones;
1018
1019 zone_sectors = bdev_zone_sectors(bdev);
1020 zone_sectors_shift = ilog2(zone_sectors);
1021 nr_sectors = bdev_nr_sectors(bdev);
1022 nr_zones = nr_sectors >> zone_sectors_shift;
1023
1024 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025 if (sb_zone + 1 >= nr_zones)
1026 return -ENOENT;
1027
1028 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1029 zone_start_sector(sb_zone, bdev),
1030 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1031 }
1032
1033 /*
1034 * Find allocatable zones within a given region.
1035 *
1036 * @device: the device to allocate a region on
1037 * @hole_start: the position of the hole to allocate the region
1038 * @num_bytes: size of wanted region
1039 * @hole_end: the end of the hole
1040 * @return: position of allocatable zones
1041 *
1042 * Allocatable region should not contain any superblock locations.
1043 */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1044 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1045 u64 hole_end, u64 num_bytes)
1046 {
1047 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1048 const u8 shift = zinfo->zone_size_shift;
1049 u64 nzones = num_bytes >> shift;
1050 u64 pos = hole_start;
1051 u64 begin, end;
1052 bool have_sb;
1053 int i;
1054
1055 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1056 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1057
1058 while (pos < hole_end) {
1059 begin = pos >> shift;
1060 end = begin + nzones;
1061
1062 if (end > zinfo->nr_zones)
1063 return hole_end;
1064
1065 /* Check if zones in the region are all empty */
1066 if (btrfs_dev_is_sequential(device, pos) &&
1067 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1068 pos += zinfo->zone_size;
1069 continue;
1070 }
1071
1072 have_sb = false;
1073 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1074 u32 sb_zone;
1075 u64 sb_pos;
1076
1077 sb_zone = sb_zone_number(shift, i);
1078 if (!(end <= sb_zone ||
1079 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1080 have_sb = true;
1081 pos = zone_start_physical(
1082 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1083 break;
1084 }
1085
1086 /* We also need to exclude regular superblock positions */
1087 sb_pos = btrfs_sb_offset(i);
1088 if (!(pos + num_bytes <= sb_pos ||
1089 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1090 have_sb = true;
1091 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1092 zinfo->zone_size);
1093 break;
1094 }
1095 }
1096 if (!have_sb)
1097 break;
1098 }
1099
1100 return pos;
1101 }
1102
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1103 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1104 {
1105 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1106 unsigned int zno = (pos >> zone_info->zone_size_shift);
1107
1108 /* We can use any number of zones */
1109 if (zone_info->max_active_zones == 0)
1110 return true;
1111
1112 if (!test_bit(zno, zone_info->active_zones)) {
1113 /* Active zone left? */
1114 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1115 return false;
1116 if (test_and_set_bit(zno, zone_info->active_zones)) {
1117 /* Someone already set the bit */
1118 atomic_inc(&zone_info->active_zones_left);
1119 }
1120 }
1121
1122 return true;
1123 }
1124
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1125 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1126 {
1127 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1128 unsigned int zno = (pos >> zone_info->zone_size_shift);
1129
1130 /* We can use any number of zones */
1131 if (zone_info->max_active_zones == 0)
1132 return;
1133
1134 if (test_and_clear_bit(zno, zone_info->active_zones))
1135 atomic_inc(&zone_info->active_zones_left);
1136 }
1137
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1138 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1139 u64 length, u64 *bytes)
1140 {
1141 int ret;
1142
1143 *bytes = 0;
1144 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1145 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1146 GFP_NOFS);
1147 if (ret)
1148 return ret;
1149
1150 *bytes = length;
1151 while (length) {
1152 btrfs_dev_set_zone_empty(device, physical);
1153 btrfs_dev_clear_active_zone(device, physical);
1154 physical += device->zone_info->zone_size;
1155 length -= device->zone_info->zone_size;
1156 }
1157
1158 return 0;
1159 }
1160
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1161 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1162 {
1163 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1164 const u8 shift = zinfo->zone_size_shift;
1165 unsigned long begin = start >> shift;
1166 unsigned long nbits = size >> shift;
1167 u64 pos;
1168 int ret;
1169
1170 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1171 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1172
1173 if (begin + nbits > zinfo->nr_zones)
1174 return -ERANGE;
1175
1176 /* All the zones are conventional */
1177 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1178 return 0;
1179
1180 /* All the zones are sequential and empty */
1181 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1182 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1183 return 0;
1184
1185 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1186 u64 reset_bytes;
1187
1188 if (!btrfs_dev_is_sequential(device, pos) ||
1189 btrfs_dev_is_empty_zone(device, pos))
1190 continue;
1191
1192 /* Free regions should be empty */
1193 btrfs_warn_in_rcu(
1194 device->fs_info,
1195 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1196 rcu_str_deref(device->name), device->devid, pos >> shift);
1197 WARN_ON_ONCE(1);
1198
1199 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1200 &reset_bytes);
1201 if (ret)
1202 return ret;
1203 }
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * Calculate an allocation pointer from the extent allocation information
1210 * for a block group consist of conventional zones. It is pointed to the
1211 * end of the highest addressed extent in the block group as an allocation
1212 * offset.
1213 */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1214 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1215 u64 *offset_ret, bool new)
1216 {
1217 struct btrfs_fs_info *fs_info = cache->fs_info;
1218 struct btrfs_root *root;
1219 struct btrfs_path *path;
1220 struct btrfs_key key;
1221 struct btrfs_key found_key;
1222 int ret;
1223 u64 length;
1224
1225 /*
1226 * Avoid tree lookups for a new block group, there's no use for it.
1227 * It must always be 0.
1228 *
1229 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1230 * For new a block group, this function is called from
1231 * btrfs_make_block_group() which is already taking the chunk mutex.
1232 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1233 * buffer locks to avoid deadlock.
1234 */
1235 if (new) {
1236 *offset_ret = 0;
1237 return 0;
1238 }
1239
1240 path = btrfs_alloc_path();
1241 if (!path)
1242 return -ENOMEM;
1243
1244 key.objectid = cache->start + cache->length;
1245 key.type = 0;
1246 key.offset = 0;
1247
1248 root = btrfs_extent_root(fs_info, key.objectid);
1249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1250 /* We should not find the exact match */
1251 if (!ret)
1252 ret = -EUCLEAN;
1253 if (ret < 0)
1254 goto out;
1255
1256 ret = btrfs_previous_extent_item(root, path, cache->start);
1257 if (ret) {
1258 if (ret == 1) {
1259 ret = 0;
1260 *offset_ret = 0;
1261 }
1262 goto out;
1263 }
1264
1265 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1266
1267 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1268 length = found_key.offset;
1269 else
1270 length = fs_info->nodesize;
1271
1272 if (!(found_key.objectid >= cache->start &&
1273 found_key.objectid + length <= cache->start + cache->length)) {
1274 ret = -EUCLEAN;
1275 goto out;
1276 }
1277 *offset_ret = found_key.objectid + length - cache->start;
1278 ret = 0;
1279
1280 out:
1281 btrfs_free_path(path);
1282 return ret;
1283 }
1284
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1285 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1286 {
1287 struct btrfs_fs_info *fs_info = cache->fs_info;
1288 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1289 struct extent_map *em;
1290 struct map_lookup *map;
1291 struct btrfs_device *device;
1292 u64 logical = cache->start;
1293 u64 length = cache->length;
1294 int ret;
1295 int i;
1296 unsigned int nofs_flag;
1297 u64 *alloc_offsets = NULL;
1298 u64 *caps = NULL;
1299 u64 *physical = NULL;
1300 unsigned long *active = NULL;
1301 u64 last_alloc = 0;
1302 u32 num_sequential = 0, num_conventional = 0;
1303
1304 if (!btrfs_is_zoned(fs_info))
1305 return 0;
1306
1307 /* Sanity check */
1308 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1309 btrfs_err(fs_info,
1310 "zoned: block group %llu len %llu unaligned to zone size %llu",
1311 logical, length, fs_info->zone_size);
1312 return -EIO;
1313 }
1314
1315 /* Get the chunk mapping */
1316 read_lock(&em_tree->lock);
1317 em = lookup_extent_mapping(em_tree, logical, length);
1318 read_unlock(&em_tree->lock);
1319
1320 if (!em)
1321 return -EINVAL;
1322
1323 map = em->map_lookup;
1324
1325 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1326 if (!cache->physical_map) {
1327 ret = -ENOMEM;
1328 goto out;
1329 }
1330
1331 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1332 if (!alloc_offsets) {
1333 ret = -ENOMEM;
1334 goto out;
1335 }
1336
1337 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1338 if (!caps) {
1339 ret = -ENOMEM;
1340 goto out;
1341 }
1342
1343 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1344 if (!physical) {
1345 ret = -ENOMEM;
1346 goto out;
1347 }
1348
1349 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1350 if (!active) {
1351 ret = -ENOMEM;
1352 goto out;
1353 }
1354
1355 for (i = 0; i < map->num_stripes; i++) {
1356 bool is_sequential;
1357 struct blk_zone zone;
1358 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1359 int dev_replace_is_ongoing = 0;
1360
1361 device = map->stripes[i].dev;
1362 physical[i] = map->stripes[i].physical;
1363
1364 if (device->bdev == NULL) {
1365 alloc_offsets[i] = WP_MISSING_DEV;
1366 continue;
1367 }
1368
1369 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1370 if (is_sequential)
1371 num_sequential++;
1372 else
1373 num_conventional++;
1374
1375 /*
1376 * Consider a zone as active if we can allow any number of
1377 * active zones.
1378 */
1379 if (!device->zone_info->max_active_zones)
1380 __set_bit(i, active);
1381
1382 if (!is_sequential) {
1383 alloc_offsets[i] = WP_CONVENTIONAL;
1384 continue;
1385 }
1386
1387 /*
1388 * This zone will be used for allocation, so mark this zone
1389 * non-empty.
1390 */
1391 btrfs_dev_clear_zone_empty(device, physical[i]);
1392
1393 down_read(&dev_replace->rwsem);
1394 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1395 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1396 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1397 up_read(&dev_replace->rwsem);
1398
1399 /*
1400 * The group is mapped to a sequential zone. Get the zone write
1401 * pointer to determine the allocation offset within the zone.
1402 */
1403 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1404 nofs_flag = memalloc_nofs_save();
1405 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1406 memalloc_nofs_restore(nofs_flag);
1407 if (ret == -EIO || ret == -EOPNOTSUPP) {
1408 ret = 0;
1409 alloc_offsets[i] = WP_MISSING_DEV;
1410 continue;
1411 } else if (ret) {
1412 goto out;
1413 }
1414
1415 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1416 btrfs_err_in_rcu(fs_info,
1417 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1418 zone.start << SECTOR_SHIFT,
1419 rcu_str_deref(device->name), device->devid);
1420 ret = -EIO;
1421 goto out;
1422 }
1423
1424 caps[i] = (zone.capacity << SECTOR_SHIFT);
1425
1426 switch (zone.cond) {
1427 case BLK_ZONE_COND_OFFLINE:
1428 case BLK_ZONE_COND_READONLY:
1429 btrfs_err(fs_info,
1430 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1431 physical[i] >> device->zone_info->zone_size_shift,
1432 rcu_str_deref(device->name), device->devid);
1433 alloc_offsets[i] = WP_MISSING_DEV;
1434 break;
1435 case BLK_ZONE_COND_EMPTY:
1436 alloc_offsets[i] = 0;
1437 break;
1438 case BLK_ZONE_COND_FULL:
1439 alloc_offsets[i] = caps[i];
1440 break;
1441 default:
1442 /* Partially used zone */
1443 alloc_offsets[i] =
1444 ((zone.wp - zone.start) << SECTOR_SHIFT);
1445 __set_bit(i, active);
1446 break;
1447 }
1448 }
1449
1450 if (num_sequential > 0)
1451 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1452
1453 if (num_conventional > 0) {
1454 /* Zone capacity is always zone size in emulation */
1455 cache->zone_capacity = cache->length;
1456 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1457 if (ret) {
1458 btrfs_err(fs_info,
1459 "zoned: failed to determine allocation offset of bg %llu",
1460 cache->start);
1461 goto out;
1462 } else if (map->num_stripes == num_conventional) {
1463 cache->alloc_offset = last_alloc;
1464 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1465 goto out;
1466 }
1467 }
1468
1469 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1470 case 0: /* single */
1471 if (alloc_offsets[0] == WP_MISSING_DEV) {
1472 btrfs_err(fs_info,
1473 "zoned: cannot recover write pointer for zone %llu",
1474 physical[0]);
1475 ret = -EIO;
1476 goto out;
1477 }
1478 cache->alloc_offset = alloc_offsets[0];
1479 cache->zone_capacity = caps[0];
1480 if (test_bit(0, active))
1481 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1482 break;
1483 case BTRFS_BLOCK_GROUP_DUP:
1484 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1485 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1486 ret = -EINVAL;
1487 goto out;
1488 }
1489 if (alloc_offsets[0] == WP_MISSING_DEV) {
1490 btrfs_err(fs_info,
1491 "zoned: cannot recover write pointer for zone %llu",
1492 physical[0]);
1493 ret = -EIO;
1494 goto out;
1495 }
1496 if (alloc_offsets[1] == WP_MISSING_DEV) {
1497 btrfs_err(fs_info,
1498 "zoned: cannot recover write pointer for zone %llu",
1499 physical[1]);
1500 ret = -EIO;
1501 goto out;
1502 }
1503 if (alloc_offsets[0] != alloc_offsets[1]) {
1504 btrfs_err(fs_info,
1505 "zoned: write pointer offset mismatch of zones in DUP profile");
1506 ret = -EIO;
1507 goto out;
1508 }
1509 if (test_bit(0, active) != test_bit(1, active)) {
1510 if (!btrfs_zone_activate(cache)) {
1511 ret = -EIO;
1512 goto out;
1513 }
1514 } else {
1515 if (test_bit(0, active))
1516 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1517 &cache->runtime_flags);
1518 }
1519 cache->alloc_offset = alloc_offsets[0];
1520 cache->zone_capacity = min(caps[0], caps[1]);
1521 break;
1522 case BTRFS_BLOCK_GROUP_RAID1:
1523 case BTRFS_BLOCK_GROUP_RAID0:
1524 case BTRFS_BLOCK_GROUP_RAID10:
1525 case BTRFS_BLOCK_GROUP_RAID5:
1526 case BTRFS_BLOCK_GROUP_RAID6:
1527 /* non-single profiles are not supported yet */
1528 default:
1529 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1530 btrfs_bg_type_to_raid_name(map->type));
1531 ret = -EINVAL;
1532 goto out;
1533 }
1534
1535 out:
1536 if (cache->alloc_offset > fs_info->zone_size) {
1537 btrfs_err(fs_info,
1538 "zoned: invalid write pointer %llu in block group %llu",
1539 cache->alloc_offset, cache->start);
1540 ret = -EIO;
1541 }
1542
1543 if (cache->alloc_offset > cache->zone_capacity) {
1544 btrfs_err(fs_info,
1545 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1546 cache->alloc_offset, cache->zone_capacity,
1547 cache->start);
1548 ret = -EIO;
1549 }
1550
1551 /* An extent is allocated after the write pointer */
1552 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1553 btrfs_err(fs_info,
1554 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1555 logical, last_alloc, cache->alloc_offset);
1556 ret = -EIO;
1557 }
1558
1559 if (!ret) {
1560 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1561 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1562 btrfs_get_block_group(cache);
1563 spin_lock(&fs_info->zone_active_bgs_lock);
1564 list_add_tail(&cache->active_bg_list,
1565 &fs_info->zone_active_bgs);
1566 spin_unlock(&fs_info->zone_active_bgs_lock);
1567 }
1568 } else {
1569 kfree(cache->physical_map);
1570 cache->physical_map = NULL;
1571 }
1572 bitmap_free(active);
1573 kfree(physical);
1574 kfree(caps);
1575 kfree(alloc_offsets);
1576 free_extent_map(em);
1577
1578 return ret;
1579 }
1580
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1581 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1582 {
1583 u64 unusable, free;
1584
1585 if (!btrfs_is_zoned(cache->fs_info))
1586 return;
1587
1588 WARN_ON(cache->bytes_super != 0);
1589 unusable = (cache->alloc_offset - cache->used) +
1590 (cache->length - cache->zone_capacity);
1591 free = cache->zone_capacity - cache->alloc_offset;
1592
1593 /* We only need ->free_space in ALLOC_SEQ block groups */
1594 cache->cached = BTRFS_CACHE_FINISHED;
1595 cache->free_space_ctl->free_space = free;
1596 cache->zone_unusable = unusable;
1597 }
1598
btrfs_redirty_list_add(struct btrfs_transaction * trans,struct extent_buffer * eb)1599 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1600 struct extent_buffer *eb)
1601 {
1602 if (!btrfs_is_zoned(eb->fs_info) ||
1603 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
1604 return;
1605
1606 ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1607
1608 memzero_extent_buffer(eb, 0, eb->len);
1609 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1610 set_extent_buffer_dirty(eb);
1611 set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1612 EXTENT_DIRTY | EXTENT_NOWAIT, NULL);
1613 }
1614
btrfs_use_zone_append(struct btrfs_bio * bbio)1615 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1616 {
1617 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1618 struct btrfs_inode *inode = bbio->inode;
1619 struct btrfs_fs_info *fs_info = bbio->fs_info;
1620 struct btrfs_block_group *cache;
1621 bool ret = false;
1622
1623 if (!btrfs_is_zoned(fs_info))
1624 return false;
1625
1626 if (!inode || !is_data_inode(&inode->vfs_inode))
1627 return false;
1628
1629 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1630 return false;
1631
1632 /*
1633 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1634 * extent layout the relocation code has.
1635 * Furthermore we have set aside own block-group from which only the
1636 * relocation "process" can allocate and make sure only one process at a
1637 * time can add pages to an extent that gets relocated, so it's safe to
1638 * use regular REQ_OP_WRITE for this special case.
1639 */
1640 if (btrfs_is_data_reloc_root(inode->root))
1641 return false;
1642
1643 cache = btrfs_lookup_block_group(fs_info, start);
1644 ASSERT(cache);
1645 if (!cache)
1646 return false;
1647
1648 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1649 btrfs_put_block_group(cache);
1650
1651 return ret;
1652 }
1653
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1654 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1655 {
1656 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1657 struct btrfs_ordered_sum *sum = bbio->sums;
1658
1659 if (physical < bbio->orig_physical)
1660 sum->logical -= bbio->orig_physical - physical;
1661 else
1662 sum->logical += physical - bbio->orig_physical;
1663 }
1664
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1665 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1666 u64 logical)
1667 {
1668 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1669 struct extent_map *em;
1670
1671 ordered->disk_bytenr = logical;
1672
1673 write_lock(&em_tree->lock);
1674 em = search_extent_mapping(em_tree, ordered->file_offset,
1675 ordered->num_bytes);
1676 em->block_start = logical;
1677 free_extent_map(em);
1678 write_unlock(&em_tree->lock);
1679 }
1680
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1681 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1682 u64 logical, u64 len)
1683 {
1684 struct btrfs_ordered_extent *new;
1685
1686 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1687 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1688 ordered->num_bytes, len, logical))
1689 return false;
1690
1691 new = btrfs_split_ordered_extent(ordered, len);
1692 if (IS_ERR(new))
1693 return false;
1694 new->disk_bytenr = logical;
1695 btrfs_finish_one_ordered(new);
1696 return true;
1697 }
1698
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1699 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1700 {
1701 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1702 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1703 struct btrfs_ordered_sum *sum;
1704 u64 logical, len;
1705
1706 /*
1707 * Write to pre-allocated region is for the data relocation, and so
1708 * it should use WRITE operation. No split/rewrite are necessary.
1709 */
1710 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1711 return;
1712
1713 ASSERT(!list_empty(&ordered->list));
1714 /* The ordered->list can be empty in the above pre-alloc case. */
1715 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1716 logical = sum->logical;
1717 len = sum->len;
1718
1719 while (len < ordered->disk_num_bytes) {
1720 sum = list_next_entry(sum, list);
1721 if (sum->logical == logical + len) {
1722 len += sum->len;
1723 continue;
1724 }
1725 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1726 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1727 btrfs_err(fs_info, "failed to split ordered extent");
1728 goto out;
1729 }
1730 logical = sum->logical;
1731 len = sum->len;
1732 }
1733
1734 if (ordered->disk_bytenr != logical)
1735 btrfs_rewrite_logical_zoned(ordered, logical);
1736
1737 out:
1738 /*
1739 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1740 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1741 * addresses and don't contain actual checksums. We thus must free them
1742 * here so that we don't attempt to log the csums later.
1743 */
1744 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1745 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1746 while ((sum = list_first_entry_or_null(&ordered->list,
1747 typeof(*sum), list))) {
1748 list_del(&sum->list);
1749 kfree(sum);
1750 }
1751 }
1752 }
1753
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1754 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1755 struct btrfs_block_group **active_bg)
1756 {
1757 const struct writeback_control *wbc = ctx->wbc;
1758 struct btrfs_block_group *block_group = ctx->zoned_bg;
1759 struct btrfs_fs_info *fs_info = block_group->fs_info;
1760
1761 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1762 return true;
1763
1764 if (fs_info->treelog_bg == block_group->start) {
1765 if (!btrfs_zone_activate(block_group)) {
1766 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1767
1768 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1769 return false;
1770 }
1771 } else if (*active_bg != block_group) {
1772 struct btrfs_block_group *tgt = *active_bg;
1773
1774 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1775 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1776
1777 if (tgt) {
1778 /*
1779 * If there is an unsent IO left in the allocated area,
1780 * we cannot wait for them as it may cause a deadlock.
1781 */
1782 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1783 if (wbc->sync_mode == WB_SYNC_NONE ||
1784 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1785 return false;
1786 }
1787
1788 /* Pivot active metadata/system block group. */
1789 btrfs_zoned_meta_io_unlock(fs_info);
1790 wait_eb_writebacks(tgt);
1791 do_zone_finish(tgt, true);
1792 btrfs_zoned_meta_io_lock(fs_info);
1793 if (*active_bg == tgt) {
1794 btrfs_put_block_group(tgt);
1795 *active_bg = NULL;
1796 }
1797 }
1798 if (!btrfs_zone_activate(block_group))
1799 return false;
1800 if (*active_bg != block_group) {
1801 ASSERT(*active_bg == NULL);
1802 *active_bg = block_group;
1803 btrfs_get_block_group(block_group);
1804 }
1805 }
1806
1807 return true;
1808 }
1809
1810 /*
1811 * Check if @ctx->eb is aligned to the write pointer.
1812 *
1813 * Return:
1814 * 0: @ctx->eb is at the write pointer. You can write it.
1815 * -EAGAIN: There is a hole. The caller should handle the case.
1816 * -EBUSY: There is a hole, but the caller can just bail out.
1817 */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)1818 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1819 struct btrfs_eb_write_context *ctx)
1820 {
1821 const struct writeback_control *wbc = ctx->wbc;
1822 const struct extent_buffer *eb = ctx->eb;
1823 struct btrfs_block_group *block_group = ctx->zoned_bg;
1824
1825 if (!btrfs_is_zoned(fs_info))
1826 return 0;
1827
1828 if (block_group) {
1829 if (block_group->start > eb->start ||
1830 block_group->start + block_group->length <= eb->start) {
1831 btrfs_put_block_group(block_group);
1832 block_group = NULL;
1833 ctx->zoned_bg = NULL;
1834 }
1835 }
1836
1837 if (!block_group) {
1838 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1839 if (!block_group)
1840 return 0;
1841 ctx->zoned_bg = block_group;
1842 }
1843
1844 if (block_group->meta_write_pointer == eb->start) {
1845 struct btrfs_block_group **tgt;
1846
1847 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1848 return 0;
1849
1850 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1851 tgt = &fs_info->active_system_bg;
1852 else
1853 tgt = &fs_info->active_meta_bg;
1854 if (check_bg_is_active(ctx, tgt))
1855 return 0;
1856 }
1857
1858 /*
1859 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1860 * start writing this eb. In that case, we can just bail out.
1861 */
1862 if (block_group->meta_write_pointer > eb->start)
1863 return -EBUSY;
1864
1865 /* If for_sync, this hole will be filled with trasnsaction commit. */
1866 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1867 return -EAGAIN;
1868 return -EBUSY;
1869 }
1870
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)1871 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1872 {
1873 if (!btrfs_dev_is_sequential(device, physical))
1874 return -EOPNOTSUPP;
1875
1876 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1877 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1878 }
1879
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)1880 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1881 struct blk_zone *zone)
1882 {
1883 struct btrfs_io_context *bioc = NULL;
1884 u64 mapped_length = PAGE_SIZE;
1885 unsigned int nofs_flag;
1886 int nmirrors;
1887 int i, ret;
1888
1889 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1890 &mapped_length, &bioc, NULL, NULL, 1);
1891 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1892 ret = -EIO;
1893 goto out_put_bioc;
1894 }
1895
1896 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1897 ret = -EINVAL;
1898 goto out_put_bioc;
1899 }
1900
1901 nofs_flag = memalloc_nofs_save();
1902 nmirrors = (int)bioc->num_stripes;
1903 for (i = 0; i < nmirrors; i++) {
1904 u64 physical = bioc->stripes[i].physical;
1905 struct btrfs_device *dev = bioc->stripes[i].dev;
1906
1907 /* Missing device */
1908 if (!dev->bdev)
1909 continue;
1910
1911 ret = btrfs_get_dev_zone(dev, physical, zone);
1912 /* Failing device */
1913 if (ret == -EIO || ret == -EOPNOTSUPP)
1914 continue;
1915 break;
1916 }
1917 memalloc_nofs_restore(nofs_flag);
1918 out_put_bioc:
1919 btrfs_put_bioc(bioc);
1920 return ret;
1921 }
1922
1923 /*
1924 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1925 * filling zeros between @physical_pos to a write pointer of dev-replace
1926 * source device.
1927 */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)1928 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1929 u64 physical_start, u64 physical_pos)
1930 {
1931 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1932 struct blk_zone zone;
1933 u64 length;
1934 u64 wp;
1935 int ret;
1936
1937 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1938 return 0;
1939
1940 ret = read_zone_info(fs_info, logical, &zone);
1941 if (ret)
1942 return ret;
1943
1944 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1945
1946 if (physical_pos == wp)
1947 return 0;
1948
1949 if (physical_pos > wp)
1950 return -EUCLEAN;
1951
1952 length = wp - physical_pos;
1953 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1954 }
1955
1956 /*
1957 * Activate block group and underlying device zones
1958 *
1959 * @block_group: the block group to activate
1960 *
1961 * Return: true on success, false otherwise
1962 */
btrfs_zone_activate(struct btrfs_block_group * block_group)1963 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1964 {
1965 struct btrfs_fs_info *fs_info = block_group->fs_info;
1966 struct map_lookup *map;
1967 struct btrfs_device *device;
1968 u64 physical;
1969 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
1970 bool ret;
1971 int i;
1972
1973 if (!btrfs_is_zoned(block_group->fs_info))
1974 return true;
1975
1976 map = block_group->physical_map;
1977
1978 spin_lock(&block_group->lock);
1979 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1980 ret = true;
1981 goto out_unlock;
1982 }
1983
1984 /* No space left */
1985 if (btrfs_zoned_bg_is_full(block_group)) {
1986 ret = false;
1987 goto out_unlock;
1988 }
1989
1990 spin_lock(&fs_info->zone_active_bgs_lock);
1991 for (i = 0; i < map->num_stripes; i++) {
1992 struct btrfs_zoned_device_info *zinfo;
1993 int reserved = 0;
1994
1995 device = map->stripes[i].dev;
1996 physical = map->stripes[i].physical;
1997 zinfo = device->zone_info;
1998
1999 if (zinfo->max_active_zones == 0)
2000 continue;
2001
2002 if (is_data)
2003 reserved = zinfo->reserved_active_zones;
2004 /*
2005 * For the data block group, leave active zones for one
2006 * metadata block group and one system block group.
2007 */
2008 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2009 ret = false;
2010 spin_unlock(&fs_info->zone_active_bgs_lock);
2011 goto out_unlock;
2012 }
2013
2014 if (!btrfs_dev_set_active_zone(device, physical)) {
2015 /* Cannot activate the zone */
2016 ret = false;
2017 spin_unlock(&fs_info->zone_active_bgs_lock);
2018 goto out_unlock;
2019 }
2020 if (!is_data)
2021 zinfo->reserved_active_zones--;
2022 }
2023 spin_unlock(&fs_info->zone_active_bgs_lock);
2024
2025 /* Successfully activated all the zones */
2026 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2027 spin_unlock(&block_group->lock);
2028
2029 /* For the active block group list */
2030 btrfs_get_block_group(block_group);
2031
2032 spin_lock(&fs_info->zone_active_bgs_lock);
2033 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2034 spin_unlock(&fs_info->zone_active_bgs_lock);
2035
2036 return true;
2037
2038 out_unlock:
2039 spin_unlock(&block_group->lock);
2040 return ret;
2041 }
2042
wait_eb_writebacks(struct btrfs_block_group * block_group)2043 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2044 {
2045 struct btrfs_fs_info *fs_info = block_group->fs_info;
2046 const u64 end = block_group->start + block_group->length;
2047 struct radix_tree_iter iter;
2048 struct extent_buffer *eb;
2049 void __rcu **slot;
2050
2051 rcu_read_lock();
2052 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2053 block_group->start >> fs_info->sectorsize_bits) {
2054 eb = radix_tree_deref_slot(slot);
2055 if (!eb)
2056 continue;
2057 if (radix_tree_deref_retry(eb)) {
2058 slot = radix_tree_iter_retry(&iter);
2059 continue;
2060 }
2061
2062 if (eb->start < block_group->start)
2063 continue;
2064 if (eb->start >= end)
2065 break;
2066
2067 slot = radix_tree_iter_resume(slot, &iter);
2068 rcu_read_unlock();
2069 wait_on_extent_buffer_writeback(eb);
2070 rcu_read_lock();
2071 }
2072 rcu_read_unlock();
2073 }
2074
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2075 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2076 {
2077 struct btrfs_fs_info *fs_info = block_group->fs_info;
2078 struct map_lookup *map;
2079 const bool is_metadata = (block_group->flags &
2080 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2081 int ret = 0;
2082 int i;
2083
2084 spin_lock(&block_group->lock);
2085 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2086 spin_unlock(&block_group->lock);
2087 return 0;
2088 }
2089
2090 /* Check if we have unwritten allocated space */
2091 if (is_metadata &&
2092 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2093 spin_unlock(&block_group->lock);
2094 return -EAGAIN;
2095 }
2096
2097 /*
2098 * If we are sure that the block group is full (= no more room left for
2099 * new allocation) and the IO for the last usable block is completed, we
2100 * don't need to wait for the other IOs. This holds because we ensure
2101 * the sequential IO submissions using the ZONE_APPEND command for data
2102 * and block_group->meta_write_pointer for metadata.
2103 */
2104 if (!fully_written) {
2105 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2106 spin_unlock(&block_group->lock);
2107 return -EAGAIN;
2108 }
2109 spin_unlock(&block_group->lock);
2110
2111 ret = btrfs_inc_block_group_ro(block_group, false);
2112 if (ret)
2113 return ret;
2114
2115 /* Ensure all writes in this block group finish */
2116 btrfs_wait_block_group_reservations(block_group);
2117 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2118 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2119 block_group->length);
2120 /* Wait for extent buffers to be written. */
2121 if (is_metadata)
2122 wait_eb_writebacks(block_group);
2123
2124 spin_lock(&block_group->lock);
2125
2126 /*
2127 * Bail out if someone already deactivated the block group, or
2128 * allocated space is left in the block group.
2129 */
2130 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2131 &block_group->runtime_flags)) {
2132 spin_unlock(&block_group->lock);
2133 btrfs_dec_block_group_ro(block_group);
2134 return 0;
2135 }
2136
2137 if (block_group->reserved ||
2138 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2139 &block_group->runtime_flags)) {
2140 spin_unlock(&block_group->lock);
2141 btrfs_dec_block_group_ro(block_group);
2142 return -EAGAIN;
2143 }
2144 }
2145
2146 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2147 block_group->alloc_offset = block_group->zone_capacity;
2148 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2149 block_group->meta_write_pointer = block_group->start +
2150 block_group->zone_capacity;
2151 block_group->free_space_ctl->free_space = 0;
2152 btrfs_clear_treelog_bg(block_group);
2153 btrfs_clear_data_reloc_bg(block_group);
2154 spin_unlock(&block_group->lock);
2155
2156 map = block_group->physical_map;
2157 for (i = 0; i < map->num_stripes; i++) {
2158 struct btrfs_device *device = map->stripes[i].dev;
2159 const u64 physical = map->stripes[i].physical;
2160 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2161
2162 if (zinfo->max_active_zones == 0)
2163 continue;
2164
2165 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2166 physical >> SECTOR_SHIFT,
2167 zinfo->zone_size >> SECTOR_SHIFT,
2168 GFP_NOFS);
2169
2170 if (ret)
2171 return ret;
2172
2173 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2174 zinfo->reserved_active_zones++;
2175 btrfs_dev_clear_active_zone(device, physical);
2176 }
2177
2178 if (!fully_written)
2179 btrfs_dec_block_group_ro(block_group);
2180
2181 spin_lock(&fs_info->zone_active_bgs_lock);
2182 ASSERT(!list_empty(&block_group->active_bg_list));
2183 list_del_init(&block_group->active_bg_list);
2184 spin_unlock(&fs_info->zone_active_bgs_lock);
2185
2186 /* For active_bg_list */
2187 btrfs_put_block_group(block_group);
2188
2189 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2190
2191 return 0;
2192 }
2193
btrfs_zone_finish(struct btrfs_block_group * block_group)2194 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2195 {
2196 if (!btrfs_is_zoned(block_group->fs_info))
2197 return 0;
2198
2199 return do_zone_finish(block_group, false);
2200 }
2201
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2202 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2203 {
2204 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2205 struct btrfs_device *device;
2206 bool ret = false;
2207
2208 if (!btrfs_is_zoned(fs_info))
2209 return true;
2210
2211 /* Check if there is a device with active zones left */
2212 mutex_lock(&fs_info->chunk_mutex);
2213 spin_lock(&fs_info->zone_active_bgs_lock);
2214 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2215 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2216 int reserved = 0;
2217
2218 if (!device->bdev)
2219 continue;
2220
2221 if (!zinfo->max_active_zones) {
2222 ret = true;
2223 break;
2224 }
2225
2226 if (flags & BTRFS_BLOCK_GROUP_DATA)
2227 reserved = zinfo->reserved_active_zones;
2228
2229 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2230 case 0: /* single */
2231 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2232 break;
2233 case BTRFS_BLOCK_GROUP_DUP:
2234 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2235 break;
2236 }
2237 if (ret)
2238 break;
2239 }
2240 spin_unlock(&fs_info->zone_active_bgs_lock);
2241 mutex_unlock(&fs_info->chunk_mutex);
2242
2243 if (!ret)
2244 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2245
2246 return ret;
2247 }
2248
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2249 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2250 {
2251 struct btrfs_block_group *block_group;
2252 u64 min_alloc_bytes;
2253
2254 if (!btrfs_is_zoned(fs_info))
2255 return;
2256
2257 block_group = btrfs_lookup_block_group(fs_info, logical);
2258 ASSERT(block_group);
2259
2260 /* No MIXED_BG on zoned btrfs. */
2261 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2262 min_alloc_bytes = fs_info->sectorsize;
2263 else
2264 min_alloc_bytes = fs_info->nodesize;
2265
2266 /* Bail out if we can allocate more data from this block group. */
2267 if (logical + length + min_alloc_bytes <=
2268 block_group->start + block_group->zone_capacity)
2269 goto out;
2270
2271 do_zone_finish(block_group, true);
2272
2273 out:
2274 btrfs_put_block_group(block_group);
2275 }
2276
btrfs_zone_finish_endio_workfn(struct work_struct * work)2277 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2278 {
2279 struct btrfs_block_group *bg =
2280 container_of(work, struct btrfs_block_group, zone_finish_work);
2281
2282 wait_on_extent_buffer_writeback(bg->last_eb);
2283 free_extent_buffer(bg->last_eb);
2284 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2285 btrfs_put_block_group(bg);
2286 }
2287
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2288 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2289 struct extent_buffer *eb)
2290 {
2291 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2292 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2293 return;
2294
2295 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2296 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2297 bg->start);
2298 return;
2299 }
2300
2301 /* For the work */
2302 btrfs_get_block_group(bg);
2303 atomic_inc(&eb->refs);
2304 bg->last_eb = eb;
2305 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2306 queue_work(system_unbound_wq, &bg->zone_finish_work);
2307 }
2308
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2309 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2310 {
2311 struct btrfs_fs_info *fs_info = bg->fs_info;
2312
2313 spin_lock(&fs_info->relocation_bg_lock);
2314 if (fs_info->data_reloc_bg == bg->start)
2315 fs_info->data_reloc_bg = 0;
2316 spin_unlock(&fs_info->relocation_bg_lock);
2317 }
2318
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2319 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2320 {
2321 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2322 struct btrfs_device *device;
2323
2324 if (!btrfs_is_zoned(fs_info))
2325 return;
2326
2327 mutex_lock(&fs_devices->device_list_mutex);
2328 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2329 if (device->zone_info) {
2330 vfree(device->zone_info->zone_cache);
2331 device->zone_info->zone_cache = NULL;
2332 }
2333 }
2334 mutex_unlock(&fs_devices->device_list_mutex);
2335 }
2336
btrfs_zoned_should_reclaim(struct btrfs_fs_info * fs_info)2337 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2338 {
2339 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2340 struct btrfs_device *device;
2341 u64 used = 0;
2342 u64 total = 0;
2343 u64 factor;
2344
2345 ASSERT(btrfs_is_zoned(fs_info));
2346
2347 if (fs_info->bg_reclaim_threshold == 0)
2348 return false;
2349
2350 mutex_lock(&fs_devices->device_list_mutex);
2351 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2352 if (!device->bdev)
2353 continue;
2354
2355 total += device->disk_total_bytes;
2356 used += device->bytes_used;
2357 }
2358 mutex_unlock(&fs_devices->device_list_mutex);
2359
2360 factor = div64_u64(used * 100, total);
2361 return factor >= fs_info->bg_reclaim_threshold;
2362 }
2363
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2364 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2365 u64 length)
2366 {
2367 struct btrfs_block_group *block_group;
2368
2369 if (!btrfs_is_zoned(fs_info))
2370 return;
2371
2372 block_group = btrfs_lookup_block_group(fs_info, logical);
2373 /* It should be called on a previous data relocation block group. */
2374 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2375
2376 spin_lock(&block_group->lock);
2377 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2378 goto out;
2379
2380 /* All relocation extents are written. */
2381 if (block_group->start + block_group->alloc_offset == logical + length) {
2382 /*
2383 * Now, release this block group for further allocations and
2384 * zone finish.
2385 */
2386 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2387 &block_group->runtime_flags);
2388 }
2389
2390 out:
2391 spin_unlock(&block_group->lock);
2392 btrfs_put_block_group(block_group);
2393 }
2394
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2395 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2396 {
2397 struct btrfs_block_group *block_group;
2398 struct btrfs_block_group *min_bg = NULL;
2399 u64 min_avail = U64_MAX;
2400 int ret;
2401
2402 spin_lock(&fs_info->zone_active_bgs_lock);
2403 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2404 active_bg_list) {
2405 u64 avail;
2406
2407 spin_lock(&block_group->lock);
2408 if (block_group->reserved || block_group->alloc_offset == 0 ||
2409 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2410 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2411 spin_unlock(&block_group->lock);
2412 continue;
2413 }
2414
2415 avail = block_group->zone_capacity - block_group->alloc_offset;
2416 if (min_avail > avail) {
2417 if (min_bg)
2418 btrfs_put_block_group(min_bg);
2419 min_bg = block_group;
2420 min_avail = avail;
2421 btrfs_get_block_group(min_bg);
2422 }
2423 spin_unlock(&block_group->lock);
2424 }
2425 spin_unlock(&fs_info->zone_active_bgs_lock);
2426
2427 if (!min_bg)
2428 return 0;
2429
2430 ret = btrfs_zone_finish(min_bg);
2431 btrfs_put_block_group(min_bg);
2432
2433 return ret < 0 ? ret : 1;
2434 }
2435
btrfs_zoned_activate_one_bg(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool do_finish)2436 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2437 struct btrfs_space_info *space_info,
2438 bool do_finish)
2439 {
2440 struct btrfs_block_group *bg;
2441 int index;
2442
2443 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2444 return 0;
2445
2446 for (;;) {
2447 int ret;
2448 bool need_finish = false;
2449
2450 down_read(&space_info->groups_sem);
2451 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2452 list_for_each_entry(bg, &space_info->block_groups[index],
2453 list) {
2454 if (!spin_trylock(&bg->lock))
2455 continue;
2456 if (btrfs_zoned_bg_is_full(bg) ||
2457 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2458 &bg->runtime_flags)) {
2459 spin_unlock(&bg->lock);
2460 continue;
2461 }
2462 spin_unlock(&bg->lock);
2463
2464 if (btrfs_zone_activate(bg)) {
2465 up_read(&space_info->groups_sem);
2466 return 1;
2467 }
2468
2469 need_finish = true;
2470 }
2471 }
2472 up_read(&space_info->groups_sem);
2473
2474 if (!do_finish || !need_finish)
2475 break;
2476
2477 ret = btrfs_zone_finish_one_bg(fs_info);
2478 if (ret == 0)
2479 break;
2480 if (ret < 0)
2481 return ret;
2482 }
2483
2484 return 0;
2485 }
2486
2487 /*
2488 * Reserve zones for one metadata block group, one tree-log block group, and one
2489 * system block group.
2490 */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2491 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2492 {
2493 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2494 struct btrfs_block_group *block_group;
2495 struct btrfs_device *device;
2496 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2497 unsigned int metadata_reserve = 2;
2498 /* Reserve a zone for SINGLE system block group. */
2499 unsigned int system_reserve = 1;
2500
2501 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2502 return;
2503
2504 /*
2505 * This function is called from the mount context. So, there is no
2506 * parallel process touching the bits. No need for read_seqretry().
2507 */
2508 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2509 metadata_reserve = 4;
2510 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2511 system_reserve = 2;
2512
2513 /* Apply the reservation on all the devices. */
2514 mutex_lock(&fs_devices->device_list_mutex);
2515 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2516 if (!device->bdev)
2517 continue;
2518
2519 device->zone_info->reserved_active_zones =
2520 metadata_reserve + system_reserve;
2521 }
2522 mutex_unlock(&fs_devices->device_list_mutex);
2523
2524 /* Release reservation for currently active block groups. */
2525 spin_lock(&fs_info->zone_active_bgs_lock);
2526 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2527 struct map_lookup *map = block_group->physical_map;
2528
2529 if (!(block_group->flags &
2530 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2531 continue;
2532
2533 for (int i = 0; i < map->num_stripes; i++)
2534 map->stripes[i].dev->zone_info->reserved_active_zones--;
2535 }
2536 spin_unlock(&fs_info->zone_active_bgs_lock);
2537 }
2538