1  // SPDX-License-Identifier: LGPL-2.1
2  /*
3   *
4   *   Copyright (C) International Business Machines  Corp., 2002,2008
5   *   Author(s): Steve French (sfrench@us.ibm.com)
6   *
7   */
8  
9  #include <linux/slab.h>
10  #include <linux/ctype.h>
11  #include <linux/mempool.h>
12  #include <linux/vmalloc.h>
13  #include "cifspdu.h"
14  #include "cifsglob.h"
15  #include "cifsproto.h"
16  #include "cifs_debug.h"
17  #include "smberr.h"
18  #include "nterr.h"
19  #include "cifs_unicode.h"
20  #include "smb2pdu.h"
21  #include "cifsfs.h"
22  #ifdef CONFIG_CIFS_DFS_UPCALL
23  #include "dns_resolve.h"
24  #include "dfs_cache.h"
25  #include "dfs.h"
26  #endif
27  #include "fs_context.h"
28  #include "cached_dir.h"
29  
30  extern mempool_t *cifs_sm_req_poolp;
31  extern mempool_t *cifs_req_poolp;
32  
33  /* The xid serves as a useful identifier for each incoming vfs request,
34     in a similar way to the mid which is useful to track each sent smb,
35     and CurrentXid can also provide a running counter (although it
36     will eventually wrap past zero) of the total vfs operations handled
37     since the cifs fs was mounted */
38  
39  unsigned int
_get_xid(void)40  _get_xid(void)
41  {
42  	unsigned int xid;
43  
44  	spin_lock(&GlobalMid_Lock);
45  	GlobalTotalActiveXid++;
46  
47  	/* keep high water mark for number of simultaneous ops in filesystem */
48  	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49  		GlobalMaxActiveXid = GlobalTotalActiveXid;
50  	if (GlobalTotalActiveXid > 65000)
51  		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52  	xid = GlobalCurrentXid++;
53  	spin_unlock(&GlobalMid_Lock);
54  	return xid;
55  }
56  
57  void
_free_xid(unsigned int xid)58  _free_xid(unsigned int xid)
59  {
60  	spin_lock(&GlobalMid_Lock);
61  	/* if (GlobalTotalActiveXid == 0)
62  		BUG(); */
63  	GlobalTotalActiveXid--;
64  	spin_unlock(&GlobalMid_Lock);
65  }
66  
67  struct cifs_ses *
sesInfoAlloc(void)68  sesInfoAlloc(void)
69  {
70  	struct cifs_ses *ret_buf;
71  
72  	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73  	if (ret_buf) {
74  		atomic_inc(&sesInfoAllocCount);
75  		spin_lock_init(&ret_buf->ses_lock);
76  		ret_buf->ses_status = SES_NEW;
77  		++ret_buf->ses_count;
78  		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79  		INIT_LIST_HEAD(&ret_buf->tcon_list);
80  		mutex_init(&ret_buf->session_mutex);
81  		spin_lock_init(&ret_buf->iface_lock);
82  		INIT_LIST_HEAD(&ret_buf->iface_list);
83  		spin_lock_init(&ret_buf->chan_lock);
84  	}
85  	return ret_buf;
86  }
87  
88  void
sesInfoFree(struct cifs_ses * buf_to_free)89  sesInfoFree(struct cifs_ses *buf_to_free)
90  {
91  	struct cifs_server_iface *iface = NULL, *niface = NULL;
92  
93  	if (buf_to_free == NULL) {
94  		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95  		return;
96  	}
97  
98  	unload_nls(buf_to_free->local_nls);
99  	atomic_dec(&sesInfoAllocCount);
100  	kfree(buf_to_free->serverOS);
101  	kfree(buf_to_free->serverDomain);
102  	kfree(buf_to_free->serverNOS);
103  	kfree_sensitive(buf_to_free->password);
104  	kfree(buf_to_free->user_name);
105  	kfree(buf_to_free->domainName);
106  	kfree_sensitive(buf_to_free->auth_key.response);
107  	spin_lock(&buf_to_free->iface_lock);
108  	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109  				 iface_head)
110  		kref_put(&iface->refcount, release_iface);
111  	spin_unlock(&buf_to_free->iface_lock);
112  	kfree_sensitive(buf_to_free);
113  }
114  
115  struct cifs_tcon *
tcon_info_alloc(bool dir_leases_enabled)116  tcon_info_alloc(bool dir_leases_enabled)
117  {
118  	struct cifs_tcon *ret_buf;
119  
120  	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121  	if (!ret_buf)
122  		return NULL;
123  
124  	if (dir_leases_enabled == true) {
125  		ret_buf->cfids = init_cached_dirs();
126  		if (!ret_buf->cfids) {
127  			kfree(ret_buf);
128  			return NULL;
129  		}
130  	}
131  	/* else ret_buf->cfids is already set to NULL above */
132  
133  	atomic_inc(&tconInfoAllocCount);
134  	ret_buf->status = TID_NEW;
135  	++ret_buf->tc_count;
136  	spin_lock_init(&ret_buf->tc_lock);
137  	INIT_LIST_HEAD(&ret_buf->openFileList);
138  	INIT_LIST_HEAD(&ret_buf->tcon_list);
139  	spin_lock_init(&ret_buf->open_file_lock);
140  	spin_lock_init(&ret_buf->stat_lock);
141  	atomic_set(&ret_buf->num_local_opens, 0);
142  	atomic_set(&ret_buf->num_remote_opens, 0);
143  #ifdef CONFIG_CIFS_DFS_UPCALL
144  	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
145  #endif
146  
147  	return ret_buf;
148  }
149  
150  void
tconInfoFree(struct cifs_tcon * tcon)151  tconInfoFree(struct cifs_tcon *tcon)
152  {
153  	if (tcon == NULL) {
154  		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
155  		return;
156  	}
157  	free_cached_dirs(tcon->cfids);
158  	atomic_dec(&tconInfoAllocCount);
159  	kfree(tcon->nativeFileSystem);
160  	kfree_sensitive(tcon->password);
161  #ifdef CONFIG_CIFS_DFS_UPCALL
162  	dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
163  #endif
164  	kfree(tcon->origin_fullpath);
165  	kfree(tcon);
166  }
167  
168  struct smb_hdr *
cifs_buf_get(void)169  cifs_buf_get(void)
170  {
171  	struct smb_hdr *ret_buf = NULL;
172  	/*
173  	 * SMB2 header is bigger than CIFS one - no problems to clean some
174  	 * more bytes for CIFS.
175  	 */
176  	size_t buf_size = sizeof(struct smb2_hdr);
177  
178  	/*
179  	 * We could use negotiated size instead of max_msgsize -
180  	 * but it may be more efficient to always alloc same size
181  	 * albeit slightly larger than necessary and maxbuffersize
182  	 * defaults to this and can not be bigger.
183  	 */
184  	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185  
186  	/* clear the first few header bytes */
187  	/* for most paths, more is cleared in header_assemble */
188  	memset(ret_buf, 0, buf_size + 3);
189  	atomic_inc(&buf_alloc_count);
190  #ifdef CONFIG_CIFS_STATS2
191  	atomic_inc(&total_buf_alloc_count);
192  #endif /* CONFIG_CIFS_STATS2 */
193  
194  	return ret_buf;
195  }
196  
197  void
cifs_buf_release(void * buf_to_free)198  cifs_buf_release(void *buf_to_free)
199  {
200  	if (buf_to_free == NULL) {
201  		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202  		return;
203  	}
204  	mempool_free(buf_to_free, cifs_req_poolp);
205  
206  	atomic_dec(&buf_alloc_count);
207  	return;
208  }
209  
210  struct smb_hdr *
cifs_small_buf_get(void)211  cifs_small_buf_get(void)
212  {
213  	struct smb_hdr *ret_buf = NULL;
214  
215  /* We could use negotiated size instead of max_msgsize -
216     but it may be more efficient to always alloc same size
217     albeit slightly larger than necessary and maxbuffersize
218     defaults to this and can not be bigger */
219  	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220  	/* No need to clear memory here, cleared in header assemble */
221  	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222  	atomic_inc(&small_buf_alloc_count);
223  #ifdef CONFIG_CIFS_STATS2
224  	atomic_inc(&total_small_buf_alloc_count);
225  #endif /* CONFIG_CIFS_STATS2 */
226  
227  	return ret_buf;
228  }
229  
230  void
cifs_small_buf_release(void * buf_to_free)231  cifs_small_buf_release(void *buf_to_free)
232  {
233  
234  	if (buf_to_free == NULL) {
235  		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236  		return;
237  	}
238  	mempool_free(buf_to_free, cifs_sm_req_poolp);
239  
240  	atomic_dec(&small_buf_alloc_count);
241  	return;
242  }
243  
244  void
free_rsp_buf(int resp_buftype,void * rsp)245  free_rsp_buf(int resp_buftype, void *rsp)
246  {
247  	if (resp_buftype == CIFS_SMALL_BUFFER)
248  		cifs_small_buf_release(rsp);
249  	else if (resp_buftype == CIFS_LARGE_BUFFER)
250  		cifs_buf_release(rsp);
251  }
252  
253  /* NB: MID can not be set if treeCon not passed in, in that
254     case it is responsbility of caller to set the mid */
255  void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)256  header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257  		const struct cifs_tcon *treeCon, int word_count
258  		/* length of fixed section (word count) in two byte units  */)
259  {
260  	char *temp = (char *) buffer;
261  
262  	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263  
264  	buffer->smb_buf_length = cpu_to_be32(
265  	    (2 * word_count) + sizeof(struct smb_hdr) -
266  	    4 /*  RFC 1001 length field does not count */  +
267  	    2 /* for bcc field itself */) ;
268  
269  	buffer->Protocol[0] = 0xFF;
270  	buffer->Protocol[1] = 'S';
271  	buffer->Protocol[2] = 'M';
272  	buffer->Protocol[3] = 'B';
273  	buffer->Command = smb_command;
274  	buffer->Flags = 0x00;	/* case sensitive */
275  	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276  	buffer->Pid = cpu_to_le16((__u16)current->tgid);
277  	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278  	if (treeCon) {
279  		buffer->Tid = treeCon->tid;
280  		if (treeCon->ses) {
281  			if (treeCon->ses->capabilities & CAP_UNICODE)
282  				buffer->Flags2 |= SMBFLG2_UNICODE;
283  			if (treeCon->ses->capabilities & CAP_STATUS32)
284  				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285  
286  			/* Uid is not converted */
287  			buffer->Uid = treeCon->ses->Suid;
288  			if (treeCon->ses->server)
289  				buffer->Mid = get_next_mid(treeCon->ses->server);
290  		}
291  		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292  			buffer->Flags2 |= SMBFLG2_DFS;
293  		if (treeCon->nocase)
294  			buffer->Flags  |= SMBFLG_CASELESS;
295  		if ((treeCon->ses) && (treeCon->ses->server))
296  			if (treeCon->ses->server->sign)
297  				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298  	}
299  
300  /*  endian conversion of flags is now done just before sending */
301  	buffer->WordCount = (char) word_count;
302  	return;
303  }
304  
305  static int
check_smb_hdr(struct smb_hdr * smb)306  check_smb_hdr(struct smb_hdr *smb)
307  {
308  	/* does it have the right SMB "signature" ? */
309  	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310  		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311  			 *(unsigned int *)smb->Protocol);
312  		return 1;
313  	}
314  
315  	/* if it's a response then accept */
316  	if (smb->Flags & SMBFLG_RESPONSE)
317  		return 0;
318  
319  	/* only one valid case where server sends us request */
320  	if (smb->Command == SMB_COM_LOCKING_ANDX)
321  		return 0;
322  
323  	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324  		 get_mid(smb));
325  	return 1;
326  }
327  
328  int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)329  checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330  {
331  	struct smb_hdr *smb = (struct smb_hdr *)buf;
332  	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333  	__u32 clc_len;  /* calculated length */
334  	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335  		 total_read, rfclen);
336  
337  	/* is this frame too small to even get to a BCC? */
338  	if (total_read < 2 + sizeof(struct smb_hdr)) {
339  		if ((total_read >= sizeof(struct smb_hdr) - 1)
340  			    && (smb->Status.CifsError != 0)) {
341  			/* it's an error return */
342  			smb->WordCount = 0;
343  			/* some error cases do not return wct and bcc */
344  			return 0;
345  		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346  				(smb->WordCount == 0)) {
347  			char *tmp = (char *)smb;
348  			/* Need to work around a bug in two servers here */
349  			/* First, check if the part of bcc they sent was zero */
350  			if (tmp[sizeof(struct smb_hdr)] == 0) {
351  				/* some servers return only half of bcc
352  				 * on simple responses (wct, bcc both zero)
353  				 * in particular have seen this on
354  				 * ulogoffX and FindClose. This leaves
355  				 * one byte of bcc potentially unitialized
356  				 */
357  				/* zero rest of bcc */
358  				tmp[sizeof(struct smb_hdr)+1] = 0;
359  				return 0;
360  			}
361  			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362  		} else {
363  			cifs_dbg(VFS, "Length less than smb header size\n");
364  		}
365  		return -EIO;
366  	}
367  
368  	/* otherwise, there is enough to get to the BCC */
369  	if (check_smb_hdr(smb))
370  		return -EIO;
371  	clc_len = smbCalcSize(smb);
372  
373  	if (4 + rfclen != total_read) {
374  		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
375  			 rfclen);
376  		return -EIO;
377  	}
378  
379  	if (4 + rfclen != clc_len) {
380  		__u16 mid = get_mid(smb);
381  		/* check if bcc wrapped around for large read responses */
382  		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
383  			/* check if lengths match mod 64K */
384  			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
385  				return 0; /* bcc wrapped */
386  		}
387  		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
388  			 clc_len, 4 + rfclen, mid);
389  
390  		if (4 + rfclen < clc_len) {
391  			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
392  				 rfclen, mid);
393  			return -EIO;
394  		} else if (rfclen > clc_len + 512) {
395  			/*
396  			 * Some servers (Windows XP in particular) send more
397  			 * data than the lengths in the SMB packet would
398  			 * indicate on certain calls (byte range locks and
399  			 * trans2 find first calls in particular). While the
400  			 * client can handle such a frame by ignoring the
401  			 * trailing data, we choose limit the amount of extra
402  			 * data to 512 bytes.
403  			 */
404  			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
405  				 rfclen, mid);
406  			return -EIO;
407  		}
408  	}
409  	return 0;
410  }
411  
412  bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)413  is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
414  {
415  	struct smb_hdr *buf = (struct smb_hdr *)buffer;
416  	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
417  	struct TCP_Server_Info *pserver;
418  	struct cifs_ses *ses;
419  	struct cifs_tcon *tcon;
420  	struct cifsInodeInfo *pCifsInode;
421  	struct cifsFileInfo *netfile;
422  
423  	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
424  	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
425  	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
426  		struct smb_com_transaction_change_notify_rsp *pSMBr =
427  			(struct smb_com_transaction_change_notify_rsp *)buf;
428  		struct file_notify_information *pnotify;
429  		__u32 data_offset = 0;
430  		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
431  
432  		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
433  			data_offset = le32_to_cpu(pSMBr->DataOffset);
434  
435  			if (data_offset >
436  			    len - sizeof(struct file_notify_information)) {
437  				cifs_dbg(FYI, "Invalid data_offset %u\n",
438  					 data_offset);
439  				return true;
440  			}
441  			pnotify = (struct file_notify_information *)
442  				((char *)&pSMBr->hdr.Protocol + data_offset);
443  			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
444  				 pnotify->FileName, pnotify->Action);
445  			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
446  				sizeof(struct smb_hdr)+60); */
447  			return true;
448  		}
449  		if (pSMBr->hdr.Status.CifsError) {
450  			cifs_dbg(FYI, "notify err 0x%x\n",
451  				 pSMBr->hdr.Status.CifsError);
452  			return true;
453  		}
454  		return false;
455  	}
456  	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
457  		return false;
458  	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
459  		/* no sense logging error on invalid handle on oplock
460  		   break - harmless race between close request and oplock
461  		   break response is expected from time to time writing out
462  		   large dirty files cached on the client */
463  		if ((NT_STATUS_INVALID_HANDLE) ==
464  		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
465  			cifs_dbg(FYI, "Invalid handle on oplock break\n");
466  			return true;
467  		} else if (ERRbadfid ==
468  		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
469  			return true;
470  		} else {
471  			return false; /* on valid oplock brk we get "request" */
472  		}
473  	}
474  	if (pSMB->hdr.WordCount != 8)
475  		return false;
476  
477  	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
478  		 pSMB->LockType, pSMB->OplockLevel);
479  	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
480  		return false;
481  
482  	/* If server is a channel, select the primary channel */
483  	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
484  
485  	/* look up tcon based on tid & uid */
486  	spin_lock(&cifs_tcp_ses_lock);
487  	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
488  		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
489  			if (tcon->tid != buf->Tid)
490  				continue;
491  
492  			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
493  			spin_lock(&tcon->open_file_lock);
494  			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
495  				if (pSMB->Fid != netfile->fid.netfid)
496  					continue;
497  
498  				cifs_dbg(FYI, "file id match, oplock break\n");
499  				pCifsInode = CIFS_I(d_inode(netfile->dentry));
500  
501  				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
502  					&pCifsInode->flags);
503  
504  				netfile->oplock_epoch = 0;
505  				netfile->oplock_level = pSMB->OplockLevel;
506  				netfile->oplock_break_cancelled = false;
507  				cifs_queue_oplock_break(netfile);
508  
509  				spin_unlock(&tcon->open_file_lock);
510  				spin_unlock(&cifs_tcp_ses_lock);
511  				return true;
512  			}
513  			spin_unlock(&tcon->open_file_lock);
514  			spin_unlock(&cifs_tcp_ses_lock);
515  			cifs_dbg(FYI, "No matching file for oplock break\n");
516  			return true;
517  		}
518  	}
519  	spin_unlock(&cifs_tcp_ses_lock);
520  	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
521  	return true;
522  }
523  
524  void
dump_smb(void * buf,int smb_buf_length)525  dump_smb(void *buf, int smb_buf_length)
526  {
527  	if (traceSMB == 0)
528  		return;
529  
530  	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
531  		       smb_buf_length, true);
532  }
533  
534  void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)535  cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
536  {
537  	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
538  		struct cifs_tcon *tcon = NULL;
539  
540  		if (cifs_sb->master_tlink)
541  			tcon = cifs_sb_master_tcon(cifs_sb);
542  
543  		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
544  		cifs_sb->mnt_cifs_serverino_autodisabled = true;
545  		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
546  			 tcon ? tcon->tree_name : "new server");
547  		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
548  		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
549  
550  	}
551  }
552  
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)553  void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
554  {
555  	oplock &= 0xF;
556  
557  	if (oplock == OPLOCK_EXCLUSIVE) {
558  		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
559  		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
560  			 &cinode->netfs.inode);
561  	} else if (oplock == OPLOCK_READ) {
562  		cinode->oplock = CIFS_CACHE_READ_FLG;
563  		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
564  			 &cinode->netfs.inode);
565  	} else
566  		cinode->oplock = 0;
567  }
568  
569  /*
570   * We wait for oplock breaks to be processed before we attempt to perform
571   * writes.
572   */
cifs_get_writer(struct cifsInodeInfo * cinode)573  int cifs_get_writer(struct cifsInodeInfo *cinode)
574  {
575  	int rc;
576  
577  start:
578  	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
579  			 TASK_KILLABLE);
580  	if (rc)
581  		return rc;
582  
583  	spin_lock(&cinode->writers_lock);
584  	if (!cinode->writers)
585  		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586  	cinode->writers++;
587  	/* Check to see if we have started servicing an oplock break */
588  	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
589  		cinode->writers--;
590  		if (cinode->writers == 0) {
591  			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
592  			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
593  		}
594  		spin_unlock(&cinode->writers_lock);
595  		goto start;
596  	}
597  	spin_unlock(&cinode->writers_lock);
598  	return 0;
599  }
600  
cifs_put_writer(struct cifsInodeInfo * cinode)601  void cifs_put_writer(struct cifsInodeInfo *cinode)
602  {
603  	spin_lock(&cinode->writers_lock);
604  	cinode->writers--;
605  	if (cinode->writers == 0) {
606  		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
607  		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
608  	}
609  	spin_unlock(&cinode->writers_lock);
610  }
611  
612  /**
613   * cifs_queue_oplock_break - queue the oplock break handler for cfile
614   * @cfile: The file to break the oplock on
615   *
616   * This function is called from the demultiplex thread when it
617   * receives an oplock break for @cfile.
618   *
619   * Assumes the tcon->open_file_lock is held.
620   * Assumes cfile->file_info_lock is NOT held.
621   */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)622  void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
623  {
624  	/*
625  	 * Bump the handle refcount now while we hold the
626  	 * open_file_lock to enforce the validity of it for the oplock
627  	 * break handler. The matching put is done at the end of the
628  	 * handler.
629  	 */
630  	cifsFileInfo_get(cfile);
631  
632  	queue_work(cifsoplockd_wq, &cfile->oplock_break);
633  }
634  
cifs_done_oplock_break(struct cifsInodeInfo * cinode)635  void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
636  {
637  	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
638  	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
639  }
640  
641  bool
backup_cred(struct cifs_sb_info * cifs_sb)642  backup_cred(struct cifs_sb_info *cifs_sb)
643  {
644  	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
645  		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
646  			return true;
647  	}
648  	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
649  		if (in_group_p(cifs_sb->ctx->backupgid))
650  			return true;
651  	}
652  
653  	return false;
654  }
655  
656  void
cifs_del_pending_open(struct cifs_pending_open * open)657  cifs_del_pending_open(struct cifs_pending_open *open)
658  {
659  	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
660  	list_del(&open->olist);
661  	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
662  }
663  
664  void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)665  cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
666  			     struct cifs_pending_open *open)
667  {
668  	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
669  	open->oplock = CIFS_OPLOCK_NO_CHANGE;
670  	open->tlink = tlink;
671  	fid->pending_open = open;
672  	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
673  }
674  
675  void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)676  cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
677  		      struct cifs_pending_open *open)
678  {
679  	spin_lock(&tlink_tcon(tlink)->open_file_lock);
680  	cifs_add_pending_open_locked(fid, tlink, open);
681  	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
682  }
683  
684  /*
685   * Critical section which runs after acquiring deferred_lock.
686   * As there is no reference count on cifs_deferred_close, pdclose
687   * should not be used outside deferred_lock.
688   */
689  bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)690  cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
691  {
692  	struct cifs_deferred_close *dclose;
693  
694  	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
695  		if ((dclose->netfid == cfile->fid.netfid) &&
696  			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
697  			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
698  			*pdclose = dclose;
699  			return true;
700  		}
701  	}
702  	return false;
703  }
704  
705  /*
706   * Critical section which runs after acquiring deferred_lock.
707   */
708  void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)709  cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
710  {
711  	bool is_deferred = false;
712  	struct cifs_deferred_close *pdclose;
713  
714  	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
715  	if (is_deferred) {
716  		kfree(dclose);
717  		return;
718  	}
719  
720  	dclose->tlink = cfile->tlink;
721  	dclose->netfid = cfile->fid.netfid;
722  	dclose->persistent_fid = cfile->fid.persistent_fid;
723  	dclose->volatile_fid = cfile->fid.volatile_fid;
724  	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
725  }
726  
727  /*
728   * Critical section which runs after acquiring deferred_lock.
729   */
730  void
cifs_del_deferred_close(struct cifsFileInfo * cfile)731  cifs_del_deferred_close(struct cifsFileInfo *cfile)
732  {
733  	bool is_deferred = false;
734  	struct cifs_deferred_close *dclose;
735  
736  	is_deferred = cifs_is_deferred_close(cfile, &dclose);
737  	if (!is_deferred)
738  		return;
739  	list_del(&dclose->dlist);
740  	kfree(dclose);
741  }
742  
743  void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)744  cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
745  {
746  	struct cifsFileInfo *cfile = NULL;
747  	struct file_list *tmp_list, *tmp_next_list;
748  	struct list_head file_head;
749  
750  	if (cifs_inode == NULL)
751  		return;
752  
753  	INIT_LIST_HEAD(&file_head);
754  	spin_lock(&cifs_inode->open_file_lock);
755  	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
756  		if (delayed_work_pending(&cfile->deferred)) {
757  			if (cancel_delayed_work(&cfile->deferred)) {
758  				spin_lock(&cifs_inode->deferred_lock);
759  				cifs_del_deferred_close(cfile);
760  				spin_unlock(&cifs_inode->deferred_lock);
761  
762  				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
763  				if (tmp_list == NULL)
764  					break;
765  				tmp_list->cfile = cfile;
766  				list_add_tail(&tmp_list->list, &file_head);
767  			}
768  		}
769  	}
770  	spin_unlock(&cifs_inode->open_file_lock);
771  
772  	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
773  		_cifsFileInfo_put(tmp_list->cfile, false, false);
774  		list_del(&tmp_list->list);
775  		kfree(tmp_list);
776  	}
777  }
778  
779  void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)780  cifs_close_all_deferred_files(struct cifs_tcon *tcon)
781  {
782  	struct cifsFileInfo *cfile;
783  	struct file_list *tmp_list, *tmp_next_list;
784  	struct list_head file_head;
785  
786  	INIT_LIST_HEAD(&file_head);
787  	spin_lock(&tcon->open_file_lock);
788  	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
789  		if (delayed_work_pending(&cfile->deferred)) {
790  			if (cancel_delayed_work(&cfile->deferred)) {
791  				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
792  				cifs_del_deferred_close(cfile);
793  				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
794  
795  				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
796  				if (tmp_list == NULL)
797  					break;
798  				tmp_list->cfile = cfile;
799  				list_add_tail(&tmp_list->list, &file_head);
800  			}
801  		}
802  	}
803  	spin_unlock(&tcon->open_file_lock);
804  
805  	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
806  		_cifsFileInfo_put(tmp_list->cfile, true, false);
807  		list_del(&tmp_list->list);
808  		kfree(tmp_list);
809  	}
810  }
811  void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)812  cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
813  {
814  	struct cifsFileInfo *cfile;
815  	struct file_list *tmp_list, *tmp_next_list;
816  	struct list_head file_head;
817  	void *page;
818  	const char *full_path;
819  
820  	INIT_LIST_HEAD(&file_head);
821  	page = alloc_dentry_path();
822  	spin_lock(&tcon->open_file_lock);
823  	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
824  		full_path = build_path_from_dentry(cfile->dentry, page);
825  		if (strstr(full_path, path)) {
826  			if (delayed_work_pending(&cfile->deferred)) {
827  				if (cancel_delayed_work(&cfile->deferred)) {
828  					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
829  					cifs_del_deferred_close(cfile);
830  					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
831  
832  					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
833  					if (tmp_list == NULL)
834  						break;
835  					tmp_list->cfile = cfile;
836  					list_add_tail(&tmp_list->list, &file_head);
837  				}
838  			}
839  		}
840  	}
841  	spin_unlock(&tcon->open_file_lock);
842  
843  	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
844  		_cifsFileInfo_put(tmp_list->cfile, true, false);
845  		list_del(&tmp_list->list);
846  		kfree(tmp_list);
847  	}
848  	free_dentry_path(page);
849  }
850  
851  /* parses DFS referral V3 structure
852   * caller is responsible for freeing target_nodes
853   * returns:
854   * - on success - 0
855   * - on failure - errno
856   */
857  int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)858  parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
859  		    unsigned int *num_of_nodes,
860  		    struct dfs_info3_param **target_nodes,
861  		    const struct nls_table *nls_codepage, int remap,
862  		    const char *searchName, bool is_unicode)
863  {
864  	int i, rc = 0;
865  	char *data_end;
866  	struct dfs_referral_level_3 *ref;
867  
868  	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
869  
870  	if (*num_of_nodes < 1) {
871  		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
872  			 *num_of_nodes);
873  		rc = -EINVAL;
874  		goto parse_DFS_referrals_exit;
875  	}
876  
877  	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
878  	if (ref->VersionNumber != cpu_to_le16(3)) {
879  		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
880  			 le16_to_cpu(ref->VersionNumber));
881  		rc = -EINVAL;
882  		goto parse_DFS_referrals_exit;
883  	}
884  
885  	/* get the upper boundary of the resp buffer */
886  	data_end = (char *)rsp + rsp_size;
887  
888  	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
889  		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
890  
891  	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
892  				GFP_KERNEL);
893  	if (*target_nodes == NULL) {
894  		rc = -ENOMEM;
895  		goto parse_DFS_referrals_exit;
896  	}
897  
898  	/* collect necessary data from referrals */
899  	for (i = 0; i < *num_of_nodes; i++) {
900  		char *temp;
901  		int max_len;
902  		struct dfs_info3_param *node = (*target_nodes)+i;
903  
904  		node->flags = le32_to_cpu(rsp->DFSFlags);
905  		if (is_unicode) {
906  			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
907  						GFP_KERNEL);
908  			if (tmp == NULL) {
909  				rc = -ENOMEM;
910  				goto parse_DFS_referrals_exit;
911  			}
912  			cifsConvertToUTF16((__le16 *) tmp, searchName,
913  					   PATH_MAX, nls_codepage, remap);
914  			node->path_consumed = cifs_utf16_bytes(tmp,
915  					le16_to_cpu(rsp->PathConsumed),
916  					nls_codepage);
917  			kfree(tmp);
918  		} else
919  			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
920  
921  		node->server_type = le16_to_cpu(ref->ServerType);
922  		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
923  
924  		/* copy DfsPath */
925  		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
926  		max_len = data_end - temp;
927  		node->path_name = cifs_strndup_from_utf16(temp, max_len,
928  						is_unicode, nls_codepage);
929  		if (!node->path_name) {
930  			rc = -ENOMEM;
931  			goto parse_DFS_referrals_exit;
932  		}
933  
934  		/* copy link target UNC */
935  		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
936  		max_len = data_end - temp;
937  		node->node_name = cifs_strndup_from_utf16(temp, max_len,
938  						is_unicode, nls_codepage);
939  		if (!node->node_name) {
940  			rc = -ENOMEM;
941  			goto parse_DFS_referrals_exit;
942  		}
943  
944  		node->ttl = le32_to_cpu(ref->TimeToLive);
945  
946  		ref++;
947  	}
948  
949  parse_DFS_referrals_exit:
950  	if (rc) {
951  		free_dfs_info_array(*target_nodes, *num_of_nodes);
952  		*target_nodes = NULL;
953  		*num_of_nodes = 0;
954  	}
955  	return rc;
956  }
957  
958  struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)959  cifs_aio_ctx_alloc(void)
960  {
961  	struct cifs_aio_ctx *ctx;
962  
963  	/*
964  	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
965  	 * to false so that we know when we have to unreference pages within
966  	 * cifs_aio_ctx_release()
967  	 */
968  	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
969  	if (!ctx)
970  		return NULL;
971  
972  	INIT_LIST_HEAD(&ctx->list);
973  	mutex_init(&ctx->aio_mutex);
974  	init_completion(&ctx->done);
975  	kref_init(&ctx->refcount);
976  	return ctx;
977  }
978  
979  void
cifs_aio_ctx_release(struct kref * refcount)980  cifs_aio_ctx_release(struct kref *refcount)
981  {
982  	struct cifs_aio_ctx *ctx = container_of(refcount,
983  					struct cifs_aio_ctx, refcount);
984  
985  	cifsFileInfo_put(ctx->cfile);
986  
987  	/*
988  	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
989  	 * which means that iov_iter_extract_pages() was a success and thus
990  	 * that we may have references or pins on pages that we need to
991  	 * release.
992  	 */
993  	if (ctx->bv) {
994  		if (ctx->should_dirty || ctx->bv_need_unpin) {
995  			unsigned int i;
996  
997  			for (i = 0; i < ctx->nr_pinned_pages; i++) {
998  				struct page *page = ctx->bv[i].bv_page;
999  
1000  				if (ctx->should_dirty)
1001  					set_page_dirty(page);
1002  				if (ctx->bv_need_unpin)
1003  					unpin_user_page(page);
1004  			}
1005  		}
1006  		kvfree(ctx->bv);
1007  	}
1008  
1009  	kfree(ctx);
1010  }
1011  
1012  /**
1013   * cifs_alloc_hash - allocate hash and hash context together
1014   * @name: The name of the crypto hash algo
1015   * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1016   *
1017   * The caller has to make sure @sdesc is initialized to either NULL or
1018   * a valid context. It can be freed via cifs_free_hash().
1019   */
1020  int
cifs_alloc_hash(const char * name,struct shash_desc ** sdesc)1021  cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1022  {
1023  	int rc = 0;
1024  	struct crypto_shash *alg = NULL;
1025  
1026  	if (*sdesc)
1027  		return 0;
1028  
1029  	alg = crypto_alloc_shash(name, 0, 0);
1030  	if (IS_ERR(alg)) {
1031  		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1032  		rc = PTR_ERR(alg);
1033  		*sdesc = NULL;
1034  		return rc;
1035  	}
1036  
1037  	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1038  	if (*sdesc == NULL) {
1039  		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1040  		crypto_free_shash(alg);
1041  		return -ENOMEM;
1042  	}
1043  
1044  	(*sdesc)->tfm = alg;
1045  	return 0;
1046  }
1047  
1048  /**
1049   * cifs_free_hash - free hash and hash context together
1050   * @sdesc: Where to find the pointer to the hash TFM
1051   *
1052   * Freeing a NULL descriptor is safe.
1053   */
1054  void
cifs_free_hash(struct shash_desc ** sdesc)1055  cifs_free_hash(struct shash_desc **sdesc)
1056  {
1057  	if (unlikely(!sdesc) || !*sdesc)
1058  		return;
1059  
1060  	if ((*sdesc)->tfm) {
1061  		crypto_free_shash((*sdesc)->tfm);
1062  		(*sdesc)->tfm = NULL;
1063  	}
1064  
1065  	kfree_sensitive(*sdesc);
1066  	*sdesc = NULL;
1067  }
1068  
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1069  void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1070  {
1071  	const char *end;
1072  
1073  	/* skip initial slashes */
1074  	while (*unc && (*unc == '\\' || *unc == '/'))
1075  		unc++;
1076  
1077  	end = unc;
1078  
1079  	while (*end && !(*end == '\\' || *end == '/'))
1080  		end++;
1081  
1082  	*h = unc;
1083  	*len = end - unc;
1084  }
1085  
1086  /**
1087   * copy_path_name - copy src path to dst, possibly truncating
1088   * @dst: The destination buffer
1089   * @src: The source name
1090   *
1091   * returns number of bytes written (including trailing nul)
1092   */
copy_path_name(char * dst,const char * src)1093  int copy_path_name(char *dst, const char *src)
1094  {
1095  	int name_len;
1096  
1097  	/*
1098  	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1099  	 * will truncate and strlen(dst) will be PATH_MAX-1
1100  	 */
1101  	name_len = strscpy(dst, src, PATH_MAX);
1102  	if (WARN_ON_ONCE(name_len < 0))
1103  		name_len = PATH_MAX-1;
1104  
1105  	/* we count the trailing nul */
1106  	name_len++;
1107  	return name_len;
1108  }
1109  
1110  struct super_cb_data {
1111  	void *data;
1112  	struct super_block *sb;
1113  };
1114  
tcon_super_cb(struct super_block * sb,void * arg)1115  static void tcon_super_cb(struct super_block *sb, void *arg)
1116  {
1117  	struct super_cb_data *sd = arg;
1118  	struct cifs_sb_info *cifs_sb;
1119  	struct cifs_tcon *t1 = sd->data, *t2;
1120  
1121  	if (sd->sb)
1122  		return;
1123  
1124  	cifs_sb = CIFS_SB(sb);
1125  	t2 = cifs_sb_master_tcon(cifs_sb);
1126  
1127  	spin_lock(&t2->tc_lock);
1128  	if (t1->ses == t2->ses &&
1129  	    t1->ses->server == t2->ses->server &&
1130  	    t2->origin_fullpath &&
1131  	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1132  		sd->sb = sb;
1133  	spin_unlock(&t2->tc_lock);
1134  }
1135  
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1136  static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1137  					    void *data)
1138  {
1139  	struct super_cb_data sd = {
1140  		.data = data,
1141  		.sb = NULL,
1142  	};
1143  	struct file_system_type **fs_type = (struct file_system_type *[]) {
1144  		&cifs_fs_type, &smb3_fs_type, NULL,
1145  	};
1146  
1147  	for (; *fs_type; fs_type++) {
1148  		iterate_supers_type(*fs_type, f, &sd);
1149  		if (sd.sb) {
1150  			/*
1151  			 * Grab an active reference in order to prevent automounts (DFS links)
1152  			 * of expiring and then freeing up our cifs superblock pointer while
1153  			 * we're doing failover.
1154  			 */
1155  			cifs_sb_active(sd.sb);
1156  			return sd.sb;
1157  		}
1158  	}
1159  	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1160  	return ERR_PTR(-EINVAL);
1161  }
1162  
__cifs_put_super(struct super_block * sb)1163  static void __cifs_put_super(struct super_block *sb)
1164  {
1165  	if (!IS_ERR_OR_NULL(sb))
1166  		cifs_sb_deactive(sb);
1167  }
1168  
cifs_get_dfs_tcon_super(struct cifs_tcon * tcon)1169  struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1170  {
1171  	spin_lock(&tcon->tc_lock);
1172  	if (!tcon->origin_fullpath) {
1173  		spin_unlock(&tcon->tc_lock);
1174  		return ERR_PTR(-ENOENT);
1175  	}
1176  	spin_unlock(&tcon->tc_lock);
1177  	return __cifs_get_super(tcon_super_cb, tcon);
1178  }
1179  
cifs_put_tcp_super(struct super_block * sb)1180  void cifs_put_tcp_super(struct super_block *sb)
1181  {
1182  	__cifs_put_super(sb);
1183  }
1184  
1185  #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1186  int match_target_ip(struct TCP_Server_Info *server,
1187  		    const char *share, size_t share_len,
1188  		    bool *result)
1189  {
1190  	int rc;
1191  	char *target;
1192  	struct sockaddr_storage ss;
1193  
1194  	*result = false;
1195  
1196  	target = kzalloc(share_len + 3, GFP_KERNEL);
1197  	if (!target)
1198  		return -ENOMEM;
1199  
1200  	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1201  
1202  	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1203  
1204  	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1205  	kfree(target);
1206  
1207  	if (rc < 0)
1208  		return rc;
1209  
1210  	spin_lock(&server->srv_lock);
1211  	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1212  	spin_unlock(&server->srv_lock);
1213  	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1214  	return 0;
1215  }
1216  
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1217  int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1218  {
1219  	int rc;
1220  
1221  	kfree(cifs_sb->prepath);
1222  	cifs_sb->prepath = NULL;
1223  
1224  	if (prefix && *prefix) {
1225  		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1226  		if (IS_ERR(cifs_sb->prepath)) {
1227  			rc = PTR_ERR(cifs_sb->prepath);
1228  			cifs_sb->prepath = NULL;
1229  			return rc;
1230  		}
1231  		if (cifs_sb->prepath)
1232  			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1233  	}
1234  
1235  	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1236  	return 0;
1237  }
1238  
1239  /*
1240   * Handle weird Windows SMB server behaviour. It responds with
1241   * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1242   * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1243   * non-ASCII unicode symbols.
1244   */
cifs_inval_name_dfs_link_error(const unsigned int xid,struct cifs_tcon * tcon,struct cifs_sb_info * cifs_sb,const char * full_path,bool * islink)1245  int cifs_inval_name_dfs_link_error(const unsigned int xid,
1246  				   struct cifs_tcon *tcon,
1247  				   struct cifs_sb_info *cifs_sb,
1248  				   const char *full_path,
1249  				   bool *islink)
1250  {
1251  	struct cifs_ses *ses = tcon->ses;
1252  	size_t len;
1253  	char *path;
1254  	char *ref_path;
1255  
1256  	*islink = false;
1257  
1258  	/*
1259  	 * Fast path - skip check when @full_path doesn't have a prefix path to
1260  	 * look up or tcon is not DFS.
1261  	 */
1262  	if (strlen(full_path) < 2 || !cifs_sb ||
1263  	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1264  	    !is_tcon_dfs(tcon))
1265  		return 0;
1266  
1267  	spin_lock(&tcon->tc_lock);
1268  	if (!tcon->origin_fullpath) {
1269  		spin_unlock(&tcon->tc_lock);
1270  		return 0;
1271  	}
1272  	spin_unlock(&tcon->tc_lock);
1273  
1274  	/*
1275  	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1276  	 * to get a referral to figure out whether it is an DFS link.
1277  	 */
1278  	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1279  	path = kmalloc(len, GFP_KERNEL);
1280  	if (!path)
1281  		return -ENOMEM;
1282  
1283  	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1284  	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1285  					    cifs_remap(cifs_sb));
1286  	kfree(path);
1287  
1288  	if (IS_ERR(ref_path)) {
1289  		if (PTR_ERR(ref_path) != -EINVAL)
1290  			return PTR_ERR(ref_path);
1291  	} else {
1292  		struct dfs_info3_param *refs = NULL;
1293  		int num_refs = 0;
1294  
1295  		/*
1296  		 * XXX: we are not using dfs_cache_find() here because we might
1297  		 * end up filling all the DFS cache and thus potentially
1298  		 * removing cached DFS targets that the client would eventually
1299  		 * need during failover.
1300  		 */
1301  		ses = CIFS_DFS_ROOT_SES(ses);
1302  		if (ses->server->ops->get_dfs_refer &&
1303  		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1304  						     &num_refs, cifs_sb->local_nls,
1305  						     cifs_remap(cifs_sb)))
1306  			*islink = refs[0].server_type == DFS_TYPE_LINK;
1307  		free_dfs_info_array(refs, num_refs);
1308  		kfree(ref_path);
1309  	}
1310  	return 0;
1311  }
1312  #endif
1313  
cifs_wait_for_server_reconnect(struct TCP_Server_Info * server,bool retry)1314  int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1315  {
1316  	int timeout = 10;
1317  	int rc;
1318  
1319  	spin_lock(&server->srv_lock);
1320  	if (server->tcpStatus != CifsNeedReconnect) {
1321  		spin_unlock(&server->srv_lock);
1322  		return 0;
1323  	}
1324  	timeout *= server->nr_targets;
1325  	spin_unlock(&server->srv_lock);
1326  
1327  	/*
1328  	 * Give demultiplex thread up to 10 seconds to each target available for
1329  	 * reconnect -- should be greater than cifs socket timeout which is 7
1330  	 * seconds.
1331  	 *
1332  	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1333  	 * process is killed or server comes back on-line.
1334  	 */
1335  	do {
1336  		rc = wait_event_interruptible_timeout(server->response_q,
1337  						      (server->tcpStatus != CifsNeedReconnect),
1338  						      timeout * HZ);
1339  		if (rc < 0) {
1340  			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1341  				 __func__);
1342  			return -ERESTARTSYS;
1343  		}
1344  
1345  		/* are we still trying to reconnect? */
1346  		spin_lock(&server->srv_lock);
1347  		if (server->tcpStatus != CifsNeedReconnect) {
1348  			spin_unlock(&server->srv_lock);
1349  			return 0;
1350  		}
1351  		spin_unlock(&server->srv_lock);
1352  	} while (retry);
1353  
1354  	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1355  	return -EHOSTDOWN;
1356  }
1357