1 /*
2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25
26 #include <dt-bindings/dma/nbpfaxi.h>
27
28 #include "dmaengine.h"
29
30 #define NBPF_REG_CHAN_OFFSET 0
31 #define NBPF_REG_CHAN_SIZE 0x40
32
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE 0x20
35
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT 0x24
38 #define NBPF_CHAN_STAT_EN 1
39 #define NBPF_CHAN_STAT_TACT 4
40 #define NBPF_CHAN_STAT_ERR 0x10
41 #define NBPF_CHAN_STAT_END 0x20
42 #define NBPF_CHAN_STAT_TC 0x40
43 #define NBPF_CHAN_STAT_DER 0x400
44
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL 0x28
47 #define NBPF_CHAN_CTRL_SETEN 1
48 #define NBPF_CHAN_CTRL_CLREN 2
49 #define NBPF_CHAN_CTRL_STG 4
50 #define NBPF_CHAN_CTRL_SWRST 8
51 #define NBPF_CHAN_CTRL_CLRRQ 0x10
52 #define NBPF_CHAN_CTRL_CLREND 0x20
53 #define NBPF_CHAN_CTRL_CLRTC 0x40
54 #define NBPF_CHAN_CTRL_SETSUS 0x100
55 #define NBPF_CHAN_CTRL_CLRSUS 0x200
56
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG 0x2c
59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
77
78 #define NBPF_CHAN_NXLA 0x38
79 #define NBPF_CHAN_CRLA 0x3c
80
81 /* Link Header field */
82 #define NBPF_HEADER_LV 1
83 #define NBPF_HEADER_LE 2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
86
87 #define NBPF_CTRL 0x300
88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91 #define NBPF_DSTAT_ER 0x314
92 #define NBPF_DSTAT_END 0x318
93
94 #define NBPF_DMA_BUSWIDTHS \
95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101 struct nbpf_config {
102 int num_channels;
103 int buffer_size;
104 };
105
106 /*
107 * We've got 3 types of objects, used to describe DMA transfers:
108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109 * in it, used to communicate with the user
110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111 * queuing, these must be DMAable, using either the streaming DMA API or
112 * allocated from coherent memory - one per SG segment
113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
114 * (2). They do not have to be DMAable. They can either be (a) allocated
115 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
116 * separately. Even if allocated separately it would be best to link them
117 * to link descriptors once during channel resource allocation and always
118 * use them as a single object.
119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120 * treated as a single SG segment descriptor.
121 */
122
123 struct nbpf_link_reg {
124 u32 header;
125 u32 src_addr;
126 u32 dst_addr;
127 u32 transaction_size;
128 u32 config;
129 u32 interval;
130 u32 extension;
131 u32 next;
132 } __packed;
133
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137
138 struct nbpf_link_desc {
139 struct nbpf_link_reg *hwdesc;
140 dma_addr_t hwdesc_dma_addr;
141 struct nbpf_desc *desc;
142 struct list_head node;
143 };
144
145 /**
146 * struct nbpf_desc - DMA transfer descriptor
147 * @async_tx: dmaengine object
148 * @user_wait: waiting for a user ack
149 * @length: total transfer length
150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
151 * @node: member in channel descriptor lists
152 */
153 struct nbpf_desc {
154 struct dma_async_tx_descriptor async_tx;
155 bool user_wait;
156 size_t length;
157 struct nbpf_channel *chan;
158 struct list_head sg;
159 struct list_head node;
160 };
161
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
165 (sizeof(struct nbpf_desc) + \
166 NBPF_SEGMENTS_PER_DESC * \
167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170 struct nbpf_desc_page {
171 struct list_head node;
172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176
177 /**
178 * struct nbpf_channel - one DMAC channel
179 * @dma_chan: standard dmaengine channel object
180 * @base: register address base
181 * @nbpf: DMAC
182 * @name: IRQ name
183 * @irq: IRQ number
184 * @slave_addr: address for slave DMA
185 * @slave_width:slave data size in bytes
186 * @slave_burst:maximum slave burst size in bytes
187 * @terminal: DMA terminal, assigned to this channel
188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189 * @flags: configuration flags from DT
190 * @lock: protect descriptor lists
191 * @free_links: list of free link descriptors
192 * @free: list of free descriptors
193 * @queued: list of queued descriptors
194 * @active: list of descriptors, scheduled for processing
195 * @done: list of completed descriptors, waiting post-processing
196 * @desc_page: list of additionally allocated descriptor pages - if any
197 */
198 struct nbpf_channel {
199 struct dma_chan dma_chan;
200 struct tasklet_struct tasklet;
201 void __iomem *base;
202 struct nbpf_device *nbpf;
203 char name[16];
204 int irq;
205 dma_addr_t slave_src_addr;
206 size_t slave_src_width;
207 size_t slave_src_burst;
208 dma_addr_t slave_dst_addr;
209 size_t slave_dst_width;
210 size_t slave_dst_burst;
211 unsigned int terminal;
212 u32 dmarq_cfg;
213 unsigned long flags;
214 spinlock_t lock;
215 struct list_head free_links;
216 struct list_head free;
217 struct list_head queued;
218 struct list_head active;
219 struct list_head done;
220 struct list_head desc_page;
221 struct nbpf_desc *running;
222 bool paused;
223 };
224
225 struct nbpf_device {
226 struct dma_device dma_dev;
227 void __iomem *base;
228 u32 max_burst_mem_read;
229 u32 max_burst_mem_write;
230 struct clk *clk;
231 const struct nbpf_config *config;
232 unsigned int eirq;
233 struct nbpf_channel chan[];
234 };
235
236 enum nbpf_model {
237 NBPF1B4,
238 NBPF1B8,
239 NBPF1B16,
240 NBPF4B4,
241 NBPF4B8,
242 NBPF4B16,
243 NBPF8B4,
244 NBPF8B8,
245 NBPF8B16,
246 };
247
248 static struct nbpf_config nbpf_cfg[] = {
249 [NBPF1B4] = {
250 .num_channels = 1,
251 .buffer_size = 4,
252 },
253 [NBPF1B8] = {
254 .num_channels = 1,
255 .buffer_size = 8,
256 },
257 [NBPF1B16] = {
258 .num_channels = 1,
259 .buffer_size = 16,
260 },
261 [NBPF4B4] = {
262 .num_channels = 4,
263 .buffer_size = 4,
264 },
265 [NBPF4B8] = {
266 .num_channels = 4,
267 .buffer_size = 8,
268 },
269 [NBPF4B16] = {
270 .num_channels = 4,
271 .buffer_size = 16,
272 },
273 [NBPF8B4] = {
274 .num_channels = 8,
275 .buffer_size = 4,
276 },
277 [NBPF8B8] = {
278 .num_channels = 8,
279 .buffer_size = 8,
280 },
281 [NBPF8B16] = {
282 .num_channels = 8,
283 .buffer_size = 16,
284 },
285 };
286
287 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
288
289 /*
290 * dmaengine drivers seem to have a lot in common and instead of sharing more
291 * code, they reimplement those common algorithms independently. In this driver
292 * we try to separate the hardware-specific part from the (largely) generic
293 * part. This improves code readability and makes it possible in the future to
294 * reuse the generic code in form of a helper library. That generic code should
295 * be suitable for various DMA controllers, using transfer descriptors in RAM
296 * and pushing one SG list at a time to the DMA controller.
297 */
298
299 /* Hardware-specific part */
300
nbpf_chan_read(struct nbpf_channel * chan,unsigned int offset)301 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
302 unsigned int offset)
303 {
304 u32 data = ioread32(chan->base + offset);
305 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
306 __func__, chan->base, offset, data);
307 return data;
308 }
309
nbpf_chan_write(struct nbpf_channel * chan,unsigned int offset,u32 data)310 static inline void nbpf_chan_write(struct nbpf_channel *chan,
311 unsigned int offset, u32 data)
312 {
313 iowrite32(data, chan->base + offset);
314 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
315 __func__, chan->base, offset, data);
316 }
317
nbpf_read(struct nbpf_device * nbpf,unsigned int offset)318 static inline u32 nbpf_read(struct nbpf_device *nbpf,
319 unsigned int offset)
320 {
321 u32 data = ioread32(nbpf->base + offset);
322 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
323 __func__, nbpf->base, offset, data);
324 return data;
325 }
326
nbpf_write(struct nbpf_device * nbpf,unsigned int offset,u32 data)327 static inline void nbpf_write(struct nbpf_device *nbpf,
328 unsigned int offset, u32 data)
329 {
330 iowrite32(data, nbpf->base + offset);
331 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
332 __func__, nbpf->base, offset, data);
333 }
334
nbpf_chan_halt(struct nbpf_channel * chan)335 static void nbpf_chan_halt(struct nbpf_channel *chan)
336 {
337 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
338 }
339
nbpf_status_get(struct nbpf_channel * chan)340 static bool nbpf_status_get(struct nbpf_channel *chan)
341 {
342 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
343
344 return status & BIT(chan - chan->nbpf->chan);
345 }
346
nbpf_status_ack(struct nbpf_channel * chan)347 static void nbpf_status_ack(struct nbpf_channel *chan)
348 {
349 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
350 }
351
nbpf_error_get(struct nbpf_device * nbpf)352 static u32 nbpf_error_get(struct nbpf_device *nbpf)
353 {
354 return nbpf_read(nbpf, NBPF_DSTAT_ER);
355 }
356
nbpf_error_get_channel(struct nbpf_device * nbpf,u32 error)357 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
358 {
359 return nbpf->chan + __ffs(error);
360 }
361
nbpf_error_clear(struct nbpf_channel * chan)362 static void nbpf_error_clear(struct nbpf_channel *chan)
363 {
364 u32 status;
365 int i;
366
367 /* Stop the channel, make sure DMA has been aborted */
368 nbpf_chan_halt(chan);
369
370 for (i = 1000; i; i--) {
371 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
372 if (!(status & NBPF_CHAN_STAT_TACT))
373 break;
374 cpu_relax();
375 }
376
377 if (!i)
378 dev_err(chan->dma_chan.device->dev,
379 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
380
381 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
382 }
383
nbpf_start(struct nbpf_desc * desc)384 static int nbpf_start(struct nbpf_desc *desc)
385 {
386 struct nbpf_channel *chan = desc->chan;
387 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
388
389 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
390 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
391 chan->paused = false;
392
393 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
394 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
395 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
396
397 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
398 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
399
400 return 0;
401 }
402
nbpf_chan_prepare(struct nbpf_channel * chan)403 static void nbpf_chan_prepare(struct nbpf_channel *chan)
404 {
405 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
406 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
407 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
408 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
409 chan->terminal;
410 }
411
nbpf_chan_prepare_default(struct nbpf_channel * chan)412 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
413 {
414 /* Don't output DMAACK */
415 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
416 chan->terminal = 0;
417 chan->flags = 0;
418 }
419
nbpf_chan_configure(struct nbpf_channel * chan)420 static void nbpf_chan_configure(struct nbpf_channel *chan)
421 {
422 /*
423 * We assume, that only the link mode and DMA request line configuration
424 * have to be set in the configuration register manually. Dynamic
425 * per-transfer configuration will be loaded from transfer descriptors.
426 */
427 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
428 }
429
nbpf_xfer_ds(struct nbpf_device * nbpf,size_t size,enum dma_transfer_direction direction)430 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
431 enum dma_transfer_direction direction)
432 {
433 int max_burst = nbpf->config->buffer_size * 8;
434
435 if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
436 switch (direction) {
437 case DMA_MEM_TO_MEM:
438 max_burst = min_not_zero(nbpf->max_burst_mem_read,
439 nbpf->max_burst_mem_write);
440 break;
441 case DMA_MEM_TO_DEV:
442 if (nbpf->max_burst_mem_read)
443 max_burst = nbpf->max_burst_mem_read;
444 break;
445 case DMA_DEV_TO_MEM:
446 if (nbpf->max_burst_mem_write)
447 max_burst = nbpf->max_burst_mem_write;
448 break;
449 case DMA_DEV_TO_DEV:
450 default:
451 break;
452 }
453 }
454
455 /* Maximum supported bursts depend on the buffer size */
456 return min_t(int, __ffs(size), ilog2(max_burst));
457 }
458
nbpf_xfer_size(struct nbpf_device * nbpf,enum dma_slave_buswidth width,u32 burst)459 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
460 enum dma_slave_buswidth width, u32 burst)
461 {
462 size_t size;
463
464 if (!burst)
465 burst = 1;
466
467 switch (width) {
468 case DMA_SLAVE_BUSWIDTH_8_BYTES:
469 size = 8 * burst;
470 break;
471
472 case DMA_SLAVE_BUSWIDTH_4_BYTES:
473 size = 4 * burst;
474 break;
475
476 case DMA_SLAVE_BUSWIDTH_2_BYTES:
477 size = 2 * burst;
478 break;
479
480 default:
481 pr_warn("%s(): invalid bus width %u\n", __func__, width);
482 /* fall through */
483 case DMA_SLAVE_BUSWIDTH_1_BYTE:
484 size = burst;
485 }
486
487 return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
488 }
489
490 /*
491 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
492 * i.e. it isn't known in advance how many bytes will be received. Therefore
493 * the slave driver has to provide a "large enough" buffer and either read the
494 * buffer, when it is full, or detect, that some data has arrived, then wait for
495 * a timeout, if no more data arrives - receive what's already there. We want to
496 * handle such slaves in a special way to allow an optimised mode for other
497 * users, for whom the amount of data is known in advance. So far there's no way
498 * to recognise such slaves. We use a data-width check to distinguish between
499 * the SD host and the PL011 UART.
500 */
501
nbpf_prep_one(struct nbpf_link_desc * ldesc,enum dma_transfer_direction direction,dma_addr_t src,dma_addr_t dst,size_t size,bool last)502 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
503 enum dma_transfer_direction direction,
504 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
505 {
506 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
507 struct nbpf_desc *desc = ldesc->desc;
508 struct nbpf_channel *chan = desc->chan;
509 struct device *dev = chan->dma_chan.device->dev;
510 size_t mem_xfer, slave_xfer;
511 bool can_burst;
512
513 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
514 (last ? NBPF_HEADER_LE : 0);
515
516 hwdesc->src_addr = src;
517 hwdesc->dst_addr = dst;
518 hwdesc->transaction_size = size;
519
520 /*
521 * set config: SAD, DAD, DDS, SDS, etc.
522 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
523 * but it is important to have transaction size a multiple of both
524 * receiver and transmitter transfer sizes. It is also possible to use
525 * different RAM and device transfer sizes, and it does work well with
526 * some devices, e.g. with V08R07S01E SD host controllers, which can use
527 * 128 byte transfers. But this doesn't work with other devices,
528 * especially when the transaction size is unknown. This is the case,
529 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
530 * the transaction size of 4K and if fewer bytes are received, it
531 * pauses DMA and reads out data received via DMA as well as those left
532 * in the Rx FIFO. For this to work with the RAM side using burst
533 * transfers we enable the SBE bit and terminate the transfer in our
534 * .device_pause handler.
535 */
536 mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
537
538 switch (direction) {
539 case DMA_DEV_TO_MEM:
540 can_burst = chan->slave_src_width >= 3;
541 slave_xfer = min(mem_xfer, can_burst ?
542 chan->slave_src_burst : chan->slave_src_width);
543 /*
544 * Is the slave narrower than 64 bits, i.e. isn't using the full
545 * bus width and cannot use bursts?
546 */
547 if (mem_xfer > chan->slave_src_burst && !can_burst)
548 mem_xfer = chan->slave_src_burst;
549 /* Device-to-RAM DMA is unreliable without REQD set */
550 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
551 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
552 NBPF_CHAN_CFG_SBE;
553 break;
554
555 case DMA_MEM_TO_DEV:
556 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
557 chan->slave_dst_burst : chan->slave_dst_width);
558 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
559 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
560 break;
561
562 case DMA_MEM_TO_MEM:
563 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
564 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
565 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
566 break;
567
568 default:
569 return -EINVAL;
570 }
571
572 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
573 NBPF_CHAN_CFG_DMS;
574
575 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
576 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
577 hwdesc->config, size, &src, &dst);
578
579 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
580 DMA_TO_DEVICE);
581
582 return 0;
583 }
584
nbpf_bytes_left(struct nbpf_channel * chan)585 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
586 {
587 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
588 }
589
nbpf_configure(struct nbpf_device * nbpf)590 static void nbpf_configure(struct nbpf_device *nbpf)
591 {
592 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
593 }
594
595 /* Generic part */
596
597 /* DMA ENGINE functions */
nbpf_issue_pending(struct dma_chan * dchan)598 static void nbpf_issue_pending(struct dma_chan *dchan)
599 {
600 struct nbpf_channel *chan = nbpf_to_chan(dchan);
601 unsigned long flags;
602
603 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
604
605 spin_lock_irqsave(&chan->lock, flags);
606 if (list_empty(&chan->queued))
607 goto unlock;
608
609 list_splice_tail_init(&chan->queued, &chan->active);
610
611 if (!chan->running) {
612 struct nbpf_desc *desc = list_first_entry(&chan->active,
613 struct nbpf_desc, node);
614 if (!nbpf_start(desc))
615 chan->running = desc;
616 }
617
618 unlock:
619 spin_unlock_irqrestore(&chan->lock, flags);
620 }
621
nbpf_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * state)622 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
623 dma_cookie_t cookie, struct dma_tx_state *state)
624 {
625 struct nbpf_channel *chan = nbpf_to_chan(dchan);
626 enum dma_status status = dma_cookie_status(dchan, cookie, state);
627
628 if (state) {
629 dma_cookie_t running;
630 unsigned long flags;
631
632 spin_lock_irqsave(&chan->lock, flags);
633 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
634
635 if (cookie == running) {
636 state->residue = nbpf_bytes_left(chan);
637 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
638 state->residue);
639 } else if (status == DMA_IN_PROGRESS) {
640 struct nbpf_desc *desc;
641 bool found = false;
642
643 list_for_each_entry(desc, &chan->active, node)
644 if (desc->async_tx.cookie == cookie) {
645 found = true;
646 break;
647 }
648
649 if (!found)
650 list_for_each_entry(desc, &chan->queued, node)
651 if (desc->async_tx.cookie == cookie) {
652 found = true;
653 break;
654
655 }
656
657 state->residue = found ? desc->length : 0;
658 }
659
660 spin_unlock_irqrestore(&chan->lock, flags);
661 }
662
663 if (chan->paused)
664 status = DMA_PAUSED;
665
666 return status;
667 }
668
nbpf_tx_submit(struct dma_async_tx_descriptor * tx)669 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
670 {
671 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
672 struct nbpf_channel *chan = desc->chan;
673 unsigned long flags;
674 dma_cookie_t cookie;
675
676 spin_lock_irqsave(&chan->lock, flags);
677 cookie = dma_cookie_assign(tx);
678 list_add_tail(&desc->node, &chan->queued);
679 spin_unlock_irqrestore(&chan->lock, flags);
680
681 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
682
683 return cookie;
684 }
685
nbpf_desc_page_alloc(struct nbpf_channel * chan)686 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
687 {
688 struct dma_chan *dchan = &chan->dma_chan;
689 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
690 struct nbpf_link_desc *ldesc;
691 struct nbpf_link_reg *hwdesc;
692 struct nbpf_desc *desc;
693 LIST_HEAD(head);
694 LIST_HEAD(lhead);
695 int i;
696 struct device *dev = dchan->device->dev;
697
698 if (!dpage)
699 return -ENOMEM;
700
701 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
702 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
703
704 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
705 i < ARRAY_SIZE(dpage->ldesc);
706 i++, ldesc++, hwdesc++) {
707 ldesc->hwdesc = hwdesc;
708 list_add_tail(&ldesc->node, &lhead);
709 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
710 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
711
712 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
713 hwdesc, &ldesc->hwdesc_dma_addr);
714 }
715
716 for (i = 0, desc = dpage->desc;
717 i < ARRAY_SIZE(dpage->desc);
718 i++, desc++) {
719 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
720 desc->async_tx.tx_submit = nbpf_tx_submit;
721 desc->chan = chan;
722 INIT_LIST_HEAD(&desc->sg);
723 list_add_tail(&desc->node, &head);
724 }
725
726 /*
727 * This function cannot be called from interrupt context, so, no need to
728 * save flags
729 */
730 spin_lock_irq(&chan->lock);
731 list_splice_tail(&lhead, &chan->free_links);
732 list_splice_tail(&head, &chan->free);
733 list_add(&dpage->node, &chan->desc_page);
734 spin_unlock_irq(&chan->lock);
735
736 return ARRAY_SIZE(dpage->desc);
737 }
738
nbpf_desc_put(struct nbpf_desc * desc)739 static void nbpf_desc_put(struct nbpf_desc *desc)
740 {
741 struct nbpf_channel *chan = desc->chan;
742 struct nbpf_link_desc *ldesc, *tmp;
743 unsigned long flags;
744
745 spin_lock_irqsave(&chan->lock, flags);
746 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
747 list_move(&ldesc->node, &chan->free_links);
748
749 list_add(&desc->node, &chan->free);
750 spin_unlock_irqrestore(&chan->lock, flags);
751 }
752
nbpf_scan_acked(struct nbpf_channel * chan)753 static void nbpf_scan_acked(struct nbpf_channel *chan)
754 {
755 struct nbpf_desc *desc, *tmp;
756 unsigned long flags;
757 LIST_HEAD(head);
758
759 spin_lock_irqsave(&chan->lock, flags);
760 list_for_each_entry_safe(desc, tmp, &chan->done, node)
761 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
762 list_move(&desc->node, &head);
763 desc->user_wait = false;
764 }
765 spin_unlock_irqrestore(&chan->lock, flags);
766
767 list_for_each_entry_safe(desc, tmp, &head, node) {
768 list_del(&desc->node);
769 nbpf_desc_put(desc);
770 }
771 }
772
773 /*
774 * We have to allocate descriptors with the channel lock dropped. This means,
775 * before we re-acquire the lock buffers can be taken already, so we have to
776 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
777 * again.
778 */
nbpf_desc_get(struct nbpf_channel * chan,size_t len)779 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
780 {
781 struct nbpf_desc *desc = NULL;
782 struct nbpf_link_desc *ldesc, *prev = NULL;
783
784 nbpf_scan_acked(chan);
785
786 spin_lock_irq(&chan->lock);
787
788 do {
789 int i = 0, ret;
790
791 if (list_empty(&chan->free)) {
792 /* No more free descriptors */
793 spin_unlock_irq(&chan->lock);
794 ret = nbpf_desc_page_alloc(chan);
795 if (ret < 0)
796 return NULL;
797 spin_lock_irq(&chan->lock);
798 continue;
799 }
800 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
801 list_del(&desc->node);
802
803 do {
804 if (list_empty(&chan->free_links)) {
805 /* No more free link descriptors */
806 spin_unlock_irq(&chan->lock);
807 ret = nbpf_desc_page_alloc(chan);
808 if (ret < 0) {
809 nbpf_desc_put(desc);
810 return NULL;
811 }
812 spin_lock_irq(&chan->lock);
813 continue;
814 }
815
816 ldesc = list_first_entry(&chan->free_links,
817 struct nbpf_link_desc, node);
818 ldesc->desc = desc;
819 if (prev)
820 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
821
822 prev = ldesc;
823 list_move_tail(&ldesc->node, &desc->sg);
824
825 i++;
826 } while (i < len);
827 } while (!desc);
828
829 prev->hwdesc->next = 0;
830
831 spin_unlock_irq(&chan->lock);
832
833 return desc;
834 }
835
nbpf_chan_idle(struct nbpf_channel * chan)836 static void nbpf_chan_idle(struct nbpf_channel *chan)
837 {
838 struct nbpf_desc *desc, *tmp;
839 unsigned long flags;
840 LIST_HEAD(head);
841
842 spin_lock_irqsave(&chan->lock, flags);
843
844 list_splice_init(&chan->done, &head);
845 list_splice_init(&chan->active, &head);
846 list_splice_init(&chan->queued, &head);
847
848 chan->running = NULL;
849
850 spin_unlock_irqrestore(&chan->lock, flags);
851
852 list_for_each_entry_safe(desc, tmp, &head, node) {
853 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
854 __func__, desc, desc->async_tx.cookie);
855 list_del(&desc->node);
856 nbpf_desc_put(desc);
857 }
858 }
859
nbpf_pause(struct dma_chan * dchan)860 static int nbpf_pause(struct dma_chan *dchan)
861 {
862 struct nbpf_channel *chan = nbpf_to_chan(dchan);
863
864 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
865
866 chan->paused = true;
867 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
868 /* See comment in nbpf_prep_one() */
869 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
870
871 return 0;
872 }
873
nbpf_terminate_all(struct dma_chan * dchan)874 static int nbpf_terminate_all(struct dma_chan *dchan)
875 {
876 struct nbpf_channel *chan = nbpf_to_chan(dchan);
877
878 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
879 dev_dbg(dchan->device->dev, "Terminating\n");
880
881 nbpf_chan_halt(chan);
882 nbpf_chan_idle(chan);
883
884 return 0;
885 }
886
nbpf_config(struct dma_chan * dchan,struct dma_slave_config * config)887 static int nbpf_config(struct dma_chan *dchan,
888 struct dma_slave_config *config)
889 {
890 struct nbpf_channel *chan = nbpf_to_chan(dchan);
891
892 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
893
894 /*
895 * We could check config->slave_id to match chan->terminal here,
896 * but with DT they would be coming from the same source, so
897 * such a check would be superflous
898 */
899
900 chan->slave_dst_addr = config->dst_addr;
901 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
902 config->dst_addr_width, 1);
903 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
904 config->dst_addr_width,
905 config->dst_maxburst);
906 chan->slave_src_addr = config->src_addr;
907 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
908 config->src_addr_width, 1);
909 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
910 config->src_addr_width,
911 config->src_maxburst);
912
913 return 0;
914 }
915
nbpf_prep_sg(struct nbpf_channel * chan,struct scatterlist * src_sg,struct scatterlist * dst_sg,size_t len,enum dma_transfer_direction direction,unsigned long flags)916 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
917 struct scatterlist *src_sg, struct scatterlist *dst_sg,
918 size_t len, enum dma_transfer_direction direction,
919 unsigned long flags)
920 {
921 struct nbpf_link_desc *ldesc;
922 struct scatterlist *mem_sg;
923 struct nbpf_desc *desc;
924 bool inc_src, inc_dst;
925 size_t data_len = 0;
926 int i = 0;
927
928 switch (direction) {
929 case DMA_DEV_TO_MEM:
930 mem_sg = dst_sg;
931 inc_src = false;
932 inc_dst = true;
933 break;
934
935 case DMA_MEM_TO_DEV:
936 mem_sg = src_sg;
937 inc_src = true;
938 inc_dst = false;
939 break;
940
941 default:
942 case DMA_MEM_TO_MEM:
943 mem_sg = src_sg;
944 inc_src = true;
945 inc_dst = true;
946 }
947
948 desc = nbpf_desc_get(chan, len);
949 if (!desc)
950 return NULL;
951
952 desc->async_tx.flags = flags;
953 desc->async_tx.cookie = -EBUSY;
954 desc->user_wait = false;
955
956 /*
957 * This is a private descriptor list, and we own the descriptor. No need
958 * to lock.
959 */
960 list_for_each_entry(ldesc, &desc->sg, node) {
961 int ret = nbpf_prep_one(ldesc, direction,
962 sg_dma_address(src_sg),
963 sg_dma_address(dst_sg),
964 sg_dma_len(mem_sg),
965 i == len - 1);
966 if (ret < 0) {
967 nbpf_desc_put(desc);
968 return NULL;
969 }
970 data_len += sg_dma_len(mem_sg);
971 if (inc_src)
972 src_sg = sg_next(src_sg);
973 if (inc_dst)
974 dst_sg = sg_next(dst_sg);
975 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
976 i++;
977 }
978
979 desc->length = data_len;
980
981 /* The user has to return the descriptor to us ASAP via .tx_submit() */
982 return &desc->async_tx;
983 }
984
nbpf_prep_memcpy(struct dma_chan * dchan,dma_addr_t dst,dma_addr_t src,size_t len,unsigned long flags)985 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
986 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
987 size_t len, unsigned long flags)
988 {
989 struct nbpf_channel *chan = nbpf_to_chan(dchan);
990 struct scatterlist dst_sg;
991 struct scatterlist src_sg;
992
993 sg_init_table(&dst_sg, 1);
994 sg_init_table(&src_sg, 1);
995
996 sg_dma_address(&dst_sg) = dst;
997 sg_dma_address(&src_sg) = src;
998
999 sg_dma_len(&dst_sg) = len;
1000 sg_dma_len(&src_sg) = len;
1001
1002 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1003 __func__, len, &src, &dst);
1004
1005 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1006 DMA_MEM_TO_MEM, flags);
1007 }
1008
nbpf_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1009 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1010 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1011 enum dma_transfer_direction direction, unsigned long flags, void *context)
1012 {
1013 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1014 struct scatterlist slave_sg;
1015
1016 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1017
1018 sg_init_table(&slave_sg, 1);
1019
1020 switch (direction) {
1021 case DMA_MEM_TO_DEV:
1022 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1023 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1024 direction, flags);
1025
1026 case DMA_DEV_TO_MEM:
1027 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1028 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1029 direction, flags);
1030
1031 default:
1032 return NULL;
1033 }
1034 }
1035
nbpf_alloc_chan_resources(struct dma_chan * dchan)1036 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1037 {
1038 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1039 int ret;
1040
1041 INIT_LIST_HEAD(&chan->free);
1042 INIT_LIST_HEAD(&chan->free_links);
1043 INIT_LIST_HEAD(&chan->queued);
1044 INIT_LIST_HEAD(&chan->active);
1045 INIT_LIST_HEAD(&chan->done);
1046
1047 ret = nbpf_desc_page_alloc(chan);
1048 if (ret < 0)
1049 return ret;
1050
1051 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1052 chan->terminal);
1053
1054 nbpf_chan_configure(chan);
1055
1056 return ret;
1057 }
1058
nbpf_free_chan_resources(struct dma_chan * dchan)1059 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1060 {
1061 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1062 struct nbpf_desc_page *dpage, *tmp;
1063
1064 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1065
1066 nbpf_chan_halt(chan);
1067 nbpf_chan_idle(chan);
1068 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1069 nbpf_chan_prepare_default(chan);
1070
1071 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1072 struct nbpf_link_desc *ldesc;
1073 int i;
1074 list_del(&dpage->node);
1075 for (i = 0, ldesc = dpage->ldesc;
1076 i < ARRAY_SIZE(dpage->ldesc);
1077 i++, ldesc++)
1078 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1079 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1080 free_page((unsigned long)dpage);
1081 }
1082 }
1083
nbpf_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1084 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1085 struct of_dma *ofdma)
1086 {
1087 struct nbpf_device *nbpf = ofdma->of_dma_data;
1088 struct dma_chan *dchan;
1089 struct nbpf_channel *chan;
1090
1091 if (dma_spec->args_count != 2)
1092 return NULL;
1093
1094 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1095 if (!dchan)
1096 return NULL;
1097
1098 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1099 dma_spec->np->name);
1100
1101 chan = nbpf_to_chan(dchan);
1102
1103 chan->terminal = dma_spec->args[0];
1104 chan->flags = dma_spec->args[1];
1105
1106 nbpf_chan_prepare(chan);
1107 nbpf_chan_configure(chan);
1108
1109 return dchan;
1110 }
1111
nbpf_chan_tasklet(unsigned long data)1112 static void nbpf_chan_tasklet(unsigned long data)
1113 {
1114 struct nbpf_channel *chan = (struct nbpf_channel *)data;
1115 struct nbpf_desc *desc, *tmp;
1116 struct dmaengine_desc_callback cb;
1117
1118 while (!list_empty(&chan->done)) {
1119 bool found = false, must_put, recycling = false;
1120
1121 spin_lock_irq(&chan->lock);
1122
1123 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1124 if (!desc->user_wait) {
1125 /* Newly completed descriptor, have to process */
1126 found = true;
1127 break;
1128 } else if (async_tx_test_ack(&desc->async_tx)) {
1129 /*
1130 * This descriptor was waiting for a user ACK,
1131 * it can be recycled now.
1132 */
1133 list_del(&desc->node);
1134 spin_unlock_irq(&chan->lock);
1135 nbpf_desc_put(desc);
1136 recycling = true;
1137 break;
1138 }
1139 }
1140
1141 if (recycling)
1142 continue;
1143
1144 if (!found) {
1145 /* This can happen if TERMINATE_ALL has been called */
1146 spin_unlock_irq(&chan->lock);
1147 break;
1148 }
1149
1150 dma_cookie_complete(&desc->async_tx);
1151
1152 /*
1153 * With released lock we cannot dereference desc, maybe it's
1154 * still on the "done" list
1155 */
1156 if (async_tx_test_ack(&desc->async_tx)) {
1157 list_del(&desc->node);
1158 must_put = true;
1159 } else {
1160 desc->user_wait = true;
1161 must_put = false;
1162 }
1163
1164 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1165
1166 /* ack and callback completed descriptor */
1167 spin_unlock_irq(&chan->lock);
1168
1169 dmaengine_desc_callback_invoke(&cb, NULL);
1170
1171 if (must_put)
1172 nbpf_desc_put(desc);
1173 }
1174 }
1175
nbpf_chan_irq(int irq,void * dev)1176 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1177 {
1178 struct nbpf_channel *chan = dev;
1179 bool done = nbpf_status_get(chan);
1180 struct nbpf_desc *desc;
1181 irqreturn_t ret;
1182 bool bh = false;
1183
1184 if (!done)
1185 return IRQ_NONE;
1186
1187 nbpf_status_ack(chan);
1188
1189 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1190
1191 spin_lock(&chan->lock);
1192 desc = chan->running;
1193 if (WARN_ON(!desc)) {
1194 ret = IRQ_NONE;
1195 goto unlock;
1196 } else {
1197 ret = IRQ_HANDLED;
1198 bh = true;
1199 }
1200
1201 list_move_tail(&desc->node, &chan->done);
1202 chan->running = NULL;
1203
1204 if (!list_empty(&chan->active)) {
1205 desc = list_first_entry(&chan->active,
1206 struct nbpf_desc, node);
1207 if (!nbpf_start(desc))
1208 chan->running = desc;
1209 }
1210
1211 unlock:
1212 spin_unlock(&chan->lock);
1213
1214 if (bh)
1215 tasklet_schedule(&chan->tasklet);
1216
1217 return ret;
1218 }
1219
nbpf_err_irq(int irq,void * dev)1220 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1221 {
1222 struct nbpf_device *nbpf = dev;
1223 u32 error = nbpf_error_get(nbpf);
1224
1225 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1226
1227 if (!error)
1228 return IRQ_NONE;
1229
1230 do {
1231 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1232 /* On error: abort all queued transfers, no callback */
1233 nbpf_error_clear(chan);
1234 nbpf_chan_idle(chan);
1235 error = nbpf_error_get(nbpf);
1236 } while (error);
1237
1238 return IRQ_HANDLED;
1239 }
1240
nbpf_chan_probe(struct nbpf_device * nbpf,int n)1241 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1242 {
1243 struct dma_device *dma_dev = &nbpf->dma_dev;
1244 struct nbpf_channel *chan = nbpf->chan + n;
1245 int ret;
1246
1247 chan->nbpf = nbpf;
1248 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1249 INIT_LIST_HEAD(&chan->desc_page);
1250 spin_lock_init(&chan->lock);
1251 chan->dma_chan.device = dma_dev;
1252 dma_cookie_init(&chan->dma_chan);
1253 nbpf_chan_prepare_default(chan);
1254
1255 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1256
1257 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1258
1259 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1260 ret = devm_request_irq(dma_dev->dev, chan->irq,
1261 nbpf_chan_irq, IRQF_SHARED,
1262 chan->name, chan);
1263 if (ret < 0)
1264 return ret;
1265
1266 /* Add the channel to DMA device channel list */
1267 list_add_tail(&chan->dma_chan.device_node,
1268 &dma_dev->channels);
1269
1270 return 0;
1271 }
1272
1273 static const struct of_device_id nbpf_match[] = {
1274 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1275 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1276 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1277 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1278 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1279 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1280 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1281 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1282 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1283 {}
1284 };
1285 MODULE_DEVICE_TABLE(of, nbpf_match);
1286
nbpf_probe(struct platform_device * pdev)1287 static int nbpf_probe(struct platform_device *pdev)
1288 {
1289 struct device *dev = &pdev->dev;
1290 struct device_node *np = dev->of_node;
1291 struct nbpf_device *nbpf;
1292 struct dma_device *dma_dev;
1293 struct resource *iomem, *irq_res;
1294 const struct nbpf_config *cfg;
1295 int num_channels;
1296 int ret, irq, eirq, i;
1297 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1298 unsigned int irqs = 0;
1299
1300 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1301
1302 /* DT only */
1303 if (!np)
1304 return -ENODEV;
1305
1306 cfg = of_device_get_match_data(dev);
1307 num_channels = cfg->num_channels;
1308
1309 nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1310 GFP_KERNEL);
1311 if (!nbpf)
1312 return -ENOMEM;
1313
1314 dma_dev = &nbpf->dma_dev;
1315 dma_dev->dev = dev;
1316
1317 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1318 nbpf->base = devm_ioremap_resource(dev, iomem);
1319 if (IS_ERR(nbpf->base))
1320 return PTR_ERR(nbpf->base);
1321
1322 nbpf->clk = devm_clk_get(dev, NULL);
1323 if (IS_ERR(nbpf->clk))
1324 return PTR_ERR(nbpf->clk);
1325
1326 of_property_read_u32(np, "max-burst-mem-read",
1327 &nbpf->max_burst_mem_read);
1328 of_property_read_u32(np, "max-burst-mem-write",
1329 &nbpf->max_burst_mem_write);
1330
1331 nbpf->config = cfg;
1332
1333 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1334 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1335 if (!irq_res)
1336 break;
1337
1338 for (irq = irq_res->start; irq <= irq_res->end;
1339 irq++, irqs++)
1340 irqbuf[irqs] = irq;
1341 }
1342
1343 /*
1344 * 3 IRQ resource schemes are supported:
1345 * 1. 1 shared IRQ for error and all channels
1346 * 2. 2 IRQs: one for error and one shared for all channels
1347 * 3. 1 IRQ for error and an own IRQ for each channel
1348 */
1349 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1350 return -ENXIO;
1351
1352 if (irqs == 1) {
1353 eirq = irqbuf[0];
1354
1355 for (i = 0; i <= num_channels; i++)
1356 nbpf->chan[i].irq = irqbuf[0];
1357 } else {
1358 eirq = platform_get_irq_byname(pdev, "error");
1359 if (eirq < 0)
1360 return eirq;
1361
1362 if (irqs == num_channels + 1) {
1363 struct nbpf_channel *chan;
1364
1365 for (i = 0, chan = nbpf->chan; i <= num_channels;
1366 i++, chan++) {
1367 /* Skip the error IRQ */
1368 if (irqbuf[i] == eirq)
1369 i++;
1370 chan->irq = irqbuf[i];
1371 }
1372
1373 if (chan != nbpf->chan + num_channels)
1374 return -EINVAL;
1375 } else {
1376 /* 2 IRQs and more than one channel */
1377 if (irqbuf[0] == eirq)
1378 irq = irqbuf[1];
1379 else
1380 irq = irqbuf[0];
1381
1382 for (i = 0; i <= num_channels; i++)
1383 nbpf->chan[i].irq = irq;
1384 }
1385 }
1386
1387 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1388 IRQF_SHARED, "dma error", nbpf);
1389 if (ret < 0)
1390 return ret;
1391 nbpf->eirq = eirq;
1392
1393 INIT_LIST_HEAD(&dma_dev->channels);
1394
1395 /* Create DMA Channel */
1396 for (i = 0; i < num_channels; i++) {
1397 ret = nbpf_chan_probe(nbpf, i);
1398 if (ret < 0)
1399 return ret;
1400 }
1401
1402 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1403 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1404 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1405
1406 /* Common and MEMCPY operations */
1407 dma_dev->device_alloc_chan_resources
1408 = nbpf_alloc_chan_resources;
1409 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1410 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1411 dma_dev->device_tx_status = nbpf_tx_status;
1412 dma_dev->device_issue_pending = nbpf_issue_pending;
1413
1414 /*
1415 * If we drop support for unaligned MEMCPY buffer addresses and / or
1416 * lengths by setting
1417 * dma_dev->copy_align = 4;
1418 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1419 * DMA_MEM_TO_MEM
1420 */
1421
1422 /* Compulsory for DMA_SLAVE fields */
1423 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1424 dma_dev->device_config = nbpf_config;
1425 dma_dev->device_pause = nbpf_pause;
1426 dma_dev->device_terminate_all = nbpf_terminate_all;
1427
1428 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1429 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1430 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1431
1432 platform_set_drvdata(pdev, nbpf);
1433
1434 ret = clk_prepare_enable(nbpf->clk);
1435 if (ret < 0)
1436 return ret;
1437
1438 nbpf_configure(nbpf);
1439
1440 ret = dma_async_device_register(dma_dev);
1441 if (ret < 0)
1442 goto e_clk_off;
1443
1444 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1445 if (ret < 0)
1446 goto e_dma_dev_unreg;
1447
1448 return 0;
1449
1450 e_dma_dev_unreg:
1451 dma_async_device_unregister(dma_dev);
1452 e_clk_off:
1453 clk_disable_unprepare(nbpf->clk);
1454
1455 return ret;
1456 }
1457
nbpf_remove(struct platform_device * pdev)1458 static int nbpf_remove(struct platform_device *pdev)
1459 {
1460 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1461 int i;
1462
1463 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1464
1465 for (i = 0; i < nbpf->config->num_channels; i++) {
1466 struct nbpf_channel *chan = nbpf->chan + i;
1467
1468 devm_free_irq(&pdev->dev, chan->irq, chan);
1469
1470 tasklet_kill(&chan->tasklet);
1471 }
1472
1473 of_dma_controller_free(pdev->dev.of_node);
1474 dma_async_device_unregister(&nbpf->dma_dev);
1475 clk_disable_unprepare(nbpf->clk);
1476
1477 return 0;
1478 }
1479
1480 static const struct platform_device_id nbpf_ids[] = {
1481 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1482 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1483 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1484 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1485 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1486 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1487 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1488 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1489 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1490 {},
1491 };
1492 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1493
1494 #ifdef CONFIG_PM
nbpf_runtime_suspend(struct device * dev)1495 static int nbpf_runtime_suspend(struct device *dev)
1496 {
1497 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1498 clk_disable_unprepare(nbpf->clk);
1499 return 0;
1500 }
1501
nbpf_runtime_resume(struct device * dev)1502 static int nbpf_runtime_resume(struct device *dev)
1503 {
1504 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1505 return clk_prepare_enable(nbpf->clk);
1506 }
1507 #endif
1508
1509 static const struct dev_pm_ops nbpf_pm_ops = {
1510 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1511 };
1512
1513 static struct platform_driver nbpf_driver = {
1514 .driver = {
1515 .name = "dma-nbpf",
1516 .of_match_table = nbpf_match,
1517 .pm = &nbpf_pm_ops,
1518 },
1519 .id_table = nbpf_ids,
1520 .probe = nbpf_probe,
1521 .remove = nbpf_remove,
1522 };
1523
1524 module_platform_driver(nbpf_driver);
1525
1526 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1527 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1528 MODULE_LICENSE("GPL v2");
1529